

Dissertation submitted in fulfilment of the requirements for the degree Magister Technologiae in

Information Technology, Faculty of Applied and Computer Sciences,

Vaal University of Technology

Malware Analysis and Detection in Enterprise Systems

Tebogo Mokoena

Student Number: 20255039

Supervisor: Professor Tranos Zuva
Co-Supervisor: Anneke Harmse

March 2017

i

© Copy Right by Mokoena T

November 2016

All rights reserved

i

DECLARATION OF AUTHORSHIP

I, Tebogo Mokoena, hereby declare that the dissertation entitled Malware Analysis and

Detection in Enterprise Systems submitted here, is the product of my own independent

research.

All the sources I have used and quoted have been pointed out and acknowledged by

means of complete references.

In addition, I declare that the work is submitted for the first time at this university /

faculty towards the Magister Technologiae degree in the Information Technology

department and that it has never been submitted to any other university / faculty for

the purpose of obtaining a degree.

____________________ ________________
Signature Date

ii

ACKNOWLEDGEMENTS

During the course of this research, I was privileged to work with, and enjoy the support of

my supervisor, Professor Tranos Zuva without whose knowledge and guidance this project

would never have reached completion.

I am also deeply indebted to my colleagues who assisted in reviewing this dissertation.

iii

DEDICATION

This dissertation is dedicated to my late grandmother, my parents and my beloved wife Sandy,

who supported and encouraged me to accomplish this work throughout her pregnancy and

blessed me with our baby boy Khanya.

iv

ABSTRACT

Malware is today one of the biggest security threats to the Internet. Malware is any malicious

software with the intent to perform malevolent activities on a targeted system. Viruses, worms,

trojans, backdoors and adware are but a few examples that fall under the umbrella of malware.

The purpose of this research is to investigate techniques that are used in order to effectively

perform Malware analysis and detection on enterprise systems to reduce the damage of

malware attacks on the operation of organizations.

Malware analysis experiments were carried out using the two techniques of malware analysis,

which are Dynamic and Static analysis, on two different malware samples. Portable

executable and Microsoft word document files were the two samples that were analysed in an

isolated sandbox lab environment.

Static analysis is the process of examining and extracting information from malware code

without executing the malware, while Dynamic analysis is the process of executing malware

in order to observe and record its behaviour in a controlled environment.

The results from the experiments disclosed the behaviour, encryption techniques, and other

techniques employed by the malware samples. These malware analysis experiments were

carried out in an isolated lab environment that was built for the purpose of this research.

The results showed that Dynamic analysis is more effective than Static analysis. The study

proposes the use of both techniques for comprehensive malware analysis and detection.

v

TABLE OF CONTENTS

DECLARATION OF AUTHORSHIP ... i

ACKNOWLEDGEMENTS ..ii

DEDICATION.. iii

ABSTRACT .. iv

TABLE OF CONTENTS ... v

ACRONYMS AND ABBREVIATIONS .. x

CHAPTER 1 ... 1

CHAPTER OVERVIEW .. 1

1 INTRODUCTION .. 1

1.1 Problem Statement ... 5

1.2 Research Question ... 6

1.3 Objectives of Research ... 6

1.4 Aim of Research ... 6

1.5 Significance of Study .. 6

1.6 Document and Chapter Structure .. 7

1.7 Chapter Summary ... 7

CHAPTER 2 ... 9

CHAPTER OVERVIEW ... 9

2 INTRODUCTION ... 9

2.1 Introduction to Malware ... 10

2.2 Malware and History of Malware ... 10

2.2.1 History of Malware ... 10

2.2.2 Malware Types .. 11

2.2.3 Overall Characteristics of Malware ... 15

2.2.4 Categories and Behaviour of Malware ... 16

2.2.5 Malware Functionality .. 16

2.2.6 Malware Lifecycle Model .. 20

2.3 Malware analysis .. 21

2.3.1 The goals of Malware analysis ... 23

2.3.2 Challenges of Malware Analysis .. 24

2.3.3 Limitations of Malware Analysis ... 24

2.3.4 Malware Analysis Types .. 25

2.3.5 Malware Analysis Process Overview ... 30

2.3.6 Protective Mechanisms .. 30

2.3.7 Malware Dependencies ... 30

vi

2.4 Malware Detection Techniques ... 31

2.4.1 Signature Based Detection .. 31

2.4.2 Anomaly Based Detection .. 32

2.5 Malware Anti-reverse-engineering and anti-analysis ... 33

2.5.1 Malware anti-analysis .. 33

2.5.2 Malware anti-reverse-engineering .. 34

2.6 Malware Analysis Lab ... 50

2.6.1 Architecture Overview .. 50

2.6.2 Physical and Virtual Environments ... 52

2.6.3 Malware Analysis Isolated Environment ... 53

2.6.4 Malware Analysis System Sandboxes Overview .. 55

2.6.5 Tools based on type of analysis ... 59

2.6.6 Malware Analysis Environment Setup Overview .. 63

2.6.7 Summary of the Malware Analysis Environment Design Overview 65

2.7 Chapter Summary ... 66

CHAPTER 3 ... 68

RESEARCH METHODOLOGY ... 68

CHAPTER OVERVIEW .. 68

3 INTRODUCTION ... 68

3.1 Research Design .. 68

3.2 A Model of the Research Process ... 70

3.2.1 Research Paradigms ... 71

3.2.2 Selected Empirical Research Method .. 76

3.3 Research Methodology ... 76

3.3.1 Selective Research Method - Quantitative Research 76

3.4 Data Preparation and Data Source ... 77

3.5 Data Collection Techniques .. 77

3.6 Sampling Techniques ... 79

3.7 Quantitative Data Analysis of Collected Malware .. 80

3.8 Research Methodology Actions Overview ... 81

3.9 Chapter Summary ... 82

CHAPTER 4 ... 83

MALWARE ANALYSIS EXPERIMENTS ... 83

CHAPTER OVERVIEW .. 83

4 INTRODUCTION ... 83

4.1 Malware Analysis Experiments ... 83

4.1.1 Malware Analysis Process Overview ... 83

4.2 Malware Analysis Experiments ... 85

4.2.1 Analysis of Malware artifact - Ticket_354041 ... 85

4.2.2 Analysis of 1123211 – 090SD.exe ... 101

vii

4.3 Chapter summary ... 117

CHAPTER 5 ... 119

EXPERIMENT RESULTS DISCUSSION AND CONCLUSION 119

CHAPTER OVERVIEW .. 119

5 INTRODUCTION ... 119

5.1 Experiment Results Discussion ... 119

5.1.1 Static Analysis Results Overview ... 119

5.1.2 Dynamic Analysis Results Overview .. 124

5.2 Measurement of Malware Analysis Techniques and detection 126

5.2.1 Analysis Method Results comparison .. 126

5.2.2 Effective Method Criteria Calculation ... 128

5.3 Research Summary .. 130

5.4 Research Conclusion and Recommendation .. 132

5.5 Future Research ... 135

References .. 136

Appendix A .. 143

Appendix B .. 153

Appendix E .. 154

Dynamic Analysis - Ticket_354041 .. 154

Appendix F .. 154

Dynamic Analysis - 1123211-090SD.exe ... 154

Appendix G – CD / USB Contents ... 154

List of Figures

Figure 1: Total Malware analysed in 2015 (Paganini, 2015) .. 3
Figure 2: Evolution of Malware (Touchette, 2016) ... 11
Figure 3: Malware Lifecycle (Rossow, 2013) ... 20
Figure 4: Summary Malware Analysis Types .. 25
Figure 5: Overview Static Analysis Process .. 27
Figure 6: Overview Dynamic Analysis Process ... 29
Figure 7: Malware Analysis Process overview... 30
Figure 8: A classification of malware detection techniques (Idika and Mathur, 2007). 32
Figure 9: View of the PE File Format (Shaban, 2013) ... 35
Figure 10: DOS-MZ Header - 1123211-090SD.exe ... 36
Figure 11: PE Section Header - 1123211-090SD.exe ... 37
Figure 12: Section Headers... 37
Figure 13: Linker creation of executable file (Saffaf, 2009) .. 38
Figure 14: Imported and Exported Functions (Saffaf, 2009) .. 39
Figure 15: Entropy Value .. 40
Figure 16: UPX Output Results (Section 4.2.2 Analysis of 1123211 – 090SD.exe) 42
Figure 17: PE structure of a packed executable (Pietrek, 1994) .. 43
Figure 18: XOR operation-encoder ... 47
Figure 19: XOR operation – decoder ... 47
Figure 20: Virtual Box Software running Windows 7 System ... 54

viii

Figure 21: REMnux tools overview – PESCANNER (Westcott and Zeltser, 2016) 56
Figure 22: REMnux tools overview – INETSIM (Westcott and Zeltser, 2016) 56
Figure 23: Cuckoo Sandbox Overview (Guarnieri et al., 2013) .. 57
Figure 24: IRMA Web Interface Overview (Quint et al., 2016) ... 58
Figure 25: Virus Total Web Interface Overview (Total, 2016) .. 59
Figure 26: REMnux Architecture Overview (Zeltser, 2016) .. 64
Figure 27: IRMA Architecture Overview (Quint et al., 2016) .. 64
Figure 28: Malware Analysis Environment Overview ... 65
Figure 29: Model of the research process showing the variety of paths that can be
undertaken (Brand, 2010) ... 70
Figure 30: Research Methodology Actions Overview .. 81
Figure 31: Malware Analysis Process Flowchart ... 84
Figure 32: Listing of File Section Hashes – ticket_354041.doc .. 86
Figure 33: Listing of File Properties - ticket_354041.doc ... 87
Figure 34: Listing of File Signatures - ticket_354041.doc .. 87
Figure 35: Indicators of Compromise - ticket_354041.doc ... 88
Figure 36: Blacklisted Strings - ticket_354041.doc .. 89
Figure 37: Listing of Obfuscated Code - ticket_354041.doc .. 89
Figure 38: Listing of Embedded URLs - ticket_354041.doc ... 90
Figure 39: Listing of Embedded Email Address - ticket_354041.doc 90
Figure 40: Listing of PE Headers - ticket_354041.doc ... 90
Figure 41: Listing of Embedded Domains - ticket_354041.doc .. 91
Figure 42: Listing of Installed Program Execution - ticket_354041.doc 91
Figure 43: Listing of Interesting Words Found - ticket_354041.doc 91
Figure 44: Listing of OLE Headers - ticket_354041.doc .. 92
Figure 45: Listing of Indication of Existence of Macros - ticket_354041.doc 92
Figure 46: Listing of VBA Macros Found - ticket_354041.doc ... 92
Figure 47: Listing of VBA Macros Attributes - ticket_354041.doc .. 93
Figure 48: Listing of Extracted VBA Macros - ticket_354041.doc .. 93
Figure 49: Listing of VBA Macros Code - ticket_354041.doc ... 94
Figure 50: Listing of Results Summary - ticket_354041.doc .. 95
Figure 51: Ticker_354041 Sample Overview ticket_354041.doc ... 95
Figure 52: Ticker_354041 Sample Suspicious Capabilities ticket_354041.doc 96
Figure 53: File Properties ticket_354041.doc .. 97
Figure 54: Activity Screenshot - ticket_354041.doc ... 97
Figure 55: File Signatures - ticket_354041.doc ... 98
Figure 56: Files dropped by the Malware - ticket_354041.doc ... 98
Figure 57: File Written - ticket_354041.doc ... 99
Figure 58: File opened - ticket_354041.doc .. 99
Figure 59: Registry Keys Read - ticket_354041.doc .. 99
Figure 60: Process Executed ticket_354041.doc ... 100
Figure 61: Results Overview ... 100
Figure 62: Virus Total Results - ticket_354041.doc ... 101
Figure 63: Listing of File Section Hashes – 1123211-090sd.exe 102
Figure 64: Listing of File Details - 1123211-090sd.exe .. 102
Figure 65: Listing of File Signature - 1123211-090sd.exe ... 103
Figure 66: Indicators of Compromise – 1123211-090sd.exe ... 103
Figure 67: Strings – 1123211-090sd.exe... 104
Figure 68: Listing of String Offsets - 1123211-090sd.exe .. 104
Figure 69: Listing of Extracted Code - 1123211-090sd.exe ... 105
Figure 70: Listing of Packer PEDUMP - 1123211-090sd.exe .. 106
Figure 71: Listing of File Entropy - 1123211-090sd ... 106
Figure 72: Listing of IMPORTS PEDUMP- 1123211-090sd.exe .. 107
Figure 73: Listing of DOS STUB - 1123211-090sd.exe ... 107
Figure 74: Listing of File Directory Listing - 1123211-090sd.exe 108

ix

Figure 75: Optional Headers – 1123211-090sd.exe .. 108
Figure 76: Listing of Packer PEFRAME Results- 1123211-090sd.exe 109
Figure 77: Listing of Suspicious Sections PEFRAME Results- 1123211-090sd.exe 109
Figure 78: Listing of Packer PEFRAME Results- 1123211-090sd.exe 109
Figure 79: Dependency Walker – 1123211-090sd.exe .. 110
Figure 80: Static Analysis Results Overview - 1123211-090SD.exe 110
Figure 81: File Details – 1123211-090sd.exe .. 111
Figure 82: File Signatures – 1123211-090sd.exe .. 112
Figure 83: Dropped Files – 1123211-090SD.exe .. 113
Figure 84: Hosts Involved – 1123211-090SD.exe ... 113
Figure 85: DNS Requests– 1123211-090SD.exe .. 114
Figure 86: File Read – 1123211-090SD.exe ... 114
Figure 87: File Written– 1123211-090SD.exe ... 115
Figure 88: File Deleted – 1123211-090SD.exe.. 115
Figure 89: File Opened – 1123211-090SD.exe ... 115
Figure 90: File Copied – 1123211-090SD.exe .. 115
Figure 91: Processes – 1123211-090SD.exe .. 116
Figure 92: Results Overview ... 116
Figure 93: Virus Total Results – 1123211-090SD.exe ... 117
Figure 94: Experiment 1 .. 130
Figure 95: Experiment 2 .. 130
Figure 96: Experiment 1 Analysis and Conclusion .. 133
Figure 97: Experiment 1 Analysis and Conclusion. ... 134

List of Tables

Table 1: Summary overview of research questions and objectives.. 8
Table 2: Malware Types Summary (Uppal et al., 2004) ... 15
Table 3: Sections of a PE File for a Windows Executable (Shaban, 2013, Idika and Mathur,
2007, Marak, 2015, Elisan, 2015).. 36
Table 4: Physical Machines Environment .. 52
Table 5: Virtual Machine Environment ... 52
Table 6: Toolsets .. 62
Table 7: Differences between exploratory and conclusive research 70
Table 8: Positivism and Interpretivism (Bajpai, 2011) .. 73
Table 9: Data Collection Techniques Used by Research Approaches (Morgan and Harmo,
2001) .. 77
Table 10: Sampling Techniques (Dudovskiy, 2011) .. 79
Table 11: Advantages and Disadvantages of Probability Sampling (Dudovskiy, 2011) 80
Table 12: Analysis Methods results comparison .. 126
Table 13: Experiment 2 Results .. 128

x

ACRONYMS AND ABBREVIATIONS

APIs Application programming interfaces

AV Antivirus

CPU Central Processing Unit

C&C Command-and-control

DBIR Data Breach Investigation Report

DDos Distributed Denial of Service

DGA Domain generation algorithms

DNS Domain Name Server

IOC Indicators of Compromise

POS Point-of-sale

PUPs Potentially undesirable processes

OS Operating System

OLE Object Linking and Embedding

OEP Original Entry Point

OCX OLE Control Extension

RAM Random Access Memory

VM Virtual Machine

XCSB Optimising Structured BASIC compiler for microcontrollers

1

CHAPTER 1

INTRODUCTION

CHAPTER OVERVIEW

This chapter focuses on the following areas:

• Introduction

• Problem Statement

• Research Question

• Objectives of Research

• Aim of Research

• Significance of Study

• Document Structure

• Chapter Summary

1 INTRODUCTION

The Internet has become an important part of people’s everyday life as well as in

organisations. It also plays a vital role as it allows collaboration to take place between

individuals and organisations that allows them to communicate and carry out business

processes. Internet connectivity provides vast benefits in relation to increased access to

knowledge and information, but using the Internet can become a hazardous experience where

users and organisations lack the appropriate levels of security awareness and knowledge.

Anyone that uses a computer may have encountered a direct or indirect experience with

malware, especially if the computer has access to the internet. Malware poses security threats

to online users as the Internet was never designed to be a very secure environment.

It is important to first understand the term malware for the purpose of this research. Herewith

a definition:

The term malware is short for malicious software that refers to software that is designed to

cause harm or damage or even perform other unwanted actions on a computer system.

Malware behaviour ranges from being an irritation such as causing advertising pop-up’s, to

actions that are much more harmful, such as theft of credentials and sensitive data; even

infecting other machines on the network (Agrawal et al., 2014).

2

Malware is also designed for financial gain such as ransomware malware and while others are

designed to gather sensitive information, gain access to private computer systems, or display

unwanted advertising (Bhojani, 2014), some are even designed or used to accomplish civil

(e.g. the Anonymous group) or politically motivated attacks. The Malware family includes

trojan horses, worms, spyware, and adware. Advanced malware such as ransomware is used

to commit financial fraud and extort money from computer users (Goertzel and Winograd,

2009).

Malware attacks have been around since the first well-known malicious software, which was

written in the early 1950s, widely known as a “self-reproducing machine”. The evolution of

malware over the years has contributed towards major security incidents or breaches that

have caused major financial losses as well as reputational damage to many organizations.

One of the examples of these malware attacks was the Sony Pictures hack in December 2014.

According to a number of reports and security researchers, the malware that infected

computer systems at Sony Pictures was named “Wiper” malware (Gallagher, 2014). The

malware was involved in the vast majority of these attacks according to the Verizon’s 2016

Data Breach Investigation Report (DBIR). The DBIR report indicated that the nine major

security incident classification categories were the following:

• Web Application attacks

• Point-of-sale intrusions

• Privilege misuse and insider threat

• Various errors

• Physical loss and theft

• Crimeware

• Payment card skimmers

• Cyber-espionage

• Denial of service attacks

The increase of malware attacks and the increasingly resourceful ways in which it is being

used to commit crime such as to conduct espionage, steal personal information, cause

destruction to governments and business operations, or deny the user access to information

and services as well as defacing websites, is potentially a serious threat to the Internet

economy (Privacy, 2008).

Instances of Ransomware, a class of malware, which was created solely to extort money from

the intended victim or company, have seen a dramatic proliferation over the past year. The

Verizon’s 2016 Data Breach Investigation Report also indicated that financial gain was far the

3

most common motivation for attacks and breaches, with 89% of breaches having a financial

or espionage motive (Agrawal et al., 2014). Different strains of malware samples are detected

on a daily basis and 12 million fresh strains of malware detected every month are just one

aspect of the interesting analysis. AV-Test is an independent company that is responsible to

evaluate and to rate antivirus security solutions for operating systems such as Microsoft

Windows and Android operating systems. This company has revealed that every second, four

samples are available in the wild.

Figure 1 below depicts the number of samples that were analysed by AV-Test in the year

2015. AV-Test analysed 18 million new samples in August 2015 and 325 million samples were

analysed in December 2015 alone. The AV-Test institute registers over 390,000 new malicious

programs every day (Paganini, 2015).

Figure 1: Total Malware analysed in 2015 (Paganini, 2015)

Malware authors are individuals, groups of hackers, national-states or even organisations

(SANS610, 2012). Malware authors are designing sophisticated malware that can evade

detection, making it difficult or impossible to be detected by traditional solutions such as

Antivirus solutions (Mohanty, 2017). Other malware uses a variety of techniques, which

include anti-sandbox or analysis detection mechanism to defeat sandbox technology, that also

makes it difficult for malware analysts to analyse in a sandbox environment (Chen et al., 2008).

Malware authors have evolved sophisticated malicious code to such an extent that it is at an

advanced level of complexity and uses various obfuscation methods, making analysis and

detection very difficult, and in some cases virtually impossible. While obfuscation is one of the

4

elements of metamorphic viruses, it is usually more employed to prevent analysis and

developing AV patterns. As technology has evolved, the detection methods that Antivirus

vendors use have changed as well, improving their accuracy for newly-released malware.

These vendors have been lacking in detecting zero-day malware instances and instances that

are customised to the target and have not been seen in the wild (Pirscoveanu, 2015) or new

strains of malware. The modus operandi of an Antivirus is that it uses two common methods,

which are Signature and Behaviour detection, to detect and fight malware on an infected

system. Signature based detection is the most common method used by antivirus solutions

and vendors. This method involves searching for the detection signatures of the already

classified malware within its own database that entails searching through strings of bits that

are unique to the particular type of malware that is being analysed (Choudhary et al., 2013).

The behaviour method uses heuristic methods or algorithms to detect unknown malicious

activities or behaviour of the malware. This method entails performing a set of tasks or actions

on the malware, and the algorithm that is involved in the task analyses the patterns to identify

malicious activities. The advantage of this method is that it has the ability to not only detect

new malware that antivirus vendors have not yet defined in its signature database, but also

may report on false positives (Choudhary et al., 2013).

Malware attack vectors include endpoints in the form of accessing an infected website,

receiving a phishing email with malware attached or as the payload, and from end users who

plug a malware infected device into their personal or corporate computers.

While malware can perform all sorts of malicious activities on a computer system it is then up

to the malware analysts or security experts to determine the best and most efficient way in

which they can respond to malware incidents or attacks. Malware analysts or security experts

must have various sets of skills, and must also make use of various tools and techniques to

defend against malware. As a malware analyst it is important to understand the malware

analysis process, which is defined as the art of dissecting malware to understand how it works,

how to identify it, and how to defeat or eliminate it (Sikorski, 2012).

We have also seen an organisation closing down or even shutting down their operations

because of incidents caused by malware infections. One of the examples was the zero-day

attack on Lincolnshire County Council (Burton, 2016). IT systems across the organisation were

shut down due to a cyber-attack in which sensitive personal information from its adult care

system was compromised. Lincolnshire County reported that the malware that infected their

systems had a payload that contained zero-day malware. A zero-day event occurs when a

vulnerability is newly discovered in a system and exploited. The vulnerability exploited would

generally be an otherwise unknown security flaw in common applications, or malware that is

5

created to specifically and persistently penetrate an organisation and the malware has

therefore not shown up in the wild yet.

1.1 Problem Statement

The prevalence of Malware is a critical security issue for organizations using the internet today.

Malware is a malicious software such as viruses, botnets and Trojans, which is a problem that

is continuing to evolve, and it is also the most common infection affecting computers of many

users today (Distler and Hornat, 2007). It affects the system and causes a lot of operational

problems. The Symantec report (Reavis, 2012) stated that in 2010 alone, 286 million different

types of malware were responsible for more than 3 billion total attacks on computer users;

these are staggering numbers that are just one simple measure of malware’s impact.

According to the 2016 Data Breach Investigations Report, 39 percent of Crimeware and 1429

of credential theft incidents in 2015 involved malware, particularly the ransomware malware

(Reavis, 2012). Malware incidents have the following impact on organisations and computer

users (Wlosinski, 2015), such as the following examples:

• Loss of data to governments, commercial businesses, financial institutions and

individuals

• Theft of Identity (e.g. stolen credit cards, theft under the names of those affected)

• Online fraud (e.g. theft of account holdings by deception

• Computer extortion (e.g. Ransomware)

• Unauthorised access to networks and personal computing and devices

• Distributed Denial of Service (DDoS) attacks against networks and websites of

businesses and government, rendering their systems unavailable

• Data availability and business continuity that is affected by data destruction

Organisations are using ineffective techniques or systems to detect malware. Antivirus (AV)

solution is one common way of detecting malware that uses its malware signatures database

derived from analysing the malware code or instructions. However, any minor alterations on

the malware code by malware writers can greatly prevent the malware from being detected.

Because of this, malware and malware detection are in a mutual arms race, which is why it is

important to concentrate rather on the detection and analysis techniques and environment (as

shown below in the research question statement), rather than on the malware itself, as that

changes almost daily (See 1.2. and 1.3 below).

6

1.2 Research Question

How does one effectively perform Malware analysis and detection on enterprise systems in

order to reduce the damage of malware attacks on the operation of organizations?

The following sub - questions are derived from the research question:

1. What are the malware analysis and detection techniques that are available in

literature?

2. What are the tools and techniques available to effectively perform analysis and

detection?

3. How to set up a malware analysis and detection environment?

4. How to measure the most effective technique of malware analysis and detection on

enterprise systems?

The next section will discuss the objectives where the answer to the above questions will be

explored.

1.3 Objectives of the Research

The main research objective can be broken down into the following sub-objectives:

• To study and compare malware analysis and detection techniques that are in literature

• To investigate tools and techniques that are available to effectively perform malware

analysis and detection

• To determine the most effective way of setting up a malware analysis and detection

environment

• To measure the effective techniques of malware analysis

The findings of this research will hopefully contribute positively to organisations within the

malware analysis fraternity.

1.4 Aim of Research

The main aim of this research is to study the important aspects of malware analysis in literature

and to determine the most effective techniques to perform malware analysis and detection.

1.5 Significance of Study

The significance of the study is to reduce the spread of malware to a minimum in the enterprise

systems for organisations.

7

1.6 Document and Chapter Structure

This dissertation consists of five chapters in addition to references and appendices. All the

files and experiment results included in this document are made available electronically with

this dissertation, and additional software, log information results of experiments are available

on CD and USB sticks. This five chapter dissertation is structured as follow:

• Chapter 1 - Introduction

This chapter provides an introduction into malicious software and malware analysis.

• Chapter 2 - Literature review

This chapter describes the following:

➢ the background and theory to research of malware

➢ describes the different forms of malware

➢ the different purposes of malware

➢ malware analysis

➢ the different stages of analysis and the techniques used

➢ describes how to configure an isolated environment to be able to conduct malware

analysis in a safe environment and the tools required for malware analysis

• Chapter 3 - Research Methodology

The Research Methodology chapter describes the methodology used in this dissertation.

• Chapter 4 - Malware Analysis Lab and Experiments

This chapter describes the practical experiments, results and investigations done by the

author of this dissertation.

• Chapter 5 - Experiment Results Discussion and Conclusion

The discussion and review of the results presented from the experiments done in chapter

4 relative to existing research and knowledge.

1.7 Chapter Summary

The foundational background was established by discussing the introduction and background

to this research study. The problem statement, objectives, aim of the research and significance

of the study are also outlined in this chapter. The structure of chapters for the entire

dissertation or research is also provided. Table 1 provides a summary overview of the

research questions and objectives, as well as the chapters containing and addressing these

questions and objectives.

8

PRIMARY RESEARCH QUESTION

How is malware detection done through malware analysis on enterprise systems?

Secondary Research

Questions

Secondary Research

Objectives
Chapters

What are the malware and

detection techniques that are in

literature?

To study and compare

malware analysis and

detection techniques that are

in literature.

Addressed in Chapter

2, Literature Review

What are the tools and techniques

available to effectively perform

analysis and detection?

To investigate tools and

techniques that are available to

effectively perform malware

analysis and detection.

Addressed in Chapter 2

How to setup a malware analysis

and detection environment?

To determine the most effective

way of setting up a malware

analysis and detection

environment.

Addressed in Chapter 2

How to measure the most effective

technique of malware analysis and

detection on enterprise systems?

To measure the effective

techniques of malware

analysis.

Addressed in Chapter 5

Table 1: Summary overview of research questions and objectives

The following chapter provides a detailed description of the literature review that relates to this

research.

9

CHAPTER 2

LITERATURE REVIEW

CHAPTER OVERVIEW

This chapter focuses on the following areas:

• Introduction

• Malware and History of Malware

• Malware Analysis

• Malware Detection Techniques

• Malware Anti-Reverse-Engineering

• Malware Analysis Lab

• Chapter Summary

The objectives of this chapter are as follows:

• To study and compare malware analysis and detection techniques that are in literature

• To investigate tools and techniques that are available to effectively perform malware

analysis and detection

• To determine the most effective way of setting up a malware analysis and detection

environment

2 INTRODUCTION

Anyone that uses a computer may have a direct or indirect encounter with malware, especially

if the computer is connected to the Internet as mentioned in the previous chapter. In chapter

1 we discussed malware or malicious software as being a major problem to individuals and

organisations and which also continues to grow.

