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Abstract 

In the world of research and development, the ability to rapidly manufacture a 

prototype or part has become a significant part of the manufacturing process. This 

requirement has given rise to some unique manufacturing technologies. One of these 

technologies is Additive Manufacturing (AM), or also more commonly known as 3D 

printing. There are several AM technologies available and can be divided into three 

major AM categories namely: liquid, powder and solid sheet based. For this research 

study, the primary focus will be on powder-based technologies. Powder-based 

technologies make use of materials in powder form and use different fusion techniques 

to fuse the powder particles together. All the powder bed fusion technologies consist 

of the same basic components, namely a powder chamber, build chamber, re-coater 

and a powder fusion system. For each layer of the build, the re-coater applies a new 

layer of powder from the powder chamber to the build chamber, and then the specific 

type of powder fusion system will fuse the powder particles together. This process will 

then be repeated until the entire build has completed. 

Currently, powder bed fusion AM platforms do not have re-coating quality feedback 

into the printing system. Thus, when errors or defects occur on the powder bed surface 

during the re-coating process, they can affect the structural integrity of the parts. Parts 

must then be reprinted, which becomes costly due to wasted raw materials, electricity 

and time. Raw material and sundry wastage was some of the key factors that reduces 

the overall efficiency of the identified AM technology. Due to the increased problem 

with wasted materials, the need arose to develop a re-coater monitoring system, which 

could be used to increase the overall efficiency of a powder-based system.  

For the development of a re-coater monitoring system, a review of three different types 

of monitoring technologies such as computer vision, laser scanning and a time-of-

flight camera was conducted. Based upon the relatively low cost, low computer 

resource requirements and high accuracy, computer vision was considered as the best 

suited technology for development of the monitoring system. To select the correct 

camera to capture images of the powder bed, the required specifications for the 

camera, lens and mounting position were determined mathematically. A software 
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program was then developed to autonomously detect re-coating errors on the captured 

image after each re-coating cycle using image processing techniques. Each of the 

captured powder bed images were divided into 16 equal sized quadrants, where each 

quadrant was processed individually. Each of the quadrants was examined using an 

edge detection algorithm to detect any changes in contrast that would indicate a defect 

or re-coating error. The probability of a possible re-coating error or defect was 

calculated for each quadrant and displayed as a percentage value. 

The active re-coater monitoring system was also integrated into the Voxeljet VX500 

to validate the system’s operation. The system was used to monitor a total of seven 

build jobs on the Voxeljet VX500. However, the first three build jobs could not be 

successfully monitored as some parameters of the system had to be re-adjusted to 

ensure proper operation. The last four build jobs were monitored successfully and 

recorded results that proved that the active re-coater monitoring system could indeed 

detect defects and re-coating errors when they occurred. 
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Chapter 1 Introduction 

1.1 Preface 

In the world of research and development, the ability to manufacture a prototype or 

final product has rapidly become a significant part of the manufacturing process. This 

requirement has given rise to some unique manufacturing technologies. One of these 

technologies is called Additive Manufacturing (AM), or also more commonly known 

as 3D printing. There are several types of AM technologies, as displayed in Figure 1 

which can be divided into three major AM categories namely: liquid, powder and solid 

sheet based (Fram-Schwartz 2016).  

 

Figure 1 Categories of additive manufacturing(Fram-Schwartz 2016) 

Liquid technologies make use of liquid materials that are cured using different types 

of light sources, by melting the material to create extrusions or spraying using inkjet 

technology. Powder technologies make use of materials in the form of powder where 
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different techniques could be used to fuse the powder particles together. Lastly, solid 

sheet technologies make use of sheets of material that are compressed or welded 

together as laminations to create the part geometry. 

Under each category, several different sub-categories divide the main categories into 

smaller subcategories, depending on the base material used. Each of the subcategories 

is then broken down into the different types of technology platforms. Some of the 

technology platforms shown are old and becoming obsolete. Several of the older 

technology platforms have been replaced by more advanced and efficient methods. 

1.1.1 VUT Southern Gauteng Science and Technology Park 

The Vaal University of Technology Southern Gauteng Science and Technology Park 

(VUT SGSTP) was established in 2012 as a strategic technology hub in the Southern 

Gauteng region. The SGSTP is mandated by the Vaal University of Technology to 

develop products and foster enterprise development through technology transfer and 

innovation (Zhuwakinyu 2012). One of the flagship programs, being driven at the 

VUT SGSTP, includes the Advanced Manufacturing Precinct (AMP). The AMP 

specialises in the manufacturing of parts or prototypes for real-world applications 

using different AM technologies. The different AM technologies available at the VUT 

SGSTP include Fused Deposition Modelling (FDM), Laser Sintering (LS) and Binder 

Jetting (BJ). The manufacturing method of parts will depend on the part geometry, 

material and application. 

Each one of these technology platforms is directed towards a specific industry sector. 

The BJ technology is focused primarily on the foundry sector. The technology allows 

the manufacturing/printing of moulds or patterns with very complex external and 

internal geometries without using traditional pattern or mould manufacturing methods. 

This offers the advantage of a near net shaped casting, with only the minimal amount 

of machining and finishing required (Mauchline 2016). 

1.1.2 Powder bed fusion technologies 

As indicated previously in Figure 1, powder bed fusion technologies can be divided 

into four different technology platforms, namely:  Electron Beam Melting (EBM), 
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Selective Laser Sintering (SLS) or Laser Sintering (LS), Direct Metal Laser Sintering 

(DMLS) and BJ. Since most of the powder bed fusion technologies work on the same 

principle, the different platforms consist of the same fundamental components. The 

main components of the powder bed fusion technologies include a build platform, 

powder bed, powder feed platform and a re-coater or powder-levelling roller as 

illustrated in Figure 2. 

The build and powder chambers have movable platforms, which actuates in the Z-axis 

(vertically). The powder chamber acts as a powder feeder, where the build chamber 

defines the building space. The particle fusion device can move in the X and Y axis. 

The re-coating process is when a thin layer of powder is spread over the build platform 

by the re-coater. Then, depending on the type of technology used, the computer-

programmed head or beam moves/scans over the pre-programmed area to fuse the 

powder particles. This fusion of the powder particles creates the geometry of the part 

at the specific layer. The build platform will move down to re-coat the next layer of 

powder over the build platform. This manufacturing process will then be repeated until 

the part has been printed or sintered (Gonzalez et al. 2016). 

 

Figure 2 Powder bed fusion machine basic parts (Gonzalez et al. 2016) 

Once the part geometry is fused together, the part is then removed from the powder 

bed and cleaned to remove the excess powder. Some of the powders are reusable; 

however, it will depend on the powder’s material properties (Ardila et al. 2014). Since 
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the operation of the powder bed fusion technologies is very similar, only the different 

particle fusing methods will be discussed below. 

• Selective laser sintering and direct metal laser sintering 

LS, SLS and DMLS can be used to sinter parts from a variety of different polymer and 

metal alloy powders. Both SLS and DMLS technologies use high power lasers as an 

energy source to melt the powder particles together. The laser beam is computer 

guided using scanning optics as shown in Figure 3.  

 

Figure 3 SLS and DLMS printer (Cooke et al. 2011) 

Some manufacturers add a focusing lens to control the intensity of the laser beam. The 

laser source and laser intensities are dependent on the type of material used. The 

SLS/LS process uses a CO2
 laser to produce polymer parts, whereas the DMLS process 

makes use of a solid state, ytterbium type laser  (Akande et al. 2016) (EOS GmbH 

2017) DMLS is more suited to manufacture parts using metal or alloy powders 

whereas SLS is suited to manufacture parts from polymer and ceramic powders. The 

DMLS method also makes use of different types of inert gasses to prevent oxidation 

of the metals during the melting process. The majority of the SLS and LS machines 

use a nitrogen sintering atmosphere as different types of gasses can affect the density 

and quality of the sintered product (Asgharzadeh and Simchi 2005). Since the DMLS 

method does not require additional chemicals to assist in the melting process, it makes 
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it capable of producing 95% dense metal parts compared to the approximately 70% 

dense parts as produced using the SLS method (Custompartnet 2016a). Certain types 

of metal powders, however, require additives to improve the surface finish and 

sintering process. 

• Electron beam melting method 

The EBM technology is mostly used to manufacture metal and metal alloy parts. The 

EBM method is substantively like the SLS and DLMS, with the main difference being 

the heat source. The EBM technology uses an electron beam as its heat source and is 

carried out in a vacuum chamber (Everton et al. 2016). Illustrated in Figure 4 is the 

operation of the EBM process. The electron beam is computer controlled and guided 

using electromagnets, which moves the beam over the required areas. 

 

Figure 4 Electron beam melting 3D printer (Dinwiddie et al. 2013) 

• Binder jetting 

The Massachusetts Institute of Technology (MIT) developed the BJ technology in the 

1990s. It was initially named the 3D printing process (3DP) but was later changed to 

binder jetting, since the term 3D printing is a more generic term used for AM processes 

(Sachs et al. 1992). Two very prominent companies in the AM sector, namely ExOne 
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and ZCorp have bought licensing rights to the BJ technology (Gibson et al. 2014). The 

primary components of the binder jetting technology are illustrated in Figure 5. 

 

Figure 5 Binder jetting printer (Custompartnet 2016b) 

The BJ process can manufacture parts using different types of powders such as 

polymers, plastics, ceramics, ferrous and non-ferrous metals as base materials. It uses 

a binder or adhesive solution to bond the powder particles together to create the desired 

shape or part. The BJ process uses inkjet technology to deposit the binder or adhesive 

solution to the required areas.  

Once the printing process had been concluded, the part can then be removed and 

cleaned. Usually, the unused powder can be reused but must be sieved for solid 

particles. In some cases, fresh virgin powder needs to be mixed with the reused powder 

to ensure good particle bonding. The 3D printing or BJ process allows for fast printing 

speeds of up to four layers per minute (Custompartnet 2016b). 

The binder jetting technology is primarily used for rapid prototyping applications, as 

only limited functional testing is possible on green (unprocessed) parts as the part 

strength is not as good as the other types of AM technologies directly from the 

machine. The parts can be infiltrated with sealants such as epoxies, wax or a silicone 
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resin to increase the strength of the part and to give it a good surface finish, if required 

(Fu et al. 2013). 

1.2 The justification for this research 

Currently, AM platforms do not have re-coating quality feedback into the printing 

system. It means that when re-coating errors or defects occur on the powder bed 

surface, there is no way to automatically determine if there are any anomalies present 

on the powder bed. These re-coating errors and defects can cause defects in the printed 

parts, as demonstrated in Figure 6. Often when parts have to be reprinted, it becomes 

costly as raw materials, electricity and time are wasted due to unusable parts.   

 

Figure 6 Effect of re-coating errors 

The VUT SGSTP discovered that the effects of re-coating errors could directly be 

linked to failed prints. When builds fail, they reduce the overall efficiency of the 

machine and increase the number of rejected parts due to imperfections on the part. 

Both sintering machines and binder jetting machines have been experiencing build 

failures due to re-coating errors. 

A hypothesis is made that if these AM machines do have re-coating quality feedback 

into the system, the appropriate corrective measures can be taken on re-coating errors 

and defects as soon as they occur. Rectifying the re-coating errors could reduce the 
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number of failed prints that would increase the overall system efficiency. The 

following study will primarily focus on the Voxeljet VX500 technology. 

1.3 Voxeljet VX500 

The Voxeljet VX500 as displayed in Figure 7 was selected as the platform of choice 

to perform the experiments on for this research. The Voxeljet VX500 is a powder bed 

fusion AM machine that can prints parts using an acrylic type plastic called PMMA 

(polymethyl-methacrylate) (Voxeljet 2017). This type of AM technology uses a binder 

fluid or adhesive to fuse the plastic particles together to create the geometry of the 

part. Some of the bigger models in the Voxeljet series of machines can print parts 

using foundry sand to create moulds for making metal castings. The Voxeljet 

technology machines have a printing resolution of up to 600dpi and use a layer 

thickness of 150um for the PMMA plastic and a layer thickness of 300µm for the 

foundry sand (Voxeljet 2017). This technology is also more environmentally friendly 

as the residual PMMA plastic material can be re-used multiple times in the printing 

process. 

 

Figure 7 Voxeljet VX500 machine(Voxeljet 2017) 

The Voxeljet VX500 has a build envelope size of 500 x 400 x 300mm. Multiple parts 

could be stacked inside the build volume to optimise the building process. 
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1.4 Problem statement 

Currently, powder-based AM technologies have no recoating quality feedback into the 

system, and this can be identified as one of the key aspects increasing the part rejection 

rate. Thus, the lack of an integrated recoating error detection system, to provide 

feedback to the system processor exists, and needs to be investigated. 

1.5 Objectives 

The main objective of the research is the development of a system that can detect re-

coating errors during the printing process to increase the efficiency of powder-based 

AM technologies. The specific objectives of the following research project include:  

• Identify the different re-coating errors and causes and evaluate existing types of 

active monitoring systems to identify re-coating errors. 

• Design a prototype model of the selected active re-coater monitoring system. 

• Build the prototype model of the active monitoring system and integrate it into a 

powder bed fusion system to gather print and error data. 

• Evaluate the data captured from the integration of the active re-coater monitoring 

system to determine the efficiency thereof. 

1.6 Research methodology 

• An in-depth literature review will be done on the re-coating problems encountered 

in powder bed fusion technologies to narrow down the scope of the problem. This 

literature review will also help to identify previous research regarding the 

identified problem and the remaining shortfalls. The literature review will be 

conducted throughout the entire research process to keep up with any new 

developments in the field and any possible new research that may become known. 

• Investigate and analyse powder bed fusion technologies to gather data on re-

coating errors and their causes. This investigation and analysis can help to identify 

the exact causes of the recoating errors, and to visualise the effects of recoating 

errors. 
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• Gather information on possible methods that can be used to verify the quality of 

the powder bed surface autonomously.  

• Evaluate the different methods that can be used to verify the quality of the powder 

bed surface. The effectiveness and cost-effectiveness of a method will be the most 

determining factors.  

• Design an active re-coating monitoring system that can visually verify the quality 

of the powder bed. 

• Build a prototype model of the system and integrate it into the Voxeljet VX500 to 

test the effectiveness of the system under diverse replicated conditions. The testing 

of the prototype model will help to identify any potential problems with the system 

and solve them to ensure the system works as expected. 

• Test the re-coating monitoring system under production conditions to ensure that 

it can effectively detect defects during actual build conditions.  

1.7 Delimitations 

• Due to the closed source code and proprietary nature of the AM machines, the 

system could not be fully integrated into the Voxeljet VX500. Thus, the system 

was designed to give only a visual indication when errors were detected.  

• Off-the-shelf lighting components were identified that conformed to the pre-

defined requirements.  

• Compiling and installation of the software packages did not form part of the 

discussion as there are manufacturer recommended walkthroughs and guides for 

these operations. 

• The design methodology for the mounting brackets did not form part of the 

research as the mounting brackets were custom designed by a design team and 

used as off the shelf components. 

1.8 Overview of dissertation 

Chapter 2: In this chapter, a literature review was done on different types of active 

monitoring technologies that could be used for the monitoring of the powder recoating 

quality. 
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Chapter 3: This chapter focused on comparing the advantages and disadvantages of 

the different monitoring technologies, and the most suitable technology was selected 

for this research. The technical requirements and software specifications for the 

technology were also determined. A test rig was built to evaluate the small feature 

detection capabilities of the camera. The smallest features that can be detected by the 

camera was then determined using the 1951 USAF Resolution Chart.  

Chapter 4: This Chapter focused on the integration of the active re-coating monitoring 

system into the Voxeljet VX500 machine. Once the system was integrated in the 

VX500, the image processing techniques could then be evaluated. The image 

processing program was then tested using a series of replicated defects on the powder 

bed to verify the program’s capability to detect defects, as well as to determine the 

optimum parameters required by the various image processing algorithms being used. 

The system’s capability to detect defects under production conditions was then 

validated using actual build jobs. A series of case studies were performed during actual 

builds on the VX500 to record data using the system under production conditions. 

These case studies were performed to validate the capability of the designed system to 

detect defects and recoating errors during an actual build. The data recorded during 

these studies were also used to determine whether the threshold value determined 

during the testing phase was high or low enough to detect defects during an actual 

build. 

Chapter 5: This chapter contains all the conclusions of the research as well as the 

recommendations for future work. 

1.9 Summary 

This chapter highlights the background of the study, the literature around the different 

types of additive manufacturing, the basic operation of powder bed fusion 

technologies, and the different particle fusion methods. The justification of the study 

outlined the encountered problem in powder bed fusion technologies, as well as the 

causes and effects arising from this identified problem. From this, the problem 

statement was formulated based on the problems identified in the purpose of the study. 

Using the justification of the study and problem statement, the primary objective, as 
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well as the specific individual objectives, were identified. A research methodology 

was drawn up to explain how the researcher aims to achieve the different objectives. 

In conclusion, an overview of the conducted research was also given.   
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Chapter 2 Active Monitoring Systems 

2.1 Introduction 

In this chapter, a literature review will be done on different types of active monitoring 

systems that could be used to monitor the condition of the powder bed surface 

autonomously. Some of the characteristics that need to be taken into consideration 

include scanning accuracy/resolution, hardware and software complexity, processing 

speed, the processing power required and the cost implications of each method. The 

three active monitoring technologies that will be investigated for their suitability for 

the autonomous surface inspection of the re-coated surface include, computer/machine 

vision, 3D laser scanning and a hybrid system of machine vision and laser mapping 

(TOF camera). 

2.2 Computer vision 

A widespread method used to identify objects or visual patterns is called image 

processing, or the more technically correct term is computer vision. The Access 

Science website defines computer vision as: “The technology concerned with 

computational understanding and use of the information present in visual images” 

(AccessScience 2015). Based on the definition, computer vision can broadly be 

described as the automatic analysis of images or videos by a computer or processor to 

develop some understanding of the world around it (Dawson-Howe 2014). The ability 

to use computer vision to describe scenes is demonstrated in Figure 8 by a 

collaborative project between Stanford University and Google (Li et al. 2009).  

 

Figure 8 Scene description (Karpathy and Li 2015) 
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Computer vision can be used for a variety of applications and is not limited to facial 

recognition, number plate recognition, edge detection and pattern recognition. 

Computer vision systems and algorithms are often used in conjunction with artificial 

intelligence algorithms such as neural networks to detect patterns or specific objects 

captured inside the images. One of the applications where computer vision is widely 

being used is to perform quality control or process monitoring on assembly lines. The 

equipment required for computer vision is very simple, as the basics only require a 

computer and a camera such as a webcam. For more advanced applications or if small 

form factor equipment is required, there are specialized stand-alone processing units 

and cameras as demonstrated in Figure 9. 

 

Figure 9 Standalone processing unit and cameras 

There are a variety of cameras available that can be used for computer vision, such as 

colour, monochrome, infrared, thermal and line scan cameras. Most of these cameras 

can be equipped with a wide-angle or telephoto lens. The camera specification mainly 

depends on the application, as well as the environment the system will be required to 

operate in. The two most common types of cameras found in industry are area scan or 

line scan cameras, demonstrated in Figure 10. 

 

Figure 10 Area scan versus line scan(Elm 2011) 
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• Area scan cameras 

An area scan camera captures an image of an area as demonstrated in Figure 10. This 

is the most popular type of camera in computer vision and for capturing videos and 

images for general photographic and videography purposes. The amount of lenses and 

accessories that are available for area scan cameras makes them very versatile. Most 

applications for computer vision require a very small resolution (640x480 pixels) as 

for example the PlayStation Eye camera that is used to track human body movement 

(Engadget 2016). A camera that has a higher resolution is required when very fine 

detail in the image needs to be examined, or if the subject or object to be imaged is at 

a distance. One of the aspects that needs to be considered is that an increase in the 

resolution will increase the required processing power to process and analyse the 

image.  

• Line scan cameras 

A line scan camera is a specialised type of camera that is used for very specific 

applications. This type of camera has one or two rows of pixels but can capture an 

image line by line in very high resolution and quality as demonstrated in Figure 10. 

Line scan cameras are mostly used for inspection of very large objects or when the 

object is moving. One of the applications of a line scan camera is to examine a roll of 

plastic or fabric for defects as demonstrated in Figure 11.  

 

Figure 11 Line Scan camera defect detection(Stemmer Imaging 2017) 
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A disadvantage of line scan cameras is that multiple camera units need to be used, side 

by side, in order to cover a wider scan area. This is due to the limited FOV (field of 

view) and cost of line scan cameras. Another common use for line scan cameras are 

in photocopiers and scanners. They can also be used to perform OCR (Optical 

Character Recognition) from printed or written documents (Teledyne Dalsa 2014). 

The camera can also be triggered to capture images at specific intervals by an external 

encoder as demonstrated in Figure 11 or can be used in free run mode where it is 

continually capturing images. 

Line scan cameras configured in free run mode could be used to simulate an area scan 

camera. However, the captured line images need to be stitched together to produce a 

complete image. This may produce blur or unwanted image defects as the camera 

captures the image line by line, and if an object moves in the same direction as the 

camera it may produce unwanted but humorous results. However, in the artistic 

photography market, these unwanted effects may be desirable as it can be used to 

create specific effects, thus giving it applications beyond just the industrial computer 

vision sector. 

2.2.1 Computer vision case studies 

In order to determine the suitability of the computer vision technologies, multiple case 

studies will be reviewed from literature. The following is a review of case studies of 

various applications of computer vision, as well as the methods and equipment used 

to achieve the desired objectives. 

2.2.1.1 Tile alignment quality control 

In a study done by Lin and Fang, from the I-Shou University in Taiwan, the 

effectiveness of using computer vision to determine tile alignment as well as the 

grouting gaps of the installed tiles were tested (Lin and Fang 2013). To determine the 

proper alignment of the tiles as well as the grout width, an image was captured of the 

installed tiles using a normal point-and-shoot camera. The image was then processed 

and analysed by software to detect the corners of the tiles in the image. A baseline 

dataset was defined in software, with a minimum and maximum values for the width 
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of the grouting gaps. If the grouting gaps are not uniform around the tile, it can be 

deduced that the tile has been installed skew. The edges detected would be fed into the 

algorithm along with the baseline values and a score would be generated. This score 

is measured on an expert scale that ranges from 0 to 100, where 0 is a very poor 

installation, and 100 would be considered an excellent installation. 

2.2.1.2 Inspection of tiles for colour and structural defects 

The second case study was done to aid in the quality inspection of ceramic tiles for 

colour and structural defects. Computer vision was used to detect any discolouration 

and texture defects, as well as small bumps, cracks, depressions and dirt that may be 

stuck on the tile (Boukouvalas et al. 1995). Traditionally, manual visual inspection of 

the ceramic tile is performed by an individual, but this slows down the production line 

as each tile must be inspected individually. This type of inspection is also not very 

objective as the inspection is subjective to the discretion of the person inspecting the 

tiles. When using computer vision for quality assurance of the tiles, the system needs 

to be fast enough to inspect tiles at a rate of approximately two tiles per second. The 

system then classifies the tiles according to two parameters, namely colour grading 

and defects. Depending on the number of defects, the tiles are then graded into three 

different categories.  

2.2.1.3 Non-destructive inspection of large calibre gun barrels 

The third case study is based on the non-destructive inspection of large calibre gun 

barrels for numerous types of defects using image processing techniques 

(Shanmugamani et al. 2015). Surface images of the gun barrel’s inside is captured and 

classified in a two-stage process using a variety of techniques. The surface defects 

were first segmented using extended maxima transform and then the size of the surface 

defects was calculated in metric units. Textural features are extracted from the image 

based on histogram and grey level co-occurrence matrix data, to select the best 

minimal features for the classification purposes. Once the segmentation process has 

been completed and the textural features have been identified, the surface defects can 

be classified using various classification algorithms. This classification process is 

necessary to be able classify the surface defect according to the cause of the defect. 
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Overall, the study aims to provide a framework from which to identify surface defects 

and classify them to help automate the inspection process.  

2.2.1.4 Re-coater blade wear inspection 

The fourth case study is a study that is very much relevant to the identified research 

problem. The study was done to determine the effectiveness of computer vision to 

detect damage or wear on the re-coater blade and the effect it has on the powder 

deposition in a DMLS machine (Craeghs et al. 2011). The camera was used with a 

specific lighting setup, displayed in Figure 12, to highlight any irregularities in the 

powder bed. 

 

Figure 12 Lighting setup for visual inspection of powder bed(Craeghs et al. 2011) 

To verify the integrity of the powder bed, a benchmark line profile grey value of the 

powder bed had to be calculated under normal conditions. Once the benchmark value 

has been established, the grey value of the captured images of the powder bed could 

be verified against the benchmark value. This was done after each re-coating operation 

until the part or parts have been completely sintered. If an irregularity occurred during 

the build process, in the form of a line or part warping, the grey value of the image 

will change, and depending on the set threshold of the grey value, the machine operator 

will then be notified. 
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2.2.1.5 In situ surface monitoring of laser powder bed fusion systems 

The following case study is also directly related to the identified research problem. A 

group of researchers from the University of North Carolina devised a method to 

monitor the condition of the powder bed of a metal powder-based laser AM machine 

using computer vision and fringe projection. The aim of the research was to develop 

a system that could monitor the condition of the powder bed after a new layer of 

powder has been deposited onto the build area. In addition, the system also inspected 

the area after it has been sintered to detect any defects such as spatter or warping of 

the part (Zhang et al. 2016). The warping of the sintered area or part can have a 

potentially detrimental effect on the re-coating process as the re-coater blade could 

scrape the part, causing damage to the re-coater blade as well as damaging the part 

itself. The equipment that was used in the system included a camera with a resolution 

of 4096 × 2160 pixels with a 50mm lens and a commercial DLP (Digital Light 

Processing) projector with a customized projection lens to project the fringe pattern 

onto the build area. The wavelength of the projector had to be calibrated, due to the 

angle of the projector, as demonstrated in Figure 13 to ensure the 3D topography of 

the powder bed is accurate. 

 

Figure 13 Setup of the camera and DLP projector (Zhang et al. 2016) 

The system will capture an image of the powder bed while a fringe pattern is being 

projected onto the powder bed. Using a series of mathematical formulas, the surface 
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topography of the captured area was calculated using the projected fringe. This 

operation was performed before and after the laser beam has sintered the powder 

particles together as demonstrated in Figure 14. 

 

Figure 14 Height maps of the powder bed before and after fusion(Zhang et al. 2016) 

As demonstrated in Figure 14, using the fringe projection methods, the variations on 

the powder bed can quite accurately be measured even down to a micro-meter scale. 
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The changes in colour indicates that the system could detect surface topography 

changes on the powder bed. The white dots on the image is a result of too much light 

and the black dots were a result of too little or no light, which causes and inaccurate 

distance measurement. However, this does not affect the overall effectiveness of the 

measurement as the standard deviation of the dataset was still within acceptable limits 

and usable for accurate measurement.  

As could be seen from the various case studies, computer vision has a variety of 

potential applications and can be used for many purposes. The advantages and 

disadvantages of computer vision with reference to the inspection of parts/surfaces 

were identified as demonstrated in Table 1. 

Table 1 Advantages and disadvantages of computer vision 

Advantages Disadvantages 

• Relatively low cost 

• Changes are mostly implemented in 

software 

• Large variety of sensor resolutions 

are available 

• High scanning speed 

• Very accurate 

• High resolutions require more 

processing power 

• Processing is time consuming 

• Limited FOV 

• Sensitive to lighting conditions 

 

From the case studies reviewed, information on how to identify defects present on a 

flat surface as well as the classification of defects from an image were reviewed. The 

last two case studies also looked at how to identify irregularities on a powder bed 

surface. Although the last two studies focused primarily on the metal AM machines, 

a lot of the principals used to detect defects on the powder bed is common across 

powder-based AM machines. 

2.3 3D laser scanning 

There are several different types of 3D laser scanners available on the market, ranging 

from small handheld scanners as demonstrated in Figure 15, and larger units that are 

used in area and architectural surveying. 3D laser scanners can also be used to reverse 
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engineer hard to obtain parts or parts that are at their end of life and are not being 

manufactured by the OEM or third-party manufacturers anymore. 

 

Figure 15 Handheld 3D scanner(Z-Corp 2009) 

Laser scanning is a technology that uses a line or a dot type laser to digitally create a 

point-cloud map of the object being scanned. A point-cloud map can be used to create 

a 3D model of the object or area being scanned (LaserDesign 2016). Laser scanning 

requires that the surface or part is clean and free from any visible defects such as dust 

or dirt as this can interfere with the scanning process and create noise or unwanted 

deformities in the scanned 3D model. The technology has an accuracy of 2-6mm at a 

distance of 50m for the devices used in building surveying, but have a much higher 

accuracy for the shorter range devices (Olsen et al. 2010). Laser scanning is not as 

accurate as the traditional contact-type scanner systems, but have much faster scanning 

speeds and provides a larger amount of measurement data (Wang and Feng 2014).  

3D laser scanning methods can be classified into 3 main categories: time-of-flight, 

phase shift and laser triangulation. Although these methods of laser scanning are 

usually used independently, more than one method can be combined to create a hybrid 

system that is more effective and efficient than only one method being used in isolation 

(Ebrahim 2015).  

• The time-of-flight method uses a laser to send a pulse of light to the object or 

surface being scanned and then uses a high precision timer to measure how long it 

takes the light pulse to travel from the laser emitter to the object and back to the 

photodetector, as demonstrated in Figure 16. The time it takes for the light pulse 

to complete a round trip can be used to determine the distance of the point relative 
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to the photodetector, as the speed of light is a constant. The accuracy of this method 

is dependent the accuracy of the timer. 

 

Figure 16 3D laser scanner time-of-flight method operation 

• The phase shift method also consists of a laser emitter and a photodetector, similar 

to the time-of-flight scanner, but instead of measuring the light pulse flight 

duration, the phase shift method compares the phase change between the incoming 

and transmitted light pulses. A light pulse of a specific wavelength is transmitted 

and then the reflected light pulse is compared against the emitted light pulse wave 

to determine the phase shift between the two pulses. The phase shift is then used 

to calculate the distance. Figure 17 demonstrates the operation of the phase shift 

method.  

 

Figure 17 3D laser scanner phase shift method of operation(Roboticlab 2013) 

• The triangulation method uses a laser beam and camera to determine the location 

of the laser beam on the target object. The camera is positioned at a predefined 

angle to the laser emitter and depending on how far the object is from the camera, 
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the laser dot or line will be projected at a different position on the camera’s field 

of view. The system’s operation is demonstrated in Figure 18. 

 

Figure 18 3D laser scanner triangulation method of operation(Robinson and Hardin 2015) 

The distance between the scanner and the object can be calculated as the following 

parameters are known: the distance between the laser emitter and the camera, the angle 

of the laser emitter and the position of the laser dot/beam through the camera’s field 

of view. The three laser scanning methods each have their strengths and weaknesses. 

The advantages and disadvantages of the three different methods are displayed in 

Table 2. 

Table 2 Laser scanning advantages and disadvantages 

Technology Type Advantages Disadvantages 

Time-of-flight • Can operate over long 

distances 

• Not very accurate (Ebrahim 

2015) 

• Very costly 

• Low point density 

Phase shift • High point density 

• Works well indoors 

• Has a short range 

• Very costly 

Triangulation • Is very accurate (FARO 

2016b) 

• Very compact 

• High point density 

• Has a very short range 

• Very costly 
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2.3.1 3D laser scanning case studies 

To determine the suitability of using laser scanning technology in this research project, 

multiple case studies will be highlighted from literature. These case studies will 

highlight the applications where laser scanning was used as well as the methods and 

equipment used to achieve the desired objectives. 

2.3.1.1 Pre-cast concrete element inspection 

In a study, done by (Wang et al. 2016), TLS (Terrestrial Laser Systems) were used to 

present a quality assurance technique of digitally measuring the dimensions of pre-

cast concrete blocks or elements, which will be compared against a 3D model to 

determine any irregularities in the surface geometry. Traditional methods are very time 

consuming and at times inaccurate. Thus, an automated method to speed up and 

increase the accuracy of the quality assurance process and inspection was proposed. 

A BIM (Building Information Modelling) model, that conforms to the appropriate 

building code, is used to determine the dimensions of the element in its as-designed 

state. The TLS is then used to scan the pre-cast element to create a model of the 

element in its as-built state. Once it has been scanned, the as-built model is compared 

to the BIM as-designed model and based on the differences between the reference 

model and the scanned model, the part will be approved or rejected. This study also 

investigated two types of scanning methods, the first being the direct scanning of the 

element using the TLS, and the second being a mirror-aided scanning approach, with 

the aim to help reduce the incident angles in real scanning environments.  

2.3.1.2 Surface regularity/flatness quality control 

The second study that will be reviewed is a proposed method to use TLS systems to 

automate the surface flatness quality control in the civil engineering and construction 

industry (Bosché and Guenet 2014). Developments in TLS systems and BIM has 

started offering great opportunities for increasing efficiency and completeness of 

dimensional control operations. However, one of the concerns that have prevented the 

widespread use of TLS systems for level measurement is that there are some concerns 

about the measurement accuracy it provides as well as the amount of time that is 
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required to manually process the data. Thus, the study presents a novel method that 

can be used to integrate TLS and BIM to assist in the automation of the processing of 

the TLS data. There were two standard flatness control techniques that were used, and 

the new novel method was also proposed and tested. Since these techniques will be of 

significance for this research, the techniques used in this case study will be discussed 

in detail in the next section. 

2.3.1.3 Surface flatness checking techniques 

In the case study done on surface regularity/flatness quality control, there were two 

surface flatness checking techniques that were used to verify the flatness of a concrete 

floor. Both of these techniques are of some significance as they have the potential to 

help develop a solution to the identified research problem.  

As mentioned in the case study the two methods that are commonly used to determine 

the global and local flatness of a poured concrete surface are the straight edge and the 

F-numbers methods (Bosché and Guenet 2014). There are other methods that could 

also be used such as the TR34 method and the Waviness Index method. However, they 

did not form part of the methods that were reviewed in the case study.  

The straight edge method is a traditional method where a straight edge and a stainless-

steel slip gauge is used to check the surface flatness and levelness on certain points on 

the floor. This is one of the most commonly used methods in the civil engineering 

industry to check the global and local flatness of poured concrete floors due to the 

simplicity of the method and basic construction equipment required. The global 

flatness refers to the overall flatness of the floor across the entire surface area, the local 

flatness refers to a smaller, more specific area such as a doorway or the corner of a 

room. To control the global flatness of the floor a straightedge of typically 2-3m long 

is used, and to control the local flatness of the floor a straightedge of 0.2-0.3m long is 

used. The standard deviation of the measurements is then compared against the 

tolerance values as specified in the building standards. There are some deficiencies 

when using this method to do manual measurements, namely: the difficulty of 

checking large floor areas, the difficulty of randomly sampling floors and the inability 

to reproduce accurate testing results. Based on the above-mentioned deficiencies, 
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alternative methods were developed to measure the flatness of poured concrete floors, 

one of these being F-numbers method. When using the straight edge method, there are 

three patterns presented in the case study that can be used to generate the straightedge 

measuring positions. These three patterns are Random, Grid-Square and Grid-Star. 

The random pattern created 100 straightedges at random positions on the scanned 

point cloud within certain boundary limits as shown in Figure 19. 

 

Figure 19 Random generation of straightedges pattern(Bosché and Guenet 2014) 

The second pattern is the Grid-Square pattern. This pattern creates straight edges on 

the point cloud inside the boundary limits in the shape of a grid-square as demonstrated 

in Figure 20. 

 

Figure 20 Grid-square straightedges pattern(Bosché and Guenet 2014) 

The third pattern is the Grid-Star pattern. This pattern creates straight edges on the 

point cloud similarly to the Grid-Square pattern, but instead of creating straight edges 

that are at 90 degrees to each other, this pattern creates straightedges at specified 
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angles. E.g. in Figure 21 the straight edges are created at 10-degree angles from the 

origin point but still within the boundary. 

 

Figure 21 Grid-star straightedges pattern with α = 10o(Bosché and Guenet 2014) 

Using these three patterns as demonstrated in Figure 19 to Figure 21 provided a very 

effective way of determining the levelness of the floor using the straight edge method 

as the results obtained using the laser scanner could be easily compared to the 

measurements that were made manually.  