This chapter focuses on the theory around malware and malware analysis in order to get a

better understanding of malware as well as the process of analysing or dissecting the malware

and how to setup a secure environment to analyse malware. This chapter also aims to provide

answers to the following research questions:

• What are the malware and detection techniques that are in literature?

• What are the tools and techniques available to effectively perform analysis and detection?

• How to setup a malware analysis and detection environment?

10

2.1 Introduction to Malware

As already described in Chapter 1, malware is malicious software of which the sole purpose

is to attack and damage, disable or disrupt computers, computer systems, or networks, and

can also steal information. Attackers or malware authors often take advantage of security flaws

in systems or websites that are also called vulnerabilities, to infect by injecting malware into

existing software and systems with the most severe consequences that can lead to incidents

such as identity theft and/or financial gain. Computer users already know the damage that

computer viruses can cause on infected computers but this does not mean that the malware

and viruses are the same.

The term malware is an umbrella that encompasses a wide range of threats such as viruses,

botnets, worms, spyware, trojans, backdoors and other malicious software. Each of the

malware sub-types consists of unique characteristics, behavioural patterns, functionality and

targeted systems. The sections that follow provide an in-depth study into malware and its

different types.

2.2 Malware and History of Malware

There are different types and categories of malware that are available. This section provides

an overview of the history of malware, their characteristics, method of infection and the

potential impact that these malware types might have on infected systems. It can be described

as a program whose purpose is malevolent; to intentionally cause harm or subvert the

intended function of the system, and it ultimately performs actions that were not sanctioned or

agreed to by the user.

A noticeable incident was the spread of the Melissa virus that was designed to send emails to

Microsoft outlook users. Every user or computer that was infected would, in turn, infect other

users or computers (Milovsevi'c, 2013). The virus proliferated rapidly and exponentially,

resulting in substantial interruption and impairment of public communications and services.

2.2.1 History of Malware

During the early days of computers viruses and worms were created for fun and to perform

maintenance functions on computers. Malicious software or viruses did not surface until the

early 1940s when the first theoretical malware was discovered in 1949 by John von Neumman.

The malware was believed to be self-reproducing automatons malware. Malware strains or

variants have come a long way since 1949. The following provides a brief history of malware

that has been discovered over the years:

• 1978, the first Trojan was released

11

• 1986, the first IBM compatible virus called “Brain”

• 1988, the first worm called “Morris” distributed over the internet

• 2003, the Slammer Worm infects 75000 machines within 10 minutes

• 2010, the Stuxnet attacks Iran Nuclear centrifuges

Malware code and function has evolved over the years as indicated in figure 2 below,

Figure 2: Evolution of Malware (Touchette, 2016)

2.2.2 Malware Types

The following are malware types as described by various sources (Elisan, 2015; Agrawal et

al., 2014; Michael Davis, 2010; Privacy, 2008; Bhojani, 2014; Skoudis and Zeltser, 2003;

Kendall, 2007; Sikorski, 2012; Kaspersky, 2016; Reavis, 2012; Marak, 2015):

• Backdoor: Its malicious code installs itself onto any system to allow the attacker access.

Backdoor malware typically allows the attacker to connect the targeted system with little

or no authentication and can execute commands locally on the system.

• Botnet: A botnet is different from a backdoor in that with a backdoor, the connection is

from the outside to the inside, but with a botnet, the connection (after initial infection)is

from the inside to the outside. All computers infected with the same botnet receive the

same instructions from a single command-and-control (c&c) server.

• Trojans: Trojan horse is similar to the Greek myth that present themselves as harmless,

useful software in order to persuade victims to install them on their computers; while

Trojans naturally seem to be normal software, which is frequently bundled with other valid

software that can introduce backdoors, allowing unauthorized access to your computer.

Trojans do not attempt to insert themselves into other installed applications or system

files like computer viruses do. Instead, they employ maneuvers such as drive-by

12

downloads or installing via online games in order to reach their targets (Agrawal et al.,

2014). Once a trojan is activated on the victim’s system, Trojans can enable cyber-

criminals to spy on you, steal your sensitive data, and gain backdoor access to your

system. These actions can include:

➢ Deletion of data

➢ Blocking of data

➢ Data modification

➢ Copying of data

➢ Disrupting the service and performance of computers or computer networks

According to Kaspersky (Kaspersky, 2016), trojans are classified according to the type

of actions that they can perform on your computer:

➢ Backdoor

➢ Exploit

➢ Rootkit

➢ Trojan-Banker

➢ Trojan-DDoS

➢ Trojan-Downloader

➢ Trojan-Dropper

➢ Trojan-FakeAV

➢ Trojan-Game Thief

➢ Trojan-IM

➢ Trojan-Ransom

➢ Trojan-SMS

➢ Trojan-Spy

➢ Trojan-Mail finder

➢ Other types of Trojans include:

▪ Trojan-ArcBomb

▪ Trojan-Proxy

▪ Trojan-Notifier

▪ Trojan-PSW

▪ Trojan-Clicker

• Downloader: Malicious software that is intended to only download other malicious

software. Downloaders are normally installed by attackers when they have gained access

to the targeted system. The downloader application downloads and installs additional

malicious software to perform further malicious activities

• Information-stealing malware: It is malware that can collect information from the

targeted computer and normally sends back to the controller or attacker, e.g. password

13

hash grabbers, sniffers and physical or software key loggers. This malware is also used

for gaining access to online banking accounts such as email

• Launcher: Malicious applications that are used to launch other malicious applications.

They usually use non-traditional methods to launch other malicious applications in order

to prevent detection on the infected system

• Rootkit: Malicious code that is intended to conceal the existence of other malicious code.

This type of malware is normally grouped with other malware, such as backdoors that

allows an attacker to gain remote access and make the code undetectable on the infected

system

• Scareware: It is malware that is intended to scare the infected user into purchasing

something. It commonly has an interface that makes it look like an antivirus solution. It

tells the users that there is malicious software installed on their system and the only way

to remove the software is to buy their malicious software when in fact, the software that

is being sold has nothing to do with the removal of the scareware

• Crime ware: The rise of ransomware and Ransomware-as-a-Service (RaaS) has been

the biggest change to the landscape of malware in recent years. Ransomware makes use

of infection methods such as

➢ spam

➢ social engineering methods

➢ drive-by downloads

➢ malvertising

It encrypts all the data on a targeted computer and holds the data for ransom, typically

to be paid using bitcoin (Agrawal et al., 2014).

• Spam-sending malware: This type of malware infects a computer and then uses that

computer to send spam emails. This malware generates income for attackers that allow

them to sell email spam sending services.

• Worm or virus: Virus consists of harmful applications intended to infect legitimate

software applications. Once a person installs and runs the infected application, the virus

triggers and disperses itself to other applications that are installed on the computer before

performing further malicious activities such as deletion of critical system files within the

operating system. Worms are stand-alone applications that are able to replicate

themselves across the network. Unlike a virus, a worm does not need to attach itself to

an existing application. On the other hand, both viruses and worms can severely damage

the infected computer as they are able to exploit network shares (Agrawal et al., 2014).

• Shadyware, PUPs, Adware and Keyloggers: Shadyware is the type of malware that

does not technically fit into the category of viruses because it is identified as “potentially

14

undesirable processes” (PUPs). It may still invade user’s privacy, contain malicious code,

and even become a nuisance (Agrawal et al., 2014) on the infected system.

Adware is a type of financially motivated malware that normally appears in the form of

unwanted advertisements presented to the user. Websites are filled with these types of

applications that can hijack a targeted computer for profit. Most of the adware is normally

bundled with other software known as “free” downloads and pop-up toolbars or ads that

unnoticeably install software on targeted computer with vulnerabilities (Agrawal et al.,

2014).

Spyware/keyloggers constitute another type of malware that secretly collects information

on the infected computer and sends it back to the attackers’ computer. Information

collected includes websites that the user visited, system and browser information.

Spyware is usually installed by a trojan and does not also have any infection traits. Once

installed on the targeted computer, it then starts collecting information quietly in order to

avoid detection. Keyloggers are variants that record the key stokes entered by a user,

and it is common in point-of-sale (POS) and web application attacks (Agrawal et al.,

2014).

• RAM Scrapers: RAM scraping is the type of malware that is intended to steal payment

information from compromised POS devices. This malware’s threat vector exploits

vulnerabilities in the transaction process where information is stored in unencrypted form

in the system memory for just a few milliseconds. RAM scrapers use this period to snatch

card information during each transaction and saves it as a text file for exfiltration at a later

date (Agrawal et al., 2014).

2.2.2.1 Summary of Malware Types

Table 1, below is a summary of the malware type section, the purpose of this table is to provide

an overview of the section on the types of malware described in section 2.2.2 above.

Types of
malware

Feature Mode of operation
Damage
caused

Virus A form of malware
that takes
unauthorized control
of the infected
computer and
causes harm without
the knowledge of the
user.

Viruses attach themselves
to a program such as an
executable file and its self-
replicating capability
spreads the infection from
one computer to another.

Causes denial of
service performance
degradation.

15

Types of
malware

Feature Mode of operation
Damage
caused

Worms Worms are
standalone
malicious software
that can operate
independently and
does not hook itself
to propagate.

They exploit the security
vulnerability by using
computer or network
resources and spread
themselves via storage
devices such as USB
devices, communication
media such as Email.

Cause network
performance issues,
consumes large
amount of memory
of systems
resources.

Trojan Malicious piece of
software that
conceals itself and
behaves as a
legitimate program to
take unauthorized
control of the
computer.

Trojan does not self-
replicate; instead is
downloaded through
user interaction such as
downloading a file from the
internet.

Steal password or
login details,
electronic money
theft, modify/delete
files, monitor user
activity.

Rootkits Rootkits are the
masking techniques
for malware,
basically designed to
conceal the
malicious software.

Can be installed through a
software exploit or by a
Trojan.

Steal passwords,
install
Keyloggers.

Spyware A software
negatively affecting a
system by keeping
track of users’
activity without their
consent and send
back the sensitive
information to the
creator.

Can be installed with other
software such as freeware
or
dropped by Trojans.

Some sophisticated
type of spyware
captures entire
network interface,
digital certificate,
encryption keys and
other sensitive
information.

Keyloggers Serious form of
Spyware secretly
record keystrokes,
read cookies and
files on the drive to
gather personal
details.

Can be installed by another
malicious program or when
a user visited an infected
site.

Capture sensitive
information such as
username,
password,
credit card number or
online banking
details

Table 2: Malware Types Summary (Uppal et al., 2004)

2.2.3 Overall Characteristics of Malware

Malware provides attackers with a convenient, ease of use and automation means of

compromising computer systems. Malware normally consists of the following characteristics

(Privacy, 2008):

• Multi-functional and Modular

• Persistent and Efficient

16

• Can Affect a range of devices

• Part of a broader cyber-attack system

• Profitable

2.2.4 Categories and Behaviour of Malware

The majority of malware have similar characteristics, behaviour and properties that can be

detected by a majority of antivirus solutions using signature detection methods. A worm is a

good example to use as a worm self-replicates and spreads itself by making copies of itself

on the infected system through the available communication networks. A virus will try to spread

by making use of a carrier such as attaching itself to a file.

Environments of malware.

For malware to perform malicious activity on an infected system and also the neighbouring

system, some resources should exist for the malware to succeed. Malware authors develop

their code to execute on a specific operating system (OS). For example, a virus written to

execute on a Microsoft OS may not execute on a Linux or Unix OS. The malware may require

some specific applications to be running on the infected system in order to be effective.

Malware can be written to execute when it detects the Microsoft office application on the

system and then make use of scripting language and macros.

Ways of infection. Malware uses various ways of infection on a system such as flash drives

(USB), which could be infected with malware, and these flash drives are plugged in on a

different system and also can be transmitted on email attachments.

Each type of malware has its own unique behaviour towards the infected system. This

behaviour is developed as program code and embedded or obfuscated within the payload of

the malware. By examining the malware payload we can determine its behaviour, which can

either be malicious or non-malicious, and the threat it may pose on the system it has infected.

2.2.5 Malware Functionality

This section discusses the following:

• Malware Behaviour

• Deployment of malware

• Malware Lifecycle Model

17

2.2.5.1 Malware Behaviour

Malware behaves in various ways when executed on a target system and the behaviour is

discussed in detail in this section.

• Downloaders and Launchers

The two types of malware that are normally stumbled upon are downloaders and

launchers. Malware downloaders: downloads another piece of the malware from source

and executes on the target systems. These types of malware are often packed with

exploits that ordinarily use OS API’s such as URLDownloadtoFileA followed by a call to

WinExec to download and to also execute the downloaded malware (Kendall, 2007).

Malware Launchers: are also known as loaders which are any executables that install

malware for instant or impending concealed execution of malware (Kendall, 2007)

• Backdoors

Backdoors are types of malware that allow an attacker with access remotely to a

compromised system and they are the most common type of malware that have a variety

of abilities. Backdoors initiate network communication to the internet in a number of ways

and the mostly use HTTP protocol on port 80. The HTTP protocol is mostly used for

outbound traffic, which is the traffic that leaves the organization to the internet, and allows

malware to take advantage of this process (Kendall, 2007). Backdoor malware consists

of certain functions that enable the malware to

✓ modify the registry

✓ enumerate display windows

✓ create additional directories

✓ search for files

• Credential Stealers

Malware authors go to excessive lengths to write malware that can steal user’s credentials

and there are three types of malware that can perform this function (Kendall, 2007):

a) Malware that initiates when a user logins on the target system.

b) Malware that can make a copy of the information stored on the target system such

as hashes of passwords that can be used to perform further attacks.

c) Malware that records every keystroke executed.

• Persistence Mechanisms

As soon as malware has infected the targeted system, its intention is to root itself on the

system and stay undetected for an extended period of time. The persistence process can

serve as a way to find patterns of the malware. A common method of persistence is the

modification of the registry keys on the system and modification of system files.

18

• Privilege Escalation

A common practice by users is to logon and run with local administrator privileges on

systems that allow malware to be executed successfully. Some malware can use flaws in

the OS or application to gain root/admin privileges even though the user whose

credentials are being used does not have those privileges. What is described here is

credential stealing (if the user is already logged on with privileged account) rather than

privileged escalation. Administrator privileges also allow malware executed to have the

same administrative privileges. Security best practice of setting up and login on any

system is to not run as or be part of the local administrator group. If malware is executed

on the system without administrator privileges, then the malware would need to have the

ability to perform privilege escalation on the target system. A bulk of malware that perform

this type of attack are commonly known as exploits or zero-day malware attacks against

the system (Kendall, 2007).

• Covering its Tracks

Most malware authors ensure that the malware that they design is undetectable and can

hide its execution through various mechanisms already discussed. The malware used

often that hides its malicious intention, is called a rootkit. This type of malware modifies

the internal functioning of the system and also embeds itself in the systems (Kendall,

2007).

2.2.5.2 Deployment of malware

Malware is deployed to the target system through various means of which some are authentic

ways while others are malicious. Deployment of malware is as important as the capabilities or

functions of malware and this process does not concern itself with how the malware is

executed on the target system but how it reaches its target.

Some deployment methods have the ability to execute the malware that can result in

deployment and infect the targeted system. The methods or technologies used for the

deployment process of malware are known as malware infection vectors (Elisan, 2015).

2.2.5.2.1 Malware Infection Vectors

This section discusses what malware infection vectors are and how they are used and abused

by malware authors to deploy malware on their target systems. Malware infection vectors are

liable for the delivery and propagation of malware in a threat ecosystem (Elisan, 2015).

Threat ecosystem is defined as a collection of different technologies that attackers use to

perform attack operations (Elisan, 2015). Malware infection vectors are selected based on

various criteria that include the following:

19

a) Speed

b) Covertness

c) Exposure

d) Period of Time

• Speed: the speed in which the malware infects a target system is important for malware

authors and attackers. The speed of infection depends on the intention of malware or

author; if time is critical then the faster method is chosen. Historically malware infection

depended mostly on physical media as infection types, and nowadays it depends on inter

connection and communication of systems (Elisan, 2015)

• Covertness: the success of malware infection vectors is the one that is undetectable and

bypasses most security controls in place. Software vulnerabilities are the stealthiest of

types of malware infection vectors. Well written malware can exploit a vulnerable software

by taking advantage of its privileges and access on the target system. Speed and

Covertness (stealth) are opposed to each other. The more speed a virus has (the quicker

it propagates), the more noise it makes and the less covert/stealthy it is.

• Exposure: The huge number of targets that a malware infection vector can infect in any

given time (Elisan, 2015) is critical in performing successful attacks. Phishing and spam

emails that are carrying malware or even malware that is downloaded are also used as

an infection vector.

• Period of Time: Some malware are designed to expire or terminate itself after a certain

period and a typical example will be vulnerable software that when patched, will render

the exploits useless; this will make the deployment of malware unsuccessful.

2.2.5.2.2 Types of Malware infection Vectors

Malware is deployed using one or a combination of the following infection vectors:

a) Physical Media

b) Email or Attachments

c) Chats and instant messaging

d) Social networking

e) URL links

f) Websites

g) File share

h) Vulnerabilities found on software

i) Vulnerabilities found on common protocols

20

2.2.6 Malware Lifecycle Model

Malware frequently follows a methodical lifecycle that assists to understand its resilience.

Figure 3 below, proposes a malware lifecycle model, covering five areas or phases that

malware will typically undergo.

1. Exploit Phase

2. Installation Phase

3. Boot Strap Phase

4. Execution Phase

5. Termination

Phase

MI Servers

C&C

Servers

Figure 3: Malware Lifecycle (Rossow, 2013)

The malware cycle proposed phases are described below:

a) Exploit Phase

In this phase, a system that is vulnerable could be exploited by an attacker by gaining

access to the targeted system. The techniques that are used to exploit the targeted

systems are mostly client based vulnerabilities that include but are not limited to drive-

by downloads. This is where vulnerabilities on the browser are exploited by malicious

code. The exploits could normally transmit shellcode as payloads which are small pieces

of malicious software that are executed immediately after the exploit. Otherwise,

malware could spread in the following ways:

• Through spam attachments

• Infected Files

• Memory sticks

• Network traffic

21

b) Installation Phase

In this phase, the malware that carries the full functionality is often downloaded from the

installation of MI server and it is then installed on the targeted system. Thus, server

renders malicious code or binaries which is a clear indication that they play a critical role

in the infrastructure of malware

c) Boot Strap Phase

In this phase, we see that once the binaries have launched, the malware will then begin

to initialize by making contact with the C&C environment. If the malware achieves to

connect to the C&C environment then the malware becomes part of bots or C&C

network. This will allow the malware to be remotely controlled from the C&C main system

d) Execution Phase

In this phase, the C&C environment will send communication commands to the bot or

infected system. The main C&C server will then perform further malicious activities on

the infected system such as spamming or stealing data

e) Termination Phase

If the malware is then detected or if the communication to the C&C is terminated, then

the malware will terminate itself in this phase

2.3 Related Work

Previous research has indicated that malware analysis is vast and well documented (Agrawal

et al., 2014; Bhojani, 2014; Saffaf, 2009; Valli and Brand, 2008; Distler and Hornat, 2007;

Sikorski, 2012; Elisan, 2015). The malware analysis is the process that seeks to uncover the

functionality, purpose and to determine how malware had infected a targeted system. Many

malware is normally detected and stopped by antivirus applications and other similar solutions

or tools that mostly fail to detect new variant or obfuscated malware. The most visible reason

is that majority of these solutions use signature based detection capabilities. These solutions

compare the code of the suspected malware sample against its signature database where

each signature code is able to identify the malicious pattern of the code. However, obfuscation

methods such as polymorphism and metamorphism hinder the signature based solutions by

randomly encrypting the malicious software code in a way that does not compromise the

original functionality of the software(Bhojani, 2014; Saffaf, 2009).

Once any trace of malicious code is detected, malware analysts and researchers will start to

analyze and dissect the malicious code. The malware analysis process is achieved by

reversing or dissecting the malware or malicious code using the two malware analysis

techniques and tools that will be discussed in detail later in this Chapter. Static analysis is the

process of analyzing the malware code without executing it while Dynamic analysis is the

22

process of executing the malware in an isolated virtual sandbox environment and its behaviour

is monitored and recorded (Elisan, 2015; Valli and Brand, 2008; Distler and Hornat, 2007).

The virtual sandbox environment does not contain any critical data and must not be connected

to the production network. The network traffic from the virtual environment must be redirected

to the host system or a virtual network must be created in order to contain the network traffic

generated by the malware. There are several virtual solutions that exist such as VMWare,

Virtual-pc and Hyper-V (VMWare, 2016; Virtualbox, 2016; Microsoft, 2016). These solutions

assist malware analysts or researchers to be able to analyze and dissect the malware in a

secure environment. These virtualization solutions allow guest systems with operating

systems to be installed on a physical host and these guest systems are known as virtual

machines. The virtual machines are created by the virtual software to intercept the access to

the physical host's hardware and features. These systems or machines running on the

physical host behave the same way as a physical system and it consists of a virtual central

processing unit (CPU), random access memory (RAM), hard disk and also a network adapter

(VMWare, 2016; Virtualbox, 2016).

2.4 Malware analysis

Malware analysis is defined as the process of dissecting malware to understand how it works

using static and dynamic inspection of various tools, methods and processes in order to

understand how to identify malware, and how to defeat or eliminate malware (Sikorski, 2012).

This process is an essential step in developing effective detection techniques for fighting

malicious code and it is also an important requirement for developing tools that can eradicate

malware from an infected system (Savan Gadhiya and Bhavsar, 2013).

Information is gathered by dissecting malware using extraction and monitoring tools; the

methods and processes that are required to successfully collect information about the malware

differ depending on the behaviour and capability of the malware. Various tools, methods and

processes are used to extract information from the analysed malware without disassembling

it, which allows malware to be analysed in an isolated controlled environment for the purpose

of collecting and monitoring information that can be used to reveal the malware’s true

intentions.

Disassembling is defined as the process of breaking down binary into low-level code such as

assembly code (Elisan, 2015). The process of malware analysis consists of two types, static

and dynamic that are explained in detail in the next section.

23

2.4.1 The goals of Malware analysis

The goal of malware analysis is to (Valli and Brand, 2008):

• gain insight into nature and purpose of Malware

• identify host-based and network indicators of compromise (IOC)

• understand malware behaviours and its persistence mechanism

• extract information used for learning and malware detection

• try to determine the origin of the authors of the malware (in cases of nation-state

malware)

Information collected from performing malware analysis on a malware sample or infected

system also provides an understanding of the malware’s behaviour and capabilities and how

to detect it on the targeted network or system. The Malware analysis process should produce

an analysis report that will allow us to perform the following actions (Elisan, 2015):

• Prevent the spread of malware - Preventing malware from causing further damage is

usually by determining how the malware infected the system initially. Understanding the

vectors of infection that are used by malware allows the preventing and remediating of

the method that was used to compromise the infected system. It is often difficult to

determine the infection vector of malware and in such cases, it is best to understand how

the malware behaves on an infected system and prevent that from further compromising

the network

• Detect the Presence of Malware – Information that is collected from performing malware

analysis is used as methods to detect the malware on the enterprise network. The most

common methods of detecting malware on an infected system are as follows:

o System changes

o Extract of the code that is collected from the analysed malicious code

o This would normally reside in memory

o Certain strings/behaviour/pattern picked up in network traffic

System changes which are applied by the malware, are used to detect the presence of

the malware artifact. Code extracted from the malicious code can be used to create a

signature of the malware that is a practice often performed by Antivirus vendors. The code

used to create malware signatures must be from the extracted code that is not encrypted

and thus will create false alarms.

False alarms consist of two types that are:

a) False Positives - It is when a legitimate file is inadvertently being detected as infected,

malicious and/or suspicious (Mishra, 2013)

24

b) False Negatives - It is when a file that is malicious is miscategorised as a clean file.

This is maybe due to similarities between applications or files that are well known as

malware (Mishra, 2013)

• Remediate Malware Infections - When the malware has been detected on an infected

system or file the next critical step is a remediation process. This is where the malware

analysis process becomes important, as the malware analyst will be able to identify IOC

and be able to perform remediation on the infected system

In some instances it is difficult to perform remediation as the malware could have rooted

itself deeply in the system and any steps of performing remediation may then damage or

corrupt the system even further, which can reduce the system to a state that can make it

inoperable. This could even lead to rebuilding the system entirely. There are tools that

can perform remediation on the infected system and these tools can either synthesise

system changes common to malware or synthesis changes done by specific malware

strains.

2.4.2 Challenges of Malware Analysis

Malware analysis is a challenging task when the source code of the malware is made available

and it is even more challenging when the source code or debug information is not present. We

have mentioned in the previous sections that malware authors often create malware with

countless evasion techniques to obstruct or block the static and automated analysis process.

This makes it challenging to reveal the malware’s intent and the full scale of its hidden

capabilities (Saidi, 2012).

2.4.3 Limitations of Malware Analysis

Despite the malware analysis process being a critical process in understanding the true

intention of malware, it also has its own limitations. From a static analysis point of view the

information extracted from malware is effective only when the malware’s actual form is not

obfuscated, hence why DE obfuscation and unpacking of malware is key (Elisan, 2015), as

they remove the hindrance of statically analyzing malware.

This limitation is eased when malware which is obfuscated, is analyzed by various tools and

methods that assist in revealing the obfuscated code of malware. While dynamic analysis is

all about executing malware in an isolated environment, its limitations are because of the

dependencies of malware that enable it to execute on a targeted system.

The dependencies of malware executing include the following:

• Applications

25

• Users

• Environment

• Timing

• Event or logging

If none of the above mentioned dependencies are available or satisfied, then the malware will

not execute successfully or may partially execute on the targeted system. You often find that

malware does not execute if some or all dependencies are not satisfied (Elisan, 2015) and

this will make reporting on dynamic analysis inefficient.

2.4.4 Malware Analysis Types

Malware analysis is defined as the process of dissecting malware to understand how it works.

Malware analysis has been traditionally known as a manual process that is tedious and time

consuming and the number of samples that need to be analysed on a daily basis by security

vendors is constantly increasing (Savan Gadhiya and Bhavsar, 2013). This process uses static

and dynamic inspection of various tools, methods and processes in order to understand how

to identify malware, and how to defeat or eliminate malware (Sikorski, 2012).

The malware analysis process consists of two types of analysis which are static and dynamic

analysis, and the reason for that is that malware can be static or dynamic. The process of

analysing a program by inspecting its properties or code is known as Static analysis. The

process of executing a program in order to analyse it is known as Dynamic Analysis.

Figure 4: Summary Malware Analysis Types

The two types of analysis as indicated on figure 4 above are explained in detail in the following

section.

26

2.4.4.1 Static Analysis

Static analysis of malware is defined as the process of extracting information from malware

while it is not running, by analysing the code of the malware to determine its true intention

(Elisan, 2015). Extraction of information from malware includes the examination of

disassembly listings, extracted strings, obtaining signatures of a virus, determining the

architecture of the target and compiler that is used, as well as many other characteristics of

malware. The malware program or artifact is not executed during this process, which then

requires specialised tools in order to analyse the malware in detail.

Tools that are used to extract information from malware can assist to gather information such

as file type, malicious non-encrypted strings or code that is normally found in the structure of

a malware. Static analysis is regarded as the easier, quickest and less risky of the malware

analysis processes; as previously mentioned malware is not executed while it is statically to

be analysed. Another reason that static analysis poses less risk when analysing malware, is

because of the tools that are available in other OS’s running on Linux based platforms such

as REMnux running on Ubuntu OS. The REMnux system consists of various tools that can be

used to perform static analysis on malware by securely extracting malware information from

malware destined to affect windows OS’s or files.