The second method used to verify the levelness of a poured concrete floor or slab is 

called the F-numbers method. This method is mathematically more complex but is 

easier to implement than the straightedge method and is also considered to be a more 

complete method. The tools that are best suited for this method includes optical levels, 

inclinometers or longitudinal differential floor profilometers. The F-numbers method 

is a mathematical method that summarizes a floor profile with two numbers. The first 

number is a statistically calculated number that considers the mean and standard 

deviations of measurements in 0.3m incremental curvatures, this estimates the floor’s 

global flatness. The second number is also a statistically calculated number that also 

considers the mean and standard deviations of measurements in 3m elevation 

differences and using this value the floor’s levelness can be estimated.  

The F-numbers method of checking the levelness of a poured concrete floor or slab 

uses sampling lines that are defined in two orthogonal directions. The dimensions of 

the cast floor determine the orientation of the scan lines as demonstrated in Figure 22. 

The reason that the pattern varies is due to the dimensions of the slab. This method 

requires that the floor section to be measured must be of a minimum size. For instance, 
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the shortest side must be a length of at least 2.4m long and the area of the slab must 

be at least 30m2. The parallel sampling lines must also be at least 1.2m apart from each 

other, and there must be a sampling point at least every 0.3m. 

 

Figure 22 F-numbers method sampling lines(Bosché and Guenet 2014) 

Some of the methods used in the article to check the levelness and surface flatness of 

a concrete floor can be modified and used to detect any irregularities in the powder 

bed, even if there are only slight deformations in the powder bed. It can also be useful 

to characterize and identify the defects in the powder bed as some defects may require 

immediate intervention, whereas other defects might be ignored as they won’t affect 

the integrity of the part. 

It is worth pointing out that the reviewed case studies primarily focussed on the 

construction industry and demonstrated that the scanning accuracy of the technology 

could be considered as high. It was found that accuracies of up to 0.015mm could be 

achieved at a measuring distance of two meters (FARO 2016b). 

The advantages of using this technology are that it can scan a part or surface in very 

high resolutions and detail. It also has a very high scanning speed and can scan moving 

objects. However, some of the disadvantages include: when scanning a part, made of 

a highly reflective material or has a highly reflective surface finish, a lot of stray light 

rays are detected, and may produce multiple outlier data points in the scanned point 

cloud (Wang and Feng 2016). Another disadvantage is that the laser scanning 

equipment being used is expensive, as high-powered laser devices are being used. This 

also means that the proper safety procedures must be followed as laser devices can 

cause permanent eye damage. 
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2.4 Hybrid image/laser mapping 

Hybrid image and laser mapping is essentially computer vision and 3D laser scanning 

combined to create a highly detailed 3-dimensional model of the object or area being 

scanned. The hybrid image/laser mapping method uses a special type of camera, called 

a time-of-flight (TOF) camera. A TOF camera produces both a colour or monochrome 

image and a depth image. Each pixel of the image is encoded with the distance of the 

specific point on the image being captured (Lefloch et al. 2013). A TOF camera 

combine the advantages of being able to scan parts using a laser scanner combined 

with the variety of options available with regards to computer vision processing and 

analysis techniques.  

The 3D TOF camera works by illuminating the part or area/scene with a pulsed or 

modulated light source, as demonstrated in Figure 23.  

 

Figure 23 TOF camera operation(Li 2014) 

The light source is usually a laser that operates in the near-infrared range of ~850nm, 

making it invisible to the human eye. There are two ways of measuring the time-of-

flight of the laser light wave, the first being pulsed wave and the second being 

continuous wave (CW) modulation (Foix et al. 2011). Most TOF cameras available 

on the market make use of CW modulation. Pulsed wave modulation requires very 

fast electronic circuitry as a 1-millimetre accuracy requires an accurate pulse timing 

of 6.6 picoseconds. This presents a problem as it is nearly impossible with current 

silicon technology operating at room temperature to achieve this type of accuracy (Li 

2014). When using the CW method, the laser light illuminates the scene at a specific 

frequency of light using a specific waveform and length. A photo sensor then detects 

the light reflected off the objects or parts. The photo sensor converts the light photons 
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into an electrical signal. Then the delay between the projected light and the reflected 

light is compared to each other as demonstrated in Figure 24. 

 

Figure 24 CW time-of-flight modulation method operation(Li 2014) 

The CW modulation method takes four samples of the reflected light, each with a 90 

degrees phase offset. Once the four samples have been collected, the delay between 

the illumination and the reflection is calculated, and from the delay between the waves, 

the corresponding distance can be calculated. This entire process is repeated for each 

pixel of the camera so that a corresponding depth map can be created using the laser 

and sensors. 

TOF cameras are still considered to be a relatively new and emerging technology, 

however, its applications span from assembly line monitoring systems to the 3D 

modelling of parts or even buildings. It is not a mature technology such as some of the 

other image/camera-based depth measuring technologies or depth sensors, but it 

proves to be very useful in places where fast, but not as precise 3D environment data 

is needed. Some of these applications that do not require extreme precision are, 

obstacle avoidance, pose estimation and human body parts recognition, to name but a 

few (Foix et al. 2011). 

An application where TOF cameras can be used effectively is in the Closed-Circuit 

Television (CCTV) industry. A TOF camera can be used as part of a monitoring 

system for valuable items displayed or exhibited in a public space. This means that 
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less visible security personnel are required for guarding the item or even areas. This 

can also be used in R&D centres, prisons and even banks to prevent the tailgating of 

authorised personnel into restricted areas. What makes this type of surveillance more 

unique than traditional camera is that facial recognition can be performed not only on 

a 2-dimensional image, but can be performed in 3D, giving the surveillance or access 

control system a further level of verification. The company ICD Security Solutions 

also proposed to use TOF cameras to do people counting in very busy and crowded 

places like shopping centres, malls, subway stations and even airports (ICDSecurity 

2012).  

The advantages of TOF cameras is that they can combine a 2-dimensional image with 

a 3D model to a relatively high degree of precision and accuracy. The camera is also 

capable of scanning images at the same frame rate that the normal camera is capturing 

images at. One of the disadvantages of the TOF cameras is that the accuracy is 

currently only limited to a variance of about 1 cm (Basler Ace 2016). This is due to 

the fact that current silicon technology at room temperature cannot cope with timing 

a light pulse into the picosecond region (Li 2014).  

2.5 Summary 

In this chapter, three different technologies were reviewed to determine which 

technology would be best suited for designing an active re-coater monitoring system. 

The three technologies that were reviewed are computer vision, 3D laser scanning 

technology and the TOF camera. Several case studies for each of the technologies 

were also briefly reviewed to verify its suitability to monitor the powder bed. 

In Chapter 3 these technologies will be compared to each other to determine the best 

suited technology for the active re-coater monitoring system. The chapter will also 

show the physical design of the active re-coater monitoring system. 
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Chapter 3 Design of an Active Re-Coater Monitoring System 

3.1 Introduction 

In this chapter the three technologies discussed previously will be compared to each 

other to determine which technology is best suited for the active re-coater monitoring 

system. Once a suitable technology has been selected, it will be used as the foundation 

to develop an online monitoring system. The specific criteria that will be considered 

for the design of the active re-coater monitoring system will also be discussed as well 

as the software packages that will be used to develop the image processing program. 

A test model of the system will be built to benchmark the capability of the camera. 

3.2 Comparison of technologies 

The features, specifications, advantages and disadvantages of the three identified 

technologies addressed in the previous chapter, is demonstrated in Table 3. The three 

key features applicable to this research study includes the: measurement accuracy, cost 

of the proposed system, and the required computing power. 

Table 3 Technology features 

Features Technology type 

Computer vision 3D laser scanning TOF camera 

Measurement 

accuracy 

High (less than 

0.015mm (FARO 

2016a)) 

High (0.015mm 

(FARO 2016b)) 

Low (1cm (Basler 

Ace 2016)) 

Scanning speed High (+30 fps) High (16000 

points/s) 

Medium (+15fps) 

Cost Medium (R1000 – 

R15000) 

High (R15000 – 

R300000) 

Medium (R2500 – 

R30000) 

Hardware 

complexity 

High (Camera, 

Lights, DLP 

Projector, 

Processing Unit) 

Medium (Laser 

Scanner, 

Processing Unit) 

Low (TOF 

Camera, 

Processing Unit) 

Software 

complexity 

Medium Medium Low 

Computing 

power required 

Medium High Medium 
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Features Technology type 

Computer vision 3D laser scanning TOF camera 

Advantages • Very fine 

resolution. 

• Very high 

accuracy. 

• Requires very 

little equipment 

to set up a basic 

system. 

• Capable of a 

very high 

scanning speed. 

• Very fine 

resolution. 

• Very high 

accuracy. 

• Can scan 

moving 

objects. 

• Can scan 

moving 

objects. 

• Is not really 

affected by 

changing light 

conditions. 

Disadvantages • Can be affected 

by varying 

lighting 

conditions. 

• Requires the 

surface or part 

to be stationary 

while the scan 

is in progress to 

prevent blur. 

• Limited FOV 

(field of view) 

• Produces ghost 

points when 

scanning 

highly 

reflective 

material. 

• The laser 

scanning units 

are very 

expensive. 

• It has an 

accuracy of 

1cm under 

ideal 

conditions. 

• Requires a high 

precision 

timing system. 

 

From the data shown in Table 3 it was determined that the computer vision and 3D 

laser scanning technologies could potentially be used to develop and active monitoring 

system for monitoring the powder bed on powder based AM technologies. The high 

accuracy and high scanning speed displayed by these technologies make them very 

well suited to develop an active re-coater monitoring system with. The accuracy of the 

TOF camera technology however, is not high enough for it to be effectively used in 

the design. Most powder bed fusion technology machines typically work on layer 

thicknesses from 150 microns for polymers and ceramic (Voxeljet 2017) and 300 

microns for sand (Voxeljet 2015) depending on the manufacturer. This means that the 

active monitoring system must be able to detect imperfections on the powder bed of 

at least 300 microns and smaller. Since the TOF camera has a predicted accuracy of 
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+/- 1cm under ideal conditions, it will not be very well suited to the task as the accuracy 

is too low. By the time that the camera will have detected the defect on the powder 

bed under not so ideal conditions, the part integrity will be compromised already, and 

the part must be scrapped. 

Considering the computer vision and laser scanning technologies, the accuracy of 

these two technologies are very similar to each other and is also accurate enough to be 

used as an active monitoring system. Since the accuracy is sufficient, the rest of the 

factors will be considered and discussed. The determining factors that will be 

investigated is the scanning and processing speed. The scanning and processing speed 

are very crucial factors as the active monitoring systems must be able to scan/capture 

the entire powder bed area after the re-coater has applied a new layer, but also before 

the printing head or laser/electron beam moves over the powder bed to bind the powder 

particles together. It is also crucial that the image or scanned model must be processed 

before the adhesive or laser is applied to the material. Since the two proposed 

technologies are different in their operation, they can’t be directly compared to each 

other, but the key features can be compared. Both computer vision and the 3D laser 

scanning have a very high scanning rate, even though they vary in the way that the 

scan is done. However as highlighted in the literature study, the 3D laser scanner can 

scan and object or surface while moving, whereas using area scan cameras for 

computer vision, the image must be captured while the platform is stationary to 

prevent blurring. This gives 3D laser scanning an advantage over the computer vision 

as it can scan the powder bed while the re-coater is moving. However, if using line 

scan cameras for computer vision, it can be used in a similar fashion compared to the 

3D laser scanner. The processing speed is also directly proportional to the amount of 

processing power that would be required to process the image or scanned 3D point 

cloud.  It is also proportional to the type of processing that needs to be done on the 

captured image or 3D data. Both systems have the capability to perform on-device 

processing of the data, thus the computer is normally only required to view the image 

or 3D point cloud. However, a computer can be used to perform further analysis and 

processing of the captured data. The disadvantage of the 3D laser scanner in this regard 
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is that the point cloud must first be converted into readable formats, which requires a 

significant amount of computer resources and processing time. 

The final factor to be considered is the costs associated with each of these 

technologies. The cost of the device and its required peripherals is a very important 

factor, as the chosen technology must be as cost-effective as possible. This factor does 

not affect the operation of the system but has a significant impact on the affordability 

of the system. If the system is not cost-effective, the return on investment will be very 

low and it would not be a viable option to implement the system in a production 

environment. The cost of any system consists of not only of the device itself but also 

must include all the peripherals that are required for the system to operate normally. 

Computer vision would require a camera, processing unit and lighting if needed. A 

laser scanner requires fewer peripherals than computer vision, but the price of the 

actual laser scanning unit is significantly more compared to computer vision as can be 

seen in Table 3.  

Considering all the aspects mentioned above, the computer vision is most suited to 

develop the active monitoring system. The next step in the process is to determine all 

the component specifications that will be used with the computer vision technology. 

3.2 Lighting for surface defects 

The lighting is the most important aspect of computer vision, as without some form of 

illumination most computer vision technologies would be completely useless.  

There are a few important things that should be considered when selecting the correct 

lighting. One of the first aspects that must be looked at is the application that the 

lighting will be used for. For this research, the purpose of the lighting will be the 

highlighting of surface defects on the PMMA surface. It should be higlighted that the 

PMMA powder has highly reflective characteristics due to the spherically shaped 

powder particles. Thus, the illumination over the platform should be uniform. 

Excessive blooming or lighting hot spots can cause important image features to be 

lost. The reverse is also true as a poorly illuminated image can also mask defects or in 

some cases make them completely undetectable. When the lighting is not uniform, it 
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causes problems with the signal to noise ratio and makes operations such as 

thresholding of the image very difficult (Edmund Optics 2017). This enforces that the 

correct types of illumination should be selected. 

When selecting an illumination method for a particular application, the type and 

surface finish of the object must first be determined. For this application, a flat smooth 

surface, white in colour and made from highly reflective but grainy material, will be 

inspected. This indicates that a lighting method that can provide uniform illumination 

of the entire powder bed must be selected. However, the lighting must be able to 

highlight any surface defects, or at the least provide a detectable contrast difference 

between the defect that has occurred and the rest of the powder bed.  

In an article written by Edmund Optics, a comparison of the different illumination 

methods are highlighted and is demonstrated in Table 4. From the data displayed in 

this table, it can be seen that the type of lighting required to highlight surface defects 

on a flat or nearly flat surface is a single source of directional light or a structured light 

projector.  

Table 4 Illumination methods comparison(Edmund Optics 2017) 

Application requirement Object under 

inspection 

Suggested type of 

illumination 

Reduction of specularity Shiny object Diffuse front, diffuse 

axial, polarizing 

Even illumination of object Any type of object Diffuse front, diffuse 

axial, ring light 

Highlight surface defects or 

topology 

Nearly flat (2-D) object Single directional, 

structured light 

Highlight texture of object 

with shadows 

Any type of object Directional, structured 

light 

Reduce shadows Object with protrusions, 

3-D object 

Diffuse front, diffuse 

axial, ring light 

Highlight defects within 

object 

Transparent object Darkfield 

Silhouetting object Any type of object Backlighting 

3-D shape profiling of 

object 

Object with protrusions, 

3-D object 

Structured light 
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As suggested by the data in Table 4, the recommended type of light for this study is a 

form of directional or structured lighting. Directional lighting is lights that illuminate 

the surface only from one side or direction as displayed in Figure 25. When shining a 

directional light against an object, as shown in Figure 25, any light that cannot pass 

through the object will cause a shadow to be cast at the opposite side of the object. 

The length and size of the shadow is also dependent on the size of the object, as well 

as the angle that the light source is positioned at. Taking this into consideration, any 

defects that may occur on the bed will be contrasted from the rest of the powder bed 

by creating a shadow or highlight over the defective area. This makes it easier to 

identify the presence of the defect as the shadow will be considerably more visible 

than the defect itself. Directional lighting is not limited to spotlights only, as bar lights 

or fibre optic type lights can also be used for directional lighting. 

 

Figure 25 Effects of directional lights on shadows(Callis 2010) 

For this specific application, because a flat surface is being examined, the angle that 

the light are mounted at is critical. The reason for this is that when a defect occurs, the 

angle of incidence must be low enough so as to not illuminate the inside of the defect 

itself. This would result in the fact that the camera might not detect the change on the 

powder bed.  
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In order to illuminate the powder bed uniformly, a bar light is required that is the same 

length as the powder bed. Since modification of the machine is extremely limited, the 

factory installed lighting luminaire will be used to illuminate the powder bed. The 

luminaire is the same length as the powder bed and is bright enough to illuminate the 

entire powder bed surface. It is essential that the light does not create hot spots on the 

surface of the powder bed, as this can affect later processing of the image.  

The powder bed will be illuminated using the fluorescent light installed inside the 

hood lid as displayed in Figure 26.  

 

Figure 26 Internal AM machine light 

The fluorescent light was a 20-watt fluorescent tube mounted at a 50-degree angle 

with reference to the surface of the powder bed. 

It is necessary to determine the minimum shadow size that will be cast by a defect 

after a single layer. The size of this shadow is important as the camera specifications 

will be based upon this shadow size. The size of the shadow can be determined 

mathematically using basic trigonometry. 

The diagram in Figure 27 illustrates visually how the size of the shadow will be 

calculated when a defect occurs after a single re-coating operation. This illustration 

assumes that the defect had occurred on the edge of the powder bed, as at this position 

the shadow that will be cast by the defect will be at its smallest. 



 

 40  

 

 

Figure 27 Powder bed illumination 

The first step that is required is to determine the angle A at which the lighting luminaire 

is mounted in relation to the powder bed. Since the the height of the light above the 

powder bed as well as the distance of the luminaire from the side of the powder bed is 

known, the angle at which the powder bed is being illuminated can be calculated using 

trigonometry. Since the opposite and adjacent sides of the triangle is known, angle C 

can be calculated using the tangent function as shown in Eq. 1. 

 tanθ =  
c

a
 

Eq. 1 

  

Where: c ≡ Height of light above the powder bed (mm) 

 a ≡ Length of the light from the powder bed (mm) 

Manipulation: 

θ =  tan−1
c

a
 

= tan−1(
428

525
) 

θ  = 39.188° 

 

Now that the angle at which the powder bed is being illuminated at is identified, the 

angle A at which the luminaire is mounted in relation to the powder bed, can be 
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calculated. Since the sum of all interior angles in a triangle is 180 degrees, the 

unknown angle θC can be calculated using the fomula shown in Eq. 2. 