According to (Savan Gadhiya and Bhavsar, 2013) there are several techniques used in the

static analysis process which include, but are not limited to the following:

• File Fingerprinting: This includes computation of cryptographic hash of the binary in order

to uniquely distinguish it from other binaries and to verify that it has not been tampered

with

• Extraction of hard coded strings: There is software that typically prints output, for example

status or error messages about the software hidden in the compiled binary as readable

text. These embedded strings often allow us to be able to draw conclusions about the

structure and the contents of the inspected binary.

• File format: Useful information can be gathered by leveraging metadata of a given file

format. This includes the magic number on UNIX systems to determine the file type as well

as dissecting information from the actual file format. For example, the windows binary

which is naturally in a portable executable (PE) format, and a lot of evidence or information

can be extracted from it such as the time it was compiled, imported and exported functions,

strings, menus and icons

• AV scanning: If the malware sample is known, it is likely to be detected by one or more AV

solutions

27

• Packer detection: Today’s malware is often distributed in an obfuscated form for example

in an encrypted or compressed format. This is accomplished using a packer application,

while arbitrary algorithms can be used for alterations. After packing the application looks

a lot different from a static analysis standpoint and its logic, as well as other metadata that

is harder to uncover. Although there are certain unpackers, such as UPX or PEiD, there is

accordingly no generic unpacker, making this a major challenge of static malware analysis

• Disassembly: The disassembly of a given binary is the key part of static analysis. This is

steered by utilising tools that are capable of reversing the machine code to assembly

languages, such as CFF Explore or IDA Pro applications.

2.4.4.1.1 Limitations of Static Analysis

Usually, the source code of malware samples is not freely available. This reduces the static

analysis process to those that gather information from the binary representation of the

malware sample. Analysing binaries brings along complex challenges. The static analysis

process is considered to be of low risk and less rewarding because it provides less information

from what can only be observed from the structure or code of the malware while it is static

(Elisan, 2015). This information also does not reveal the true intention, characteristics and

function of malware as opposed to when it is executed. The static analysis process

complements the dynamic analysis process that is explained in detail in the next section.

2.4.4.1.2 Overview of Static Analysis Process

Figure 5, below provides an overview and a graphical view of the Static analysis process

discussed in the chapter.

Start Static Analysis

End

Analysis of malware artifact

using various tools

Proceed with Dynamic

Analysis?
Execute Malware in

Cuckoo Sandbox

Drop Malware

artifact
Yes NoEnd

Figure 5: Overview Static Analysis Process

28

2.4.4.2 Dynamic Analysis

Dynamic analysis is defined as the process of extracting information from malware when it is

executed (Elisan, 2015). This process entails executing the malware artifact in a secure

isolated environment, unlike the static analysis process that provides only a view of the

malware that is being analyzed. Dynamic analysis provides an exhaustive view on the

malware’s true intention, characteristics and function as information about the malware are

gathered while the malware is running. Since Dynamic malware Analysis is performed during

runtime and malware unpacks itself, this process evades the restrictions of static analysis, that

is unpacking and obfuscation problems. It is thereby easy to see the actual behaviour of a

program (Savan Gadhiya and Bhavsar, 2013).

Dynamic analysis uses automated tools such as the Cuckoo sandbox to analyze and monitor

the malware that is executed in an isolated environment and allows analyses of malware at a

large scale. Dynamic analysis is also known as behavior analysis process that follows an

automated approach to analyzing malware (Zeltser, 2016) by using sandbox technology such

as the Cuckoo malware analysis sandbox.

The malware isolated environment sandbox is a system that allows malware to be executed

securely for analyzing malware without infecting other systems in the network. It is created to

ensure that all the conditions for malware to execute are satisfied within the sandbox. The

sandbox consists of an OS where the malware artifact would execute and the sandbox will

also include all the dependencies required by the malware (Claudio Guarnieri, 2013).

The tools included in the sandbox allows the guest system to safely execute malware and

monitors the system for any changes made by the malware. This can include network

communications on various protocols, file and registry access and/or modifications, interaction

with services or programs and other behavioural activities.

These system changes are recorded by the sandbox and a report will then be made available

on the behaviour or interactions that the malware made with the infected system. The sandbox

system gives consideration to the services to emulate for the network based malware to

interact with, for the behaviour of the malware to be observed. The malware that infects a

system may simply be the first stages in the process of infection as the malware maybe

perform attempts to download the payload as the second stage of infection.

Dynamic analysis is considered to be a very risky and highly rewarding process as the risk of

infection of a malware that is executed is very high as the infection can spread to other

29

production or critical systems in the enterprise network. The rewarding process of dynamic

analysis allows the malware to reveal its true intention or function of the malware that is

executed.

According to (Savan Gadhiya and Bhavsar, 2013) there are two key basic approaches for

distinguishing dynamic malware analysis viz.:

• Analyzing the difference between defined points: When the acquired malware sample is

executed for a specific period and afterwards the changes made to the system are then

analyzed by comparison to the initial system state. The report generated will then state the

behaviour of the malware that is being analyzed

• Observing runtime-behavior: Malicious activities launched by malicious applications are

monitored and recorded during runtime using specialized or automated tools.

2.4.4.2.1 Limitations of Dynamic Analysis

Dynamic analysis provides only a partial “effects-oriented” side view of the full potential of a

given malware binary. Dynamic analysis does not reveal the effects of programming logic that

fail to execute during the runtime process or analysis (Idika and Mathur, 2007).

2.4.4.2.2 Overview of Dynamic Analysis Process

Figure 6, below is intended to provide an overview and summary of Dynamic Analysis area.

Start

Collect Malware

Execute Malware in Sanbox

Record Malware

behaviour
End

Drop Malware

Artefact in

Cuckoo

Sandbox

Record Malware

behaviour
Report on behaviour

Figure 6: Overview Dynamic Analysis Process

30

2.4.5 Malware Analysis Process Overview

Figure 7, below is intended to provide an overview on the entire malware analysis process

summarizing the sections 2.4.1 to 2.4.5.

End

Start Static Analysis Dynamic Analysis

Malware Analysis Performed:

1. Characteristic

2. Behavior

3. Intention or Motive

Malware established

Malware Infection remediation

Process

Figure 7: Malware Analysis Process overview

2.4.6 Protective Mechanisms

When malware is executed it has full access to its source code which means that when the

malware is executed it will make use of the protective features that are built within its code in

order to protect itself from detection (Elisan, 2015). The following are the common protective

mechanisms available to malware when executed:

• Anti-sandboxing

• Anti-debugging

• Anti-virus

• Host-detection

• Network Behaviour

2.4.7 Malware Dependencies

The purpose of any malware is its ability to execute on any targeted system to achieve its

objective. Malware is a software program like any other software that consists of dependencies

31

that it runs on. The more the malware is packed the more it will have a lot more dependencies

it will rely upon to execute effectively.

These dependencies are also depended on the targeted system’s characteristics and these

dependencies can include but not limited to:

• Environment: The environment, can consist of Operating system, system settings and

virtualization

• Program: Malware can make use of specific programs already installed on the targeted

system

• Event and / or Timing: Some malware are dependent on a specific event or time to take

place before they can execute on a targeted system

• User: Malware can also execute based on the user’s access on the targeted system

• File: Malware that is designed to steal or use specific files installed on the targeted system

2.5 Malware Detection Techniques

Detection of malware is an area of great concern not only to the research or security

community but also to the public. Techniques that are developed by security researchers or

vendors that allow for detection of malware through the implementation and deployment of

malware detectors. These malware detectors try to identify malware by detecting malicious

behaviour. These techniques are categorized into two categories namely, signature and

anomaly detection (Idika and Mathur, 2007).

2.5.1 Signature Based Detection

It is sometimes spoken of as a misuse detection that uses its characterization of what is known

to be malicious to decide the maliciousness of a program under inspection (Shaban, 2013).

Figure 8, below indicates that each technique employs one of three approaches that include

Static, Dynamic and Hybrid.

Static analysis tries to detect the malware and its properties before the software executes,

while Dynamic analysis tries to detect and monitor malicious behaviour during or after the

execution of software. Hybrid analysis is a combination of both Static and Dynamic Analysis

(Idika and Mathur, 2007).

Both dynamic and static analysis techniques have unique advantages and disadvantages.

Dynamic analysis provides only a partial “effects-oriented” view of the full potential of a given

malware binary. Dynamic analysis does not reveal the effects of programming logic that fails

to execute during the runtime process or analysis.

Static program analysis provides a more comprehensive valuation of the entire code and data

of the malicious software. For example, by analyzing the sequence of invoked system calls

32

and APIs, tracking data segment references and performing flow control analysis, it is possible

to deduce temporal triggers, logical code bombs, and other malicious activities on the system

and from there form a higher level semantics about the malicious behaviour. Features such

as the presence of the object creation, the registry, OS manipulations, logic of network

communication, and whether these capabilities are exercised during runtime or not (Shaban,

2013, Idika and Mathur, 2007).

2.5.2 Anomaly Based Detection

Typically occurs in two phases:

• Training phase in which the detector attempts to learn the normal behaviour

• Detection phase

The advantage of an anomaly based detection is its ability to detect zero-day attacks. The

success of these methods relies on what functions should be learnt in training phase to

distinguish malware and to also benign accurately (R and Rai, 2012, Shaban, 2013, Idika and

Mathur, 2007).

2.5.2.1 Specification-based detection

This is a type of anomaly based detection that leverages some specification or rule, set of

what is valid behaviour, in order to decide the maliciousness of the software that is being

analyzed or inspected.

Figure 8: A classification of malware detection techniques (Idika and Mathur, 2007).

33

2.6 Malware Anti-reverse-engineering and anti-analysis

2.6.1 Malware anti-analysis

2.6.1.1 Anti-virtual Machine

Analysis of malware samples is recommended by Lenny Zeltser (Zeltser, 2010) to be

performed on isolated environments (sandbox) such as virtual machines (VM).This will enable

multiple VMs to be hosted on a physical host machine and the network activity from these

VMs will also be isolated within the virtual network. Backups or snapshots of these VMs can

be taken at any point in time and also restored rapidly. This makes it an ideal secure

environment for performing analysis of malware where a known state of the VM can be

restored at any time and the analysis process restarted whenever required. Analyzing malware

in an isolated environment enables the close study of the behaviour of malware (Chen et al.,

2016).

However, malware authors are now designing malware that is able to detect the environment

in which it is running. Once the malware is able to detect the environment, the evasion

mechanism within the malware may prevent the malicious software from running or even alter

the malware’s behaviour to avoid exposing malicious activity while running in a VM

environment (Keragala and Walker, 2016).

For example: When the botnet malware is running on a physical machine it will attempt to

connect to its Command and Control (C&C) server, but when it detects that it is running on a

VM it will connect to a legitimate domain, causing the malware analyst or the security system

to believe this is legitimate software. Malware authors use various methods or techniques to

determine the environment that the malware is running on.

Some of the methods include (Keragala and Walker, 2016):

• Checking CPU Instructions

• Checking for Known Mac Addresses

• Checking for Registry Keys

• Checking for Processes Indicating a VM

• Checking for Existence of Files Indicating a VM

• Checking for Running Services

By reducing the presence of the above mentioned methods in the VM environments, it will

make it harder for attackers or malware to identify and potentially bypass the VM or fool the

malware analyst.

34

2.6.2 Malware anti-reverse-engineering

2.6.2.1 Portable Executable

There is a requirement to have an understanding of the executable file format of the target

OS. The Windows executable file is known as the Portable Executable (PE). This PE file does

not only apply to executable files but also to DLL files and kernel mode drivers found on the

target host. It is safe to say that the PE file consists of two most common file extensions that

are an executable (.exe) and library file (.dll). A module is also referred to as a PE file, in

cases of module it will imply that only one executable file will be part of a program or

application.

The PE file consists of five main sections as indicated in figure 9 below:

• DOS MZ header

• DOS stub

• PE header

• Section table

• Sections

The PE file format contains a header followed by a series of sections. At a minimum the PE

file will have two sections, one for code and the other for data. These sections contain either

code or data and sometimes a combination of both. Some sections may contain data or code

declared by the actual application, whereas other data sections contain important information

for the operating system. The PE header starts with the signature of the file and contains the

file properties, such as the number of sections and timestamp. The PE header describes vital

pieces of the portable executable; it instructs the operating system on how to map the

executable in memory.

35

Figure 9: View of the PE File Format (Shaban, 2013)

According to (Shaban, 2013, Idika and Mathur, 2007, Marak, 2015, Elisan, 2015), the following

are the most common and interesting sections in a PE file:

• .text: This section is the default code section that contains the instructions that the CPU

executes. All other sections store data and supporting information. Normally, this is the

only section that executes, and it should be the only section that includes code

• .rdata: This section contains the import and export information. It can also store other

read-only data that is used by the application. Sometimes a file may contain .idata and

.edata sections that stores the import and export information

• .data: The program’s global data stores in this section that is accessible from anywhere in

the application. This section does not store local data, or anywhere else in the PE file. It

also contains Original Entry Point (OEP) of the file that refers to the execution entry point

where the file execution commences of a PE file.

• .rsrc: The resources used by the executable including this section that are not reflected as

being part of the executable such as images, strings icons, and menus. Strings can be

stored either in the .rsrc section or in the main program, but they are often stored in the

.rsrc section for Multilanguage support.

36

Table 3 lists the most common PE File Section

Table 3: Sections of a PE File for a Windows Executable (Shaban, 2013, Idika and Mathur,
2007, Marak, 2015, Elisan, 2015)

2.6.2.1.1 Detailed Overview of the PE File Format

Each and every PE file will always start with the DOS-MZ header section that is located at the

offset 0 of the PE file which will contain a pointer to the PE header section of the file. The

DOS-MZ header is placed on top to enable a DOS OS to be able to identify the PE file as a

valid executable file to be able to execute the DOS stub.

Figure 10: DOS-MZ Header - 1123211-090SD.exe (Section 4.2.2 Analysis of 1123211-

090SD.exe)

The MS-DOS stub section is included for legacy applications and it is a valid DOS executable

file. This section only informs the user that the file will not run in DOS mode when an attempt

is made by the user to try to run the DOS mode as indicated in figure 11 below.

37

Figure 11: PE Section Header - 1123211-090SD.exe (Section 4.2.2 Analysis of 1123211-

090SD.exe)

The PE header also contains important information that is required to run the executable, for

example:

• the base address of the PE File

• the address of the entry point

• the number of sections in the section table

This structure also contains important fields that the PE loader requires. The PE header is

not located at the beginning of the file. The PE header is found in the offset 0x3C as indicated

in figure 11 above. The four-byte value starting at address 0x3C is represented by the address

of the PE header in relation to the start of the file. When the PE file is executed, the PE loader

would go directly to the PE header. The PE loader would then bypass the DOS MZ header,

DOS stub that then proceeds directly to the PE header (Elisan, 2015).

The section table is found between the PE header and the PE file’s section and it is split into

separate sections to store the contents of the file. The executable code is normally stored in

the code section namely .text section as indicated in Figure 12.

Figure 12: Section Headers

Program data is stored inside the data (.data) section that is also the .text section. This

section contains strings that assist in performing reverse engineering. As an example this

section can contain network information such as hostnames and IP addresses. The last

38

section within the PE file is the sections with directory information that consists of up to 16

directories. Typically a fewer directories are found inside the PE file as the following:

• Import / Export Table

• Debugging

• Import Address Table

A program is known to contain several components that are assembled together. As soon as

the executable file is created by the compiler, it is then linked with external functions or other

executable objects using the linker as indicated in figure 13 below (Saffaf, 2009).

Figure 13: Linker creation of executable file (Saffaf, 2009)

The executable file imports function from the Win 32 API during runtime and this is achieved

by using the DLL function. DLL is a library that can code and contains data that is used by

more than one program at the exact period. This can help to promote the reuse of cod and

efficient usage of memory. Microsoft Windows, the kernel32.dll, user32.dll gdi32.dll and

ntdll.dll are native APIs presented to the programmer as DLL functions. These DLLs are also

shared with other processes that can load or use them. The DLL is said to have a few

drawbacks that can include:

• A Program using DLL that is dependent on the DLL

• and cannot be executed if this dependency is destroyed because of the DLL files that

have been removed from the system. Programs that are using DLL are often known

as dynamic executables as oppose to static executable applications

39

Static executables, which have a file extension of .lib, are embedded inside the application

when it is developed. This will make the application independent of any shared libraries.

In dynamic executable the OS of has two different ways of linking the DLL during runtime that

is known as load time and runtime linking. Load-time linking is the linking method whereby the

linker would create a list in the PE file for the functions that the program can externally import

and this list is called the import table. When the system loads the executable file, it then uses

the information found in the import table to load all the DLL files that are used by the running

executable. This also allows resolving external references made to run the program.

Otherwise, the Runtime linking can load the DLL files and then import the required functions

manually during runtime (Saffaf, 2009).

There are no import tables provided; as an alternative the executable imports the correct

functions by loading the DLL file by first using Win32 AP's LoadLibrary function that is then

followed by Win32 API's GetProcAddress function to obtain the address of the DLL's function

required by the executable. Import table plays a vital role in dynamic linking function. It

consists of a list of functions that the running executable can import that is grouped under

each DLL linked with the running executable, as indicated in figure 14 (Saffaf, 2009).

Figure 14: Imported and Exported Functions (Saffaf, 2009)

When modules or DLL provide a set of functions to other modules, these functions are then

listed in the export table of that module. The export table contains the names and relative

40

RVAs of every function exported. The import table then locates the address of the function

exported using the IAT. The IAT can initially contain empty values that the linker can resolve

when the module is loaded to point to the function exported in the exporting DLL or module.

Another data directory is known as debugging data directory (Saffaf, 2009). The debugging

data is normally formed by the compiler and the linker to help in debugging executables. It

may include:

• name and address of functions

• data types

• class definitions

• global and local variables

Malware designers normally remove this data from the PE file header to harden the process

to be able to perform reverse engineering on the file.

2.6.2.2 File Entropy

Entropy is defined as a measure of the number of microscopic configurations (Ω) that

correspond to a thermodynamic system in a state specified by certain macroscopic variables.

Specifically, supposing that each of the microscopic configurations is equally probable, the

entropy of the system is the natural logarithm of that number of configurations, multiplied by

the Boltzmann constant kB that offers regularity with the unique thermodynamic concept of

entropy discussed below, and gives entropy the dimension of energy divided by temperature.

Entropy as it relates to digital data is the value of randomness in a given set of values

(Dugdale, 1996). In short, entropy can be simply defined as a measure of disorder or

uncertainty in a given system (Marak, 2015).

The calculation used by Shannon Entropy has a resulting dimension of something between

zero and eight. The nearer the number is to a zero, the more non-random the data is and the

nearer the data is to the value of eight, the more random the data is (Lance, 2013).

Entropy is equal to 7.9999997904861599, the nearer the results to a random value, the nearer

the entropy value will be to the value of eight which is the maximum value that can be reached

as displayed in figure 15 below. This means that there is no probability in guessing the next

value.

Figure 15: Entropy Value

41

After looking at the four examples above, we can simply conclude that the more randomness

a file or executable retains, the higher the value of entropy. Entropy is used in different ways

by malware authors and analysts; this provides a rough estimation of whether the file is

encrypted or not and it helps to determine if further analysis is required.

2.6.2.3 Packer

Packer Definition: Packing is a type of obfuscation that prevents the malicious code to be

viewed until it is in memory which is achieved by using programs known as packers (Sikorski,

2012).

A packed malware is malware that has been encrypted and compressed by real-time packers.

Malware authors often use packers that are used to compress portable executable because it

helps to hide the malware from being detected by antivirus technologies; most of these

packers are easy to use and are available for free (Sikorski, 2012). The packer program takes

the original file of the malware and compresses the file that then makes the original malicious

code unreadable.

Packers are used on executables for two reasons viz.:

a) To compress programs

b) Thwart analysis or detection of malware

Malware can be found in a packed file and if malware is packed it cannot infect any system.

Packers were created for legitimate reasons that were to decrease the overall file size of an

executable or file. Malware authors started to utilize these programs as they began to realize

the benefits as aforementioned.

According to (Osaghae, 2015, Shaban, 2013), packers can be classified based on their

purposes and behaviours into four categories:

• Compressors: Simply shrink file sizes through compression with little or no anti-unpacking

tricks. Popular Examples of compressors include the Ultimate PE Packer UPack, Ultimate

Packer for Executables (UPX)

• Crypters: The Packer encrypts and obfuscates the original file contents and prevents the

files from being unpacked without any compression

• Protectors: A hybrid packer that combines features from both compressors and crypters

42

• Bundlers pack: The Packer packages several executable and data files into a single

bundled executable file that it then unpacks and accesses files within the package without

extracting them to disk

A packed file may contain malware; until the antivirus solution knows how to unpack the file,

the malware will not be detected. On the bright side, if the malware is packed it cannot infect

the targeted computer. That would the end of the story, except that we run-time packers; here

is how they work. The packed file is an executable (program) that is only partially packed. A

portion of the application is not packed. The start of the application is not packed, so when the

packed executable is executed it starts unpacking the rest of the file. The un-packer tool is

built right in.

Figure 16, below shows the malware sample being packet and this figure is part of the live

experiments conducted as part of the research described in section 4.2.2 Analysis of 1123211

– 090SD.exe.

Figure 16: UPX Output Results (Section 4.2.2 Analysis of 1123211 – 090SD.exe)

2.6.2.3.1 How does a packer work?

It works by using the parses Portable Executable (PE) internal structure. It rearranges the PE

headers, sections, import tables, and export tables into new structures; the packed executable

is compressed, encrypted and attaches a code segment that the malware will invoke before

the OEP. Packers have the capability to pack the entire executable, including all data and the

resource section, or pack only the code and data sections. The outer layer works to unpack

the inner executable in memory and transfers execution to it.

Figure 17 shows its packed counterpart. This code is called the stub, and it decompresses the

original data and locates the OEP. With the packed software, the unpacking stub is loaded by

the OS, and then the unpacking stub loads the original software (Osaghae, 2015, Shaban,

2013, Sikorski, 2012). The packing software then performs three additional actions (Sikorski,

2012):

43

a) It unpacks the original executable file into memory

b) It decides all of the imports of the original executable file

c) Transfers execution to the OEP

Figure 17: PE structure of a packed executable (Pietrek, 1994)

To be able to detect packers is a very crucial process in performing analysis of the acquired

malware sample. If the packer is determined, we will then be able to unpack the code and then

analyze the acquired malware. The packer detection method can be classified into static or

dynamic analysis, based on where the detection takes place, either before the code is loaded

or after into the memory. According to (Shaban, 2013), there are numerous heuristic IOCs that

the file is packed, such as the following (Ligh et al., 2010):

• Small number of functions - The software file has only a few built-in functions, while normal,

unpacked software will have many more

• Small number of imports - The software or file imports fewer than ten API functions from

libraries supplied by the OS. This shows that either the file is very limited in functionality

or a packer has “hidden” the API functions

• Encoding instructions inside a loop - The series of IMUL, ADD, SHR, XOR, and AND

instructions with hard-coded and the numbers inside a loop shows that the application

carries out obfuscation or de-obfuscation of some type

LoadLibrary and GetProcAddress are two additional functions, which are used to load and

gain access, that are frequently included on packed and obfuscated code (Sikorski, 2012).

44

2.6.2.4 Obfuscation

Definition of Obfuscation according to Joshua Cannel (Cannell, 2013):

“Obfuscation: is a technique that makes binary and textual data unreadable and/or hard to

understand. Software developers sometimes employ obfuscation techniques because they

don’t want their programs being reverse-engineered or pirated.”

Malware Obfuscation definition explained

Today’s technology is not able to detect malware artifacts as these technologies often rely on

common properties and ignore the semantics of malicious executable code within the malware

artifact and this is due to the malware code being obfuscated.

The obfuscated code within the malware artifact ensures that the malware stays hidden from

detection while infecting the system, which makes it then prevent the malware from being

removed or analyzed (Cannell, 2013).

Malware achieves this by using techniques to prevent detection and analysis such as

obscuring the filenames, changing the attributes of the file and hide and operate alongside

legitimate applications or services (Cannell, 2013).

2.6.2.4.1 Common methods of code obfuscation

There are four types of obfuscated malware that include the following:

a) Encryption: This method of evasion is used to hide the presence of malware by encrypting

the payload of the malware. The encrypted malware type consists of a decryptor that

includes a key for encryption and the payload that is encrypted. The encrypted malware

makes it difficult for the malware detectors to detect the malicious payload (Schiffman,

2010)

b) Stealth: The malware would normally hide its true intention it makes on the infected

system by only showing unmodified data or changes to the malware detectors. For

example, when an antivirus solution scans through the areas that are possibly infected on

the system, the malware would indicate a clear state of the system that does not reflect

any infections

c) Oligomorphic: This type of malware uses evasion method to encrypt its payload the same

way as the encrypted malware and the difference with this type of malware is that the

decryptor is changed by the malware to replicate itself. While making use of the decryptor

45

as the signature, the oligomorphic malware makes it difficult to be detected which may

require additional attention by the decryptor generator of malware (Szor, 2005)

d) Polymorphic: This type of malware is armed with the same evasion methods as the other

aforementioned malware, however this malware consists of body that is encrypted with

various copies of the malware decryptor. This malware creates occurrences that use

diverse keys of encryption in various occurrences so that each occurrence of the malware

body appears different from other variants of the malware (Schiffman, 2010)

e) Metamorphic: Malware authors have added obfuscated code to the entire body of the

malware that also incorporates the aforementioned evasion methods. The difference with

this type of malware is that it does not make use of a malware decryptor and a consistence

code; instead it then makes use of a single application code that replicates into totally

different variants of malicious code (Szor, 2005)

2.6.2.4.2 History and Examples of Obfuscated code

The first malware that was created in 1986 by Farooq Alive brothers, was called the Brain

malware, this malware attempted to hide its existence (Schiffman, 2010). This malware would

attempt to cover-up the sectors of the hard disk sectors that it had infected and would only

display un-modified data on the disk.

Another malware artifact, which was called the Cascade malware that was also discovered

late in the 1986s used encryption to scramble its code or contents. This malware contained

encryption or decryption routines which followed the body of the encrypted viral code that was

a technique that was eventually adopted by every malware that was encrypted (Schiffman,

2010). The Cascade malware made use of symmetrical XOR cipher.

The XOR cipher was the obvious choice during those times because of two reasons

(Schiffman, 2010):

a) Antivirus solutions were based on pattern matching and were not able to scan encrypted

malware as the malware body contained random data of bytes. The XOR of encryption or

decryption routine, which preceded the actual malware would only be the detectable

pattern known as the decryptor. The problem was also that the antivirus solution was not

able to differentiate between strains of the same malware nor identify dissimilar malware

that shared the same cryptographic routines.

b) Meanwhile the operation of XOR is also symmetrical and alterable; it offered malware

authors the ability and quickness to have functions to encrypt and decrypt. In order to

explain the XOR operation it is important to underline the functions of XOR in detail

46

XOR operation explained

XOR Definition (Sastry and Kumar, 2012): Exclusive or Exclusive disjunction is a logical

operation that outputs true only when inputs differ (one is true, the other is false).

The XOR operation consists of two inputs and one output. It is like the ADD operation that

takes two arguments (two inputs) and produces one result (one output). The inputs to an XOR

operation binary can only be 0 or 1 and the result can only be 0 or 1. The binary XOR operation

which is also known as the binary XOR function, will always produce a 1 output if either of its

inputs is 1 and will produce a 0 output if both of its inputs are 0 or 1 (Systems).

If we call the inputs A and B and the output C we can show the XOR function as shown from

the example below (Systems):

 A B C

 0 XOR 0 -> 0

 0 XOR 1 -> 1

 1 XOR 0 -> 1

 1 XOR 1 -> 0

The machine code XOR instruction operates on 8 sets of inputs and outputs in parallel.

If we have XORed two input bytes together then we get an output byte. If we give each bit

within a byte a number we can see that each bit in the output is the result of the XOR function

on two corresponding bits of the input that is (Systems):

 A7 A6 A5 A4 A3 A2 A1 A0

 B7 B6 B5 B4 B3 B2 B1 B0

 C7 C6 C5 C4 C3 C2 C1 C0

If there are two binary numbers 00100100 and 00100001 we can see the effect of XORing

these two sets of 8 bits in parallel (Systems):

 Example

 Argument - 1 0 0 1 0 0 1 0 0

 Argument - 2 0 0 1 0 0 0 0 1

 Result = 0 0 0 0 0 1 0 1 0 1

i. The input bits A5 and B5 and the output bit C5 are here shown in red

ii. The input bits A2 and B2 and the output bit C2 are here shown in green

47

iii. The input bits A1 and B1 and the output bit C1 are here shown in yellow

iv. The input bits A0 and B0 and the output bit C0 are here shown in blue

In the XCSB of the XOR binary operator it will work the same way; operating in parallel on the

sets of inputs and outputs within a variable or constant. If the value 0x24 is assigned to the

variable J, which is the hexadecimal that is equal to the binary value of 00100100, and the

value 0x21 to the variable K, which is the hexadecimal equivalent of the binary value

00100001, we then perform the XCSB XOR operation on J and K and assign the result to M.

The value stored in M will be 0x05 that will be the hexadecimal equivalent of the binary value

00000101.

Written as XCSB source code this would be:

 J = 0x24

 K = 0x21

 M = J ^ K

Example of XOR operation (Cannell, 2013)

The XOR operation is the most common method for malware code obfuscation as this is the

easiest code to implement and to hide malware code for analysis. Figure 18 below indicates

the data highlighted, which is obfuscated data, and it is unreadable in the current form.

Figure 18: XOR operation-encoder

In the current unreadable form of the data the XOR value of 0x55 is applied that then reveals

a URL, which could be concluded to be a malicious URL, as indicated in figure 19 below.

 Figure 19: XOR operation – decoder

The URL indicated in figure 19 above indicates that the malware will try to contact this URL

which is “http://tator1157.hostgator.com”, that will then download a malicious “bot.exe” to

48

perform further attacks on the infected system (Cannell, 2013). The above form of obfuscation

can be defeated by using applications that can manually cycle through every XOR byte value

searching for particular malicious strings. One of the most common applications which can be

executed on a Linux or Windows operation system is called the XOR Search application. The

XOR search application was written by Didier Stevens and this application searches for strings

that are encoded in multiple formats, also including XOR.

Malware authors are aware that such applications exist; thus they implement further

obfuscation techniques to avoid detection by employing a multi-cycle method. This will then

perform an XOR operation against the data with a particular value; thus making the second

value to pass through another value.

Example of Common String and Payload Obfuscation Techniques in Malware (Howard, 2010):

This example based on the malware with the following hash SHA-256, is

f4d9660502220c22e367e084c7f5647c21ad4821d8c41ce68e1ac89975175051.

The malware artifact indicates some of the most common methods used by malware authors

to complicate malware analysis of malware using dynamic and static analysis. The malware

creates vectors that contain lists of the following applications from a dynamic analysis of the

malware:

a) “OLLYDBG”

b) “W32DASM”

c) “WIRESHARK”

d) “SOFTICE”

e) “PROCESS EXPLORER”

f) “PROCESS MONITOR”

g) “PROCESS HACKER”

All windows on the infected system are enumerated by this malware. If any of the windows

are found to belong to any of the applications listed above, the malware will execute further

by entering into a loop until the applications are closed. This is a basic method that is easy to

deploy or implement in a malicious code of the malware.

When static analysis is performed on the same malware, the malware then employs two

additional methods that include:

a) Strings in the malware are encrypted using a custom encryption scheme that have the

following implications for the malware authors and analysts:

49

✓ C&C domain(s) are hard-coded in the malware that requires malware authors to

generate DGA’s. API’s used by the malware resolve when the malware is executed

and the names of those APIs are also decrypted. This then means that static analysis

becomes more explanatory after the encryption scheme is understood by the malware

analyst

b) Communications to the C&C is often encrypted with custom schemes:

✓ Communication of malware with the C&C using custom-encrypted or obfuscated

communication protocol on top of regular HTTP. This will then allow a generic module

that provides a low-cost solution for changing the communication scheme between the

infected clients and the C&C to be generated by malware authors to generate. This

can additionally render real-time network analysis or monitoring to be partially or totally

ineffective.

Quote by Mike Schiffman (Schiffman, 2010)

“Obfuscation of malware serves the one ultimate purpose: Survival.”

2.6.2.5 OLE2

Object Linking and Embedding (OLE2) is defined as a proprietary technology developed by

Microsoft that allows embedding and linking to documents and other objects. For developers,

it brought OLE Control Extension (OCX) that is a way to develop and also to use custom

elements of the user interface. On a technical level, an OLE object is any object that

implements the OLE object interface and possibly along with a wide range of other object

interfaces, depending on the needs of the object's (Tool, 2016).

OLE is used in other file formats as its underlying container file. It allows data to be stored in
multiple streams of data. The OLE is also known as:

• Compound Binary File

• Compound Document File

• OLE2 file

2.6.2.6 VBA Macros

The VBA project automatically runs if the user enables macros once when opening the file

downloaded from the internet. There are office targeting macro based malware that execute

macros when enabled on the targeted system. There are two versions of the malicious macros

that are categorized further as the following:

• Old macros

• New macros

50

The old macros only decrypted the older version of the malware that appends to the document

and executes it. In this example, the malware carry the bait document itself that will be

responsible to open and delete the original document. In new macros, the macro would

decrypt and start the bait document and the malware; both will be appended to the document.

The malicious macro would be implemented as a VBA code and would use the predefined

names Auto-Open an Auto-close to execute the functions automatically after the malicious

document is opened and closed.

2.7 Malware Analysis Lab

Before malware can be analysed, we need to understand the tools that will be used, and why

it is important to understand how to design a secure and isolated environment in which

malware can be analysed. This chapter also proposes a methodology of designing and

implementing an environment in which malware analysis will be performed as part of the

research.

When malware is analysed and executed in an isolated environment, the malware exposes a

malicious behaviour; the environment does not allow the malware to execute beyond the

isolated environment (Rossow, 2013). The sandbox environments and tools which are

proposed in this chapter are used to conduct experiments as part of the research.

2.7.1 Architecture Overview

The malware analysis environment consisted of virtual machines (VM) configured with a virtual

network to allow all the VM’s to access. Sandbox VM’s are used to conduct experiments to

fulfil the requirements of this research. The malware analysis environment is built to be

scalable. Sandbox analysis will be used to perform malware analysis in an isolated

environment; sandbox analysis is also referred to as black-box analysis that is a method that

is used to analyse malware characteristics and behaviours by executing the malware sample

in an isolated controlled environment. The behaviour of the malware was monitored, such as

registry activity, system and file activity and network activity (Kasama, 2014). There are two

types of sandboxes configured as part of this research, viz. Cuckoo and REMnux sandboxes

respectively. Both sandbox environments are discussed in detail later in this chapter.

2.7.1.1 Windows 7 Virtual Environment Setup Overview

A Windows 7 with service pack 1 VM was installed and configured within the Virtualbox

software. The system was also set up on the same virtual network with the REMnux system

discussed in section 5.1.3 below. Once the system was installed, static analysis tools were

installed, such as CFF explore and PEStudio.

51

2.7.1.2 Cuckoo Sandbox Environment Setup Overview

The sandbox environment consisted of a Linux VM which was installed with an Ubuntu

operating system that acted as gateways between the windows VM and the online resources.

Normal operation of all network traffic from the Windows VM was prohibited from accessing

the Internet and the traffic was re-routed to network simulator (INetSim) configured on the

Sandbox VM.

The sandbox VM network was configured as a virtual network and only the VM environment

was able to access that network and all network traffic that was re-routed through a virtual

network and sent to the relevant VM sandbox. The Linux VM was used to perform automatic

analysis of malware. During the analyses, all network traffic was captured and checked against

intrusion detection system (IDS), configured on the Linux VM.

The Windows VM was installed with a Windows 7 (32-bit) operating system where malware

samples or artifacts are executed and analysed. Regular snapshots of the VM were taken

before any malware was analysed. The snapshot was then used for automatic analyses within

Sandbox and consisted only of minimal toolsets.

2.7.1.3 REMnux Malware Analysis Environment Overview

The REMnux system ran on a very light weight version of Ubuntu operating system and the

system was installed with various tools that were used to perform static and dynamic analysis

of malware. The REMnux system was configured to virtually communicate with a Windows

VM and the traffic between the two systems was isolated from the rest of the environment.

Regular snapshots were taken on the Windows VM that was used during manual or static

analysis process. The Windows VM was also installed with minimum tools required to perform

malware analysis that include but are not limited to the following:

• debuggers

• disassemblers

• hex editors

• portable executable (PE) viewers

The windows VM was only used for further analysis but most of the static analysis experiments

were conducted from the REMnux system as it already had the required toolsets required to

perform static analysis of the malware samples or artifacts.

52

2.7.2 Physical and Virtual Environments

2.7.2.1 Physical Machines Environment (Syarif Yusirwan et al., 2015)

The use of physical machines consists of advantages and disadvantages described in Table

4 below, when it comes to having a secure malware analysis environment.

Table 4: Physical Machines Environment

Advantages Disadvantages

Provides a structure of a scenario

that is as close to the real world as

possible.

Analyzing and executing malware requires a

signify cant amount of resources that must be

set up and it is also a lot more difficult to

maintain. It is also an expensive option to opt for

to set up a malware analysis environment.

It allows malware to be executed

and analyzed to reflect ideal or real

world conditions as closely as

possible.

Setting a number of machines running with

different types of Operating systems and to roll

back the machines back to the original state

takes a lot more effort and it is also time

consuming. Additional tools will then be

required to restore the machine to original state

such as system imaging software.

It will allow malware to execute free

with less effort and will not require

anti-malware detection measures

to be implemented.

It will be difficult to set up multiple

interconnected systems; this will require a data

center on its own.

2.7.2.2 Virtual Machine Environment (Syarif Yusirwan et al., 2015)

The use of a virtual environments and machines consists of advantages and disadvantages

described in Table 5 below, when it comes to having a secure malware analysis environment.

Table 5: Virtual Machine Environment

53

Advantages Disadvantages

Installing and setting up a virtual

environment requires less effort and will only

require virtual environment tools such as

Oracle Virtualbox. This is a cost effective

solution to implement for setting up a

malware analysis environment.

Anti-malware counter measures need to be

implemented in order to ensure that the

malware executes to simulate a physical

environment as malware can detect that it is

executing in a VM.

The virtual machine (VM) tools allow for

scaling up and adding resources and VMs.

Malware can exploit vulnerabilities in the VM

software itself and this can increase the risk

of infecting the host machine and end up

infecting the other machines on the network.

It also requires less effort to configure VM

snapshots in order to restore the VMs to the

original state.

Regular updates of VM software is required

in order to mitigate VM vulnerabilities.

2.7.3 Malware Analysis Isolated Environment

The malware analysis environment is scoped and designed based on the malware analysis

techniques that will be performed during the malware analysis process. The two techniques

for performing malware analysis, which have been already discussed in the previous chapters

of the research, are:

a) Static analysis

b) Dynamic analysis

These two techniques are very different but are both essential for performing a thorough

analysis of malware in an isolated environment.

2.7.3.1 Isolated Environment Design

The process of setting up an isolated environment is a critical step that requires proper

planning, resources and understanding the requirements needed to perform malware

analysis. There are two possible ways of setting up an isolated environment that can be using

physical dedicated machines or using virtual machines (VM)(Syarif Yusirwan et al., 2015). For

the purpose of this research VMs were designed and implemented as the malware analysis

environment requires significant amounts of resources.

54

2.7.3.2 Virtualized Environment

For the purpose of this research it is important to first understand what a virtual machine is,

the technology and why it is important for the purpose of our research. A virtualised

environment is an environment that runs as an application that allows for one or more

operating system to be run as if they are installed on a dedicated hardware (Sanabira, 2007)

and this environment is called a virtual machine (Virtualbox, 2016). This environment allows a

single computer to share its resources among multiple systems running simultaneously

(Michael A. Davis, 2010). This environment, called a "virtual machine", is created by

virtualization software by intercepting access to limited hardware components and features.

The physical system is known as a "host" and the virtual machine is known as a "guest". Most

of the guest code or OS runs directly on the host computer, and the guest OS knows it's

running on real machine (Virtualbox, 2016).

The concept of an Operating System running within an Operating system (OS) creates for

more terms:

• Host OS – The OS that runs the VM environment

• Guest OS – The OS that runs within the VM environment host

There are several commercial and free virtualization software available, viz. a free

virtualization software called Virtualbox that was used for the purpose of this research. Figure

20 below demonstrates a Windows 7 operating systems running on a Virtualbox software.

Figure 20: Virtual Box Software running Windows 7 System

According the to the author of the Hacking Exposed Malware & Botnet solutions book, there

are two types of virtual machines (Davis et al., 2010):

Types of Virtual Machines:

55

• The process virtual machine that is known as an application virtual machine and is

normally installed on an OS that can virtually support a single process. This type of VM

provides an execution environment that is also known as a sandbox environment for

running a process that can use and manage resources on the system on behalf of the

process

• Hardware virtual machines provide low-level hardware emulation for multiple operating

systems, known as guest operating systems, to use simultaneously. This means the VM

mimics x86 architecture, providing all of the expected hardware and assembly instructions.

This emulation or virtualization can be implemented in “bare-metal” hardware (meaning on

the CPU chip) or in software on top of an existing running operating system known as the

host operating system. The operator of this emulation is known as the hypervisor (or virtual

machine manager, VMM) (Davis et al., 2010).

2.7.3.3 Operating System Consideration

Malware is designed to behave and execute differently depending on the operating system

that is analysed. Some malware is maybe designed to function on a Windows based Operating

system environment and other malware may execute on a Linux operating environment.

Malware that is executed on a Windows operating system might be designed to connect with

a command and control (C&C) server (Svajcer, 2015). It is important to set up and configure

different types of operating systems such as Linux and Windows systems when performing

malware analysis. These are the systems that will be used for analysing malware in an isolated

environment.

2.7.3.4 Virtual Network Consideration

Malware analysis hosts must be analysed in an isolated environment from the live or

production network. This is due to other types of malware that have the ability to replicate

themselves onto other systems such as worms or infect other systems in order to connect with

C&C and be able to use the infected hosts as distributed botnet systems, or even use the

infected hosts to perform further malicious activities (Elisan, 2015). The malware analysis

environment can be isolated even from reaching the internet or online resources (Svajcer,

2015). With all the considerations taken into account the malware analysis environment must

be completely isolated from the rest of the network, even the host machine.

2.7.4 Malware Analysis System Sandboxes Overview

2.7.4.1 Sandbox Systems Descriptions

Sandbox technology is configured and Anti-virus engine is used that include the follow

sandboxes:

• Windows 7 System

56

• REMnux

• Cuckoo

• Virus Total

2.7.4.2 Windows 7

Figure 20 above is the Windows 7 system that was configured on the same virtual network as

the REMnux system. Various static analysis tools were also installed as indicated on the

desktop of the above figure 20.

2.7.4.3 REMnux

REMnux is a free Linux toolkit for assisting malware analysts with reverse-engineering

malicious software. It strives to make it easier for forensic investigators and incident

responders to start using a range of freely available analysis tools that can dissect malware,

yet could be hard to locate or set up (Zeltser, 2016). The toolkit runs on an Ubuntu operating

system and consists of several tools that can be used to analyse or reverse engineer malware

in Windows or Linux operating systems. Figure 21 and 22 demonstrate a few useful tools built

within the REMnux system.

Figure 21: REMnux tools overview – PESCANNER (Westcott and Zeltser, 2016)

Figure 22: REMnux tools overview – INETSIM (Westcott and Zeltser, 2016)

57

2.7.4.4 Cuckoo Sandbox

Cuckoo Sandbox is a free software that automated the tasks of analysing any malicious file

that is executing in Windows, OS X, Linux and Android systems.

Cuckoo Sandbox is a malware analysis sandbox system; when any suspicious file is imported

into it, in a matter of seconds the Cuckoo system will provide a detailed report of the results

outlining what such a file did when it was executed inside an isolated environment that is

running on operating system that is configured on the victim VM.

Malware is the swiss-army knife of many cybercriminals and any other adversary to your

corporation or organization. In these changing times, detecting and removing malware

artifacts is not enough: it's vitally important to know how they operate in order to understand

the properties or context, the motivations and the goals behind the breach and for better

protection the future (Claudio Guarnieri, 2013).

Figure 23, provides a graphical view of how the Cuckoo Sandbox operate. The Cuckoo

Sandbox is run on an Ubuntu 16.0 64bit operating system. The sandbox has the following

features, scripts, parsers and decision tree.

• The sandbox has a virtual guest operating system runs a Windows 7 operating system

which is managed by a virtualbox application.

• When a malware sample is submitted on the front end of the Cuckoo sandbox, the malware

sample is then sent to the guest Windows 7 system for analyses by the Cuckoo scripts.

• Once the file has been analyzed from the guest system, a report is generated by the

Decision tree feature.

Host

Ubuntu 16.0 64bit

Guest Virtualbox

Windows 7 sp1 32 bit

Cuckoo

parserscript Decision tree

Agent.py

Submit Report

Figure 23: Cuckoo Sandbox Overview (Guarnieri et al., 2013)

58

2.7.4.5 Incident Response Malware Analysis (IRMA)

IRMA sandbox system is an open-source platform designed to help malware researchers and

analysts to identify and analyse malicious files. Today's defence is not only about learning

about a file, but it is also getting a fine overview of the incident that might occur or have

occurred already, which provides the results of where / when a malicious sample has been

seen, who submitted the hash, where the hash was noticed, which antivirus solution detects

or can detect the malicious sample and so forth. Each malicious file submitted to the IRMA

sandbox is then analysed in various ways (Quint et al., 2016).

Figure 24, this is the front end of the Incident Response Malware Analysis system that was

used as part of the research. This system provided additional analysis on the behavior of the

malware samples that were analyzed.

Figure 24: IRMA Web Interface Overview (Quint et al., 2016)

2.7.4.6 Virus Total

Virus Total is a free web-based and independent anti-virus service that makes use of multiple

anti-virus engines to analyse suspicious files. The suspicious files can be uploaded to the web

site that then gets to be analysed by over 52 anti-virus engines. According to Virus Total, it

will scan, detect and if appropriate, any type of binary content, be it a Windows executable,

Linux file, PDFs, images, java script code, etc. Most of the antivirus companies that use this

site will have solutions for multiple platform; hence they usually produce detection signatures

for any kind of malicious content and there is not any solution that offers a 100% effectiveness

rate for detecting viruses and malware.

Figure 25, below provides a view of what the front end of Virus Total that was used as part of

the research.

59

Figure 25: Virus Total Web Interface Overview (Total, 2016)

2.7.5 Tools based on type of analysis

Windows operating systems running Windows 7 were installed as VMs and have various

malware analysis tools installed. These tools are classified into two categories that are

behavioural and code analysis tools.

2.7.5.1 Code-Analysis / Static Tools (Zeltser, 2016)

Analyzing the code of the malicious file or software assists in determining the characteristics

that might be difficult to obtain through the tools used in behavioural analysis. In the case of

a malicious executable, you rarely will have the luxury of access to the source code from

which it was created. The following tools are used to reverse compiled executables created

to execute in Windows:

• Disassembler and debugger: OllyDbg and IDA Pro Freeware can parse compiled

Windows executables and can act as disassemblers that can display their source code as

assembly instructions. These two tools also have debugging capabilities that allow

execution of the most interesting parts of the malicious application bit by bit and also under

well-ordered conditions and allow a better understanding of the source code

• Memory dumper: OllyDumpEx helps to obtain protected code located in the infected

system’s memory and also dumps it to a text file. This approach is useful when analyzing

packed executables that are difficult to disassemble because they encode or encrypt their

instructions, extracting them into RAM only during run-time.

Toolsets used from the REMnux and Windows 7 systems (Tool, 2016)

Table 6, below is a summary of all the tools that are built in on the REMnux systems and

tools that were installed on the Windows 7 system implemented as part of this research

study.

60

Tool Name Description

File This command or tool provides property details of the file

Clamscan This tool is an open source antivirus engine for detecting

trojans, viruses, malware & other malicious threats. Clamscan

is a command line anti-virus scanner.

RHash RHash (Recursive Hasher) is a console utility for computing and

verifying hash sums of files. It supports CRC32, MD4, MD5,

SHA1, SHA256, SHA512, etc.

Balbuzard.py Balbuzard is a package of malware analysis tools in python to

extract patterns from suspicious files (IP addresses, domain

names, known file headers, interesting strings, etc.). It can also

crack malware obfuscation such as XOR, ROL, etc. by brute

forcing and checking for those patterns.

Oledump.py It is a tool written by Didier Stevens and it is a program to

analyze OLE files. These files contain streams of data.

Oledump allows you to analyze these streams.

Officeparser.py Officerparser.py is a python script that parses the format of OLE

compound documents used by Microsoft Office applications.

Some useful features of this script include:

• macro extraction

• embedded file extraction

• format analysis

Olevba Olevba is a script to parse OLE and OpenXML files such as MS

Office documents (e.g. Word, Excel), to detect VBA Macros,

extract their source code in clear text, decode malware

obfuscation (Hex/Base64/StrReverse/Dridex) and detect

security-related patterns such as auto-executable macros,

suspicious VBA keywords used by malware, and potential IOCs

(IP addresses, URLs, executable filenames, etc.).

Pescanner Scans the executable for suspicious characteristics and

packer signatures. Pescanner.py is a PE analyzer written in

python by the authors of the Malware Analysts Cookbook.

The script has the ability to detect:

• Files with TLS entries

• Files with resource directories

• Suspicious IAT entries

61

• Suspicious entry point sections

• Sections with zero-length raw sizes

• Sections with extremely low or high entropy

• Invalid timestamps

• File version information

Pedump A pure ruby implementation of win32 PE binary files dumper.

Supported formats:

 DOS MZ EXE

 win16 NE

 win32 PE

 win64 PE

Can dump:

 MZ/NE/PE Header

 DOS stub

 'Rich' Header

 Data Directory

 Sections

 Resources

 Strings

 Imports & Exports

 VS_VERSIONINFO parsing

 PE Packer/Compiler detection

PEframe PEframe is an open source tool to perform static analysis on

Portable Executable malware and generic suspicious file. It can

help malware researchers to detect packer, xor, digital

signature, mutex, anti-debug, anti-virtual machine, suspicious

sections and functions, and much more information about the

suspicious files

Pestr Searches for strings in PE files

Exescan This tool is part of the pev PE file analysis framework, and its

primary purpose is to extract strings from Windows executable

files. However, this tool goes beyond the traditional strings tool

by providing options to show the offset of a string within a file

and the section where it resides

OfficeMalScanner OfficeMalScanner is an MS Office forensic tool to scan for

malicious traces, like shellcode heuristics, PE-files or

62

embedded OLE streams. The tool will look for several strings

and API calls to guess if the document is likely to be malicious,

such as:

• FS:[30h]

• FS:[00h]

• API-Hashing signature

• API-Name GetSystemDirectory string

• API-Name CloseHandle string

• API-Name VirtualAlloc string

• API-Name GetProcAddr string

• API-Name LoadLibrary string

• Function prolog signature

• CALL next/POP signature

CFF Explore The tool was created by Daniel Pistelli; it’s a suite of tools

including a PE editor called CFF Explorer and a process viewer.

The PE editor has full support for PE32/64. Special fields

description and modification (.NET supported), utilities,

rebuilder, hex editor, import adder, signature scanner, signature

manager, extension support, scripting, disassembler,

dependency walker, etc.

PE Studio Malicious software often attempts to hide its intents in order to

evade early detection and static analysis. In doing so, it often

leaves suspicious patterns, unexpected metadata, anomalies

and other indicators.

The goal of PEstudio is to spot these artifacts in order to ease

and accelerate Malware Initial Assessment. The tool uses a

powerful parser and a flexible set of configuration files that are

used to detect different types of indicators and determine

thresholds. Since the file being analyzed is never started, you

can inspect unknown or malicious executable files, trojan and

ransomware without a risk of infection.

 Table 6: Toolsets

2.7.5.2 Behavioural / Dynamic Analysis Tools (Zeltser, 2016)

• File system and registry monitoring: Process Monitor includes ProcDOT that offers a

way to observe how to locate processes read, write, or registry entries, deletions and

63

files. These tools can help you understand how malware attempts to embed into the

system during infection

• Process monitoring: The process explorer and also process hacker tools replace the

built-in Windows Task Manager, helping you observe malicious processes, including local

network ports that an attempt to open them, may take place

• Network monitoring: Tools such as Wireshark are used as a network sniffer that

observes and monitors the network traffic for malicious communication attempts, such as

botnet queries, DNS requests, and/or downloads

• Change detection: Regshot is a lightweight tool for comparing the system’s state before

and after the infection to highlight the key changes malware made to the file system and

the registry

The above mentioned tools provide the analyst or research with a sense of capabilities of the

malicious file or software.

2.7.6 Malware Analysis Environment Setup Overview

The virtual environment will be set up according to the two malware analysis techniques viz.

Static and Dynamic analysis.

2.7.6.1 Malware Static Analysis Environment

A Static malware analysis environment provides the malware analyst with a glance of the

actual behaviour and nature of the malware from the information gathered when the malware

is at rest (Elisan, 2015). The purpose of this environment is to house the different malware

analysis tools that will be used to conduct experiments for the purpose of this research.

The Static analysis environment does not require any dependencies as malware will not be

executed in this environment; only the behaviour of the malware will be analysed.

According to Elisan, to have an effective and properly configured environment, the following

characteristics must be considered when configuring the static analysis environment (Elisan,

2015):

i. Can the malware analysis tools be installed and configured regardless of the type of

operating system that are intended or designed for?

ii. Can it offer possible mitigation techniques to possible system infection through

hardening the environment in which the malware is being analysed?

iii. Can it offer possible mitigation of the environment from being used as a jump box to

perform further attacks?

iv. Can the malware access online resources or services anonymously without any

detection?

64

The above characteristics are only intended to serve as a guide when configuring the static

analysis environment and to ensure that the malware that is being analysed does not cause

any unintended infections.

The setup of the static analysis environment is implemented with the following

systems:

a) REMnux

b) Incident Response Malware Analysis (IRMA)

c) Windows 7 Virtual Machine

Figure 26, below is a graphical view of the toolsets found in the REMnux system.

Figure 26: REMnux Architecture Overview (Zeltser, 2016)

Figure 27, provides a graphical overview of the architecture behind the IRMA system

discussed in section 2.7.4.5 Incident Response Malware Analysis (IRMA).

Figure 27: IRMA Architecture Overview (Quint et al., 2016)

65

2.7.6.2 Malware Dynamic Analysis Environment

Dynamic analysis environment can make or break an analysis session, especially if the

malware is aware of this environment that is executed on (Elisan, 2015). Even though a lot of

malware that are in the wild today do not possess evasion techniques, it is important that

virtual environment evasion counter-measures are implemented.

According to Elisan this environment is an active computer and depending on the malware

that is being executed, the environment may be configured to have access to the internet to

facilitate malware communication behaviour.

It is then important that the environment is anonymized to protect the environment from being

detected by the malware author or cyber criminals. The environment must also be isolated

(Elisan, 2015). The sandbox systems that is set up include:

a) Cuckoo Sandbox

b) Windows 7 Virtual Machine

c) Ubuntu 15.10 Virtual Machine

2.7.7 Summary of the Malware Analysis Environment Design Overview

Figure 28, provides a summary and the design overview of the malware analysis environment

that was implemented and used as part of the research.

Internet

Cuckoo Host

The cuckoo host is
responsible for guest and
analysis management.
 It starts analysis of malware
artifacts, dumps traffic and
generates reports.

Dynamic Analysis Host
A clean environment when
running a malware sample.
The malware sample behavior is
reported back to the Cuckoo host.

IRMA Host
The malware samples are sent to
the IRMA host to be analysed by
the various Antivirus engines and
classified

Virtual Network
IP Range 192.168.56.0

Virus total
Uses various Online Antivirus scan
engines to determine the malware
signature and classification

Win 7 VM

Static Analysis Host
A clean environment when
running a malware sample.
The malware sample behavior is
reported back to the Cuckoo host.