 θA + θB + θC = 180 Eq. 2 

 

Where: θA ≡ Angle of mounted luminaire (°) 

 θB ≡ Angle of light to powder bed (°) 

 θC ≡ Angle of illumination (°) 

Manipulation: 

θA = 180 − θB − θC 

= 180 − 90 − 39.188 

θA = 50.812° 

 

Now that all the interior angles of triangle ∆ABC is known, the length of the shadow 

that will be cast in triangle ∆DEF can be calculated. Looking at Figure 27, it can be 

seen that triangle ∆ABC is similar to triangle ∆DEF. This means that since all the 

interior angles and the length of side f is known, the missing side d can be calculated 

using the Sine Rule as shown in Eq. 3. 

 d

sin θD
=

e

sin θE
=

f

sin θF
 

Eq. 3 

 

Where: d ≡ Length of the shadow (μm) 

 θD ≡ Angle of Illumination (°) 

 f ≡ Depth of defect (μm) 

 θF ≡ Incoming light angle (°) 

Manipulation: 

d = (
f

sin θF
) × sin θD 

= (
150

sin(39.188)
) × sin(50.812) 

d = 184μm 
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Using the information calculated using Eq. 3, the minimum shadow size that must be 

detectable by the camera is measured at 184µm. This will be used as the smallest 

feature that the camera must be able to capture when calculating the specifications of 

the camera module. It is important to note that due to the width of the powder bed, the 

size of the shadow will increase on the further ends of the powder bed. This means 

that shadows wil be easier to detect on the further side of the powder bed than on the 

closest side. 

A baseline reference image of the powder bed after a successful re-coating operation 

was captured to test the effectiveness of the light. The reference image as demonstrated 

in Figure 28 was captured using only the fluorescent light. When closely examining 

the image, it appears that the single light source sufficiently illuminates the entire 

powder bed. However, the powder bed is not as uniformly illuminated as would be 

expected. The illumination appears to diminish in intensity at the far side of the image, 

the reason for this is due to the distance between the lighting fixture to the far side of 

the powder bed. 

 

Figure 28 Illumination of the powder bed in the Voxeljet VX500 

However, the illumination at the far side of the powder bed did not drop to the point 

where the image was completely underexposed in some areas and thus the illumination 

was considered sufficient. Structured lighting was also one of the illumination 

methods that was suggested, however, this method of lighting is more suited to 

generating 3D models from the captured images as discussed in Chapter 2. This 
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method of scanning was determined to be unsuitable for the purposes of this research 

and will thus not be investigated. 

3.3 Camera specifications 

There are several factors that must be considered when selecting a camera for a 

computer vision application. Some of these factors include: the number of pixels, the 

focal length of the lens, field of view, minimum focusing distance, working distance, 

low light performance and sensor size. Not all these factors are as critical to the 

operation of the system, but they will influence the effectiveness of the system. The 

three most important parameters for this application are the sensor size, focal length 

combined with the field of view and the working distance of the camera. Each of these 

parameters will be discussed and calculated below. 

3.3.1.1 Required sensor size 

The first variable that will be calculated is the minimum number of pixels required by 

the camera to capture very small features on the powder bed. This can be calculated 

mathematically using the formula in Eq. 4 (National Instruments 2014). The minimum 

number of pixels needed to cover the smallest feature can be any arbitrary whole 

number. However, it should be considered that if a too high pixel coverage value is 

chosen, it will drive up the total number of pixels that will be required by the camera. 

A higher pixel coverage value will increase the camera’s capability to capture smaller 

details, but also increase the cost and required processing power. 

 

𝑆𝑟 = 𝑃𝑐 (
𝐹𝑂𝑉

𝑆𝑓
)  

 

Eq. 4 

 

   

Where: Sr ≡ Sensor Resolution (pixels) 

 Pc ≡ Pixel Coverage (pixels) 

 FOV ≡ Field of View (mm) 

 Sf ≡ Smallest Feature (mm) 
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In the previous section, it was determined that the Voxeljet VX500 technology makes 

use of a layer thickness of 150µm. However, there is not much data available as to 

what the factors are that causes the recoating errors, thus the smallest defect width that 

may occur is very difficult to determine.  

Therefore, the smallest feature that the camera must be able to capture was calculated 

using shadows cast by the defect as reference. This smallest feature value was 

calculated as 184µm. A pixel coverage value of one pixel was selected as this was 

deemed sufficient to cover the smallest assumed defect. From the previous section, it 

was also determined that the dimensions of the VX500’s powder bed is 500mm wide 

and 400mm long. Thus, the FOV of the camera must be the same dimensions as the 

powder bed.  

The number of horizontal and vertical pixels necessary for the camera to capture an 

image of the powder bed can be calculated using Eq. 4 and is demonstrated below: 

 
Srhorizontal = Pc (

FOV

Sf
) 

= 1 (
500

0.184
) 

=  2717 pixels 

 

 Eq. 5 

  

 

 
𝑆𝑟𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑃𝑐 (

𝐹𝑂𝑉

𝑆𝑓
) 

= 1 (
400

0.184
) 

= 2174 𝑝𝑖𝑥𝑒𝑙𝑠 

 

 Eq. 6 

  

 

From the calculations, it is evident that a minimum resolution of 2717 x 2174 pixel is 

needed. The calculated resolution needs to be compared against current commercial 

sensors to select the most compatible sensor. Table 5 shows a list of the standardised 

camera resolution sizes, in megapixels, as well as the pixel dimensions for each 

commercially available sensor. Using the calculated values from Eq. 5 and Eq. 6, the 

required camera sensor resolution was calculated as 5.91-Megapixels. Taking the list 
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of commercially available sensors into consideration, a 7-megapixel sensor was the 

closest specification to the calculated requirement. It is necessary to select a larger 

sensor because the number of vertical pixels that will be required is more than a 6-

megapixel camera sensor can deliver. 

Table 5 Standard camera sensor sizes(Cohoon 2011) 

Megapixels Sensor resolution 

2 1600x1200 

3 2048x1536 

5 2592x1944 

6 3032x2008 

7 3072x2304 

8 3264x2448 

10 3648 x 2736 

 

Although there are several other factors that can influence the extent of details that the 

camera can capture, the number of pixels when capturing the image is crucial to ensure 

that all the required details is captured. If the number of pixels is too small, a lot of 

minor detail can go missing (Edmund Optics 2011). The higher the number of pixels, 

combined with the correct lens choice, the smaller the object or amount of detail that 

can be captured in the image. However, a higher pixel count would result in a larger 

file size and will require additional computing power. This means that more storage is 

required to store the image, and more processing power is required to process and 

analyse the image, as discussed in the previous chapter. Therefore, a compromise must 

be reached as to what is useful and what would be practical.  

When looking at the calculated camera sensor requirements, it has been determined 

that a camera with a sensor size of between 6 and 7 megapixels is required to enable 

imaging of the entire powder bed. The Raspberry Pi camera module met the required 

specifications and was selected. Although the Raspberry Pi camera has an 8-megapixel 

sensor, it was determined to be well suited to the application as it has a low profile, 

low cost and meets and exceeds the minimum megapixel requirements. 
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3.3.1.2 Required Field of View 

The next factor that should be considered is the focal length. The working distance of 

a camera is defined as the distance between the front of the camera lens to the surface 

of the object being examined (National Instruments 2014). The working distance 

influences the focal length of the lenses that can be used for a specific application. The 

formula to calculate the focal length is demonstrated in Eq. 7 and makes use of the 

vertical length of the camera sensor, as well as the length of the object being captured. 

(Czeranowsky 2016). 

 
Fl =

Vess

Lpb
 × Wd  

Eq. 7 

  

Where: Fl ≡ Focal Length (mm) 

 Vess ≡ Vertical sensor size (mm) 

 Lpb ≡ Length of Powder bed (mm) 

 Wd ≡ Working Distance (mm) 

 

In this case, a fixed working distance must be selected as the system is ultimately being 

designed to be integrated into existing powder bed systems. Because there are a limited 

number of places where the camera can be located inside the machine, a suitable 

location must be chosen, and the focal length of the lens and the lighting must be 

adjusted to fit in with the mounting location. If the system is to be used in a different 

type or design of machine, these values need to be recalculated. This also gives the 

system a sense of modularity, as the various parts of the system can potentially be 

modified to suit different machines.  

It was determined that the working distance for the camera will be 440mm. The 

vertical measurement of the camera sensor is required for the calculation of the lens 

focal length. The Raspberry Pi camera as displayed in Figure 29, has a sensor with a 

diagonal measurement of 4.6mm and a vertical measurement of 2.76mm (Raspberry 

Pi Foundation 2016a). 
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Figure 29 Raspberry pi camera module(Raspberry Pi Foundation 2016a) 

Taking this into consideration, the required focal length can be determined as follows 

using Eq. 8: 

 
Fl =

Vess

Lpb
 × Wd 

=
2.76

400
 ×  440 

= 3.036 mm 

 

 Eq. 8 

  

 

The calculated focal length is not a standard lens size; thus, the closest available lens 

size should be selected. The Raspberry Pi camera module has a fixed 3.04mm lens 

attached. Thus, the stock factory lens can be used as it conforms to the calculated lens 

focal length requirements. The Raspberry Pi camera also provides an adjustable lens 

focus. 

3.3.1.3 Raspberry Pi camera interface 

The Raspberry Pi camera module makes use of a Camera Serial Interface (CSI) for 

connectivity to the processing hardware. The Camera Serial Interface is supported by 

a number of ARM microprocessor devices, one of the more notable chips being the 

Broadcom BCM2837 that is based on the ARM Cortex A53 MPCORE processor 

(Raspberry Pi Foundation 2016b). This method of connectivity is very widely used in 
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the mobile device and automotive industry. Some of its fundamental features are that 

it delivers a high data transmission performance, uses low power and has a low EMI 

(Mipi Alliance 2017). Its most common use is for imaging and vision applications as 

the name suggests. 

Due to recent advances in microcomputer technology, there are several compact 

computing devices that can be used to drive this specific camera module. One of these 

systems being the Raspberry Pi micro-computer as demonstrated in Figure 30.  

 

Figure 30 Raspberry pi 3 model B micro-computer(Raspberry Pi Foundation 2016b) 

The Raspberry Pi is a micro-computer that is also built around the ARM Cortex A53 

microprocessor chip. It has a variety of connectivity options including I2C, SPI, USB, 

HDMI, CSI as well as hardwire Ethernet and wireless (WIFI/Bluetooth) network 

technologies. The added benefit of using this platform is that all the image processing 

tasks can be done on the Raspberry Pi micro-computer, which makes this an extremely 

cost effective and compact option. Since the hardware is very small in size, it can 

easily be installed inside the AM machine. The entire system can also be managed 

remotely as the micro-computer can be connected to an Ethernet network, which gives 

it the capability to monitor the condition of the machine without having to be 

physically present during machine operation. 
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3.3.2 System design 

It was determined that a single camera could be used to capture images of the entire 

powder bed. The camera would have to be positioned so that a single captured image 

will cover the entire surface of the powder bed. The basic design concept of the active 

monitoring system is demonstrated in Figure 31 and Figure 32 where binder spraying 

head have been omitted for clarity. 

 

Figure 31 Basic monitoring system design side view 

 

Figure 32 Basic monitoring system design front view 

Since directional lighting will be used, the position of the lighting relative to the 

camera is critical to the success of the imaging system. Considering the machine 
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components in Figure 31, the re-coater only applies a new layer of powder in a single 

direction along the length of the powder bed. This means that the lighting would have 

to be placed perpendicular to the direction of recoating as shown in Figure 32, since 

the defects would occur in the direction of re-coating. However, the lights would only 

be placed on the one side of the powder bed to create the maximum contrasting effect 

on the defects. The position of the lights above the powder bed is also vital. The lights 

cannot be positioned too high above the powder bed, as this may illuminate the defects 

from the wrong angle, causing the camera not to detect them. This means that the 

camera would not be able to detect the difference in contrast between the powder bed 

and the defect that occurred. 

When looking at the side view of the basic design, the positioning of the re-coater 

monitoring system components can clearly be seen in relation to the basic operating 

components of the machine. Although the binder spraying head is omitted from the 

basic design in Figure 31, the camera must be mounted in such a way that the 

additional components does not interfere with the normal operation of the machine. 

However, the camera will still be mounted on the calculated working distance so that 

it would not be necessary to re-calculate the camera lens focal length.  

Since the machine has a re-coater as well as the adhesive spraying head that moves 

over the powder bed during the normal course of operation, there are only specific 

intervals between these operations at which images of the powder bed must be 

captured. Thus, a triggering mechanism is required when the re-coater has applied a 

new layer of powder to the powder bed. The easiest method to trigger the camera 

system would be to install a limit switch, at the home position. When the re-coater 

reaches the home position, it will close the contact and trigger the camera to capture 

the required image and process it before the next re-coating operation. 

The hardware will be able to take clear images of the powder bed, because for that 

split second the entire machine would be relatively motionless, ensuring that blur-free 

images can be captured. Ensuring that the images are clear is critical to the successful 

operation of the system, as finer details may be lost if the images are distorted or if 

unnecessary components of the machine are captured in the image. 
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The Raspberry Pi micro-computer primarily makes use of a GNU-Linux based 

operating system that has been compiled specifically for the ARM SoC hardware. The 

GNU-Linux distribution of choice for the Raspberry Pi platform is the Raspbian OS. 

Raspbian OS inherently supports all the features of the Raspberry Pi hardware 

(Raspberry Pi Foundation 2017). The latest version of the distro, at the time that this 

research was conducted, was Raspbian Jessie with the PIXEL GUI environment. 

Included in this distro is several software packages, including the Python development 

environment and runtime, Java, Wolfram Mathematica and various other software 

development and scientific research packages. Additional software can also be 

installed onto the OS via the standard installation procedures, but custom written or 

specialized software packages and libraries can be compiled and installed on the OS 

for more specialized applications. A software package that will be applicable to this 

research is OpenCV library. The OpenCV library is an open source computer vision 

and machine learning library that can be used in conjunction with several software 

programming packages and languages to develop computer vision applications, with 

emphasis on real-time applications. The library consists in excess of 2500 optimised 

algorithms and consists of classic and modern state-of-art algorithms (OpenCV 2017). 

This makes the library of great use to this research application due to its large base of 

algorithms, as well as the ability to run on the Raspberry Pi micro-computer.  

3.3.2.1 Open CV 

The OpenCV library natively supports the Python programming language. However, 

there are additional add-on packages that are required by the OpenCV library when 

used in Python. Some of these add-ons include a mathematical function plotting 

library called Matplotlib, Numpy array tools and the Picamera library so that the 

Raspberry Pi camera can be controlled by the Python application. 

It is commonly known in that images are stored as 3-dimensional arrays, which stores 

the pixel values of each primary colour, namely red, green and blue (RGB). However, 

when the OpenCV library was created in the year 2000, the accepted colour format for 

storing images was blue, green and red (BGR) (Mallick 2015). Even though this colour 

format has changed over recent years, a very large portion of the library was built upon 
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this foundation and has never been changed. Therefore, images need to be converted 

to the correct colour format, before it is imported into the OpenCV library. 

There are a number of image processing techniques that will be used in conjunction 

with one another to detect surface defects.  

• Colour to greyscale conversion 

The first technique that will be discussed is the conversion of a BGR colour image to 

a single channel grey scale image as demonstrated in Figure 33. There are many image 

processing techniques that can only process a single colour channel at a time. Some of 

these techniques are algorithms such as thresholding and edge detection. Therefore, it 

is often necessary to convert colour images to a greyscale format. 

 

Figure 33 Converting colour image to greyscale(Abbas 2013) 

The cvColor method will be used to convert a colour image from the BGR format to 

greyscale. The cv::cvtColor method requires four parameters, and does not return any 

value as the output array is part of the method’s parameters.  

The constructor function for the cvtColor method is displayed as follows: 

void cv::cvtColor(src, dst, code, dstCn=0) 

Where: 

Input array  ≡ Source image (src) 

Output array  ≡ Destination image (dst) 

Code  ≡ Colour space conversion code (code) 

dstCn  ≡ number of channels in destination image (dstCn) 
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The four parameters that can be passed into the method consists of the input array 

which stores the original image to be converted, the second parameter is the output 

array where the converted image will be stored. The third parameter is the code for the 

type conversion that must be performed. Although OpenCV has several conversion 

codes that can be used, the one that is important for the purposes of this research is 

COLOR_BGR2GRAY. Although the code is an integer value, the name of the 

conversion that is needed can be passed to the method and the correct conversion code 

will be determined from the lookup table built into the method. The fourth parameter 

is the number of channels in the destination image, however, when this parameter is 

set to zero, the number of channels will automatically be determined from the source 

and code value (Bradski 2017). 

• Histogram equalization 

The second technique that will be discussed is the equalization of the image’s 

histogram. A histogram is used to indicate the distribution of the pixel intensities. To 

properly explain this, the histogram and image in Figure 34 will be used as an example. 

 

Figure 34 Histogram equalization (Tutorials Point 2014) 

When capturing an image, the lighting conditions under which the image is captured 

may not always be ideal and may result in an image that is over or underexposed 

resulting in a loss of contrast. Histogram equalization is often used as an attempt to 
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increase the contrast in an image. As can be seen from the original image’s histogram 

that there are many pixels clustered around the middle range of pixel intensities. This 

is not an ideal situation as it is more desirable to equally spread the pixel intensities 

over the entire spectrum. The histogram equalization stretches out the clustered range 

of intensities and try to spread the intensities more equally across the entire spectrum. 

Once the equalization has been applied to the original image, the histogram clearly 

shows a more spread out pattern of pixel intensities as demonstrated in Figure 34. On 

the new image it can be seen that the contrast has been increased when compared to 

the original image. Although the image may seem slightly over exposed after 

histogram equalization, the edges on the image are much more defined and clearer. 

However, in some cases, the contrast may not be increased, but the equalization 

process may decrease the contrast. Therefore, the effects of the equalization must be 

examined visually after being applied, to ensure that the equalization had the desired 

effect on the image. Although it may look like the image is over exposed, the 

equalization process makes it easier for certain types of image processing algorithms 

to process the image, as the higher contrast on the image highlights a lot more edges 

on the images than what would normally be visible. The effect of histogram 

equalization is a lot clearer on colour images than greyscale since greyscale images 

tend to look over exposed when equalized.  