Win 7 VM

REMNux Analysis Host
Consists of various tools used to
Statically analysis malware
artefacts and reports on results.

Static Analysis Section

Dynamic Analysis Section

Figure 28: Malware Analysis Environment Overview

66

2.8 Chapter Summary

Foundational theory and background on malware and malware analysis, which are vital for

this research and to successfully conduct experiments in chapter 4, were discussed. We

deliberated on the history of malware, types of malwares such as trojans, botnets, viruses,

etc., that fall under the category umbrella of malware. We also looked at various categories of

malware and its characteristics. We looked at how each category of malware works and what

sort of damage they cause through their different attacks. We found that all fall under the

category of malware also known as malicious software.

Antivirus solutions or vendors are constantly challenged by the increased frequency of

malware attacks. The malware analysis and detection approaches that are available to

minimise the spread of malware or infected programs were discussed. The goals of malware

analysis were outlined that emphasised the importance of the malware analysis process.

The chapter dives deeper into the two types of malware analysis viz. Static and Dynamic

analysis. The two techniques were described in detail and it was established that Static

analysis is a manual process that required analysing the properties of malware sample, while

Dynamic analysis required executing the malware sample in an isolated environment in order

to monitor and record the behaviour of malware. The limitations of these two techniques were

also outlined.

The new techniques used by Malware authors deploying methods such as code obfuscation

or altering the behaviour of malware in order to create zero-day malware that can evade

controls detection mechanisms, were also discussed. We provide a selective reference to

some of the literature on malware analysis and also a clear understanding of the existing

malware detection techniques.

Malware analysis and detection techniques presented in this literature review chapter were

based on several strategies of analysis that are commonly used by malware analysts. We

further explained the functionality of malware by focusing on areas such as the behaviour of

malware and covert malware launching techniques. This allowed diving deeply into the

behaviour of malware, covert malware launching techniques and malware anti-reverse-

engineering techniques that focused on code obfuscation, packers, VBA macros and portable

executables.

67

Finally, the architecture, setup of the malware analysis lab and specific Static and Dynamic

analysis tools, which allowed the malware experiments in chapter 4 to be conducted, were

also described in detail.

68

CHAPTER 3

RESEARCH METHODOLOGY

CHAPTER OVERVIEW

This chapter focuses on the following areas:

• Introduction

• Research Design

• A Model of the Research Process

• Research Methodology

• Data Preparation and Data Sources

• Data Collection Techniques

• Sampling Techniques

• Quantitative Data Analysis of Collected malware

• Research Methodology Actions Overview

• Chapter Summary

This chapter discusses the research methodology used as part of this dissertation. This

chapter seeks to explain in detail the methodology followed throughout the research in order

to detect and analyse malware in an isolated environment.

3 INTRODUCTION

The focus of this chapter is to explain the methods that are used to conduct and analyze the

research. This chapter gives information about the positivism paradigm, research process,

sampling strategy, data collection and source, sampling techniques, and data analysis

methodology.

3.1 Research Design

Research design can be described as a general plan about what you will do to answer the

research question (Dudovskiy, 211; Saunders. et al., 2012). According to Bryman and Bell

(Bryman and Bell, 2007), there are five types of research designs viz.:

• Experimental design – This design is unusual in management research due to the

challenges of accomplishing exact control levels when dealing with organizational

behaviour

69

• Cross-sectional design or social survey design - This design involves collecting

data on several cases during the same time frame in order to gather qualitative or

quantitative information that is related to two or more variables, in an effort to determine

associations between the variables after the data has been analyzed

• Longitudinal design - This design is specifically used to monitor changes over

time in the applicable research environment

• Case study design - This design is an intensive examination of a particular situation

or instance

• Comparative design – This design is where identical or contrasting cases are

studied, and the similarities or differences are reported

Research design can be divided into two groups: exploratory and conclusive.

• Exploratory research design - according to its name it merely aims to explore specific

aspects of the research area and does not aim to provide ultimate and conclusive answers

to the research questions proposed. In exploratory research the researcher may even

change the direction of the study to a certain extent, however not fundamentally, according

to new evidence gained during the research process (Saunders. et al., 2012) as cited by

(Dudovskiy, 2011).

• Conclusive research design - as the name implies, this research design applies to create

findings that are practically useful in decision-making and also reaching conclusions.

Conclusive research design typically involves the application of quantitative methods of

data collection and data analysis. Furthermore, conclusive studies tend to be deductive in

nature, and objectives of research in these types of studies are accomplished through

testing the hypotheses. Conclusive research is also divided into two categories which are:

➢ causal

➢ descriptive

Descriptive research design describes the following in the research area (Saunders. et

al., 2012) as cited by (Dudovskiy, 2011):

➢ specific elements

➢ causes

➢ or phenomena

Table 3 illustrates the main differences between exploratory and conclusive research

in relation to important components of the dissertation (Dudovskiy, 211; Saunders. et

al., 2012).

70

Table 7: Differences between exploratory and conclusive research (Source: Pride & Ferrell,
(2007)

Research project
components

Exploratory research Conclusive research

Research purpose General: to generate
insights about a situation

Specific: to verify insights
and aid in selecting a
course of action

Data needs Vague Clear

Data sources Ill defined Well defined

Data collection form Open-ended, rough Usually structured

Sample Relatively small;
subjectively selected to
maximize generalization of
insights

Relatively large; objectively
selected to permit
generalization of findings

Data collection Flexible; no set procedure Rigid; well-laid-out
procedure

Data analysis Informal; typically non-
quantitative

Formal; typically
quantitative

Inferences/recommendations More tentative than final More final than tentative

Our research uses the conclusive research approach that is described in detail in the

following sections.

3.2 A Model of the Research Process

A probable model of the research process that is discussed and represented in diagrammatic

form by Oates (Oates, 2007) that is presented in figure 29 below.

Introduction and

Research

Problem

Literature Review
Research

Question

Survey

Design and

Creation

Experiment

Case Study

Action Research

Ethnography

Interviews

Observation

Questionnaires

Documents

Quantitative

Qualitative

Strategies

Data Generation

Methods

Data Analysis

Figure 29: Model of the research process showing the variety of
paths that can be undertaken (Brand, 2010)

71

The process outlined in figure 29 above assists in following a way to navigate from the

introduction and problem statement to formulating the research questions and to determining

the answers to the research questions. The particular model presented by Oates shows that

the introduction and research problem statement are inputs into developing proper and

meaningful research questions. The objective of this starting phase of the process is to show

why this line of research is essential.

It shows how it has been fully addressed in the literature review and how the research will be

used. The research questions are the fundamental thread throughout the entire process of

this research. After they have been formulated, they are then used to select an appropriate

research strategy, data generation method and data analysis method. The research questions

that are formulated in this thesis are clearly visible throughout the research process, and

arriving at answers to an enquiry is dependent upon the selection of the suitable research

strategy, data generation method and data analysis methods suitable for the questions, being

in chapter 1.

Major consideration is required as to the choice of the research

model before the selection process of research method starts. There are various research

paradigms that exist to guide us through this research (Oates, 2007, Guba and Lincoln, 1994)

these include the following:

• positivism

• interpretivism

• critical research

Methodology is described as a framework associated with a particular set of paradigmatic

assumptions that is used to conduct research (O'Leary, 2004). According to Guba and Lincoln

(Guba and Lincoln, 1994), the “Questions of method are secondary to the questions of

paradigm that defines the basic belief system or broad view that guides the investigator or

researcher, not only in choices of method but in ontologically and epistemologically

introductory approaches.” The aforementioned statement is significant in the sense that it

stresses the order in which research can be conducted. A research paradigm is referred to as

an appropriate and overarching, philosophical viewpoint that must be adopted by the

researcher (Brand, 2010).

3.2.1 Research Paradigms

Research paradigms include positivism, interpretivism and critical research as previously

stated. According to Oates (Oates, 2007), a paradigm is explained as “a set of shared

assumptions or ways of thinking about some aspect of the world”.

72

3.2.1.1 Positivism

Positivism adheres to the view that only genuine knowledge is gained via observing that

includes measurement and trustworthiness. It often involves the use of existing theory to

develop hypotheses to be tested during the research process (Dudovskiy, 2011). Positivists

have faith in the authority of the knowledge that is formed by empirical and verifiable proof

(Burrell and Morgan, 1979). Positivism relies on the following aspects of the science

(Dudovskiy, 2011):

• Science is deterministic

• Science is mechanistic

• Science uses method

• Science deals with empiricism

According to Oates (Oates, 2007), positivism is the basis of the experimental method that also

consists of two basic assumptions:

• The world has order, is regular and is non-random

• The world can be investigated objectively

These assumptions are important because they facilitate the discovery of consistencies, forms

and laws through conducting experimentation to discover evidence of cause and/or effect. The

discovery process is initiated by the formulation of a hypothesis that is followed by experiments

designed to refute or confirm the hypothesis (Brand, 2010).

Sureness in a theory may be increased each time it fails to be disproven. Controlled

experiments are typically used by positivist researchers but they are not limited to the use of

controlled experiments as their research strategy. Surveys are other strategies that are

regularly used by this paradigm. The positivists’ paradigms are considered to be reductionist

as well. For example, they study phenomena by breaking them down into less complicated

components.

According to Guba and Lincoln (1994) and Brand(Guba and Lincoln, 1994, Brand, 2010) the

positivism methodology is described to be experimental and manipulative. “Questions and/or

hypotheses are stated in propositional form and subjected to empirical tests to verify them;

possible confounding conditions must be carefully controlled (manipulated) to prevent

outcomes from being properly influenced”.

3.2.1.2 Interpretivism

Interpretivist approach is based on naturalistic approach of data collection such as interviews

and observations (Dudovskiy, 2011). In comparison to positivism, interpretivism does not

pursue to verify or refute a hypothesis. The interpretivist tries to understand the phenomena

through the meanings and values assigned to them by people. This means that multiple,

73

subject certainties are exhaustive, and hence there is no single truth or fact. Different

researchers can view the world differently and their values and actions mold the research

process (Brand, 2010). This can result in multiple interpretations, and data collected through

this paradigm is usually qualitative (Guba and Lincoln, 1994).

According to Walsham (Walsham, 2006), “Interpretive methods of research start from the

position that our knowledge of reality, including the domain of human activities which is a

social building block by human actors and that this applies equally to scholars or researchers”

Klein and Myers suggested the use of interpretivism approach in business studies that

involves the following principles:

• The Fundamental Principle of the Hermeneutic Circle

• The Principle of Contextualization

• The Principle of Interaction between the Researchers and the Modules

• The Principle of Dialogical Reasoning

• The Principle of Multiple Interpretations

• The Principle of Generalization and Abstraction

• The Principle of Suspicion

Table 8 provides a summary of the basic differences between positivism and interpretivism

are illustrated by Pizam and Mansfeld as cited by Dudovskiy (Dudovskiy, 2011).

Table 8: Positivism and Interpretivism (Bajpai, 2011)

Assumptions Positivism Interpretivism

Nature of reality Objective, tangible, single Socially constructed, multiple

Goal of research Explanation, strong prediction Understanding, weak

prediction

Focus of interest What is general, average and

representative

What is specific, unique, and

deviant

Knowledge generated Laws Absolute Meanings Relative

Subject / Researcher

relationship

Rigid separation Interactive, cooperative,

participative

74

Assumptions Positivism Interpretivism

Desired information How many people think and do a

specific thing, or have a

specific problem.

What some people think and

do, what kind of problems they

are confronted with, and how

they deal with them.

Research approach Deductive Inductive

Ontology Objective Subjective

Axiology Value-free Biased

Research strategy Quantitative Qualitative

3.2.1.3 Critical research

Critical research is comparable to interpretivism from the standpoint that there are multiple

views of reality, but differs in a sense that it says social certainty owns objective properties

that interpretivists discount (Brand, 2010). According to Oates and Brand (Brand, 2010, Oates,

2007)) “Critical researchers seek to identify and challenge the conditions of domination, and

the restrictions and unfairness of the status quo and taken-for-granted assumptions”.

Transactional and subjectivist are the epistemology and historical realism as the ontology of

critical research (Guba and Lincoln, 1994).

3.2.1.4 Research Paradigm Selected for this Research

This research has adopted the positivist paradigm as the selected approach that seeks to

address the research questions of this thesis. An empirical approach is appropriate for this

research because the result should be similar or the same, regardless of how it is measured.

The results produced should be similar or the same by the various tools that are used to

perform measurement.

Empirical approach relies on objective facts that have been established and can be

demonstrated (Dudovskiy, 2011). This approach is undertaken in order to provide a practical

basis that ensures that a reasonably objective measurement of the purpose of the study is

provided. Empirical research also involves the collecting and interpreting evidence through

methods such as surveys, interviews, experimentation and observation. The empirical

approach follows the quantitative research approach that will be discussed later in the chapter.

(Perry et al., 2000) listed the steps to conduct an empirical study:

• formulation of a hypothesis or question to test

75

• seeing a situation

• abstracting observations into information

• analyzing the information and

• drawing of conclusions with respect to the tested hypothesis

There are five types of empirical research in which data can be created that include that which

are listed by (S.Easterbrook et al., 2008):

• Controlled Experiments

• Case Studies

• Survey Research

• Ethnographies

• Action Research

a) Controlled Experiments - One or more independent variables are manipulated to

measure the effect of one or more dependent variables that will assist the researcher to

be able to determine how the variables are linked and to classify causality

b) Case Studies - Investigates an occurrence within a context and reveals causality. They

are used where the reductionism of a controlled experiment is inappropriate. This could

include when effects may take a long time to appear or where the context plays a role

in the phenomena under investigation (S.Easterbrook et al., 2008)

c) Survey Research – They are conducted through the use of questionnaires, structured

interviews, and data logging to pinpoint characteristics of a representative sample from

defined populations

d) Action Research – It focuses on the resolutions of real world problems

e) Ethnographies – It is defined by (S.Easterbrook et al., 2008) as “Ethnography is a form

of research focusing on the sociology of meaning through field observation”

Selecting the most appropriate research method requires considering ontology, epistemology,

methodology, resources and the abilities of the researcher with respect to the phenomena

under investigation (S.Easterbrook et al., 2008, Brand, 2010). Empirically based questions

can be asked to facilitate comprehension of the ontology of the phenomenon. The first steps

as stated by (S.Easterbrook et al., 2008), recommend selecting the research strategy that

clarifies the research question(s). This starts by examining exploratory questions to aid in

understanding the phenomena. Such questions assist in the resolution of measurable and

valid evidence. Research questions in this dissertation, as specified in chapter 1, are

exploratory in nature and can be answered in a literature review and through empirical

approach by means of experiments.

76

3.2.2 Selected Empirical Research Method

All of the research approaches already discussed above would be suitable for addressing the

research questions in chapter 1 of this thesis. For the purpose of our research, these research

questions are basically exploratory in nature and the empirical research approach selected for

this research is conducted through controlled experiments.

3.3 Research Methodology

The business research methods are defined as “a systematic and scientific procedure of data

collection, compilation, analysis, interpretation, and implication pertaining to any business

problem” (Bajpai, 2011). According to Dudovskiy (Dudovskiy, 2011) the types of research

methods are classified into several categories according to the nature and purpose of the

study and other attributes. The types of research methods are divided into two categories

namely:

• Quantitative

• Qualitative

a) Quantitative research, “describes, infers, and resolves problems using numbers.

Emphasis is placed on the collection of numerical data, the summary of those data and

the drawing of inferences from the data” (Herbst and Coldwell, 2004) as cited by

(Dudovskiy, 2011). This type of research methodology is also classified as analytically

based on the nature of the research. Analytical research, on the other hand, is

fundamentally different in a way that “the researcher has to use facts or information

already available and analyze these in order to make a critical evaluation of the material”

(Kumar, 2008)

b) Qualitative research; this method is based on emotions, feelings, sounds and other

non-numerical and unquantifiable elements. It has been noted that “information is

considered qualitative in nature if it cannot be analyzed by means of mathematical

techniques. This characteristic may also mean that an incident does not take place often

enough to allow reliable data to be collected” (Herbst and Coldwell, 2004) as cited by

(Dudovskiy, 2011). This type of research methodology is also classified as descriptive

based on the nature of the research. Descriptive research usually involves surveys and

studies that target to detect the facts. This means that descriptive research mostly deals

with the “description of the state of affairs as it is at present” (Kumar, 2008)

3.3.1 Selective Research Method - Quantitative Research

For the purpose of this dissertation we have selected the quantitative research approach. It is

based on measuring quantitative malware samples and it is empirical because it is a data-

77

driven research and any conclusions in the research can be verified by experiments and

observations. The purpose of the research is explorative because we plan to explore the

available empirical malware data to see whether it is possible to gain any insight into the

behaviour of the malware samples that are being analyzed (Tajalizadehkhoob, 2013).

Figure 29 provides an overview of the actions that are going to be taken in this research and

each individual step will be explained in detail in the upcoming sections. This study is also

aligned with the positivist research paradigm.

3.4 Data Preparation and Data Source

Live malware data samples were collected from an email filtering, in cases whereby sensitive

information is found from malware samples, permission was then requested from the company

making use of the email filtering system. Online data sources or repositories were also utilized

to outsource malware samples or artifacts for further analysis.

3.5 Data Collection Techniques

Data collection methods allow us to scientifically collect information about our entities of study

(phenomena, objects people) and about the settings in which they occur (Chaleunvong, 2009,

Morgan and Harmo, 2001).

There are various types of data collection techniques used with human participants when

conducting research. According to Morgan and Harmon (Morgan and Harmo, 2001) “research

approaches or designs are approximately orthogonal to the techniques of data collection, and

thus, in theory, any type of data collection technique could be used with any approach to

research”. The following are the various types of data collection techniques:

• Using available information

• Observing

• Interviewing (face-to-face)

• Administering written questionnaires

• Focus group discussions

Table 9 provides a summary of data collection techniques used by researchers.

Notes for table 2 below: Symbols indicate likelihood of use (++ = quite likely; + = possibly; –

= not likely).

Table 9: Data Collection Techniques Used by Research Approaches (Morgan and Harmo,
2001)

78

Data Collection

Techniques

Research Approach

Quantitative Research Qualitative
Research

Experimental &
Quasi-
Experimental

Comparative,
Associational, &
Descriptive
Approaches

Research Report Measure

Physiological recordings ++ + -

Coded observations ++ ++ +

Narrative observations - + ++

Participant observations - + ++

Other Measures

Standardized Tests + ++ -

Archival

measures/documents

- + ++

Content analysis - + ++

Self-report measures

Summated attitude scales + ++ -

Standardized personality

scales

+ ++ -

Questionnaires (surveys) + ++ +

Interviews + ++ ++

Focus groups - - ++

For the purpose of our research we have selected the observation technique. Observation is

a technique that involves scientifically selecting, observing and recording behaviour and

characteristics of living creatures, phenomena or objects. In our research we will be performing

experiments, observe and record the behaviour of experiments conducted. Using this

approach, the researcher observes and records the behaviours of the experiments rather

than relying on reports from other researchers (Morgan and Harmo, 2001).

The primary tool for the collection of data will be the live malware from online malware

repository or the company’s email filtering system. The collected samples will then be

analyzed in a sandbox environment, the results of which are discussed in chapter 5.

79

3.6 Sampling Techniques

A proper Sampling strategy is a crucial part of any type of research. Sampling is “the process

or technique of selecting a suitable sample from the whole population” in order to determine

and generalize characteristics or parameters (Adams et al., 2007). Sampling techniques can

be divided into two categories: probability and non-probability.

According to Fox and Bayat (Fox and Bayat, 2007) probability sampling is used when

every element of the population has a known and has no zero chance of being included in

the sample.

Bryman and Bell (2007) explain non-probability sampling as an “umbrella term for a wide

range of the types of sampling strategy based on common sense and best personal judgment”,

that are outside the probability sampling category.

Table 10: Sampling Techniques (Dudovskiy, 2011)

Probability Sampling Non-probability Sampling

In probability sampling, each population

member has a known, non-zero chance of

participating in the study. Randomization or

chance is the core of probability sampling

techniques.

In non-probability sampling on the other

hand, sample group members are selected

non-randomly, therefore, in non-probability

sampling only certain members of the

population has a chance to participate in the

study.

According to Dudovskiy (Dudovskiy, 2011) probability sampling consists of the following

sampling techniques :

• Simple random sampling

• Stratified random sampling

• Systematic random sampling

• Multistage random sampling

• Cluster sampling

Probability Sampling also consists of two advantages as listed in table 11 below.

http://research-methodology.net/sampling/stratified-sampling/
http://research-methodology.net/sampling/systematic-sampling/
http://research-methodology.net/sampling/multi-stage-sampling/
http://research-methodology.net/sampling/cluster-sampling/

80

Table 11: Advantages and Disadvantages of Probability Sampling (Dudovskiy, 2011)

Advantages Disadvantages

The absence of systematic and sampling

bias

Higher complexity compared to non-

probability sampling

Higher level of reliability of research

findings

More time consuming

Increased accuracy of sampling error

estimation

Usually more expensive than non-

probability sampling

The possibility to make inferences about

the population

None

For the purpose of our research, we have selected the simple random sampling technique that

is part of the probability sampling category. The samples were randomly selected from the

email file attachment that was suspected to contain malware by the system.

Simple random sampling (also referred to as random sampling) is the purest and the most

straightforward probability sampling strategy. In the simple random sampling technique, each

member of the population is equally likely to be chosen as part of the sample. It has been

stated that “the logic behind simple random sampling is that it removes bias from the selection

procedure and should result in representative samples” (F.J.Gravetter and L.B.Forzano, 2011,

Dudovskiy, 2011).

We randomly selected malware samples among those submitted from the online email filtering

systems and only downloaded emails labelled to have been suspected of having malware

attachments. To ensure our datasets were as diverse as possible, we selected samples having

different file formats and not belonging to different malware families.

3.7 Quantitative Data Analysis of Collected Malware

Dudovskiy (Dudovskiy, 2011) stated that in quantitative data analysis we are expected to turn

raw numbers into meaningful data through the application of rational and critical thinking. The

same figure within a data set can be interpreted in different ways; therefore it is important to

apply fair and careful judgement.

This section is used to support the examination of the research questions as described in

chapter 1, primarily with respect to the ability to analyze malware in order to determine

detection on enterprise systems. Results from the practical experiments that were conducted

from the live malware data sets samples were collected. The results that were obtained were

81

then interpreted to differentiate between malicious and kind of samples with minimal false

positives and false negatives and also taking into consideration the problem statement,

questions, and the objectives of the proposed study. The results of the experiments conducted

are presented in chapter 6 of this dissertation.

3.8 Research Methodology Actions Overview

Figure 30, provides an overview summary of the research methodology used as part of this

research study.

• The Malware analyst described in the diagram had to search for malware samples that

were experimented on and analyzed as part of this research.

• These malware samples where downloaded from well-known malware database

repositories.

• The malware samples that were downloaded were then stored in environment implement

to prevent the malware from spreading to other environments.

• The samples where then experimented on using the two types of malware analysis

techniques that are discussed in literature.

• Once all the experiments where concluded results were finalized and analyzed using

quantitative methods.

• The results where then documented and discussed in detail in chapter 5.

Malware
Analyst

Access Malware
Database

Repository

Download
Malware
Artifacts

Store the
Malware to

analyse

Perform
Expirements

Strategy of
Analysis

Malware
Analysis

Type

Static Analysis
Dynamic
Analysis

Observation

Experiment
Results

Data
Generation Data Analysis

Quantitative

Document
Results

Figure 30: Research Methodology Actions Overview

82

3.9 Chapter Summary

This chapter covered the research design, model of the research process and research

methodology. It also provided a brief overview on the observation technique used in the

collection and analysis of data. This research adopted the positivist paradigm as the selected

approach that seeks to address the research questions of this dissertation. The sampling

approach was also explained. For this dissertation, we have selected the simple random

sampling technique that is part of the probability sampling category. The quantitative research

method was discussed and chosen as an appropriate research methodology for this

dissertation. This methodology is based on measuring quantitative malware samples and it is

empirical because it is a data-driven research and any conclusions in the research can be

verified by experiments and observations.

It was mentioned that the purpose of the research is explorative because it planned to explore

the available empirical malware data to see whether it is possible to gain any insight into the

behaviour of the malware samples that would be analyzed. Finally, the quantitative data

analysis procedure used in this thesis was briefly discussed. A high level diagram (Figure 30)

provided an overview of the research process of this research. Chapters 4 and 5 provide

quantitative analysis and interpretation of the empirical findings in line with the objectives of

this dissertation.

83

CHAPTER 4

MALWARE ANALYSIS EXPERIMENTS

CHAPTER OVERVIEW

This chapter focuses on the following areas:

• Introduction

o Malware Analysis Process Overview

o Malware Analysis Experiments

• Chapter Summary

4 INTRODUCTION

Malware analysis experiments are conducted as described in chapter 2; the literature review

and preliminary experiment results were then briefly discussed in this chapter. This chapter

kicks off with an overview of the malware samples or artifacts; it also discusses the analysis

process before detailing the experiments conducted and their results.

4.1 Malware Analysis Experiments

In this section the results from malware analysis experiments conducted on two malware

artifacts of which one was a Microsoft word format and the other a portable executable, were

discussed. The following malware artifacts were analysed and investigated:

a) Microsoft Word Files:

• Ticket_354041

b) Portable Executables:

• 1123211-090SD.exe

Experiments on additional analysis and results of other malware artifacts are available on the

provided CD as indicated in Appendix F. Analysis on the above mentioned artifacts are carried

out as described in the Literature Review in chapter 3 of this research. The experiments

started with static analysis and finished with dynamic analysis of the aforementioned malware

artifacts.

4.1.1 Malware Analysis Process Overview

The malware analysis process follows a simplified method of first analysing the static or code

properties of the malware artifact; this is done in order to have an understanding of the

84

characteristics of the artifact. The artifact is analysed using various static or code analysis

tools that have been installed in our isolated environment.

The process then follows an automated approach where the artifact is executed in the isolated

environment and uploaded to the online services to find the classification of the malware. The

process flowchart in figure 31 below provides an overview of the analysis process that was

followed in this chapter to perform malware experiments.

Unknown Malware Artifact

Static or Code

Analysis

Analysis

Done

Dynamic Analysis

Analysis

Done

Start

End

No

Yes

Further Analysis

Required
Yes

No

Yes

No

Figure 31: Malware Analysis Process Flowchart

According to the Malware analysis template proposed by Zeltser (Zeltser, 2015), the analysis

process focuses on specific areas of the analysed artifact in order to determine if the artifact

is malicious or not. The following are the focus areas of analysis of the artifact that are split

into two areas indicating the tools used for each area; this is not an exhaustive list of tools

used:

85

a) Static Analysis Focus Areas

• PE Section or File Hashes (rhash, PEstudio, CFF Explorer)

• File Properties (File command, PEStudio, CFF Explorer): Description, version, file

header characteristics

• File Signatures

• Indicators of compromise (IOC, pescanner, PEStudio, pedump, peframe,

OfficeMalScanner)

• Strings (strings, CFF Explorer, pestr): Functions, domains, IP addresses, commands,

error messages, Strings, CALLs, program flow, loops

• Packed (pescanner, PEiD, PEStudio, peframe)

• Entropy (pescanner, CFF Explorer): File, sections

• Imported/Exported Functions (PEStudio, CFF Explorer / Dependency Walker)

• Compile Time (pescanner)

• Open Source Research (VirusTotal)

a) Dynamic Analysis Focus Areas

• File System Artifacts Properties (Cuckoo)

• Indicators of Compromise

• Triggers: Browser, mail client, specific web pages (Google, bank), time, reboot,

user/admin privileges

• Signatures

• Dependencies: DNS, HTTP, IRC, ARP

• Network Artifacts (INetSim,): C2 domains/IP addresses, protocols, user-agent

• Memory Analysis (Volatility): rogue processes, code injection, rootkits, network

artifacts

• Open Source Research (VirusTotal)

4.2 Malware Analysis Experiments

This section describes the experiments conducted on the selected malware samples using

both Static and Dynamic analysis techniques of Malware analysis.

4.2.1 Analysis of Malware artifact - Ticket_354041

4.2.1.1 Static Analysis

The malware artifact was analysed in a REMnux sandbox and Windows 7 environments as

described in detail in chapter 5. Before the analysis of the malware artifact acquired could

86

commence it was important to fingerprint the file, confirm the type of file and properties of the

artifact in order to determine the type of file that was analysed.

a) File Section Hashes

The first step was to uniquely identify the malware artifact in order to be able to fingerprint or

identify the malicious artifact in future. MD5, SHA1 and SHA256 sums of the artifact were

created and these hashes themselves were enough to be able to fingerprint the file. This part

of the process was achieved by running the artifact through the “rhash” tool that is a console

utility for computing and verifying hash sums of files. By executing the rhash command with a

combination of –M (for MD5) or –H (SHA1) or –sha256 hash values of file were provided.

rhash command execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$ rhash -M

ticket_354041.doc

543c0cf636bc0e56007e6211cd05ecf2 ticket_354041.doc

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$ rhash -H

ticket_354041.doc

400cb9f479fd5ab09aa895245e16ba999ce5142e ticket_354041.doc

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$ rhash --

sha256 ticket_354041.doc

3ea894203c48d37b73ce9202dec7eedbf1c724b707f7de058e42c18c3e55bd49

ticket_354041.doc

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$

Figure 32: Listing of File Section Hashes – ticket_354041.doc

The output results above indicate that the artifact’s MD5, SHA1 and SHA256 hashes are as

follows:

MD5 = 543c0cf636bc0e56007e6211cd05ecf2

SHA1 = 400cb9f479fd5ab09aa895245e16ba999ce5142e

SHA256 = 3ea894203c48d37b73ce9202dec7eedbf1c724b707f7de058e42c18c3e55bd49

These hashes were later confirmed from the other tools that were used as part of performing

static analysis.

b) File Properties

The second setup was to then confirm the properties and type or format of the file that we

were using. The process started by first executing the “file” command against the

'ticket_354041.doc' artifact. The results of the command are as follows:

87

File command execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$ file

'ticket_354041.doc'

Figure 33: Listing of File Properties - ticket_354041.doc

The output results above indicate that the file is a Composite Document file written using the

Microsoft Office word to execute on Windows operating system. The file consists of one page

and it was created on 19 October 2016 by Laura.

c) File Signature

The third step of the analysis process was to determine the malware signatures of the file by

running the “Clamscan” tool against the file.

Clamscan tool execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$

Figure 34: Listing of File Signatures - ticket_354041.doc

The results from the Clamscan output indicate that the file was not infected but again this

could have been a false negative, and further analysis was required.

88

d) Indicators of Compromise (IOC)

The fourth step of analysis was to determine the IOCs using the PEstudio application.

Figure 35: Indicators of Compromise - ticket_354041.doc

Figure 35 above indicated that there were 3 out 4 IOCs found from the artifact that was

analyzed. These IOCs included the following:

o The files that were referencing Microsoft Office

o The file contained 29 blacklisted strings

o The file referenced a URL (http://ns.adobe.com)

e) Strings

Figure 36 below indicated that 29 out of 2072 malicious strings were found within the artifact.

Some of the ASCII strings yielded interesting results that indicate application such as Microsoft

Office application is executed and several other system processes are created (ASCII, size

10 - HeapCreate) or called (ASCII, size 15 – GetModuleHandle)

89

Figure 36: Blacklisted Strings - ticket_354041.doc

f) Obfuscated Code

The firth step was to then determine if the file contains Obfuscated Code with “balbuzard.py”

tool as indicated from the results already discussed that the artifact might contain obfuscated

code.

Balbuazard.py tool execution.

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$

balbuzard.py ticket_354041.doc

Figure 37: Listing of Obfuscated Code - ticket_354041.doc

The output results from the “balbuzard.py” tool provided over a 1000 line of information and

detailed information, are available in appendix C. The results provided us with more

information about which IOC sections are discussed below. Further analyses of the output

results were broken down into seven sections and discussed in the following section.

1. Embedded URLs Found

The URLs below were found within the file; this indicates that the malware would try to access

the URLs below in order to download additional files for the malware to be able to execute

further.

90

Figure 38: Listing of Embedded URLs - ticket_354041.doc

2. Email Address

The below email address was found within the code of the file that indicates that the malware

will try to send additional information about the victim using the email client on the infected

system and will send an email to the email address below.

Figure 39: Listing of Embedded Email Address - ticket_354041.doc

3. Packed Packages – Portable Executables

This section of the malware indicates that the malware is packed with a few portable

executables that will execute other applications if it is executed on the targeted host.

Figure 40: Listing of PE Headers - ticket_354041.doc

4. Executable File Commands

This section indicates some executable commands or applications mentioned on Packed

Packages section above; the malware looks for the Adobe application and if the application is

present it will then execute Adobe by using the below executable commands:

91

Figure 41: Listing of Embedded Domains - ticket_354041.doc

The malware could also try to execute the Microsoft word application and this also provided

us with validation that the file was written with Microsoft word.

Figure 42: Listing of Installed Program Execution - ticket_354041.doc

At this stage an assumption could be made by considering the results already found that the

malware would execute on the targeted host and would try to contact the Adobe URLs in order

to download, install and execute the Adobe application. That was not all, the following sections

of the malware code required us to analyse the file even further, as indicated above that the

file was packed.

5. Interesting words

The results from this section allowed us to make further assumptions about the intentions of

the malware, the malware seemed to be either looking for two user accounts on the target

host or could execute further using the accounts ‘root’ and / or ‘pop’

Figure 43: Listing of Interesting Words Found - ticket_354041.doc

6. Ole Headers

The malware code consisted of the Office Object Linking, and Embedding (OLE) capability

that could trick a user into enabling and downloading additional malicious content as

previously observed from the embedded URLs.

92

Figure 44: Listing of OLE Headers - ticket_354041.doc

The embedded objects are extracted to the user’s temp directory where they are maybe

launched with the default handler if the object within the document is clicked by the user. Once

the document is closed the files are cleaned up by removing the temp files from the user’s

temp directory. While the document is opened, these files may be available to other processes

on the system. The object embedded into the document from a file will make use of the

Packager Object Server.

7. Macros embedded

This section of the code indicates that the malware is embedded with VBA macros that will be

executed once the file runs on the target host.

Figure 45: Listing of Indication of Existence of Macros - ticket_354041.doc

We needed to understand the content and purpose of the VBA macros code found within the

file as mentioned above. For the purpose of further analysis we first used the “oledump.py” to

understand what the VBA macros code contained.

Oledump.py Tool execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$

Figure 46: Listing of VBA Macros Found - ticket_354041.doc

93

The output results above indicated the multiple VBA macros that are embedded on the file as

indicated from line item 1 to 3. The oledump.py tool has the ability to mark streams that contain

VBA code. Output results of the given stream were viewed by adding “-s” with an object

number. As we knew we were dealing with the VBA code the “-v” option would then instruct

“oledump.py” to decompress the VBA code and make it easy to read. It is safe to say we found

our malicious code based on the high level summary of the results below. Detailed results are

available on appendix C.

Figure 47: Listing of VBA Macros Attributes - ticket_354041.doc

The “officeparser.py” tool allowed us to print similar information as oledump.py, however it

would help the malware analysts with marking objects containing VBA code as indicated

below.

Officeparser.py tool execution

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$

officeparser.py --extract-macros ticket_354041.doc

Figure 48: Listing of Extracted VBA Macros - ticket_354041.doc

We then needed to analyse the VBA code further with the tools available within the REMnux

analysis toolkit. The “olevba.py “tool performed all the steps of the process mentioned above

including the basic analysis of the code that is embedded on the file. This provided us with the

ability to be able to stretch the analysis of the VBA code even further. For the purpose of

describing the analysis of the VBA code only, a summary of the code is provided and a detailed

view of the code is available in appendix C.

Olevba.py tool execution:

94

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/Word Samples$

olevba.py ticket_354041.doc

olevba 0.51a - http://decalage.info/python/oletools

Flags Filename

----------- ---

OLE:MAS-HB-- ticket_354041.doc

FILE: ticket_354041.doc

Type: OLE

VBA MACRO ThisDocument.cls

in file: ticket_354041.doc - OLE stream: u'Macros/VBA/ThisDocument'

in file: ticket_354041.doc - OLE stream: u'Macros/VBA/uninstructed'

-

BA MACRO bebop.frm

in file: ticket_354041.doc - OLE stream: u'Macros/VBA/bebop'

-

(empty macro)

VBA FORM STRING IN 'ticket_354041.doc' - OLE stream: u'Macros/bebop/i01/o'

-

Lib "kernel32" Alias "HeapCreate"

Lib "user32" Alias "GetWindowText"

Lib "user32" Alias "EndDialog"

Function RtlAllocateHeap Lib "ntdll" (

Lib "kernel32" Alias "GetModuleHandle"

Lib "user32" Alias "GetDC"

Figure 49: Listing of VBA Macros Code - ticket_354041.doc

The output results above from the olevba.py tool provided us with the obfuscated code of the

malware from the file that was analysed and the summary of results below provided us with

an opportunity to further draw conclusions about the file being analysed. The listing above

indicated VBA code from the “O” macro, the code indicated that the application will use

windows functions “user32” and “kernel32” to execute some of the functions.

95

Figure 50: Listing of Results Summary - ticket_354041.doc

4.2.1.1.1 Static Analysis Results Summary Overview

Figure 51, below a summary of the static analysis experiment conducted on the
ticket_354041.doc malware sample.

ticket_354041.
doc

ole2.sqlite

bebop.frm malicious_cod
e

ThisDocument.
cls

Extracted VBA Macros

uninstructed.b
as

Figure 51: Ticker_354041 Sample Overview ticket_354041.doc

96

Figure 52: Ticker_354041 Sample Suspicious Capabilities ticket_354041.doc

The malware artifact file analysed above allowed us to draw a conclusion that the file, if

executed, can cause harm to a target system as the file consists of obfuscated code which,

when executed, has the ability to access embedded URLs, execute portable executables,

send emails and execute VBA scripts embedded within the code. Analysis of the file does not

really provide us with true intention of the malware and this requires the file to be executed in

an isolated environment to be able to observe the behaviour of the malware; Dynamic analysis

provides us with this capability that is explained in detail in the following section.

4.2.1.2 Dynamic Analysis

In this section of analysing the malware artifact, which is performing dynamic analysis on the

malware artifact that was executed in the Cuckoo sandbox and its behaviour, was observed.

A report with the results of the malware artifact was then generated and analysed in this

section. The full report is made available in appendix D and in this section only a few areas

from the report are discussed.

a) File Properties

The results in figure 53 below provided us with detailed results of the file itself and it was

important to note that the hash values reported above are the same hash values as found

when the file was statically analysed.

97

Figure 53: File Properties ticket_354041.doc

b) Artifact Activity Screenshot

Figure 54: Activity Screenshot - ticket_354041.doc

Malware artifact when it was executed within the Cuckoo sandbox, it then opened the word

document as indicated above on figure 64.

c) Indicators of Compromise (IOC)

This part of the results provided us with indicators of compromise of what the actual artifact

does on the system when it is executed and the behaviour or dynamic analysis of the artifact

was observed.

98

The IOC section was broken down and explained in the following four areas:

C.1. Signatures

Figure 55: File Signatures - ticket_354041.doc

• Raises exception – indicate that one of more processes crashed

• Dumped buffer – One or more potentially interesting buffers were extracted, these

generally inject code, configuration data, etc.

• Allocates_rwx – Allocates read-write-execute memory and to usually unpack itself

• Creates_exe - Creates executable files on the file system

• Memdump_URLs – Potentially malicious URLs were found in the process memory

dump

• Deletes_self – Deletes its original binary from disk

• Dropper – Drops a binary and executes it

• Injection_runpe - Executed a process and injected code into it, probably while

unpacking

 C.2. Dropped Files

Figure 56: Files dropped by the Malware - ticket_354041.doc

99

The malware artifact drops the five files once it has executed and most importantly the

artifact also dropped an executable file “a1272deb82ce95c1_ge443.exe” as indicated

above.

 C.3. Behaviour Summary

Figure 57: File Written - ticket_354041.doc

The malware then writes itself into the above indicating directories on figure 67 and also

drops the executable ge443.exe that we also see from the dropped file section above.

Figure 58: File opened - ticket_354041.doc

We saw in figure 58 that the artifact then opened and executed in the above directly, and

most importantly it used of the Windows functions “userr32.dll” that is explained in detail

in the literature review and also in Appendix C.

Figure 59: Registry Keys Read - ticket_354041.doc

The artifact then read three registry keys and one of the registry keys allowed the malware

to Disable Metafiles on the system as indicated on figure 59 above.

100

 C.4. Processes

Figure 60: Process Executed ticket_354041.doc

In figure 60 we saw the malware artifact running four processes on the system and the

most common was the executable file that was first dropped on some of the directories

mentioned above.

4.2.1.2.1 Results Overview Summary

Figure 61, below is a graphical view of the behaviour results of the malware sample.

Start Process

Raises exception

Dumped buffer

Allocates_rwx

Creates_exe

Memdump_URLs

Deletes_self

Dropper Injection_runpe End Process

Figure 61: Results Overview

4.2.1.3 Virus Total Results

This is the last step of the analyses process to confirm if the malware artifact is in fact a

malware artifact. This process was achieved by running the malware artifact through the online

101

Antivirus scan engine that connects to a maximum of 55 well known antivirus engines. The

results from virus total indicated that the artifact that was analysed was classified as a Trojan

malware. Only 36 out of 55 antivirus engines were able to determine and confirm that the

artifact was indeed a malware file. Figure 62 below provides us with the results from Virus

Total and also provided the name of the malware artifact that was analysed further, using

static and dynamic analysis techniques as mentioned above.

Figure 62: Virus Total Results - ticket_354041.doc

4.2.2 Analysis of 1123211 – 090SD.exe

4.2.2.1 Static Analysis

Before the analysis of the malware artifact acquired could commence, it was important to

fingerprint the file, and confirm the type of file and properties of the artifact in order to determine

the type of file that was analysed.

a) File Fingerprint

The first step was to uniquely identify the malware artifact in order to be able to fingerprint or

identify the malicious artifact in future. MD5, SHA1 and SHA256 sums of the artifact were

created and these hashes themselves were enough to be able to fingerprint the file. This part

of the process was achieved by running the artifact through the “rhash” tool that is a console

utility for computing and verifying hash sums of files. By executing the rhash command with a

combination of –M (for MD5) or –H (SHA1) or –sha256 hash values of file were provided. The

results of the tool are provided below:

102

rhash tool execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$ rhash -M

1123211-090SD.exe

17a9f0b4bf1cfdd20a492da6620353aa 1123211-090SD.exe

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$ rhash -H

1123211-090SD.exe

baf030ac03afef1a0deb3f2b01d4056153732aed 1123211-090SD.exe

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$ rhash --

sha256 1123211-090SD.exe

f9460df7c69640e717c32b9aae57473e4a17d8e049df23d3392034cb039fb6e7 1123211-

090SD.exe

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$

Figure 63: Listing of File Section Hashes – 1123211-090sd.exe

The output results above indicate that the artifact’s MD5, SHA1 and SHA256 hashes are as

follows:

MD5 = 17a9f0b4bf1cfdd20a492da6620353aa

SHA1 = baf030ac03afef1a0deb3f2b01d4056153732aed

SHA256 = f9460df7c69640e717c32b9aae57473e4a17d8e049df23d3392034cb039fb6e7

This hash was later confirmed from the other tools that were used as part of performing static

analysis.

b) File Details

The second setup was to then confirm the properties and type or format of the file that we

were using. The process started by first executing the “file” command against the '1123211-

090SD.exe’ artifact. The results of the command are as follows:

File command execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$ file

1123211-090SD.exe

1123211-090SD.exe: PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS

Windows

Figure 64: Listing of File Details - 1123211-090sd.exe

The results above indicated that the format of the file that would be analysed further was an

executable file.

103

c) File Signature

The third step of the analysis process was to determine the malware signatures of the file by

running the “Clamscan” tool against the file.

Clamscan tool execution:

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$
clamscan 1123211-090SD.exe

----------- SCAN SUMMARY -----------
Known viruses: 3832461
Engine version: 0.98.7
Scanned directories: 0
Scanned files: 1
Infected files: 0
Data scanned: 0.46 MB
Data read: 0.45 MB (ratio 1.01:1)
Time: 5.819 sec (0 m 5 s)

Figure 65: Listing of File Signature - 1123211-090sd.exe

The results from the Clamscan output indicated that the file is not infected or is a malware but

again this could be a false negative; further analysis was required.

d) Indicators of Compromise (IOC)

Figure 66: Indicators of Compromise – 1123211-090sd.exe

The results from the above figure 66 indicated on 1 out 4 IOCs and these IOCs were the 15
blacklisted strings that were found within the malware artifact.

e) Strings

PEStudio Output results

104

Figure 67: Strings – 1123211-090sd.exe

Figure 67 above indicated which of the 15 blacklisted strings were detected as the IOCs.

String Offset from the artifact
Searching through the strings was a simple way to get hints about the functionality artifact.

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$
pestr -n 1123211-090SD.exe

lSystem.Resources.ResourceReader, mscorlib, Version=4.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089#System.Resources.RuntimeResourceSet

Figure 68: Listing of String Offsets - 1123211-090sd.exe

105

Listing 20 indicated that there were several windows functions that the malware would use

when executed and only 7 of these functions are provided. These functions as observed

include the following:

• Get_Computer

• Get_Application

• Get_User

• Get_CurrentDomain

• GetObject

• Create_Instance

• Dispose_Instance

These functions indicate that the malware will attempt to get the name of the computer that it

is running on, execute one or more applications, find the user that is currently logged on the

affected system and also check if the affected system is part of a domain. The malware will

then try to get one or more objects, create further instances and then try to delete those

created instances in order to hide its tracks.

f) Extracted Code - Packed

Extracted and decoded suspicious patterns from malicious file using the “balbuzard.py” tool

Balbuzard.py tool execution:

File: 1123211-090SD.exe

File type according to magic: MS Windows PE

Figure 69: Listing of Extracted Code - 1123211-090sd.exe

The above output results found three files as outlined below; this could mean that these files

could be either be dropped or executed on an infected system. The DLL files are important

Windows functions as explained in Appendix C and this could mean that the malware could

execute or use these functions and the executable to perform further actions on the infected

system.

Additional Files found from the results above:

1. User32.dll - Important Windows Function

106

2. 090SD.exe - Executable

3. Mscoree.dll - Important Windows Function

Pedump tool execution
remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$ pedump
1123211-090SD.exe

The results below indicate that the packer used is a Microsoft Visual C# and we once

again saw the functions (CorExeMain) and module (mscoree.dll) that could be imported.

=== Packer / Compiler ===

 MS Visual C# / Basic .NET

Figure 70: Listing of Packer PEDUMP - 1123211-090sd.exe

g) Examined a PE file and detected suspicious characteristics - Entropy

Used the “pescanner” tool to examine and to detect suspicious characteristics from the
malware artifact.

Pescanner tool execution

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$
pescanner '1123211-090SD.exe'

Sections

Figure 71: Listing of File Entropy - 1123211-090sd

The .text section indicated a high Entropy value of 7.72. Entropy is used in different ways by

malware authors and analysts that provides a rough estimation of whether the file is encrypted

or not and it helps to determine if further analysis is required.

h) Imported/Exported Functions

Pedump tool execution
remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$
pedump 1123211-090SD.exe

Once again the functions (CorExeMain) and module (mscoree.dll) that could be

imported were observed from the results of these tools which still validates the already

found results, that indicated that the artifact will perform certain imports when

executed.

107

=== IMPORTS ===

Figure 72: Listing of IMPORTS PEDUMP- 1123211-090sd.exe

i) Additional Packed and Extracted Properties

Results from this section were extracted and compared between the following tools that were

used from the REMnux and Window 7 systems respectively. Detailed results are available in

appendix E and only compared sections are discussed in this section as these tools produced

similar results when executed.

Tools used in this section are:

• PEDUMP

• CFF Explore

• PEFRAME

I.1 Pedump Tool Output

The “pedump” tool is similar to the “pescanner” tool as both these tools are used to analyse
portable executables. The pedump tools output more information than the pescanner tool.

Pedump tool execution

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$
pedump 1123211-090SD.exe

=== DOS STUB ===

The results below indicated the obfuscated area of the malware and the malware
artifact will not execute in DOS mode.

Figure 73: Listing of DOS STUB - 1123211-090sd.exe

=== DATA DIRECTORY ===

The output results below indicated that the characteristics of the executable would run

on a 32bit Windows system and that the executable is a terminal server, as indicated

in the characteristics DLL section from the figure below.

108

Figure 74: Listing of File Directory Listing - 1123211-090sd.exe

I.2 CFF Explore Tool Output

The output results on figure 75 below from the CFF Explore tool validate the results
found in figure 74 above.

Figure 75: Optional Headers – 1123211-090sd.exe

I.3 PEFRAME TOOL

The PEFRAME toll was executed and the following results were outputted by the tool.

109

remnux@remnux:~/Desktop/Malware/07 November 2016/Extracted/PE Samples$
peframe 1123211-090SD.exe

I.3.1 Packers Found

Packer matched [4]
--
Packer Microsoft Visual C# / Basic .NET
Packer Microsoft Visual Studio .NET
Packer .NET executable
Packer Microsoft Visual C# v7.0 / Basic .NET

Figure 76: Listing of Packer PEFRAME Results- 1123211-090sd.exe

The results from figure 76 indicated that there were actually four packed files as opposed to
one file that was detected in the earlier section of packed files found.

I.3.2 Suspicious Sections

Suspicious Sections discovered [3]
--
Section .text
Hash MD5 6232066005e8bc55677d912943586130
Hash SHA-1 406c1d93ac94f5b6d09d1917b1727220bd7d1fc5
Section .rsrc
Hash MD5 68ef18aad256956be91563b7bc17d78c
Hash SHA-1 c038e96741975febd9c58e92a099c568072ffc15
Section .reloc
Hash MD5 d507f949a165f0c27c241348e0b96368
Hash SHA-1 9f42c410b7b7ea4dbbabec2f21b965afe6954340

Figure 77: Listing of Suspicious Sections PEFRAME Results- 1123211-090sd.exe

Figure 77 from the PEFRAME results indicated that three sections and their hash values

were found within the malware that were the following:

.text

.rsrc

.reloc

I.3.3 Discovered Files

File name discovered [3]
--
Executable 1123211-090SD.exe
Library mscoree.dll
Library user32.dll

Figure 78: Listing of Packer PEFRAME Results- 1123211-090sd.exe

110

Figure 78 from the PEFRAM results indicated that there were two library files that could be

used by the malware if executed, being mscoree.dll and user32.dll.

j) Dependency Walker

The mscorre.dll and kernel32.dll were observed from figure 79 below to have had dependency

DLL or function files required by the malware to be able to use important Windows functions

in order to execute properly on the affected host in addition to the user32.dll observed from

the results provided in the earlier sections.

Figure 79: Dependency Walker – 1123211-090sd.exe

4.2.2.1.1 Static Analysis Results Summary Overview

Figure 80, provides a summary overview of the results for the executable malware sample.

1123211-090SD.exe1123211-090SD.exe

Microsoft Visual

Studio .NET

.NET

executable

Microsoft Visual

C# v7.0 / Basic

.NET

Packers / Obfuscated

Microsoft Visual

C# / Basic .NET

.text .rsrc .reloc

Suspicious Sections with High

Entropy

User32.dll 090SD.exe Mscoree.dll

Imports / Export Functions

KERNEL32.dll
Interesting Key Words

POP

Figure 80: Static Analysis Results Overview - 1123211-090SD.exe

111

4.2.2.2 Dynamic Analysis

In this section of analysing the malware artifact which is performing dynamic analysis on the

malware artifact that was executed in the Cuckoo sandbox and its behaviour, was observed.

A report with the results of the malware artifact was then generated and analysed in this

section. The full report is made available in appendix F and in this section only a few areas

from the report are discussed.

a) File Properties

The results below provided us with detailed results of the file itself and it was important to note

that the hash values reported above are the same hash values as found when the file was

statically analysed.

Figure 81: File Details – 1123211-090sd.exe

b) Indicators of Compromise (IOC)

This part of the results provided us with indicators of compromise of what the actual artifact

does on the system when it is executed, and the behaviour or dynamic analysis of the artifact

was observed.

The IOC section was broken down and explained in the following four areas:

b.1 File Signatures

112

Figure 82: File Signatures – 1123211-090sd.exe

• Antivm_queries_computername – Queried for the computer name

• Antivm_memory_available – Checked the amount of memory in system; this could be

used to detect virtual machines that have a low amount of memory available

• Raises_exception – One of more processes crashed

• Dumped_buffer – One or more potentially interesting buffers were extracted; these

generally contained injected code, configuration data, etc.

• Network_bind – Started servers listening

• Allocates_rwx - Allocated read-write-execute memory (usually to unpack itself)

• Infostealer_browser - Stole private information from local internet browsers

• Recond_checkip – Looked up the external IP address

• Antivm_network_adapters – Checked adapters’ addresses that were used to detect

virtual network interfaces

• Packer_entropy – The binary likely contained encrypted or compressed data

• Memdum_urls - Potentially malicious URLs were found in the process memory dump

• Antisandbox_sleep – A process attempted to delay the analysis task

• Persistence_autorun – Installed itself for autorun at Windows startup

• Antiav_avast_libs – Tried to detect Avast Antivirus through the presence of a library

• Infostealer_bitcoind – Attempted to access Bitcoin / ALTCoin wallets

• Deletes_self - Deleted its original binary from disk

• Has_wmi – Executed one or more WMI queries

113

• Infostealer_mail – Harvested information related to installed instant messenger clients

• Stealth_hiddenfile - Attempted to modify Explorer settings to prevent hidden files from

being displayed

• Injection_runpe – Executed a process and injected code into it, probably while unpacking

b.2 Dropped Files

Figure 83: Dropped Files – 1123211-090SD.exe

The malware artifact drops the four text files, as indicated in figure 83, once it has executed

and most importantly the artifact also dropped text file as indicated above that could have

contained email details. This could have meant that the malware could use those details to

send out back to the command server.

b.3 Network Analysis

This section provided us with the results of the communication attempt performed by the

malware.

Figure 84: Hosts Involved – 1123211-090SD.exe

Figure 84 above provided us with the IP or DNS server that the malware was using to

communicate. The IP address entry is the DNS settings that were configured on our analysis

sandbox system within the Cuckoo system.

114

Figure 85: DNS Requests– 1123211-090SD.exe

Figure 85 above provided us with 11 Domains and IP addresses that the malware was using

to communicate. The results above provided two domains below:

• Whatismyipaddress.com

• Mail.humecmboard.com.my

The two domains mentioned indicate that the malware tried to first look up what the IP address

of the host was to see if it is not using an IP address within a sandbox environment and it then

tried to communicate with an email hosting domain. This also validated the text file that was

dropped in figure 83 that indicated that the text file could have contained email details that

were used by the malware.

b.4 Behaviour Summary

This section provides us with a summary of the behaviour of the malware that is in support of

the file signature results already discussed within the IOC section. Out of the 10 behaviour

results available, only 5 areas of behaviour are discussed in this section.

Figure 86: File Read – 1123211-090SD.exe

The results from the File-Read behaviour in figure 86 above indicated that the malware read
one of the text files that was the “holderwb.txt” that it dropped earlier. We also observed

115

“c:\users\root\AppData\Local\Microsoft\Windows Mail” directories that were read by the
malware.

Figure 87: File Written– 1123211-090SD.exe

The File-Written behaviour in figure 87 above indicated that the malware wrote the three text
files that were discovered earlier into these three directories.

Figure 88: File Deleted – 1123211-090SD.exe

The File-Deleted behaviour in figure 88 indicated that the malware then deleted itself from
the five directories as indicated.

u

Figure 89: File Opened – 1123211-090SD.exe

The File-opened behaviour in figure 89 produced over 20 directories that were accessed by

the malware, the interesting directory that observed which one contained the “mscorrc.dll”.