To equalize the histograms of the required images, the OpenCV method of 

cv::equalizeHist will be used. This method uses two parameters, namely the source 

image and the destination image. The constructor function for the cv::equalizeHist 

method is as follows: 

void cv::equalizeHist (src, dst) 

Where: 

Input array  ≡ Source image (src) 

Output array  ≡ Destination image (dst) 

 

The first parameter of the method is the source image that needs to be processed. This 

input array can only be an 8-bit single channel image, which means the image must 
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already have been converted to greyscale before processing (Bradski 2017). The 

second parameter is the output array where the equalized image will be stored. This 

output image will also be an 8-bit single channel image, the same type as the source 

image. 

• Absolute difference of images 

The third technique that will be used in the processing of the images is the calculation 

of the absolute difference between two images. When trying to identify the differences 

between two images as demonstrated in Figure 35, subtracting the two images from 

each other can highlight the differences between the two.  

 

Figure 35 Original and modified images to be subtracted 

However, for this method to be successful, both images must be similar, so that only 

the differences between the two images are highlighted. Otherwise the results will not 

have the desired effect. It is also important that the two images must have the same 

size, i.e. the same amount of vertical and horizontal pixels. The image as displayed in 

Figure 36 shows the difference between the original and modified image after the two 

images have been subtracted from each other. 

 

Figure 36 Difference between the original and modified image 
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It is worth noting that since the pixels in an image can only be a positive number, the 

absolute difference between the two pixels would have to be calculated, otherwise the 

pixel will be given the value zero as it is not possible for a pixel to have a negative 

value because any value below zero is considered out of range.  

The method that will be used to calculate the absolute difference between the images 

using the OpenCV library is the cv::absdiff method. This method requires three 

parameters, namely the original image, the second image that will be subtracted from 

the original image, and the output array where the resultant image will be stored. The 

constructor function for the method cv::absdiff includes: 

void cv::absdiff (src1, src2, dst) 

Where: 

Input array  ≡ Source image 1 (src1) 

Input array  ≡ Source image 2 (src2) 

Output array  ≡ Destination image (dst) 

 

It is necessary to create an empty array similar to the two images being subtracted 

from each other. This empty array is essential as the resultant image must be stored in 

a separate array for further processing. 

• Gaussian blur 

The fourth technique that will be used to process the image is the application of 

Gaussian blur to the image. The purpose of applying blur to an image is an attempt to 

reduce the amount of noise present in the image, but to still retain the key features.  

Excessive noise in an image can have a detrimental effect on any further processing 

attempts. If any further processing such as thresholding or edge detection operations 

is performed on an image with large amounts of noise present, the algorithms would 

perform very poorly due to the amount of noise present.  

Therefore, before any subsequent processing is performed on the image, the noise 

present on the image would have to be reduced or eliminated if possible. 
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The image as displayed in Figure 37 contains excessive amounts of high frequency 

noise and would require smoothing before further processing can be applied to the 

image. 

 

Figure 37 Noisy source image 

The Gaussian blur filter is a 2-dimensional convolution operator that’s primary 

purpose is to blur images to remove small detail and noise from an image. The degree 

of smoothing that is applied to the image by the filter is determined by the standard 

deviation of the Gaussian window. The Gaussian window uses a pre-set block size of 

pixels that determines how the filter is applied to the image. The Gaussian window 

outputs a weighted average of each pixel neighbouring the middle pixel, with the 

middle pixel having the highest weight value, and the surrounding pixels having a 

lesser weighted value (Fisher 2003). A Gaussian filter smooths and preserves more 

detail than a similar sized mean filter. The result of the image in Figure 37 after a 

Gaussian blur filter was applied is shown in Figure 38. 

 

Figure 38 Gaussian blur applied to noisy image 
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When examining the processed image in Figure 38, it can clearly be seen that the 

amount of noise present in the image has significantly been reduced without a great 

loss of detail to the features depicted in the image. Once the filter has been applied to 

the image, the image can then be further processed using thresholding or edge 

detection algorithms with a much higher success rate. 

The method that will be used to apply the Gaussian Blur to the image inside the 

OpenCV library is the cv::GaussianBlur method. This method requires six parameters, 

namely the input and output images, the Gaussian Kernel size, the Gaussian sigma 

values for the X and Y direction, and the last parameter is the border type. The 

constructor function for the cv::GaussianBlur method includes: 

void cv::GaussianBlur (src, dst, size, sigmaX, sigmaY, borderType) 

Where: 

Input array  ≡ Source image (src) 

Output array  ≡ Destination image (dst) 

Kernel size  ≡ Gaussian window kernel size (ksize) 

Sigma X  ≡ Gaussian kernel standard deviation in X direction (sigmaX) 

Sigma Y  ≡ Gaussian kernel standard deviation in Y direction (sigmaY) 

Border type  ≡ Pixel extrapolation method (borderType) 

 

The Gaussian Blur filter can be used on images that have any number of channels, but 

each channel will be processed individually. This means that an image does not need 

to be a greyscale image before the filter can be applied. The Gaussian kernel size can 

be specified, but the value specified must be positive and odd. If the kernel size is not 

specified, a value of zero can be entered and the kernel size will be calculated from 

the sigma values.  

The values for sigma X and Y can also be specified, but if the value of sigma Y is 

zero, the value for Y will be set to the same value as Sigma X. However, if both 

Sigma’s are zero, the Sigma values will be calculated from the kernel width and height 

value. For the best control of the results and to prevent incompatibilities with future 

developments, it is recommended to specify both the kernel and Sigma values. 
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• Canny edge detection 

The fifth and last technique that will be discussed is probably the most import process 

of the monitoring system. This process is called the canny edge detection algorithm. 

Canny edge detection is a very popular edge detection algorithm that was developed 

in 1986 by John F. Canny (Rosebrock 2017). It is a multi-stage algorithm that can 

detect edges with noise that is suppressed at the same time.  The algorithm can be 

broken down into 5 steps. Each of the steps will be discussed briefly to explain its 

operation.  

1. The first step is to smooth the image using a Gaussian blur filter as discussed 

previously to reduce the amount of high-frequency noise.  

2. The second step is to calculate the intensity gradient of the image using a gradient 

operator such as the Sobel kernel.  

3. The third step is then to apply a non-maximum suppression to remove any false 

responses to the edge detection.  

4. The fourth step is to apply thresholding to the image using an upper and lower 

value on the gradient values.  

5. The fifth and final step in the algorithm is to track the detected edges using 

hysteresis and suppressing weak edges on the assumption that edges are long lines. 

The purpose of the fourth and fifth step together is to distinguish what are indeed 

edges, and what is not.  

The image on the left in Figure 39 displays an image before and after the Canny edge 

detection algorithm has been applied. 

 

Figure 39 Original image and edge detected image 
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As can be seen from the image in Figure 39, the edge detection successfully detects 

most of the strong edges present. There are some details that may still be missing, 

however by adjusting the various parameters in the algorithm, an acceptable result can 

be achieved. The resolution and lighting quality also play a significant role in the 

amount of detail that can be identified using this algorithm. 

The method that will be used for canny edge detection inside the OpenCV library is 

the cv::canny method. Although there are two methods for this single function, only 

the standard method will be used as the overloaded method is not applicable to this 

specific application.  

The standard cv::canny method takes six parameters, however only four of these 

parameters are critical, as the last two parameters can be calculated automatically if 

required. The first four parameters that must be supplied for the method to perform its 

function is the input array for the source image, the output array where the processed 

image will be stored, and the upper and lower threshold values for the hysteresis 

procedure. The two optional parameters are the aperture size for the Sobel operator, 

and then the flag for the L2 gradient to use the normal or the more accurate function 

to calculate the image gradient magnitude (Bradski 2017). The constructor function 

for the cv::canny method includes: 

void cv::Canny(Input Array image, Output Array edges, double threshold1, 

double threshold2, int aperturesize = 3, bool L2gradient = false) 

Where: 

Input array  ≡ Source mage 

Output array  ≡ Destination image 

Threshold1  ≡ High threshold value 

Threshold2  ≡ Low threshold value 

Aperture size  ≡ Aperture size for Sobel operator 

L2 gradient  ≡ L2 gradient flag 

 

When using Canny Edge detection, there is often a problem that is encountered, 

namely how to determine the two threshold values. In a study done by Adrian 
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Rosebrock, a method was proposed to determine the optimal threshold values 

automatically using basic statistical methods (Rosebrock 2015). First, the median of 

all the pixel intensities in the images is calculated. Next, a value of sigma is determined 

from which the upper and lower threshold values will be calculated. The smaller the 

value of sigma that is selected, the tighter the threshold values will be, and the larger 

the value of sigma, the wider the threshold values will be. The value of sigma can be 

any value between 0 and 1. Once these threshold values have been determined, the 

canny edge detection algorithm can be applied to the image with relative ease. 

3.3.2.2 Graphical user interface 

For the software to be more user-friendly, a Graphical User Interface (GUI) had to be 

included as an interface between the user and the hardware. The GUI was designed to 

be as simple as possible to ensure that the monitoring system can be operated with 

minimal difficulty. The GUI, designed for the monitoring system, is shown in Figure 

40.  

 

Figure 40 Re-coater monitoring system GUI layout 

As demonstrated in Figure 40, the program consists of two display windows. The left-

hand side window displays the original captured image and the window on the right-

hand side displays the image that has been completely processed. These two windows 

update every time that the re-coater has finished recoating and a new image is 

captured. There are also four buttons on the interface that are used to initialize the 
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camera and activate or deactivate the system. The connect and disconnect buttons are 

used to initialize the camera. The camera needs to be initialized before the system can 

be activated. Once the connect button has been enabled, the start capture and stop 

capture buttons are enabled. When the start capture button has been pressed, the 

program will capture and process the images whenever the limit switch is pressed. 

Once the build process has been completed, the stop capture button can be pressed to 

de-activate the system, and this will close the data file that stores all the processing 

data. The disconnect button will disconnect the camera connection and release all the 

resources allocated to it. Finally, the exit button can only be clicked once all the 

capturing has been stopped and all resources controlling the camera module have been 

released. This will prevent the program from being closed prematurely, preventing 

allocated resources from being released for other tasks. The GUI was written using the 

Tkinter GUI library that is included as part of the Python programming language. 

Although the library has limited functions compared to some of the more advanced 

libraries available for Python, for the purposes of this research the library had all the 

necessary basic functions required to develop a basic GUI. 

3.3.2.3 De-bouncing methods 

When using mechanical switches with electronic devices, there is a phenomenon that 

occurs called switch contact bouncing. When a mechanical switch contact is opened 

or closed, the contact bounces between the on and off position for a few microseconds 

before settling in the desired position. This causes problems when the switch is 

connected to a microcontroller, as a microcontroller can execute a single instruction 

in a few nanoseconds. This means that each time that the switch contacts bounces 

between the on and off position, the microcontroller will detect it as a deliberate 

switching operation. This bouncing of the switch contacts will cause multiple 

instances of the interrupt routine to be called in short succession, which is undesirable. 

Since the proposed active re-coater monitoring system will be using a mechanical limit 

switch, this unintended switching operation will cause the system to capture more than 

one image in rapid succession. This can result in images being captured of the powder 

bed when the re-coater is not in the proper position, causing a false positive to be 
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recorded as a defect. The oscilloscope readout displayed in Figure 41 displays the 

switch contact bouncing phenomenon as it occurs. 

 

Figure 41 Switch bouncing output(Christoffersen 2015) 

There is a few hardware and software-based methods that can be used to minimise or 

remove the bouncing effect. The first and most common method to minimise the effect 

of the switch bouncing is to connect a capacitor and resistor between the switch’s 

contacts as shown in the circuit diagram in Figure 42. 

 

Figure 42 Hardware switch de-bouncing 

The capacitor builds up a charge, and once the switch contact is closed, the capacitor 

quickly discharges, which in turn will smooth out the signal being provided to the 

microcontroller. This circuit can eliminate the effect of the switch contact bouncing. 

An alternative hardware de-bouncing method is to use a Schmitt trigger. This is a much 

more expensive method of de-bouncing a switch and is therefore not a very commonly 
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used method. With microcontrollers becoming increasingly more cost effective to use 

in electronic circuits, software de-bouncing of switch contacts is becoming 

increasingly more popular due to less additional hardware requirements. There are a 

lot of libraries available for different microcontrollers that already include this 

function, and as a result, can easily be implemented into the main program. A common 

way that programmers use to eliminate the effect of switch contact bouncing is to 

include a delay of 50-100 milliseconds to ensure the program ignores any subsequent 

bounces. However, this is not considered very good programming practice as the delay 

function is a blocking function, which means the microcontroller won’t be able to 

process any other tasks during this time. The preferred method of handling switch 

contact bouncing in software is to write a small function that checks when the switch 

bounces for the first time, and then if any more bounces are detected during a specific 

time they are simply ignored. The flow diagram in Figure 43 demostrates the flow of 

the program to determine if the switch contact has stopped bouncing. 

 

Figure 43 Software switch de-bouncing 



 

 65  

 

3.4 Active re-coater monitoring system test rig 

To test the working of the active monitoring system, a testing rig was constructed 

based upon the basic design principles as discussed previously in this chapter. 

3.4.1.1 Camera benchmarking 

For the sake of simplicity, the structural design of the initial testing rig was built using 

Lego construction blocks as the design can easily be changed. This was identified as 

a more cost-effective method of building temporary structures for research 

applications. The test rig that was used to perform benchmarking tests on the camera 

setup is displayed in Figure 44.  

 

Figure 44 Camera test rig 

The objective of the tests is to determine whether the theoretical calculations for both 

the smallest defect size and the focal length calculation does indeed translate into 

practical applications. To determine the capability of the camera setup, a 1951 USAF 

resolution chart will be used.  



 

 66  

 

The resolution chart, as demonstrated in Figure 45, consists of groups of bars arranged 

in descending thickness size. 

 

Figure 45 1951 USAF resolution chart(Knights Optical 2014) 

Each bar on the chart is called an interval, and each grouping of horizontal and vertical 

intervals is called an element. These elements are given a number and assigned to a 

specific group that is also numbered. There are 6 elements per group, and the groups 

are numbered from -4 to 9. The width of the intervals measures from a maximum of 2 

mm down to the smallest bars that measure 0.00078 mm (Pyser-SGI Ltd 2010).  

The chart was placed at the same working distance that the camera will be mounted at 

inside the machine. The captured image of the chart will then be analysed to determine 

the smallest horizontal and vertical intervals that can still be clearly identified at the 

specified working distance. The width of the intervals is specified by Table 6. Some 

columns of the interval list have been omitted for clarity. 

The full table with all the interval values can be seen in Annexure A for further 

reference. 
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Table 6 USAF 1951 resolution chart, width of bars in mm(Pyser-SGI Ltd 2010) 

Element 

number 

Group number 

 -2 -1 0 1 2 3 4 5 6 7 8 

1 2.0

0 

1.0

0 

0.50

0 

0.25

0 

0.12

5 

0.06

3 

0.03

1 

0.016 0.007

8 

0.003

9 

0.002

0 

2 1.7

9 

0.8

9 

0.44

6 

0.22

3 

0.11

1 

0.05

6 

0.02

8 

0.014 0.007

0 

0.003

5 

0.001

7 

3 1.5

9 

0.7

9 

0.39

6 

0.19

8 

0.09

9 

0.05

0 

0.02

5 

0.012 0.006

2 

0.003

1 

0.001

6 

4 1.4

2 

0.7

1 

0.35

5 

0.17

7 

0.08

8 

0.04

4 

0.02

2 

0.011 0.005

5 

0.002

8 

0.001

4 

5 1.2

6 

0.6

3 

0.31

5 

0.15

8 

0.07

9 

0.03

9 

0.02

0 

0.009

8 

0.004

9 

0.002

5 

0.001

2 

6 1.1

2 

0.5

6 

0.28

1 

0.14

0 

0.07

0 

0.03

5 

0.01

8 

0.008

8 

0.003

5 

0.002

2 

0.001

1 

 

Using the constructed test bench as displayed in Figure 44, a series of images of the 

resolution chart was captured and subsequently examined. All the images in the 

experiment were captured at a working distance of 440mm as this was determined in 

the previous section to be the working distance at which the camera will be mounted 

at inside the machine. The first image that was captured is displayed in Figure 46. 

 

Figure 46 FOV with 1951 USAF resolution chart 

The area of interest of the image in this experiment is the centre of the resolution chart. 

As shown in Figure 46 most of the larger features are clearly visible. To determine the 
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smallest identifiable feature, the centre of the image will be cropped to determine 

which of the smallest groups can be identified. The image displayed in Figure 47 

shows the cropped part of the image to display the smaller intervals. 

 

Figure 47 Cropped image of the resolution chart centre 

As demonstrated in Figure 47 the smallest intervals that can still clearly be identified 

are the intervals from element 3 inside group 1. The intervals in this element have a 

line thickness of 198µm, which means that the smallest feature that can theoretically 

be clearly identified by the camera is a feature of 198µm and bigger. Although the 

smallest calculated shadow was 184µm and the smallest feature that is detectable by 

the camera is 198µm, the performance of the camera was considered acceptable as 

there is only a 6µm difference between the calculated and physically verified features. 

Although the data on this captured image does not necessarily translate into the 

camera’s capability to detect all the defects that may occur, it does demonstrate the 

camera’s capability to detect very small details at the specified working distance of 

440mm. The reason that the results from the resolution chart do not necessarily 

translate to the defect detection capability of the camera, is because there is a much 

clearer contrast difference between the black and white intervals on the resolution than 

what a defect on the powder bed would have. This is where the lighting method’s 

performance becomes critical as it will need to create shadows with as large a contrast 

difference as is possible. Because there are not a lot of data available about defects 

that occur in powder-based AM technologies, it is very difficult to determine the actual 

sizes of defects that may occur without an initial gathering of data about defects. 
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Therefore, further testing will be conducted on the Voxeljet VX500 using the selected 

camera to determine if the camera can detect replicated defects on the powder bed. 

3.4.1.2 Defect detection process 

Some of the techniques that will be used in the defect detection process were drawn 

from existing methods used by autonomous driving cars and line following flying 

drones. One of the requirements of the process is an image of the powder bed under 

its ideal state. This image is key, as one of the first steps in the process is to compare 

all the captured images to the original image. The flow diagram, shown in Figure 48, 

displays the overall process that will be followed to analyse the images for any 

potential defects. Since the diagram is not clear enough to be read in the text, it will 

be included as Annexure B. The complete source code for the program is attached in 

Annexure C. 
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Figure 48 Flow diagram of image processing program 
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In order to visually explain the steps that is followed by the image processing program 

in Figure 48, the images for each step of the image processing program is displayed in 

Figure 49. 

 

Figure 49 Flow diagram of images 
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1. The baseline image as displayed in Figure 49 is loaded into the program so that all 

captured images can be referenced to it. The baseline image is then converted to 

greyscale as displayed.  

2. An image of the powder bed demonstrates the powder bed with a replicated re-

coating error. This image is also converted to greyscale before any further 

processing is done.  

3. The histogram of the captured image will be equalized to increase the contrast of 

the image and any possible defects present on the powder bed as can be seen in 

step 3.  

4. An empty array will be created with the same dimensions as the original image. 

This array will be used for storing the absolute difference image between the 

original and captured image as demonstrated in step 4.  

5. A Gaussian blur filter is then applied to suppress some of the high frequency noise 

present in the image. The image after applying the Gaussian blur filter is shown in 

step 5. Since the filter is not too aggressive, the visual changes to the images is not 

clearly visible, but a large amount of high frequency noise have been supressed.   

6. The canny edge detection algorithm was used to identify the edges of any possible 

defects present on the image as shown in step 6. When looking at the image on 

step 5 in Figure 49, there is a large reverse C shaped shadow on the image. This 

shadow does not affect the performance of the canny edge detection algorithm, as 

it searches for a more definite contrast difference between neighbouring pixels 

before it is identified as an edge. This is due to the upper and lower threshold levels 

being provided to the canny edge detection algorithm.  

7. The image is then divided into smaller quadrants to identify more accurately the 

position of defects present on the powder bed. For this purpose, the image has been 

divided into 16 equal sized blocks in a 4 x 4 matrix as demonstrated in step 7. Each 

of the quadrants will be processed individually with a specified region of interest 

algorithm. Since the canny edge detection algorithm delivers a binary image, 

meaning it will only consist of white or black pixels, the white pixels indicate the 

edges of the defect. The specified region of interest algorithm then determines the 

ratio of white pixels in comparison to black pixels and this value is expressed as a 

percentage.  
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8. The percentage values of each quadrant are overlaid onto the image for visual 

verification purposes as displayed in step 8. The layer number, percentage values, 

as well as the date and time that the image was captured is also stored as a CSV 

file for further analysis. This image analysis process will be repeated for each 

image that is captured. The initial captured image, as well as the final processed 

image of each layer will also be stored for post build analysis purposes. 

In the last portion of the program, all the percentage values recorded for each quadrant 

of the image is compared to a threshold value that determines whether the feature that 

was detected by the image processing program is a defect or not. This threshold value 

will be determined by first establishing a baseline percentage values for a defect by 

monitoring actual builds using the active re-coater monitoring system. If a percentage 

value exceeded the threshold value, a counter would be incremented. Once the counter 

exceeded a total count of 3, a visual alert would be displayed on the software GUI 

indicating that a recurring defect had occurred on the powder bed. 

3.5 Summary 

In this chapter the specifications, features, advantages and disadvantages of the 

selected 3 active monitoring technologies was reviewed. After comparing all the 

different features of the different technologies, computer vision technology was 

selected as the most suitable technology to develop an active re-coater monitoring 

system. The specifications for the computer vision camera was also calculated so that 

a suitable camera could be selected that will satisfy all the requirements. The 

Raspberry Pi camera module was selected as it matched all the calculated criteria.  

Since the OpenCV library was selected for integration into the image processing 

program, the various algorithms that is used to process the captured images was 

discussed. The triggering mechanism and adjoined circuitry was also briefly 

discussed.  

The initial testing of the camera hardware and software was also executed. The first 

tests that were conducted were to determine the smallest feature that can be clearly 

identified by the Raspberry Pi camera module. This was done using a 1951 USAF 
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resolution chart placed at the same working distance that the camera will be mounted 

at, inside the Voxeljet VX500. The benchmarking tests revealed that the Raspberry Pi 

camera module can capture small features of up to 198µm in width. This proved that 

the camera does have the capability of capturing very fine details that are very close 

to the calculated requirements of 184µm. Once the benchmarking of the camera 

module was completed, the various steps that will be followed by the image processing 

program was also reviewed. 

In Chapter 4 the proposed active re-coater monitoring system will be integrated into 

the Voxeljet VX500, where different types of defects will be replicated, and the 

effectiveness of the active re-coater monitoring system to detect defects under 

production conditions will be determined.  
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Chapter 4 Experimentation and Validation 

4.1 Introduction 

The primary discussion of this chapter would be to review the results that will be 

collected after the proposed active re-coater monitoring system has been integrated 

into the Voxeljet VX500. The FOV of the camera will first be verified to ensure that 

the physical FOV of the camera matches the calculated values. Then several types of 

defects will be replicated on the powder bed surface to ensure that the image 

processing techniques can detect the various types of defects under production 

conditions. These tests will also be used to select the optimum parameters for the 

various image processing functions. Once satisfactory results had been recorded with 

the initial tests on the Voxeljet VX500, a case study will be conducted using an actual 

build job. The purpose of this case study is to validate the threshold value for the black 

to white pixel percentage value that determines when a defect or re-coating error has 

occurred somewhere on the powder bed, as well as to validate the overall effectiveness 

of the system’s capability to detect defects. 

4.2 VX500 system integration 

The active re-coater monitoring was installed into the Voxeljet VX500 to test the 

system under actual operating conditions. There were several hardware modifications 

that had to be made to the original machine to be able to install the system into the 

Voxeljet VX500. The identified mounting location of the camera was directly above 

the powder bed as demonstrated in Figure 50. 

 

Figure 50 Voxeljet VX500 hood lid 
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This position for the cameras also allows the cabling that is required to be easily routed 

to the outside of the machine for the control of the camera. The clearance between the 

binder spraying head and the hood lid of the machine is only 11mm. This means that 

the camera with its bracket had to be slimmer than this clearance gap to ensure that 

the camera does not become entangled with the binder head. The clearance gap is 

demonstrated in the image in Figure 51. 

 

Figure 51 Clearance between binder head and hood lid 

Because of this clearance limitation, a special housing with a mounting bracket had to 

be designed for the camera unit to ensure that the camera is not easily damaged and is 

firmly affixed in its position. The camera housing and its brackets were manufactured 

using an FDM type 3D printer using PLA. Once the brackets were printed, the camera 

was mounted into place using the housing and brackets as displayed in Figure 52. 

 

Figure 52 Mounted camera housing and brackets 
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The Raspberry Pi micro-computer unit was mounted outside of the machine. The limit 

switch for the triggering of the camera also required a special bracket that was 

designed to be attached to the side of the aluminium extrusions that houses the Y-axis 

rails.  

The bracket was also 3D printed using PLA. The image in Figure 53 displays the 

mounting bracket with the limit switch attached and attached to the side of the 

aluminium extrusion.  

 

Figure 53 Mounted limit switch bracket 

4.3 System setup 

After the system has been installed in the Voxeljet VX500, the Raspberry Pi camera’s 

FOV had to be tested. Although the FOV of the camera lens was calculated in Chapter 

3, it is still necessary to verify the FOV after installation as the focal length and FOV 

of the lens does not always match the actual performance specified by the 

manufacturer.  

To verify the FOV, an image was captured with a ruler placed horizontally and 

vertically across the powder bed.  
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The image in Figure 54 displays the FOV size of the camera with the ruler measuring 

the vertical axis. 

 

Figure 54 Raspberry Pi camera vertical FOV 

Although all the markings on the ruler do not appear very clear on the in-text image, 

if the image were to be viewed at full screen size the markings are very clear. When 

viewing the image at full screen size the vertical FOV was measured at 350 mm. An 

image was also captured with a ruler placed on the horizontal axis as displayed in 

Figure 55. 

 

Figure 55 Raspberry Pi camera horizontal FOV 
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The measurement as taken from the second image captured when viewed at full screen 

size of the ruler measures the horizontal FOV at 455 mm. Thus, it can be concluded 

that the FOV of the Raspberry Pi camera module at a working distance of 440mm will 

be 455mm x 350mm. However, when comparing these values to the actual powder 

bed size, the FOV of the camera module is smaller than the size of the powder bed. 

With the camera being positioned to be in the centre of the powder bed, a border of 

22.5mm across the width and 25mm across the length of the bed could not be captured. 

The recommended stacking rule is not to place the part to be built closer than 5 mm 

from the side of the build box to prevent binder fluid from being sprayed onto the side 

of the build box, potentially causing damage to parts when removing the build 

(Shabanga 2018). If binder fluid is sprayed onto the build box, it will cause the powder 

to stick to the inside of the build box and require cleaning after each build using special 

chemicals. This means that only a small area of between 18.5 – 20mm of the powder 

bed will not be covered by the camera module. Thus, the small area not covered by 

the camera was not considered to be a problem. 

4.3.1 VX500 simulated recoating errors results 

The replicated re-coating errors and defects that will be discussed, was used to ensure 

that the camera is in the correct position, that the lighting was able to provide adequate 

illumination and to test the effectiveness of the image processing program to detect 

defects. The re-coating errors and defects that was replicated is similar to those that 

occur during actual builds. These tests also provided the opportunity to gather real-

world data on the overall effectiveness of the system and on the formation of defects 

and their possible causes.For the initial tests of the active re-coater monitoring system, 

these initial parameters were selected for the Gaussian blur filter: 

• Gaussian Blur Filter 

o Standard Deviation = 11 x 11-pixel matrix 

o Kernel size = 2 

If these selected parameters do not produce the desired results, the parameters will be 

adjusted accordingly. 
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• Powder clumps 

The first re-coating error that will be simulated is when a piece of debris or a powder 

clump falls onto the powder bed. This type of error occurs when powder or debris that 

is stuck to the outside of the re-coater vibrates loose and falls onto the surface of the 

powder bed. This image was captured during an actual build, as the outline of the part 

geometry can be seen on the image. This did not have an effect at all on the system’s 

ability to identify defects and did not cause false positives. The original captured 

image of the powder bed is displayed in Figure 56. 

 

Figure 56 Original image of powder clumps 

The second image in Figure 57 displays the output of the program after the image has 

been processed.  

 

Figure 57 Processed powder clumps image 
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Observing at the image in Figure 57, the two powder clumps that fell onto the powder 

bed occurred on the top and bottom of the image. Examining the two quadrants that 

contain the defects, it could be seen that both the quadrants recorded a significant 

increase in values, indicating that a feature had been detected inside these quadrants.  

For this image the initially defined parameter kernel size was selected. Since the values 

recorded indicated a significant change when compared to the surrounding quadrants, 

the parameter kernel size was left at its default setting of 2. 

• Clogged re-coater 

The next type of re-coating error that was simulated is a clogged re-coater. This re-

coating error can be caused by debris stuck in the re-coater, or powder that has a very 

low flowability. This type of re-coating causes a line to form on the powder bed, as 

demonstrated in Figure 58. It is worth noting that this defect was formed after a single 

layer, thus the defect depth would be 150µm. 

 

Figure 58 Single re-coating error on the powder bed 

When examining the image in Figure 58, the re-coating error was replicated on the far 

side of the powder bed to test if the illumination was still bright enough to create a 

detectable contrast difference between the re-coating error and the rest of the powder 

bed.  
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The image in Figure 59 displays the output image of the re-coater monitoring system. 

When analysing the output image, it is evident that the monitoring system could detect 

the re-coating error that had occurred on the powder bed. 

 

Figure 59 Processed re-coating error image 

When looking at the black to white percentage values, a significant increase in the 

values can be seen on all the quadrants covering the defect that had occurred on the 

surface.  

Also, since the values recorded was substantially larger than the values recorded on 

the quadrants surrounding the defect, the initially selected kernel size values of 2 were 

considered optimal. This means that the system could clearly differentiate between the 

area where the re-coating occurred and the areas surrounding the re-coating error.  

• Shallow line defect 

The next defect that was investigated is a minor defect. This type of defect usually 

caused by debris that is stuck to the re-coater blade and gets dragged across the powder 

bed surface. Sometimes impurities are present in the powder, and then the foreign 

particles are dragged across the surface of the powder bed. However, since a lot of 

these smaller types of defects are very shallow, they are considered non-critical 

defects. Such a type of minor defect is displayed on the image in Figure 60. Since this 

defect was captured during a build, the part geometry outline is visible on the image, 

however, this did not influence the detection capability of the system and did not 

trigger a false positive. 
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Figure 60 Shallow line defect across the powder bed 

These types of defects are usually only one layer deep and can usually be covered by 

subsequent recoating operations. However, often they may also be the indicator that a 

much bigger defect or re-coating error is forming. The image in Figure 61 displays the 

processed image of the shallow line defect. 

 

Figure 61 Processed shallow line defect image 

When examining Figure 61, the recoating error runs vertically across the image, and 

have been detected by four quadrants. It is also clear that the percentage values 

recorded for these quadrants are higher than the recorded values for the surrounding 

quadrants, indicating that the recoating error has successfully been detected by the 

system. For this image, the initially selected kernel size value of 2 were used and no 
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further adjustments to this value was deemed necessary as there was a clear enough 

difference between the recorded values.  

• Re-coater short feeding 

The last type of re-coating error that was replicated is a re-coater short feeding error. 

During the process of performing tests of the Voxeljet VX500, this was a condition 

that occurred due to a low powder flowability. The captured image in Figure 62 

displays a very good example of the powder bed during re-coater short feeding. 

 

Figure 62 Re-coater underfeeding 

There are two types of re-coaters error present Figure 62, the first and most obvious 

being the short feeding on the right-hand side, and the smaller mark and line on the 

left-hand side. Figure 63 shows the processed image of the re-coater underfeeding. 

 

Figure 63 Processed re-coater underfeeding image 
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When examining the processed image, all the defects present on the image was 

successfully detected. There are a few small defects inside the second column of 

quadrants that did not record a very high value. Although there was an increase in 

values, the difference between these recorded values and the surrounding quadrants 

was not as great as with the previous defect. However, the increase in recorded values 

still indicated the system’s capability to record these smaller types of defects. The 

black to white pixel percentage values on the right-hand side of the image was 

significantly higher than the rest of the powder bed, the main reason for this being the 

number of edges detected due to the rough pattern caused by the re-coater 

underfeeding. These higher values are not considered a problem, as this gives an 

indication of the severity and the size of the defect on the powder bed. 

4.4 Threshold value 

After conducting the initial tests using the replicated defects and re-coating errors, a 

defect threshold value must be determined. This threshold value will be used to 

determine the lowest black to white pixel percentage that must be recorded before a 

captured feature is considered a defect. Thus, a suitable method had to be used to 

determine a suitable threshold value. When examining the captured images of the 

replicated defects, quadrants with the smallest values that still had visible defects will 

be considered. The two images with the smallest recorded values are displayed in 

Figure 64. 

 
(a) 

 
(b) 

Figure 64 Defects with smallest values 
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When examining the smallest defect in in Figure 64b, the recorded value for this small 

defect is 0.029%. However, in the quadrant below this recorded defect, a value of 

0.021% was recorded although this quadrant contained no visible defect. Thus, this 

recorded value was not considered reliable as the values are too close to each other. 

The second value that will be considered as a threshold value is from the defect in the 

quadrant of the second column and the second row of Figure 64a. In this quadrant the 

defect is clearly present on the image, and the value recorded for this quadrant shows 

a clear difference between the value of the quadrant with the defect present and the 

surrounding quadrants. When comparing the value recorded by this quadrant to some 

of the other replicated defects, the value appeared to be closely in line with other 

defects. Thus, for the purposes of the further experiments, this value of 0.072% will 

be used as the threshold value. If during the process of the case study it is determined 

that this selected threshold value is not sufficient, a new value can be selected. 

4.5 Case study 

In order to assess the performance of the active re-coater monitoring system, a series 

of case studies was conducted to verify the performance of the system. A total of 4 

case studies was conducted on the VX500 using the active re-coater monitoring 

system. However, not all the results will be discussed, but the results can be made 

available upon request. The build job that was monitored for this specific case study 

consisted of several small and large parts and consisted of 1946 layers. The estimated 

time to print the entire build was 16 hours. For the purposes of the case study, two 

images of the powder bed for each layer of the STL was stored. The first image being 

the originally captured image, and the second being the processed image. Both images 

were stored using the current date and time stamp as the image file name. A separate 

text file was also stored that recorded all the data in CSV format. The data stored inside 

the file consisted of the layer number, date and time stamp and the black to white 

percentage values of each of the 16 quadrants. All of this data was recorded for each 

layer of the build. During the build process, numerous re-coating errors and defects 

had occurred on the powder bed. Although this was unfortunate, it provided the ideal 

conditions to determine the effectiveness of the system. Once the build process had 

finished, the data from CSV file as well as both the processed and unprocessed image 
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were analysed and reviewed. The first step that was performed was to plot all the data 

as graphs to graphically determine whether there were possible defects or recoating 

errors. Once a possible defect was identified, the specific image was retrieved, and the 

severity of the defect was analysed. All the images captured for the build was manually 

reviewed to validate the results recorded and ensure that no defects went through 

undetected. Figure 65 demonstrates the stored data of the black to white pixel 

percentage values. Since the graph is not clear enough in the text to analyse, a full-

size graph will be included as Annexure D. 

 

Figure 65 Graph of black to white pixels percentage values 

The legend shown in Figure 65 represents the sixteen quadrants marked from Q1 – 

Q16. The position of each quadrant on the powder bed is displayed in Figure 66.  

 

Figure 66 Quadrant numbering 

Each of the different quadrants on the image were given a different colour on the graph 

to make it easier to match a peak on the graph with a specific quadrant.  
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As discussed previously, the error detection threshold value was set to 0.072%. 