This DLL was detected to be one of the imports done by the malware as discovered in the

Static analysis performed on this malware.

Figure 90: File Copied – 1123211-090SD.exe

The File-Copied behaviour in figure 90 indicated that the malware copied itself into the

“c:\users\root\AppData\Roaming\WindowsUpdate.exe” directory. This behaviour could also

mean that the malware could have renamed itself and replaced itself to be the

“WindowsUpdate.exe” application and this could also be a form of communication attempt that

the malware performed.

116

b.5 Processes

Figure 91: Processes – 1123211-090SD.exe

The output results from figure 91 above indicate that the malware executed only 5 processes.

Process “Isass.exe” and “vbc.exe” are additional processes that could have been dropped by

the malware as they could have obfuscated within the original file.

Results Overview Summary

Figure 92, below provides a summary of the behaviour of the malware sample that was

analysed.

Start Process
Antivm Queries

computername

Antivm Memory

available
Raises exception

Antivm Memory

available
Dumped buffer Network bind

Allocates rwx Infostealter browser Recond checkip
Antivm Network

adapters
Packer entropy Memdum urls

Antisandbox sleep Persistence autorun Antiav Avast libs Infostealer bitcoind Deletes itself Has wmi

Infostealer mail Stealth Hidden file Injection runpe End Process

Figure 92: Results Overview

4.2.2.3 Virus Total Results

This is the last step of the analyses process to confirm if the malware artifact is in fact a

malware artifact. This process was achieved by running the malware artifact through the online

Antivirus scan engine that connects to a maximum of 57 well known antivirus engines. The

results from virus total indicated that the artifact that was analysed was classified as a Trojan

malware. Only 40 out of 55 antivirus engines were able to determine and confirm that the

artifact was indeed a malware file. Figure 93 below provides us with the results from Virus

Total and also provided the name of the malware artifact that was analysed further, using

static and dynamic analysis techniques as mentioned above.

117

Figure 93: Virus Total Results – 1123211-090SD.exe

4.3 Chapter summary

In this chapter, the malware analysis process was outlined that was then applied to the

malware analysis experiments on the acquired live malware samples. The experiments were

carried out in an isolated analysis lab described in chapter 2 (Literature review). Static and

Dynamic analysis experiments, which are the two techniques of Malware analysis, were

conducted on two live malware samples namely, Ticket_354041 and 1123211-090SD.exe.

These malware samples were two different file formats of which one was in a “Microsoft Word”

file and the other a “Portable executable” file that also yielded two different sets of results.

Static analysis allowed us to analyse the malware artifacts through various tools installed on

the REMnux and Windows 7, while Dynamic analysis allowed us to safely execute the artifacts

in a sandbox environment where the behaviour of the two samples was observed and the

results recorded. The Static and Dynamic analysis environments and the tools used are

described in detail in chapter 2. For each artifact that was analysed in this chapter, an

overview of the results is provided after each section of the analysis experiments.

Based on the preliminary results it was concluded that the samples that were analysed were

true live malware samples that were malicious and if they were analysed or executed in a live

production environment, we could risk infecting other systems on the network.

The artifacts were also uploaded to an online search system that connects to various antivirus

vendors in order to scan, classify and determine severity of the artifact, if it can be found on

an infected host. By uploading the malware to the online search system, we were able to

118

validate the results of our experiments and to also validate that we were in fact working with

malicious artifacts. The results of the experiments are discussed in detail in chapter 5.

119

CHAPTER 5

EXPERIMENT RESULTS, DISCUSSION AND
CONCLUSION

CHAPTER OVERVIEW

This chapter focuses on the following areas:

• Introduction

• Experiment Discussion

• Effective Method of Malware Analysis

• Conclusion

5 INTRODUCTION

In this chapter we will address one of the research questions as described in chapter 1 of this

dissertation in order to be able to provide an answer to the question. We will also further

discuss the experiment results in detail and provide a conclusion to this dissertation.

Research Question: How to measure the most effective technique of malware analysis and

detection on enterprise systems?

5.1 Experiment Results Discussion

In chapter 4 experiments were carried out on the two malware artifacts that we acquired from

an online email filtering system. The experiments were conducted using the two methods of

malware analysis that are Static and Dynamic analysis methods. Results from these two

experiments yielded interesting results that were further validated by uploading our malware

artifact onto an online system called Virus total.

5.1.1 Static Analysis Results Overview

Malware Files or Artifacts:

➢ ticket_354041.doc File

➢ 1123211-090SD.exe File

The experiment was carried out on the abovementioned file in two environments viz. the

REMnux and Windows 7 virtual machines that were setup as part of this research. The

experiment started with the static analysis whereby the static or code properties of the file

were extracted and studied. The Static analysis experiment was then followed by Dynamic

120

analysis that then allowed the file to be executed in an isolated environment and its behaviour

was observed.

5.1.1.1 Experiment 1 - ticket_354041.doc File

• The Static analysis process started off by first establishing the hash values of the file in

order to uniquely identify the file that the experiment was being conducted on. The hash

values that were established are as follows:

MD5 = 543c0cf636bc0e56007e6211cd05ecf2

SHA1 = 400cb9f479fd5ab09aa895245e16ba999ce5142e

SHA256 =

3ea894203c48d37b73ce9202dec7eedbf1c724b707f7de058e42c18c3e55bd49

• We then needed to confirm the format of the file that we were working on for us to be able

to determine the tools that we will use to be able to determine the static properties of the

file. The tool used to find the format of the file allowed us to conclude that the file that we

were working on was a file created in using the Rich Text format that can also be a

Microsoft Word, as indicated from the following results:

• The file was then ran against the open source antivirus engine installed on the REMnux

system to be able to find the signatures of the file and to also see if the antivirus engine

can determine if the file was infected. The results from the clam antivirus engine

determined that the file was clean and that it was not a malicious document

• We then ran the file against the PEstudio application installed on the Windows 7 system

to find IOC that could be obfuscated in the file. The results from the application indicated

that the file consisted of 3 out of the 4 IOCs of which these were the following:

o The files that was referencing Microsoft Office

121

o The file contained 29 blacklisted strings

o The file referenced a URL (http://ns.adobe.com)

• At this stage we were now able to start suspecting that the file could most probably be a

malicious file but we then needed to dive deep into detail from the results produced by the

PEstudio application

• The next step in further analysing the file, we needed to extract the black listed strings as

earlier indicated. From the extracted strings we were able to find functions or DLLs, URLs,

executables and VBA macros that were packed within the file. The following is a summary

of the packed content found from the strings and this is not a complete list of results:

o Functions

➢ RtMoveMemory

➢ HeapCreate

➢ GetModuleHandle

➢ RemoveDirectory

o URLS

➢ http://ns.adobe.com

o Executables

➢ Microsoft Office Word

o VBA Macros

➢ ThisDocument.cls

➢ VBA_Project

➢ Uninstructed.bas

➢ Bebop.frm

• We then used another tool to further analyse the obfuscated and this tool was able to

extract exact content that is obfuscated that is split into the following areas or categories:

o Embedded URL

o Email Address

o Portable Executables

o Executable Commands

o Interesting words that seemed to suggest that they are user accounts

o OLE Headers

o Embedded Macros

http://ns.adobe.com/

122

• The individual VBA macros were then extracted and when the codes were analysed, we

found that the code calls three Windows Libraries and one function. The libraries and

functions are explained in detail in appendix A.

o Windows Libraries

➢ Kernel32

➢ User32

➢ ntdll

o Function

➢ RtlAllocateHeap

From the overall results above we could conclude that the file will run using the Microsoft Word

application to perform malicious activities. The application will then inject code into another

process and run code from the embedded DLL files. This file also consisted of Hex-encoded

and Base64-encoded strings that could be used to obfuscate strings.

5.1.1.2 Experiment 2 - 1123211-090SD.exe File

In this experiment the same process that was done on experiment one was also carried out

in the same manner for this experiment.

• The Static analysis process started off by first establishing the hash values of the file in

order to uniquely identify the file that the experiment was being conducted on. The hash

values that were established are as follows:

MD5 = 17a9f0b4bf1cfdd20a492da6620353aa

SHA1 = baf030ac03afef1a0deb3f2b01d4056153732aed

SHA256 = f9460df7c69640e717c32b9aae57473e4a17d8e049df23d3392034cb039fb6e7

• We then needed confirm the format of the file that we were working on for us to be able to

determine the tools that we will use to be able to determine the static properties of the file.

The tool used to find the format of the file allowed us to conclude that the file that we were

working on was a portable executable file as indicated from the following results:

➢ 1123211-090SD.exe: PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS

Windows

• The file was then run against the open source antivirus engine installed on the REMnux

system to be able to find the signatures of the file and to also see if the antivirus engine

can determine if the file was infected. The results from the clam antivirus engine

determined that the file was clean and that it was not a malicious document

123

• We then ran the file against the PEstudio application installed on the Windows 7 system

to find IOC that could be obfuscated in the file. The results from the application indicated

that the file consisted of 1 out 4 IOCs and these IOCs were the 15 blacklisted strings

• We then investigated the blacklisted strings listed earlier on against two tools that were

PEStudio and pestr respectively. The two tools yielded similar results but the pestr yielded

more results that the PEStudio tool. The pestr tools yielded several Windows functions

that the malware would use when executed and only 7 of these functions are provided or

discussed here. These functions as observed include the following:

➢ Get_Computer

➢ Get_Application

➢ Get_User

➢ Get_CurrentDomain

➢ GetObject

➢ Create_Instance

➢ Dispose_Instance

These functions indicate that the malware will attempt to get the name of the computer

that it is running on, execute one or more applications, find the user that is currently logged

on the affected system and also check if the affected system is part of a domain. The

malware will then try to get one or more objects, create further instances and then try to

delete those created instances in order to hide its tracks

• We then suspected that the executable file contained packed or obfuscated functions. We

extracted and decoded suspicious patterns from malicious file using the “balbuzard.py”

tool. The tool yielded results that suggested that the file contained three executable files

that could mean that these files could be either be dropped or executed on an infected

system. The executable files extracted are listed below:

➢ User32.dll - Important Windows Function

➢ 090SD.exe - Executable

➢ Mscoree.dll - Important Windows Function

• Apart from the executable files found from the earlier findings we also discovered the

following packer within the file:

➢ Packer Microsoft Visual C# / Basic .NET

124

➢ Packer Microsoft Visual Studio .NET

➢ Packer .NET executable

➢ Packer Microsoft Visual C# v7.0 / Basic .NET

• Another discovery from the properties of the file was the .text section that indicated a high

Entropy value of 7.72. Entropy is used in different ways by malware authors and analysts,

that provides a rough estimation of whether the file is encrypted or not and it helps to

determine if further analysis is required

From the overall results above we could conclude that the executable file will run when it is

executed within the targeted or infected system and perform malicious activities. The

executable then uses the packer or compilers to execute additional Windows functions

(“user32.dll”,”mscoree.dll”,”kernel32.dll”) and also drops another executable file “090SD.exe”

packed or obfuscated within the executable. The executable also tries to either create a user

account on the targeted system called “POP”.

5.1.2 Dynamic Analysis Results Overview

Malware Files or Artifacts:

➢ ticket_354041.doc File

➢ 1123211-090SD.exe File

The experiment was carried out on the abovementioned file on Cuckoo sandbox environment

that was set up as part of this research. The experiment followed the static analysis

experiments whereby the static or code properties of the file were extracted and studied. In

this area Dynamic analysis was performed that allowed the files to be executed in an isolated

environment and its behaviour was observed.

From the behaviour of the files when they were executed in the sandbox environment, several

behaviour patterns were discovered that were not detected from statically analysing the files.

A summary of the results from the Cuckoo analysis is discussed in this section and the full

reports are made available as indicated in Appendix E and F.

5.1.2.1 Experiment 1 - ticket_354041.doc File

The behaviour of the malware file when executed yielded the highlighted results below:

• The malware file first started off by querying for the computer name of the infected system,

it then checked the amount of memory in system, and this could be used to detect virtual

machines that have a low amount of memory available

125

• The malware then crashed one of more processes and one or more potentially interesting

buffers were extracted; these generally contained injected code, configuration data, etc.

• The malware then started servers listening process and allocated read-write-execute

memory (usually to unpack itself)

• Private information was then stolen from local internet browsers and the malware

attempted to look up the external IP address that it can connect to from the infected system

• The malware also checked adapter’s addresses that were used to detect virtual network

interfaces and the binary that was detected was found to be likely containing encrypted or

compressed data

• Potentially malicious URLs were found in the process memory dump; one of the processes

attempted to delay the analysis task and also installed itself for auto run at Windows start-

up

• This malware ended up trying to detect if an antivirus called Avast was installed through

the presence of a library

• An attempt to access Bitcoin / ALTCoin wallets was also initiated and the malware then

tried to hide itself by deleting its original binary from disk and executed one or more WMI

queries

• Information related to installed instant messenger clients was also harvested and

attempted to modify windows explorer settings to prevent hidden files from being displayed

• The malware completed its attack on the victim system by executing a process and

injected code into it, probably while unpacking

5.1.2.2 Experiment 2 - 1123211-090SD.exe File

The behaviour of the malware file when executed yielded the highlighted results below:

• The malware crashed one or more processes and one or more potentially interesting

buffers were extracted; these generally inject code, configuration data, etc.

• The malware then allocated read-write-execute memory and usually unpacks itself and

creates executable files on the file system

• Potentially malicious URLs were found in the process memory dump while the malware

was running and the malware then deleted its original binary from disk

• The malware went further by dropping a binary and executed it. It completed its process

by executing a process and injected code into it, probably while unpacking

The results from the two dynamic analysis experiments yielded similar behaviour results that

could be an indication that the malware files belong to the same category of malware even

though the malware files were created in different formats. As previously discussed in chapter

126

2 on types of malware and then briefly described in the malware lifecycle model, we can make

a conclusion that the malware files that were analysed had similar characteristics and

behaviour patterns to the Trojan files.

5.2 Measurement of Malware Analysis Techniques and detection

This section will assist us to be able to address the research question mentioned in the

introduction of this chapter. Before the research question can be addressed, it is important to

first recap the two techniques of performing malware analysis already discussed in the

Literature review in chapter 3. The conclusion of an effective method of performing malware

analysis is based on the experiment results already discussed.

The two techniques of malware analysis are static and dynamic analysis:

• Static Analysis

Static analysis of malware is defined as the process of extracting information from malware

while it is not running by analysing the code of the malware to determine its true intention

(Elisan, 2015).

• Dynamic Analysis

Dynamic analysis is defined as the process of extracting information from malware when

it is executed (Elisan, 2015). This process entails executing the malware artifact in a

secure isolated environment, unlike the static analysis that provides only a view of the

malware that is being analyzed.

5.2.1 Analysis Method Results comparison

Table 12: Analysis Methods results comparison

Criteria objective
Static

Analysis
Dynamic
Analysis

Experiment 1 - ticket_354041.doc

Was the analysis technique able to perform the following:

1. To determine the hash values of the file. Yes Yes

2. To determine the format of the file. Yes Yes

3. To detect the file signature of the file that was being

analysed.
No Yes

4. To determine the strings and extract useful information

from the strings such as VBA Macros, IP, URLs.
Yes Yes

127

Criteria objective
Static

Analysis
Dynamic
Analysis

5. To determine if the file is packed or included obfuscated

code.
Yes Yes

6. To allow the investigation of the source code to take place.

Yes No

7. To determine if there was obfuscated code embedded
within the source code

Yes No

8. To determine the characteristics of the malware when
executed or using static properties.

Partially Yes

9. To determine activities that can be done by the malware on
the victim system.

Partially Yes

10. To determine if the malware injects code. Yes Yes

11. To determine if the malware attempts to steal user
information or modify the system.

No Yes

12. To determine if the malware drops files. Yes Yes

13. To determine if the malware executes any additional
process.

No Yes

14. To determine if the malware deletes itself after it has
executed in order to hide itself from being detected.

No Yes

15. To determine the true intentions and behaviour of the
malware

No Yes

Experiment 2 - 1123211-090SD.exe

Was the analysis technique able to perform the following:

1. To determine the hash values of the file. Yes Yes

2. To determine the format of the file. Yes Yes

3. To detect the file signature of the file that was being

analysed.
Yes Yes

4. To determine the strings and extract useful information

from the strings such as VBA Macros, IP, URLs.
Yes Yes

128

Criteria objective
Static

Analysis
Dynamic
Analysis

5. To determine if the file is packed or included obfuscated

code.
Yes Yes

6. To allow the investigation of the source code to take place Yes No

7. To determine if there was obfuscated code embedded

within the source code
Yes No

8. To determine the characteristics of the malware when

executed or using static properties.
Partially Yes

9. To determine activities that can be done by the malware on

the victim system.
Partially Yes

10. To determine if the malware injects code. Partially Yes

11. To determine if the malware attempts to steal user

information or modify the system.
No Yes

12. To determine if the malware drops files. Yes Yes

13. To determine if the malware executes any additional

process.
Yes Yes

14. To determine if the malware deletes itself after it has

executed in order to hide itself from being detected.
No Yes

16. To determine the true intentions and behaviour of the

malware
No Yes

5.2.2 Effective Method Criteria Calculation

The two tables below are calculated based on the following classification from the results in

table 12 above.

Yes = 1

Partially = 0,5
No = 0

Table 13: Experiment 2 Results

129

a) Calculations based on experiment 1 results

Experiment 1 - ticket_354041.doc

Criteria Objective
Static

Analysis
Dynamic
Analysis

Object 1 1 1

Object 2 1 1

Object 3 0 0,5

Object 4 1 1

Object 5 1 1

Object 6 1 0

Object 7 1 0

Object 8 0,5 1

Object 9 0,5 1

Object 10 1 1

Object 11 0 1

Object 12 1 1

Object 13 0 1

Object 14 0 1

Object 15 0 1

Criteria Total Count
9 12,5

b) Calculations based on experiment 2 results

Experiment 2 - 1123211-090SD.exe

Criteria Objective
Static

Analysis
Dynamic
Analysis

Object 1 1 1

Object 2 1 1

Object 3 1 1

Object 4 1 1

Object 5 1 1

Object 6 1 0

Object 7 1 0

Object 8 0,5 1

Object 9 0,5 1

Object 10 0,5 1

Object 11 0 1

Object 12 1 1

Object 13 1 1

Object 14 0 1

Object 15 0 1

Criteria Total Count
10,5 13

130

Figure 94: Experiment 1

Figure 95: Experiment 2

Based on the above results from section 7.2.1 and 7.2.2 on the comparative results of the two

techniques, it is evident that the Dynamic analysis technique of malware analysis was able to

address all of the criteria objectives from the described in table 6. From the results we could

conclude that Dynamic analysis, if deployed, could be an effective method of performing

malware analysis as it provides more information about the true intentions of the malware.

5.3 Research Summary

The main research question was to determine how malware detection can be done through

malware analysis on enterprise systems.

Static Analysis
42%

Dynamic Analysis
58%

EXPERIMENT 1 - TICKET_354041.DOC

Static Analysis
45%

Dynamic
Analysis

55%

EXPERIMENT 2 - 1123211-090SD.EXE

131

The main question was broken into four sub-questions and the objective of this research

project was to study the important aspects of malware analysis in literature and to determine

the most effective techniques to perform malware analysis and detection.

In chapter 1,

• We provided an introduction to malware and malware analysis

• This chapter provided a blueprint on which this research is based as the following areas

were discussed: Problem Statement, Research Question, Objectives of Research, Aim of

Research and Significance of Study

In chapter 2,

• The literature review of malware and malware analysis was discussed focusing on the

theory and background to research of malware, malware analysis, the goals, different

techniques and limitation of malware analysis

• The chapter also dove deeply into the malware detection techniques, functionality of

malware by focusing on areas such as the behaviour of malware, covert malware

launching techniques and malware anti-reverse-engineering techniques that focused on

code obfuscation, packers, VBA macros and portable executables

• We discussed and described the setup and configuration of an isolated malware analysis

environment that allowed malware samples in chapter 4 to be executed and analyzed in a

safe environment. The various tools required for conducting malware analysis experiments

were also discussed in this chapter

• Finally, this chapter addressed the three research questions namely:

o What are the malware analysis and detection techniques that are available in

literature?

o What are the tools and techniques available to effectively perform analysis and

detection?

o How to set up a malware analysis and detection environment?

In chapter 3:

• The study justified the use of quantitative research methodology, and live data samples or

artifacts were acquired from an online email filtering system

• The research methodology described in this chapter was the methodology used

throughout this dissertation

132

In chapter 4:

• We conducted practical experiments on live malware samples, provided results and

investigations done by the author of this dissertation on the experiments

In chapter 5:

• We discussed and reviewed the results presented from the experiments done in chapter

4 relative to existing research and knowledge from the literature review chapter (chapter

2)

The sub questions of the main research question were address in each chapter of this

dissertation, the literature review to the experiments conducted on live samples and results

provided.

5.4 Research Conclusion and Recommendation

There is no simple solution to the difficult problems caused by malware. The insecure

environment known as the internet and its distributed nature, and important factors such as

collaboration and communication also present challenges for securing inter connection

computers systems and their networks. Malware has the potential to badly affect any or all

users on the internet, from private enterprises to government institutions. While malware often

spreads through the internet or no-internet connected systems, it is crucial to remember that

malware is malicious software that can be introduced into any computer system in the

organization. Using malware directly or indirectly to perform malicious activities online

removes trust and assurance from the online community.

In this dissertation, we attempted to address the main objective of this study which was the

research problem and the main question of this research, following with its sub questions. We

needed to perform malware analysis on malware samples to capture, analyze and record its

intrinsic malicious behaviour. This was the main focus in order to be able to establish effective

malware detection and analysis techniques.

Main Research question

“How to effectively perform Malware analysis and detection on enterprise systems in order to

reduce the damage of malware attacks on the operation of organizations?”

The study justified the use quantitative research methodology, with the use of the observation

data collection technique or strategy. The data that was collected from the email filtering

system include live malware samples. Quantitative data analysis methods were applied to the

133

data collected. Empirical analysis methods were performed on the quantitative data collected

using the simple random method of sampling of data.

An isolated environment was set up for the process of analyzing malware in a safe

environment. This dissertation researched and analyzed two different malware samples that

were extensively discussed in section 5.1 of chapter 5. We were able to establish that by using

malware analysis to analyze the static and dynamic properties of malware, detection

capabilities could be put in place to be able to detect and remediate malware infections on

enterprise systems. We also learned from the experiments conducted in chapter 4 and from

the results, that by using Static and Dynamic analyses techniques of malware analysis, we

were able to analyze the properties and behaviour of the malware samples. The two figures

below, figures 96 and 97, provide us with a view of the results yielded from the experiments

using the two techniques of malware analysis.

Figure 96 shows that:

• Static analysis provided 42% of the results

• Dynamic analysis provided 58 % of the results

Figure 96: Experiment 1 Analysis and Conclusion

Figure 97 shows that:

• Static analysis provided 45% of the results

• Dynamic analysis provided 55 % of the results

Static Analysis
42%

Dynamic
Analysis

58%

EXPERIMENT 1 - TICKET_354041.DOC

134

Figure 97: Experiment 1 Analysis and Conclusion.

The two figures show that Dynamic analysis yielded more results than Static analysis.

These values show that we can detect known and unknown malware or malicious software by

using a behaviour based strategy which is also known as Dynamic analysis, unlike the use of

a manual based strategy in which the attacker can avoid detection by using encryption or

obfuscating, but causing the same malicious behaviour without detection.

We have three recommendations and a conclusion:

Recommendation 1:

Use Dynamic analysis if the analyst or researcher requires analysing the behaviour of the

executed malicious file. This is determined by:

• If the analyst or organisation does not have the required skills to analyse the source

code of the malicious file

• If the analyst or organisation has to address or respond to a security breach or

malware attack incident that immediate results of the infection are required to be able

to detect the malware infection to allow implementation of remedial actions

Recommendation 2:

Use Static analysis if the analyst or researcher requires analysing the source code of the

malicious file. This will be determined by:

• If the analyst or organisation does have the skills in place to manually analyse malicious

file

Static Analysis
45%

Dynamic
Analysis

55%

EXPERIMENT 2 - 1123211-
090SD.EXE

135

• If there is no immediate action required such as addressing a security breach or malware

incident, and the organisation is only performing static analysis in order to improve their

detection capabilities and security countermeasures against malware attacks

Recommendation 3:

Use both Static and Dynamic techniques that will result in a technique known as hybrid

analysis. This is determined by:

• If the source code and behaviour of the malicious file need to be determined in order to

be able to effectively respond to a security breach or malware incident to be able to

implement appropriate detection capabilities of malware

In conclusion, we believe that based on our experiments’ results we have contributed to the

malware analysis field by adding value to the capabilities of detecting additional attacks of

malware on enterprise systems through the malware analyses process.

5.5 Future Research

Malware analysis was done on two different types of malicious file samples and the results

yielded similarities in terms of the characteristics and behaviour of the two files. When the files

were then uploaded to Virus Total to determine the classification of the malware samples, the

results showed that the file samples belonged to the Trojan horse family of malware.

Based on these results our future work will focus more on studying, understanding and

analysing further the Trojan malware’s characteristics and impact on infected systems. The

proposed topic of this study will be “Hybrid Analysis of the Trojan Malware”.

136

REFERENCES

BRYMAN, A. & BELL, E. (2007). Business Research Methods. New York: OUP Oxford.

ADAMS, J., KHAN, T.A., RAESIDE, R. & WHITE, D. (2007). The research methods for

graduate business and social science students., New Delhi: Sage Publication Ltd.

AGRAWAL, M., SINGH, H., GOUR, N. & KUMAR, M. A. (2014). Evaluation on Malware

Analysis. International Journal of Computer Science and Information Technologies.
5. p.3381-3383.

ALLINGTON, W. (2016). Tech Support Scams, Fake BSODs, Scareware . Bits of

Technology for Your Library. Available:
http://scls.typepad.com/techbits/2016/02/tech-support-scams-fake-bsods-
scareware.html [Accessed 18 September 2016].

BHOJANI, N. (2014). Malware Analysis. In: DEFINITION, M. (ed.) Ethical Hacking. India:

Nirma University.

BRAND, M.(2010). Analysis Avoidance Techniques of Malicious Software. Doctor of

Philosophy, Edith Cowan University.

BURRELL, G. & MORGAN, G. (1979). Sociological Paradigms and Organizational Analysis.

School of Psychology - Georgia Institute of Technology: Ashgate.

BURTON, G. (2016). Security. Available:

http://www.computing.co.uk/ctg/news/2443531/total-it-shut-down-at-lincolnshire-
county-council-over-zero-day-attack?wb48617274=A77CEB01 [Accessed 27
January 2016].

CANNELL, J. (2013). Obfuscation: Malware’s best friend. Threat Analysis . Available from:

https://blog.malwarebytes.com/threat-analysis/2013/03/obfuscation-malwares-best-
friend/ [Accessed 08 March 2016].

CHALEUNVONG, K. (2009). Data Collection Techniques. Training Course in Reproductive

Health Research.

CHEN, P., HUYGENS, C., DESMET, L. & JOOSEN, W. (2016). Advanced or not? A

comparative study of the use of anti-debugging and anti-VM techniques in generic
and targeted malware. Ku Leuven.

CHEN, X., ANDERSEN, J., MAO, Z. M., BAILEY, M. & NAZARIO, J. (2008). Towards an

Understanding of Anti-virtualization and Anti-debugging Behavior in Modern Malware.
IEEE International Conference on Dependable Systems and Networks.

CHOUDHARY, S., SAROHA, R. & BENIWA, M. S. (2013). How does anti-virus software

work? International Journal of Advanced Research in Computer Science and
Software Engineering. 3. p.483-484.

CLAUDIO GUARNIERI, A. J. T. & MARK REP SCHLOESSER. (2013). Cuckoo Sandbox.

In: CONFERENCE, B. U. (ed.) Malware Sandbox. USA: BlackHat USA Conference.

137

PERRY,D., PORTER, A. & VOTTA, L. (2000). Empirical studies of software engineering: a
roadmap. Paper presented at the International Conference on Software Engineering
Limerick, Ireland. p.345-355.