However, as discussed, if after analysis this value is determined to be too low or too 

high, an appropriate recommendation will be made. To make an analysis of the data 

in the graph easier to interpret, the maximum value on the Y-axis was set to 0.072% 

as seen in Figure 67. After all the data has been reviewed from the CSV file, each of 

the images captured will also be briefly analysed to ensure that no defect or re-coating 

error may have been skipped. Considering the graph in Figure 67, all the peaks that 

exceeded the 0.072% threshold have been highlighted with red arrows. These points 

on the graph was matched to their individual photograph(s) to evaluate the defects or 

re-coating errors that may have occurred, causing a spike in the black to white 

percentage values. 

 

Figure 67 Black to white pixel percentage graph with spikes indicated 

The first spike on the graph that will be examined is the red arrow marked as number 

1. When zooming into the spot on the graph, the spike had occurred on layer no. 14 as 

displayed in Figure 68. 

 

Figure 68 Graph of peak no. 1 
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When examining the legend on the left-hand side of the graph, it can be seen that the 

defect had occurred in quadrant 14. What can also be seen is that several other 

quadrants also recorded a change in black to white percentage values. However, most 

of the other quadrants did not record values higher than the threshold. In order to 

determine what had occurred on the powder bed, it is necessary to review the image 

that was captured for layer no. 14. The processed image for layer no. 14 is displayed 

in Figure 69. 

 

Figure 69 Processed image for layer no. 14 

When examining the image in Figure 69, it is not clear as to what had caused the sharp 

increase in percentage values. When viewing the image at 100%, the only issue that is 

slightly visible is that the surface re-coating quality is slightly rougher than normal. 

This is not an issue as this is not considered a defect because excess powder may have 

been spilled on the powder bed by the re-coater and this often happens when the re-

coater is overfilled as the machine refills the re-coater hopper. Therefore, this recorded 

defect will not be considered as a valid defect due to the system registering a false 

positive. 

The second spike on the graph that will be examined occurred on layer no. 48 as 

displayed in Figure 70. When the portion of the graph has been zoomed in, it is 

possible to see whether the spike was only a single occurrence or was spread over 

multiple layers. 
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Figure 70 Graph of peak no. 2 

Examining Figure 70, the layer at which the defect had occurred was identified as 

layer number 48. The graph showed that multiple quadrants had registered a change 

in the black to white pixel percentage value. It was determined that the defect had 

occurred in the direction of re-coating since the colours of the graph correspond to 

quadrants 5,6,7 and 8. The processed image that was captured for layer number 48 is 

displayed in Figure 71. 

 

Figure 71 Processed image for layer no. 48 

Considering the image in Figure 71, it is very clear that a drastic re-coating error had 

occurred on the powder bed. Also, when examining the image, the quadrants in which 

the re-coating error had occurred, namely quadrants 5,6,7 and 8, corresponds to the 

recorded data on the graph in Figure 70. Looking at the values recorded for the black 

to white pixel percentage, the selected value of 2 for the kernel size of the Gaussian 
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blur filter appeared to be optimal, as the defect was detected by the system and 

recorded a black to white percentage value of higher than 0.072%. When examining 

the re-coating error in Figure 71, it appears that the defect is quite deep, much deeper 

than a single layer. However, no errors were detected on layers no. 47 and 49 as shown 

in Figure 72.  

  

Figure 72 Images for layer no. 47 and 49 

The only conclusion that can be drawn from these images is that a piece of debris had 

been dragged across the powder bed. The subsequent re-coating operation then did 

successfully repair the defect created without damage to the build.  

The third spike on the graph that will be investigated occurred at layer no. 193. The 

image in Figure 73 displays the recorded data for layer no. 193.  

 

Figure 73 Graph for peak no. 3 

Upon examination of the graph it can be seen that only quadrant 14 had recorded a 

change. What can also be seen is that no other quadrants registered a major change of 
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even lower than the threshold. The processed image that was captured for layer no. 

193 is displayed in Figure 74a. When looking at the processed image, a very small 

defect can be identified that had occurred on quadrant 14.  

 

(a) 

 

(b) 

Figure 74 Processed images for layer no. 193 

This small defect appears to be caused by a small clump of powder that fell onto the 

powder bed and was partially flattened by the re-coater during the re-coating operation 

as can be seen in Figure 74b. This type of defect is considered as a non-critical defect, 

as it is indeed a defect, but do not compromise the integrity of the powder bed. When 

examining the images for the subsequent layers, the defect appears to be repaired by 

the subsequent re-coating operations. However, these images will not be displayed due 

to space constraints. The fourth spike on the graph that has been highlighted occurred 

at layer number 216. The image in Figure 75 displays section of the graph where the 

second spike had occurred.  

 

Figure 75 Graph of peak no. 4 
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When examining the spike in the percentage value on the graph, several quadrants had 

recorded the change in value. A total of 10 quadrants exceeded the 0.072% threshold. 

This would mean that a relatively large defect or re-coating error had occurred on the 

powder bed. The image that was captured and processed at layer 216 is displayed in 

Figure 76. 

 

Figure 76 Processed image for layer no. 216 

Examining Figure 76, the reason for the sudden spike in the black to white pixel 

percentages is very clear. The re-coater arm was captured during the re-coating cycle. 

This might have been caused by a glitch that had triggered the camera to capture an 

image during the re-coating cycle. A possible reason for this occurrence could be static 

electricity, causing the trigger pin to float to unknown voltages. This kind of problem 

often happens due to the length of the wire from the limit switch to the Raspberry Pi 

micro-computer board. In the case of the Voxeljet VX500, the length of the wire 

exceeds 2 meters in length. Although all the necessary precautions have been taken to 

prevent this from happening, it is possible to have ghost triggers due to the length of 

the wire. Thus, a future improvement to the system would be to re-design the 

triggering mechanism to be more robust to interference. 

The fifth spike on the graph that has been highlighted occurred at layer number 262. 

The image in Figure 77 shows the zoomed-in section of the graph where the third spike 

in the percentage value had occurred. When comparing the colours of the two peaks 

to the graph legend on the left-hand side, it was identified that the defect or re-coating 

error had been detected in quadrants 3 and 4. This once again indicates that the defect 
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had occurred in the direction of re-coating, indicating a possible re-coating error. 

However, the value recorded for quadrant 4 is larger than the value recorded for 

quadrant 3. This means that the assumption could be made that quadrant 4 detected 

the larger portion of the defect. 

 

Figure 77 Graph of peak no. 5 

To verify the assumption made from the review of the plotted data, it is necessary to 

review the image captured of layer 262. The image that was captured and processed 

of layer 262 is displayed in Figure 78.  

 

Figure 78 Processed image for layer no. 262 

As can be seen in the image in Figure 78, a re-coating error had occurred on the bottom 

left-hand corner of the powder bed. When looking at the quadrant, the re-coating error 

that had occurred was detected in quadrants 3 and 4. This confirms that the spike that 

had occurred on the graph in Figure 77 was indeed a defect. When examining the 

quadrants that had detected the re-coating error, the black to white pixel percentage 
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value that had been recorded was higher than the preselected threshold value of 

0.072%. It was verified that the re-coating error only occurred on a single layer as no 

visible defects were visible on layers 261 and 263 as shown in Figure 79. 

  

Figure 79 Processed images for layers no. 261 and 263 

Thus, the only conclusion that can be made from these images is that a clump of 

powder or debris got stuck in the re-coater, causing the defect.  Even for quadrant 3, 

which contained only a small portion of the defect, the percentage value recorded was 

still higher than the threshold value. The sixth spike that will be investigated had 

occurred on layer no. 286. The recorded data for this layer is displayed in Figure 80. 

When consulting the legend on the left-hand side of the graph, it can be seen that the 

defect had been recorded in quadrant 13.  

 

Figure 80 Graph of peak no. 6 

When looking at the graph, a change in black to white percentage values had been 

recorded across quadrants 13 and 14. However, only quadrant 13 had recorded a 

change in value higher than the threshold value. This means that the defect had 
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occurred in the direction of re-coating and that a larger portion of the defect was 

contained in quadrant 13 than quadrant 14. To verify this assumption, it is necessary 

to review the image that was captured for layer no. 286 as displayed in Figure 81. 

 

Figure 81 Processed image for layer no. 286 

When examining the processed image for layer no. 286, the assumption that the defect 

had occurred across quadrants 13 and 14 is confirmed. The assumption that a larger 

portion of the defect is contained in quadrant 13, and only a very small portion of the 

defect is contained in quadrant 14. This type of defect could also have been caused by 

a clump of powder or debris that was stuck in the re-coater and caused this defect to 

have formed. This defect was considered as a non-critical defect as the defect was 

repaired by a subsequent re-coating operation as displayed in Figure 82. 

 

Figure 82 Processed image for layer no. 287 
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The seventh spike that has been highlighted occurred on layers 807 and 814 as 

demonstrated in Figure 83. There were two spikes on the graph that had occurred close 

to each other. However, they are only single spikes, indicating that a defect had 

occurred only on a single layer. 

 

Figure 83 Graph of peak no. 7 

The first spike at layer no 807 shows that a defect had occurred in quadrants 3 and 4 

and the second spike on the graph had occurred at layer 814 in quadrants 10 and 11. 

When examining the graph in Figure 83, the defects have been covered over with 

subsequent re-coating operations. This means that the defects were singular defects 

that may have been caused by some obstruction in the re-coater or debris that fell onto 

the powder bed. To verify what had indeed happened on the powder bed, it is important 

to first review the images captured of the powder bed for the detected layers. The 

processed image displayed in Figure 84 shows the image captured of layer no 807. 

 

Figure 84 Processed image for layer no. 807 
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When examining the processed image captured for layer no. 807, a narrow defect has 

occurred on the powder bed surface, and that the defect had occurred in the direction 

of re-coating. As was identified from the first spike in the graph in Figure 83, the 

defect had occurred in quadrants 3 and 4.  

However, the smaller portion of the defect that spread into quadrant 3 was still 

detected. As with the previous defect, this defect could have been caused by a clump 

of powder or debris that was stuck in the re-coater. The second processed image that 

was captured for layer no. 814 is displayed in Figure 85. 

 

Figure 85 Processed image for layer no. 814 

When examining the processed image in Figure 85, it can be seen that a defect 

occurred in quadrants 10 and 11. When looking at the graph in Figure 83, the second 

spike on the graph coincides with the quadrants that display the defect in the image in 

Figure 85. When looking at the percentage values of quadrants 10 and 11, quadrant 10 

which covers the smaller part of the defect did not record as high a percentage value 

as quadrant 11. However, for quadrant 11 that covers the larger portion of the defect, 

a percentage value that is much greater than the threshold value was recorded.  

The possible cause for this defect could also have been a clump of powder or debris 

stuck in the re-coater. However, because both of these defects had been repaired by 

the subsequent re-coating operations, these types of defects are considered non-critical 

defects.  
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The eighth highlighted spike on the graph in Figure 67 occurred on layer no 1085. The 

spike that had occurred on the graph has been magnified in Figure 86.  

 

Figure 86 Graph of peak no. 8 

When looking at the graph in Figure 86, there are four quadrants that had recorded a 

spike in the black to white pixel percentage values. After consulting the legend, the 

four different colours of the spikes in the graphs were identified as quadrants 9, 10, 11 

and 12. This once again means that the defect that occurred on the powder bed was a 

form of a re-coating error, as the defect had occurred in the direction of re-coating. To 

confirm the nature of the re-coating error, it is necessary to consult the image that was 

captured by the camera for this layer on the powder bed. The processed image captured 

for layer no. 1085 is displayed in Figure 87.  

 

Figure 87 Processed image for layer no. 1085 

When examining the processed image in Figure 87, a very small defect can be seen 

that spans the entire length of the powder bed. As was seen from the graph in Figure 
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86, quadrants 9, 10, 11 and 12 recorded the defect. This can be confirmed when 

looking at the processed image in Figure 87.  

However, it is very clear that the defect that had occurred that is a very fine and 

shallow. Although only quadrants 10 and 11 recorded values higher than the threshold 

value, quadrants 9 and 12 still recorded a definite increase in percentage value.  Still, 

the system proved its ability to detect the defect, even though it was not very clear or 

well-defined contrast wise.  

The last spike on the graph in Figure 67 that will be looked at is the large area of the 

graph highlighted as no 6. The highlighted section of the graph as displayed in Figure 

88 has been isolated for easier analysis. 

 

Figure 88 Graph for the highlighted area no. 6 

When looking at the portion of the graph displayed in Figure 88, there is a definite 

trend that can be identified across all the different quadrants. From layer no. 1300, a 

definite upward trend of the black to white pixel percentage value can be seen. The 

trend slightly declined at layer no. 1380, and then shortly after layer no. 1400, the 

graph starts trending upwards, with the graph growing exponentially in the last 

approximately 100 layers of the build. When looking at the graph, a re-coating error 

occurring on the powder bed surface, and as the build progressed, the condition of the 

powder bed deteriorated with each subsequent re-coating operation. To determine 

what had happened on the powder bed, all the images that was captured, starting from 
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layer no. 1300, had to be reviewed until the last image of the build. Since it would be 

impractical to display all the captured images for these layers in this document, the 

images for the entire build will be included on external media together with this 

document. In Figure 89, several images were selected from the last 600 layers of the 

build to evaluate and showcase the problem. Looking at the first two images of layers 

no. 1400 and 1500, the defects on the powder bed appear to be minor and very small. 

However, when looking at the graph, the defect did initially not exceed the threshold 

value, which means that the system did not record the change on the powder bed as a 

defect. This could in part be linked to the fact that the defect did not create a big enough 

contrast difference for the system to detect. An image after every 100 re-coating cycles 

is shown to demonstrate intensification of the defects due to the re-coating error. 

Finally, when looking at layers 1800 and 1900, the re-coater starts showing signs of 

shortfeeding. This problem could possibly be linked to powder with a low flowability. 

The following images is displayed without the overlaid data so that the defects can be 

clearly seen on the image as the defects gradually increase in size and severity. 
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Figure 89 Powder bed deterioration 

The damage to the part that is being built has already occurred since the re-coating 

error has not been cleared after more than 600 layers. This demonstrates why the re-

coating monitoring system was developed, as errors like these can become very costly 

when they occur. When examining the final layer of the build as displayed in Figure 
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90, it is very clear that the surface of the powder bed has deteriorated to the point 

where the some areas of the powder bed have been severely short fed by the re-coater. 

 

Figure 90 Last layer of the build 

When referring to the graph in Figure 88, the black to white pixel percentage values 

have started to increase almost exponentially due to the re-coating errors growing in 

number and size on the powder bed. When referring to the processed image of the final 

layer of the build as shown in Figure 91, it could be seen that all the defects currently 

present on the powder bed had successfully been detected.  

 

Figure 91 Processed image of the final layer 

During the build that was used for this case study, several re-coating problems and re-

coating errors had occurred which resulted in the scrapping of the entire build. 

However, it did provide the opportunity to test the designed re-coater monitoring 

system under a variety of conditions that occurs in the machine during normal 
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operation. As referred to in the beginning of this section, one of the purposes of the 

case study was to determine whether the selected parameters of the Gaussian blur filter 

kernel size could produce large enough black to white pixel percentage values when 

features were detected on the powder bed. As discussed in the previous section, a 

threshold value was also selected based on the results achieved with the replicated 

defects. However, both of these values needed to be verified by testing it during 

production. As could be seen throughout this case study, most of the defects that 

occurred on the powder bed were successfully detected. This gave a very good 

indication that the selected parameters were sufficient for the purpose of detecting 

defects. The system recorded one initial false positive result, but since this was a single 

occurrence in the entire build, this data was treated as a statistical anomaly as 

adjustment of the threshold value could not have prevented this from occurring. 

Lastly, upon final review of all the images that was captured by the system for all the 

layers, several minor defects were discovered. When looking at the recorded data for 

these layers, it was discovered that the system had recorded an increase in the black to 

white pixel percentage values for these defects, however the values were below the 

threshold and as a result where not considered critical. A few of these defects are 

displayed in Figure 92. 

  

  

Figure 92 Minor defects 
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Upon closer inspection of these defects, it was discovered that several of these defects 

where extremely fine defects and in some cases, were not even visible unless the image 

was examined at 100%. Yet the system still did record an increase in value for the 

quadrants where the defects were located in. This proves that the system has the 

capability to detect even very small minor defects, as some of these defects were barely 

1.38mm wide.  

Overall, it be concluded that the system could successfully identify defects and re-

coating errors when they occur on the powder bed during an actual build. 

4.6 Summary 

In this Chapter, the proposed active re-coater monitoring system was integrated into 

the Voxeljet VX500. The system was then tested using replicated defects, to verify the 

selected parameters of the various image processing functions, and also to determine 

if the system could indeed detect re-coating errors and defects. The Gaussian Blur 

kernel size was selected at a value of 2 and using this value, the active re-coater 

monitoring system successfully managed to detect all the replicated defects, including 

the re-coater short feeding defect. 

Once the initial testing was completed, a threshold value that determines whether a 

detected feature is a defect or not was determined. This threshold was selected at a 

value of 0.072%. This threshold value was key in the testing of the system to detect 

defects on the powder bed during production conditions. 

A case study of a build job was then conducted to test and determine if the selected 

parameters for the software program and threshold value produced acceptable results 

under production conditions. The case study was also used to determine if the system 

can indeed detect re-coating errors and defects during the actual build process.  

Three other case studies were also conducted on different builds to validate the overall 

effectiveness of the system. Although some of the builds did not complete 

successfully, as was the case with the case study discussed in the previous section, 

they did provide valuable data as to the different types of defects as well as the possible 
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reasons for the defects. All the data that was collected has been combined in Table 7 

for easier examination.  

Table 7 Case study data 

 Case study 2 Case study 3 Case study 4 

Defects @ 

0.072% 

3 6 36 

Kernel size 2 2 2 

No of layers 1032 993 1300 

Build successful Yes Yes Yes 

Types of defects • Shallow 

lines 

• Debris on 

powder 

bed 

• Deep 

lines 

• Shallow 

lines 

• Powder clumps 

• Shallow lines 

• Underfeeding 

 

In conclusion, during the case studies, it was discovered that the designed active re-

coater monitoring could successfully detect re-coating errors and defects as they 

occurred on the powder bed. Although one of the case studies had numerous defects 

that were detected, most of these defects were not critical and did not affect the success 

of the build. A possible reason for the larger number of defects present in this build 

job could have been due to low powder quality, thus causing lower quality re-coating 

to be performed. 