DISTLER, D. & HORNAT, C. (2007). Malware Analysis: An Introduction. SANS Institute

Reading Room site: Sans Institute.

DUDOVSKIY, J. (2011). Research Methodology. Research-methodology.ne: research-

methodology.ne. Available: http://research-methodology.net/research-
philosophy/positivism/ [Accessed 30 January 2017].

DUGDALE, J. S. (1996). Entropy and its Physical Meaning. 2nd ed. Taylor and Francis (UK);

CRC (US).

ELISAN, C. C. (2015). Advanced Malware Analysis. United States, McGraw-Hill Education.

HERBST, F. & COLDWELL, D. (2004). Business Research. South Africa: Juta and Co Ltd.

GRAVETTER, F.J. & FORZANO, LB. (2011). Research Methods for the Behavioural

Sciences. US - New York, Cengage Learning.

FOX, W. & BAYAT, M. S. (2007). A guide to managing research. South Africa, Juta and Co

Ltd.

GALLAGHER, S. (2014). Risk Assessment / Security & Hacktivism. BIZ & IT . Available

from: http://arstechnica.com/security/2014/12/inside-the-wiper-malware-that-brought-
sony-pictures-to-its-knees/?wb48617274=36A38774 [Accessed 12 April 2016].

GOERTZEL, K. M. & WINOGRAD, T. (2009). Tools Report on Anti-Malware. Types of

Malware. Cyber Security and Information Systems Information Analysis Center
Website.

GUARNIERI, C., TANASI, A. J. & SCHLOESSER, M. R. (2013). Overview of Cuckoo

Sandbox. Cuckoo Sandbox.

GUBA, E. G. & LINCOLN, Y. S. (1994). Handbook of qualitative research. US Thousand

Oaks, CA: Sage.

HOWARD, F. (2010). Obfuscation and antiemulation tricks in malicious JavaScript.

Available: https://www.sophos.com/en-
us/medialibrary/PDFs/technical%20papers/malware_with_your_mocha.pdf?la=en.pdf
?dl=true [Accessed 30 October 2016].

IDIKA, N. & MATHUR, A. P. (2007). A Survey of Malware Detection Techniques. Purdue

University.

KASAMA, T. (2014). Study of Malware Analysis Leverating Sandbox Evasive Behaviors.

Degree of Doctor of Philosophy in Engineering, Yokohama National University.

KASPERSKY. (2016). What is a Trojan Virus. Internet Security Threats . Available from:

https://usa.kaspersky.com/internet-security-center/threats/trojans [Accessed 28
November 2016].

KENDALL, K. (2007). Practical Malware Analysis. Mandiant, Intelligent Information Security.

138

KERAGALA, D. & WALKER, C. (2016). Detecting Malware and Sandbox Evasion
Techniques. www.sans.org: SANS Institute.

LANCE. (2013). File Entropy Explained. File Entropy explained . Available from:

http://www.forensickb.com/2013/03/file-entropy-explained.html [Accessed 20 March
2016].

LIGH, M., ADAIR, S., RICHARD, M. & HARTSTEIN, B. (2010). Malware Analyst’s Cookbook

and DVD: Tools and Techniques for Fighting Malicious Code. US. John Wiley &
Sons.

M, S., LEWIS, P. & THORNHILL, A. (2012). Research Methods for Business Students. UK.

Pearson Education Limited.

MARAK, V. (2015). Windows Malware Analysis Essentials. US. Packt.

MICHAEL, A., DAVIS, S. M. B. & AARON LEMASTERS. (2010). Hacking Exposed -

Malware & Rootkits Secrets and Solutions. In: EXPOSED, H. (ed.). US: McGraw Hill.

MICROSOFT. (2016). Hyper-V . Microsoft. Available: https://technet.microsoft.com/en-

us/library/mt169373(v=ws.11).aspx [Accessed 12 September 2016].

MILOVSEVI'C, N. (2013). History of malware. New York: Cornell University.

MISHRA, U. (2013). Finding and Solving Contradictions of Contradictions of Contradictions

of False Positives in Virus Scanning. Cornell University.

MOHANTY, D. (2017). Anti-Virus Evasion Techniques and Countermeasures. Available:

http://index-of.es/Malware/AVETC.pdf [Accessed 20 January 2017].

MORGAN, G. A. & HARMO, R. J. (2001). Data Collection Techniques. The American

Academy of Child and Adolescent Psychiatry. p.1-4.

N.BAJPAI. (2011). Business Research Methods. Pearson Education India.

O'LEARY, Z. (2004). The Essential Guide to Doing Research. US. Sage Publications.

OATES, B. J. (2007). Researching Information Systems and Computing. US. Sage

Publications.

OSAGHAE, E. O. (2015). Packed Malware Detection using Entropy Related Analysis : A

Survey. IOSR Journal of Engineering (IOSRJEN). 5. p.59-61.

PAGANINI, P. (2015). AV-TEST estimates 12 million new malware variants per month

Malware Statistics . Available from:
http://securityaffairs.co/wordpress/32352/malware/av-test-statistics-2014.html
[Accessed 23 April 2016].

PIETREK, M. (1994). Peering Inside the PE: A Tour of the Win32 Portable Executable File

Format. Microsoft Website library section: Microsoft.

PIRSCOVEANU, R.-S. (2015). Clustering Analysis of Malware Behavior. Master Thesis.

Aalborg University.

139

PRIVACY, O. W. P. O. I. S. A. (2008). Malicious Software: A security threat to the internet
economy. Organisation for Economic Co-operation and development.

PURI, R. (2003). Bots & Botnet: An Overview Available: https://www.sans.org/reading-

room/whitepapers/malicious/bots-botnet-overview-1299 [Accessed 18 August 2016].

QUINT, A., LONE-SANG, F., DEDRIE, G., DORSEMAINE, B. & CARLE, D. (2016). IRMA

Sandbox . Quarkslab. Available: http://irma.quarkslab.com/index.html [Accessed 25
September 2016].

R, V. & RAI, N. (2012). Windows API based Malware Detection and Framework Analysis.

Sage Journals: International Journal of Scientific & Engineering Research.

KUMAR, R. (2008). Research Methodology. Australia. APH Publishing Corporation.

REAVIS, J. (2012). White Paper: The Ongoing Malware Threat. Available:

https://www.geotrust.com/anti-malware-scan/malware-threat-white-paper.pdf
[Accessed 14 September 2016].

ROSSOW, C. (2013). Using Malware Analysis to Evaluate Botnet Resilience. ter verkrijging

van de graad Doctor aan de Vrije Universiteit Amsterdam, Malware Analysis. Vrije
Universiteit.

S, S. Y., PRAYUDI, Y. & RIADI, I. (2015). Implementation of Malware Analysis using Static

and Dynamic Analysis Method. International Journal of Computer Applications. 117.
p.11-15.

EASTERBROOK, S.,SINGER,J., STOREY, M. & DAMIAN,D. (2008). Guide to Advanced

Empirical Software Engineering. US. Springer.

SAFFAF, M. N. (2009). Malware Analysis. Bachelor of Engineering. Helsinki Metropolia

University of Applied Sciences.

SAIDI, H. (2012). Challenges in Malware Analysis. Microsoft.

SALIHUN, D. (2014). NSA BIOS Backdoor a.k.a. God Mode Malware Part 1:

DEITYBOUNCE. Malware Backdoor Example. INFOSEC Institute Website:
INFOSEC Institute.

SANABIRA, A. (2007). Malware Analysis: Environment Design and Artitecture. GCIH Gold

Certification Paper. SANS Institute.

SANS610 (2012). Reverse Engineering Malware: Malware Analyst Tools and Techniques.

SANS Training.

SASTRY, D. V. U. K. & KUMAR, K. A. (2012). A Modified Feistel Cipher Involving XOR

Operation and Modular Arithmetic Inverse of a Key Matrix. International Journal of
Advanced Computer Science and Applications (IJACSA). 3. p.35-39.

SAVAN GADHIYA & BHAVSAR, K. (2013). Techniques for Malware Analysis. International

Journal of Advanced Research in Computer Science and Software Engineering. 3.
p.972-975.

140

SCHIFFMAN, M. (2010). To Hide is to Thrive. Security . Available from:
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_
2 [Accessed 23 August 2016].

SHABAN, F. O. (2013). Spyware Detection Using Data Mining for Windows Portable

Executable Files. Degree of Master of Science In Information Technology Research.
Islamic University of Gaza Deanery of Higher Studies Information Technology
program.

SIKORSKI, M. A. H. (2012). Practical Malware Analysis. US. William Pollock.

SKOUDIS, E. & ZELTSER, L. (2003). Malware: Fighting Malicious Code. US. Prentice Hall.

SVAJCER, V. (2015). Building A Malware Lab In The Age of Big Data. Available from:

https://community.hpe.com/hpeb/attachments/hpeb/off-by-on-software-security-
blog/673/1/Svajcer-VB2015.pdf [Accessed 20 November 2016].

SYSTEMS, S. R. T. Binary XOR Operation . Available: http://www.xcprod.com/titan/XCSB-

DOC/binary_xor.html [Accessed 20 October 2016].

SZOR, P. (2005). The Art of Computer Virus Research and Defense, US, Addison-Wesley.

TAJALIZADEHKHOOB, S. (2013). Online Banking Fraud Mitigation. Delft University of

Technology.

TOOL, M. A. (2016). Ole - Forensic Tools. Tools. Decalage Website: Decalage.

TOUCHETTE, F. (2016). The evolution of malware. Network Security. p.11-14.

UPPAL, D., MEHRA, V. & VERMA, V. (2004). Basic survey on Malware Analysis, Tools and

Techniques. International Journal on Computational Sciences & Applications
(IJCSA). 4. p.10-19.

VALLI, C. & BRAND, M. (2008). The Malware Analysis Body of Knowledge (MABOK) The

6th Australian Digital Forensics Conference. Perth, Western Australia: School of
Computer and Information Science, Edith Cowan University, Perth, Western
Australia.

VERGELIS, M., DEMIDOVA, N. & SHCHERBAKOVA, T. (2015). Spam: features of the

quarter. Securelist. Available: https://securelist.com/analysis/quarterly-spam-
reports/69932/spam-and-phishing-in-the-first-quarter-of-2015/ [Accessed 08 August
2016].

VIRTUALBOX, S. O. X. (2016). VirtualBox and Virtualisation Definition. VirtualBox Website:

Oracle. Available: https://www.virtualbox.org/wiki/Virtualization [Accessed 25
September 2016].

VMWARE, I. (2016). Virtualization Basics - Virtual Machine . VMWare. Available:

http://www.vmware.com/technology/virtual-machine.html [Accessed 14 September
2016].

WALSHAM, G. (2006). Doing interpretive research. European Journal of Information

Systems. 15. p.20–330.

WESTCOTT, D. & ZELTSER, L. (2016). REMnux Tools Tools. REMnux Website.

141

WLOSINSKI, L. G. (2015). The Underground Threat Isaca - Cyber Security 360 Degree
Vision.

ZELTSER, L. (2010). Reverse Engineering Malware: Tools and Techniques Hands-On.

SANS Institute.

ZELTSER, L. (2015). 5 Steps to Building a Malware Analysis Toolkit Using Free Tools.

Available from: https://zeltser.com/build-malware-analysis-toolkit/ [Accessed 20
November 2016].

ZELTSER, L. (2016). REMnux. Revers-Engineering and Analyzing Malwre c. Available from:

https://remnux.org/ [Accessed 25 September 2016].

142

Appendixes Overview

Appendix A – Important Windows Functions

Appendix B - Common DLLs (Sikorski, 2012)

1. Static Analysis Appendixes

Appendix C - Ticket_354041

Appendix D - 1123211-090SD.exe

2. Dynamic Analysis Appendixes

Appendix E - Ticket_354041

Appendix F - 1123211-090SD.exe

Appendix G – Description of CD Contents

143

Appendix A

Important Windows Functions (Sikorski, 2012)

1. Accept

Used to listen for incoming connections. This function indicates that the program will

listen for incoming connections on a socket.

2. AdjustTokenPrivileges

Used to enable or disable specific access privileges. Malware that performs process

injection often calls this function to gain additional permissions.

3. AttachThreadInput

Attaches the input processing for one thread to another so that the second thread

receives input events such as keyboard and mouse events. Key loggers and other

spyware use this function.

4. Bind

Used to associate a local address to a socket in order to listen for incoming connections.

5. BitBlt

Used to copy graphic data from one device to another. Spyware sometimes uses this

function to capture screenshots. This function is often added by the compiler as part of

library code.

6. CallNextHookEx

Used within code that is hooking an event set by SetWindowsHookEx. CallNextHookEx

calls the next hook in the chain. Analyze the function calling CallNextHookEx to determine

the purpose of a hook set by SetWindowsHookEx.

7. CertOpenSystemStore

Used to access the certificates stored on the local system.

8. CheckRemoteDebuggerPresent

Checks to see if a specific process (including your own) is being debugged.

This function is sometimes used as part of an anti-debugging technique.

9. CoCreateInstance

Creates a COM object. COM objects provide a wide variety of functionality. The class

identifier (CLSID) will tell you which file contains the code that implements the COM object.

See Chapter 7 for an in-depth explanation of COM.

10. Connect

Used to connect to a remote socket. Malware often uses low-level functionality to connect

to a command-and-control server.

11. ConnectNamedPipe

Used to create a server pipe for interprocess communication that will

144

wait for a client pipe to connect. Backdoors and reverse shells sometimes

use ConnectNamedPipe to simplify connectivity to a command-and-control

server.

12. ControlService

Used to start, stop, modify, or send a signal to a running service. If malware is using its

own malicious service, you’ll need to analyze the code

that implements the service in order to determine the purpose of the call.

13. CreateFile

Creates a new file or opens an existing file.

14. CreateFileMapping

Creates a handle to a file mapping that loads a file into memory and

makes it accessible via memory addresses. Launchers, loaders, and injectors use this

function to read and modify PE files.

15. CreateMutex

Creates a mutual exclusion object that can be used by malware to ensure that only a single

instance of the malware is running on a system at any given time. Malware often uses

fixed names for mutexes that can be good host-based indicators to detect additional

installations of the malware.

16. CreateProcess

Creates and launches a new process. If malware creates a new process, you will need to

analyze the new process as well.

17. CreateRemoteThread

Used to start a thread in a remote process (one other than the calling process). Launchers

and stealth malware use CreateRemoteThread to inject code into a different process.

18. CreateService

Creates a service that can be started at boot time. Malware uses CreateService for

persistence, stealth, or to load kernel drivers.

19. CreateToolhelp32Snapshot

Used to create a snapshot of processes, heaps, threads, and modules. Malware often

uses this function as part of code that iterates through processes or threads.

20. CryptAcquireContext

Often the first function used by malware to initialize the use of Windows encryption. There

are many other functions associated with encryption, most of which start with Crypt.

21. DeviceIoControl

Sends a control message from user space to a device driver. DeviceIoControl is popular

with kernel malware because it is an easy, flexible way to pass information between user

space and kernel space.

145

22. DllCanUnloadNow

An exported function that indicates that the program implements a COM server.

23. DllGetClassObject

An exported function that indicates that the program implements a COM server.

24. DllInstall

An exported function that indicates that the program implements a COM server

25. DllRegisterServer

An exported function that indicates that the program implements a COM server.

26. DllUnregisterServer

An exported function that indicates that the program implements a COM server.

27. EnableExecuteProtectionSupport

An undocumented API function used to modify the Data Execution Protection (DEP)

settings of the host, making it more susceptible to attack.

28. EnumProcesses

Used to enumerate through running processes on the system. Malware often enumerates

through processes to find a process to inject into.

29. EnumProcessModules

Used to enumerate the loaded modules (executables and DLLs) for a given process.

Malware enumerates through modules when doing injection.

30. FindFirstFile/FindNextFile

Used to search through a directory and enumerate the filesystem.

31. FindResource

Used to find a resource in an executable or loaded DLL. Malware sometimes uses

resources to store strings, configuration information, or other malicious files. If you see this

function used, check for a .rsrc section in the malware’s PE header.

32. FindWindow

Searches for an open window on the desktop. Sometimes this function is used as an anti-

debugging technique to search for OllyDbg windows.

33. FtpPutFile

A high-level function for uploading a file to a remote FTP server.

34. GetAdaptersInfo

Used to obtain information about the network adapters on the system. Backdoors

sometimes call GetAdaptersInfo as part of a survey to gather information about infected

machines. In some cases, it’s used to gather MAC addresses to check for VMware as part

of anti-virtual machine techniques.

146

35. GetAsyncKeyState

Used to determine whether a particular key is being pressed. Malware sometimes uses

this function to implement a keylogger.

36. GetDC

Returns a handle to a device context for a window or the whole screen. Spyware that takes

screen captures often uses this function.

37. GetForegroundWindow

Returns a handle to the window currently in the foreground of the desktop. Keyloggers

commonly use this function to determine in which window the user is entering his

keystrokes.

38. Gethostbyname

Used to perform a DNS lookup on a particular hostname prior to making an IP connection

to a remote host. Hostnames that serve as command and-control servers often make good

network-based signatures.

39. Gethostname

Retrieves the hostname of the computer. Backdoors sometimes use gethostname as part

of a survey of the victim machine.

40. GetKeyState

Used by keyloggers to obtain the status of a particular key on the keyboard.

41. GetModuleFilename

Returns the filename of a module that is loaded in the current process. Malware can use

this function to modify or copy files in the currently running process.

42. GetModuleHandle

Used to obtain a handle to an already loaded module. Malware may use GetModuleHandle

to locate and modify code in a loaded module or to search for a good location to inject

code.

43. GetProcAddress

Retrieves the address of a function in a DLL loaded into memory. Used to import functions

from other DLLs in addition to the functions imported in the PE file header.

44. GetStartupInfo

Retrieves a structure containing details about how the current process was configured to

run, such as where the standard handles are directed.

45. GetSystemDefaultLangId

Returns the default language settings for the system. This can be used to customize

displays and filenames, as part of a survey of an infected victim, or by “patriotic” malware

that affects only systems from certain regions.

147

46. GetTempPath

Returns the temporary file path. If you see malware call this function, check whether it

reads or writes any files in the temporary file path.

47. GetThreadContext

Returns the context structure of a given thread. The context for a thread stores all the

thread information, such as the register values and current state.

48. GetTickCount

Retrieves the number of milliseconds since bootup. This function is sometimes used to

gather timing information as an anti-debugging technique. GetTickCount is often added by

the compiler and is included in many executables, so simply seeing it as an imported

function provides little information.

49. GetVersionEx

Returns information about which version of Windows is currently running. This can be used

as part of a victim survey or to select between different offsets for undocumented

structures that have changed between different versions of Windows.

50. GetWindowsDirectory

Returns the file path to the Windows directory (usually C:\Windows). Malware sometimes

uses this call to determine into which directory to install additional malicious programs.

51. inet_addr

Converts an IP address string like 127.0.0.1 so that it can be used by functions such as

connect. The string specified can sometimes be used as a network-based signature.

52. InternetOpen

Initializes the high-level Internet access functions from WinINet, such as InternetOpenUrl

and InternetReadFile. Searching for InternetOpen is a good way to find the start of Internet

access functionality. One of the parameters to InternetOpen is the User-Agent, which can

sometimes make a good network-based signature.

53. InternetOpenUrl

Opens a specific URL for a connection using FTP, HTTP, or HTTPS. URLs, if fixed, can

often be good network-based signatures.

54. InternetReadFile

Reads data from a previously opened URL.

55. InternetWriteFile

Writes data to a previously opened URL.

56. IsDebuggerPresent

Checks to see if the current process is being debugged, often as part of an anti-debugging

technique. This function is often added by the compiler and is included in many

executables, so simply seeing it as an imported function provides little information.

148

57. IsNTAdmin

Checks if the user has administrator privileges.

58. IsWoW64Process

Used by a 32-bit process to determine if it is running on a 64-bit operating system.

59. LdrLoadDll

Low-level function to load a DLL into a process, just like LoadLibrary. Normal programs

use LoadLibrary, and the presence of this import may indicate a program that is attempting

to be stealthy.

60. LoadLibrary

Loads a DLL into a process that may not have been loaded when the program started.

Imported by nearly every Win32 program.

61. LoadResource

Loads a resource from a PE file into memory. Malware sometimes uses resources to store

strings, configuration information, or other malicious files.

62. LsaEnumerateLogonSessions

Enumerates through logon sessions on the current system, which can be used as part of

a credential stealer.

63. MapViewOfFile

Maps a file into memory and makes the contents of the file accessible via memory

addresses. Launchers, loaders, and injectors use this function to read and modify PE files.

By using MapViewOfFile, the malware can avoid using WriteFile to modify the contents of

a file.

64. MapVirtualKey

Translates a virtual-key code into a character value. It is often used by keylogging

malware.

65. MmGetSystemRoutineAddress

Similar to GetProcAddress but used by kernel code. This function retrieves the address of

a function from another module, but it can only get addresses from ntoskrnl.exe and hal.dll.

66. Module32First/Module32Next

Used to enumerate through modules loaded into a process. Injectors use this function to

determine where to inject code.

67. NetScheduleJobAdd

Submits a request for a program to be run at a specified date and time. Malware can use

NetScheduleJobAdd to run a different program. As a malware analyst, you’ll need to locate

and analyze the program that will be run in the future.

68. NetShareEnum

Used to enumerate network shares.

149

69. NtQueryDirectoryFile

Returns information about files in a directory. Rootkits commonly hook this function in order

to hide files.

70. NtQueryInformationProcess

Returns various information about a specified process. This function is sometimes used

as an anti-debugging technique because it can return the same information as

CheckRemoteDebuggerPresent.

71. NtSetInformationProcess

Can be used to change the privilege level of a program or to bypass Data

Execution Prevention (DEP).

72. OleInitialize

Used to initialize the COM library. Programs that use COM objects must call OleInitialize

prior to calling any other COM functions.

73. OpenMutex

Opens a handle to a mutual exclusion object that can be used by malware to ensure that

only a single instance of malware is running on a system at any given time. Malware often

uses fixed names for mutexes that can be good host-based indicators.

74. OpenProcess

Opens a handle to another process running on the system. This handle can be used to

read and write to the other process memory or to inject code into the other process.

75. OpenSCManager

Opens a handle to the service control manager. Any program that installs,

modifies, or controls a service must call this function before any other service-manipulation

function.

76. OutputDebugString

Outputs a string to a debugger if one is attached. This can be used as an anti-debugging

technique.

77. PeekNamedPipe

Used to copy data from a named pipe without removing data from the pipe. This function

is popular with reverse shells.

78. Process32First/Process32Next

Used to begin enumerating processes from a previous call to CreateToolhelp32Snapshot.

Malware often enumerates through processes to find a process to inject into.

79. QueryPerformanceCounter

Used to retrieve the value of the hardware-based performance counter. This function is

sometimes using to gather timing information as part of an anti-debugging technique. It is

150

often added by the compiler and is included in many executables, so simply seeing it as

an imported function provides little information.

80. QueueUserAPC

Used to execute code for a different thread. Malware sometimes uses QueueUserAPC to

inject code into another process.

81. ReadProcessMemory

Used to read the memory of a remote process.

82. recv

Receives data from a remote machine. Malware often uses this function to receive data

from a remote command-and-control server.

83. RegisterHotKey

Used to register a handler to be notified anytime a user enters a particular key combination

(like CTRL-ALT-J), regardless of which window is active when the user presses the key

combination. This function is sometimes used by spyware that remains hidden from the

user until the key combination is pressed.

84. RegOpenKey

Opens a handle to a registry key for reading and editing. Registry keys are sometimes

written as a way for software to achieve persistence on a host. The registry also contains

a whole host of operating system and application setting information.

85. ResumeThread

Resumes a previously suspended thread. ResumeThread is used as part of several

injection techniques.

86. RtlCreateRegistryKey

Used to create a registry from kernel-mode code.

87. RtlWriteRegistryValue

Used to write a value to the registry from kernel-mode code.

88. SamIConnect

Connects to the Security Account Manager (SAM) in order to make future calls that access

credential information. Hash-dumping programs access the SAM database in order to

retrieve the hash of users’ login passwords.

89. SamIGetPrivateData

Queries the private information about a specific user from the Security Account Manager

(SAM) database. Hash-dumping programs access the SAM database in order to retrieve

the hash of users’ login passwords.

90. SamQueryInformationUse

Queries information about a specific user in the Security Account Manager (SAM)

151

database. Hash-dumping programs access the SAM database in order to retrieve the hash

of users’ login passwords.

91. send

Sends data to a remote machine. Malware often uses this function to send data to a remote

command-and-control server.

92. SetFileTime

Modifies the creation, access, or last modified time of a file. Malware often uses this

function to conceal malicious activity.

93. SetThreadContext

Used to modify the context of a given thread. Some injection techniques use

SetThreadContext.

94. SetWindowsHookEx

Sets a hook function to be called whenever a certain event is called. Commonly used with

keyloggers and spyware, this function also provides an easy way to load a DLL into all

GUI processes on the system. This function is sometimes added by the compiler.

95. SfcTerminateWatcherThread

Used to disable Windows file protection and modify files that otherwise would be protected.

SfcFileException can also be used in this capacity.

96. ShellExecute

Used to execute another program. If malware creates a new process, you will need to

analyze the new process as well.

97. StartServiceCtrlDispatcher

Used by a service to connect the main thread of the process to the service control

manager. Any process that runs as a service must call this function within 30 seconds of

startup. Locating this function in malware tells you that the function should be run as a

service.

98. SuspendThread

Suspends a thread so that it stops running. Malware will sometimes suspend a thread in

order to modify it by performing code injection.

99. System

Function to run another program provided by some C runtime libraries. On Windows, this

function serves as a wrapper function to CreateProcess.

100. Thread32First/Thread32Next

Used to iterate through the threads of a process. Injectors use these functions to find an

appropriate thread to inject into.

101. Toolhelp32ReadProcessMemory

Used to read the memory of a remote process.

152

102. URLDownloadToFile

A high-level call to download a file from a web server and save it to disk. This function is

popular with downloaders because it implements all the functionality of a downloader in

one function call.

103. VirtualAllocEx

A memory-allocation routine that can allocate memory in a remote process. Malware

sometimes uses VirtualAllocEx as part of process injection.

104. VirtualProtectEx

Changes the protection on a region of memory. Malware may use this function to change

a read-only section of memory to an executable.

105. WideCharToMultiByte

Used to convert a Unicode string into an ASCII string.

106. WinExec

Used to execute another program. If malware creates a new process, you will need to

analyze the new process as well.

107. WlxLoggedOnSAS (and other Wlx* functions)

A function that must be exported by DLLs that will act as authentication module. Malware

that exports many Wlx* functions might be performing Graphical Identification and

Authentication (GINA) replacement.

108. Wow64DisableWow64FsRedirection

Disables file redirection that occurs in 32-bit files loaded on a 64-bit system. If a 32-bit

application writes to C:\Windows\System32 after calling this function, then it will write to

the real C:\Windows\System32 instead of being redirected to C:\Windows\SysWOW64.

109. WriteProcessMemory

Used to write data to a remote process. Malware uses WriteProcessMemory as part of

process injection.

110. WSAStartup

Used to initialize low-level network functionality. Finding calls to WSAStartup can often be

an easy way to locate the start of network related functionality.

153

Appendix B

Common DLLs (Sikorski, 2012)

154

Appendix E

Dynamic Analysis - Ticket_354041

E.1 Cuckoo Results

Note: Additional Results available on CD named Folder 1

Appendix F

Dynamic Analysis - 1123211-090SD.exe

F.1 Cuckoo Results -

Note: Additional Results available on CD named Folder 12

Appendix G – CD / USB Contents

Note: The CD/USB provided includes raw data results from experiments conducted using

static and dynamic analysis techniques of malware analysis

CD / USB Contents

1. Full Results from Experiments Conducted

a) Appendix C

b) Appendix D

c) Appendix E

d) Appendix F

2. Additional Experiments Malware Sample Results

a) Static Analysis Raw Data Results – Folder Named REMnux Results

b) Dynamic Analysis Raw Data Results – Folder Named Cuckoo Results