In the next Chapter the conclusion of the research, recommendations for the study, as 

well as possible future research will also be discussed.  
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Chapter 5 Conclusion and Recommendations 

5.1 Introduction 

The aim of this research was the development and building of an active re-coater 

monitoring system to detect re-coating errors during the printing process. In this 

chapter the intended objectives that were achieved will be discussed, as well as 

possible recommendations for future research. 

5.2 Conclusions 

5.2.1 Design of the active re-coater monitoring system 

In order to develop a re-coater monitoring system, research had to be conducted in 

technologies that could be used to monitor the condition of the powder bed in a powder 

bed fusion AM machine. After comparing the advantages and disadvantages of the 

different types of technologies, computer vision was chosen as the most suitable 

technology.  

The literature then covered topics such as sensor size, the focal length of the lens, 

camera working distance and the required lighting methods, illumination angles and 

fixtures. The specifications for the required computer vision camera was calculated 

mathematically at 7-megapixels, with a focal length of 3.036mm. The Raspberry Pi 

camera module was identified as a suitable camera module. The Raspberry Pi 3 Model 

B micro-computer was selected as the processing/computing platform for all image 

processing. In order to process the images captured by the camera, an image 

processing program was developed using the Python programming language and IDE. 

The OpenCV library was also integrated into the program to perform the image 

processing. Some of the image processing functions that was used to analyse the 

images includes Gaussian blur filters, Histogram equalization and Canny edge 

detection. 

5.2.2 System verification 

A test rig was built for benchmarking the capabilities of the camera. This was done to 

determine the smallest feature that could be identified using the selected camera 
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module. This test was conducted using the 1951 USAF resolution chart that was 

positioned at the same working distance that the camera would be required to operate 

on when installed inside the Voxeljet VX500 machine. During the testing phase, it 

was determined that the smallest feature that could still be clearly identified by the 

Raspberry Pi camera module was 198µm. Although the minimum feature that must be 

detectable by the camera was calculated at 184μm, the 14μm deficit was considered 

acceptable as there are several factors that influenced this value such as the exact 

working height, as well as the exact focal length of the camera. 

5.2.3 Active Monitoring System Validation 

The proposed active re-coater monitoring system was integrated into the Voxeljet 

VX500 machine for the testing of the image processing procedures. The purpose of 

these tests was to determine if the proposed image processing program can indeed 

detect defects and re-coating errors on the powder bed of an actual machine. A crucial 

part of these tests was also to optimise the software parameters that were used for the 

processing of the image. Several types of defects and re-coating errors were replicated 

to mimic real-world scenarios. The data recorded for each of the replicated scenarios 

was used to optimise the parameters for the different image processing functions to 

ensure that the defects were correctly detected. The image was split up into 16 

quadrants, and each quadrant was processed for defects individually using a variety of 

image processing algorithms such as histogram equalization, Gaussian Blur filtering 

and Canny Edge detection. A value of 2 for the Gaussian Blur filter kernel size was 

determined as optimum for detecting the simulated defects. The black-to-white pixel 

threshold value that determines whether a defect had occurred on the powder bed was 

determined at a value of 0.072%. During this testing phase it was also determined that 

the active re-coater monitoring system could detect simulated re-coating errors and 

defects when they occurred on the powder bed. 

Once the active re-coater monitoring system produced reliable results under the 

replicated error conditions, the in-production testing could commence. The active re-

coater monitoring system was used to monitor a series of build jobs to determine the 

overall effectiveness of the system. All the build jobs were evaluated in detail to 
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determine the system’s capability to detect defects as they occur, however, due to time 

and space constraints only the results from one build was discussed as part of this 

document. The recorded data was plotted into a graph, and significant spikes on the 

graphs were investigated and discussed. Once all the areas of interest on the graphs 

were discussed, some conclusions about the overall of effectiveness of the system 

could be reached. The active re-coater monitoring system displayed the ability to 

successfully detect a variety of re-coating errors and defects as they occurred in real-

time. However, there was a re-coater underfeeding condition that started forming due 

to low powder flowability that was only detected once the defect became more severe. 

When the images and data for this section of the build was analysed, it could clearly 

be seen that the defect started out very small. Although the percentage values did 

record changes on the powder bed, they were not identified as defects due to the value 

being less than the threshold value of 0.072%. However, the case study did reveal that 

the active re-coater monitoring system could indeed detect various types of re-coating 

errors and defects under production conditions and was able to achieve most of the 

set-out objectives during the research study. 

5.3 Recommendations 

Further research should be conducted into: 

• How machines with larger powder beds such as the Voxeljet VX1000 can be 

imaged using multiple cameras, as the powder bed is too large to be captured using 

a single camera due to the machine’s internal construction. 

• Adjustment of the camera FOV to image the entire powder bed surface. 

• How to use different image processing techniques to identify defects on the 

powder bed, as well as to classify defects and re-coating errors that may occur on 

the powder bed. 

• Implementing the feedback from the active re-coater monitoring system into the 

machine’s control system. This would allow the machine to rectify the problems 

autonomously, or alternatively stop the build to prevent further loss of raw 

materials. 
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• The use of more powerful image processing hardware should be investigated as 

certain image processing function can quickly overwhelm the Raspberry Pi micro-

computer’s available resources. 
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Annexure A:  
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Annexure B: 
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Annexure C: 

from picamera.array import PiRGBArray 

from picamera import PiCamera 

import time 

import cv2 

from decimal import Decimal 

import numpy 

import os 

import RPi.GPIO as GPIO 

import PIL.Image 

import PIL.ImageTk 

from Tkinter import * 

 

#Setup the GPIO Connections for the Limit Switches 

GPIO.setmode(GPIO.BCM) 

GPIO.setup(23, GPIO.IN, pull_up_down = GPIO.PUD_UP) 

 

start_time = time.time() 

 

layerVal = 0 

faultVal = 0 

timestr = time.strftime("%Y%m%d-%H%M%S") 

file = open("Job_"+timestr+".txt","w") 

img1 = cv2.imread('/home/pi/Raspberry Pi Control/VXoriginalLED1.jpg') 

 

#Initialize Camera model 

print("Intializing Camera") 

camera = PiCamera() 

camera.resolution = (3264,2448) 

print("Camera Resolution set to 3264 x 2448 pixels") 

rawCapture = PiRGBArray(camera) 

time.sleep(0.1) #Give the Camera time to stablize 

 

#Create the GUI Window 

top = Tk() 

top.geometry("1280x720") 

top.wm_title("Re-coater Monitoring System") 
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#Import Processed Image 

procImg = cv2.imread('/home/pi/OpenCV_Logo.png') 

resPImg = cv2.resize(procImg, (600,440)) 

imgP = cv2.cvtColor(resPImg, cv2.COLOR_RGB2BGR) 

imP = PIL.Image.fromarray(imgP) 

imgtkP = PIL.ImageTk.PhotoImage(imP) 

 

#Function Definitions 

def changeLabel(): 

    lblConnectionStatus.config(bg="green") 

    connectionStatus.set("Connected") 

    btnExit.configure(state = DISABLED) 

    btnStartCapture.configure(state = NORMAL) 

    btnStopCapture.configure(state = NORMAL) 

 

def auto_canny(image, sigma=0.33): 

    # compute the median of the single channel pixel intensities 

    v = numpy.median(image) 

    # apply automatic Canny edge detection using the computed median 

    lower = int(max(0, (1.0 - sigma) * v)) 

    upper = int(min(255, (1.0 + sigma) * v)) 

    edged = cv2.Canny(image, lower, upper) 

    # return the edged image 

    return edged 

 

def pROI(x1,y1,x2,y2,image): 

    roi = image[x1:y1,x2:y2] 

    whiteval = cv2.countNonZero(roi) 

    noPixels = (Decimal(whiteval)/Decimal(1088*816))*100 

    roundPix = round(noPixels, 3) 

    val = str(roundPix) 

    return val 

 

def captureImage(self): 

    global start_time 

    global layerVal 

    global faultVal 

    global img1 
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    time.sleep(0.01) 

    if GPIO.input(23) != GPIO.HIGH: 

        print("False Trigger") 

        return 

    else: 

        #Check the trigger time 

        ti = round(time.time()-start_time) 

        #Check if the trigger was fired more than once in a 3 second window 

        if ti > 3: 

            #Capture the image to an array     

            camera.capture(rawCapture, 'bgr') 

            rawCapture.truncate(0) 

            image = rawCapture.array 

            print("Image Captured") 

             

            #Convert the baseline image to greyscale and equalize the histogram 

            gray1 = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) 

            cv2.equalizeHist(gray1,gray1) 

            #Convert the captured image to greyscale for further processing and equalize the histogram 

            img2 = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

            cv2.equalizeHist(img2,img2) 

            #Create empty numpy array to store the processed images in 

            res = numpy.zeros((2448,3264), numpy.uint8) 

            #Calculate the absolute difference between the captured image and the baseline image and equalize 

the histogram again 

            cv2.absdiff(gray1,img2,res) 

            cv2.equalizeHist(res,res) 

            #Apply a Gaussian blur filter to the image to smooth out the worst noise 

            blur2 = cv2.GaussianBlur(res,(11,11),2) 

            #Apply the canny edge detection algorithm to the blurred image 

            edges = auto_canny(blur2) 

             

            #colImg = cv2.cvtColor(img2,cv2.COLOR_GRAY2BGR) 

            #Draw the lines to indicate the 16 quadrants 

            origImg = image 

            cv2.line(origImg,(0,612),(3264,612),(255,0,0),5) 

            cv2.line(origImg,(0,1224),(3264,1224),(255,0,0),5) 

            cv2.line(origImg,(0,1836),(3264,1836),(255,0,0),5) 
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            cv2.line(origImg,(816,0),(816,2448),(255,0,0),5) 

            cv2.line(origImg,(1632,0),(1632,2448),(255,0,0),5) 

            cv2.line(origImg,(2448,0),(2448,2448),(255,0,0),5) 

            #Defining the different regions of interest (ROI) 

            #First Column 

            rval1 = pROI(0,612,0,816,edges) 

            rval2 = pROI(613,1224,0,816,edges) 

            rval3 = pROI(1225,1836,0,816,edges) 

            rval4 = pROI(1837,2448,0,816,edges) 

            #Second Column 

            rval5 = pROI(0,612,817,1632,edges) 

            rval6 = pROI(613,1224,817,1632,edges) 

            rval7 = pROI(1225,1836,817,1632,edges) 

            rval8 = pROI(1837,2448,817,1632,edges) 

            #Third Column 

            rval9 = pROI(0,612,1633,2448,edges) 

            rval10 = pROI(613,1224,1633,2448,edges) 

            rval11 = pROI(1225,1836,1633,2448,edges) 

            rval12 = pROI(1837,2448,1633,2448,edges) 

            #Fourth Column 

            rval13 = pROI(0,612,2449,3264,edges) 

            rval14 = pROI(613,1224,2449,3264,edges) 

            rval15 = pROI(1225,1836,2449,3264,edges) 

            rval16 = pROI(1837,2448,2449,3264,edges) 

 

            refVal = float(0.6) 

 

            if(float(rval1)>refVal or float(rval2)>refVal or float(rval3)>refVal or float(rval4)>refVal or 

float(rval5)>refVal 

               or float(rval6)>refVal or float(rval7)>refVal or float(rval8)>refVal or float(rval9)>refVal or 

float(rval10)>refVal 

               or float(rval11)>refVal or float(rval12)>refVal or float(rval13)>refVal or float(rval14)>refVal or 

float(rval15)>refVal or float(rval16)>refVal): 

                #increment per time a fault is detected 

                faultVal = faultVal + 1 

                if(faultVal >= 3): 

                    #Display that an error has been detected 

                    print("Something Happened") 
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                    var.set("Defect Detected") 

 

            else: 

                #Reset if fault has been cleared 

                print("All Good") 

                var.set("No Defects") 

                faultVal = 0 

 

             

            #Retrieve current date and time     

            timestr = time.strftime("%Y%m%d-%H:%M:%S") 

            #Increment the layer number value 

            layerVal += 1 

            #Write the Layer Number, time stamp and white pixel percentage of each quadrant to a text file 

            

file.write(str(layerVal)+","+timestr+","+rval1+","+rval2+","+rval3+","+rval4+","+rval5+","+rval6+","+rv

al7+","+rval8 

                       

+","+rval8+","+rval9+","+rval10+","+rval11+","+rval12+","+rval13+","+rval14+","+rval15+","+rval16+"

\n") 

            #Set the font of the text to be written 

            font = cv2.FONT_HERSHEY_SIMPLEX 

            #Display each quadrant's white pixel percentage 

            #First Column 

            cv2.putText(origImg,rval1+'%',(50,350), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval2+'%',(50,950), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval3+'%',(50,1560), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval4+'%',(50,2160), font, 6,(0,0,255),10) 

            #Second Column 

            cv2.putText(origImg,rval5+'%',(900,350), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval6+'%',(900,950), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval7+'%',(900,1560), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval8+'%',(900,2160), font, 6,(0,0,255),10) 

            #Third Column 

            cv2.putText(origImg,rval9+'%',(1710,350), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval10+'%',(1710,950), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval11+'%',(1710,1560), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval12+'%',(1710,2160), font, 6,(0,0,255),10) 
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            #Fourth Column 

            cv2.putText(origImg,rval13+'%',(2530,350), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval14+'%',(2530,950), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval15+'%',(2530,1560), font, 6,(0,0,255),10) 

            cv2.putText(origImg,rval16+'%',(2530,2160), font, 6,(0,0,255),10) 

            #Save Images of processed and unprocessed image 

            cv2.imwrite(timestr + '_lines.jpg',origImg) 

            cv2.imwrite(timestr + '.jpg',img2) 

            #Resize the original and processed image 

            image = cv2.resize(img2, (600,440)) 

            origImg = cv2.resize(origImg, (600,440)) 

            #Display the original and processed image 

            updateCapImage(image) 

            updateProcImage(origImg) 

            lines = []        

            #Retrieve new time stamp 

            start_time = time.time()         

            print("Image Processed") 

            return 

        else: 

            #Do Nothing 

            return 

 

def disconnect(): 

    lblConnectionStatus.config(bg="red") 

    connectionStatus.set("Not Connected") 

    print("Camera Unit Disconnected") 

    updateCapImage(imgP) 

    updateProcImage(imgP) 

    btnExit.configure(state = NORMAL) 

    btnStartCapture.configure(state = DISABLED) 

    btnStopCapture.configure(state = DISABLED) 

 

def exitProg(): 

    print("Bye bye") 

    print("Closing Monitoring System")    

    print("Program Done") 

    camera.close() 
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    GPIO.cleanup() 

    top.destroy() 

 

def startCapture(): 

    layerVal = 0 

    var.set("Job Loaded") 

    btnStartCapture.configure(state = DISABLED) 

    btnStopCapture.configure(state = NORMAL) 

    #Setup File for data storage 

    file.write("Recoater Monitoring System \n") 

    file.write("\n") 

    file.write("Layer Number,Image 

Name,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11,Q12,Q13,Q14,Q15,Q16\n") 

    #Interrupt Setting 

    GPIO.add_event_detect(23, GPIO.FALLING, callback=captureImage, bouncetime=5000)         

 

def stopCapture(): 

    layerVal = 0 

    btnStartCapture.configure(state = NORMAL) 

    btnStopCapture.configure(state = DISABLED) 

    file.close() 

    GPIO.remove_event_detect(23) 

    print("Event Removed") 

 

def updateProcImage(srcImage): 

    img = cv2.resize(srcImage, (600,440))        #Resizing Image 

    im = PIL.Image.fromarray(img) 

    imgtk = PIL.ImageTk.PhotoImage(im) 

    lblProcessed.configure(image=imgtk) 

    lblProcessed.image = imgtk 

 

def updateCapImage(srcImage): 

    img = cv2.resize(srcImage, (600,440))        #Resizing Image 

    im = PIL.Image.fromarray(img) 

    imgtk = PIL.ImageTk.PhotoImage(im) 

    lblCamera.configure(image=imgtk) 

    lblCamera.image = imgtk 
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#Button Declarations 

btnStart = Button(top, text = "Connect", command = changeLabel) 

btnStop =  Button(top, text = "Disconnect", command = disconnect) 

btnExit = Button(top, text = "Exit", command = exitProg) 

btnStartCapture = Button(top, text = "Start Capture", command = startCapture, state = DISABLED) 

btnStopCapture = Button(top, text = "Stop Capture", command = stopCapture, state = DISABLED) 

 

#String Variables 

connectionHead = StringVar() 

connectionStatus = StringVar() 

heading = StringVar() 

var = StringVar() 

wLabel = StringVar() 

 

#Image Declarations 

lblCamera = Label(top, image = imgtkP) 

lblCamera.image = imgtkP 

lblProcessed = Label(top, image = imgtkP) 

lblProcessed.image = imgtkP 

 

#Label Declarations 

lblConnectionHead = Label(top, textvariable = connectionHead, font = ("Helvetica",10)) 

lblConnectionStatus = Label(top, bg = "red", textvariable = connectionStatus, font = ("Helvetica",10)) 

lblHeading = Label(top, textvariable = heading, font = ("Helvetica",20)) 

lblWhiteVal = Label(top, textvariable = var, font = ("Helvetica",20)) 

lblWhite = Label(top, textvariable = wLabel, font = ("Helvetica",20)) 

 

#Setting Labels 

connectionHead.set("Connection Status: ") 

connectionStatus.set("Not Connected") 

heading.set("Re-Coater Monitoring System") 

var.set("Job Unloaded") 

wLabel.set("Job Status: ") 

 

#Placing of Buttons 

btnStart.place(height = 50, width = 100,x = 20,y = 600) 

btnStop.place(height = 50, width = 100,x = 20,y = 660) 

btnExit.place(height = 50, width = 70,x = 280,y = 600) 
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btnStartCapture.place(height = 50, width = 100,x = 140,y = 600) 

btnStopCapture.place(height = 50, width = 100,x = 140,y = 660) 

 

#Placing of Labels 

lblConnectionHead.place(x = 20, y = 50) 

lblCamera.place(x = 20, y = 80) 

lblProcessed.place(x = 650, y = 80) 

lblConnectionStatus.place(x = 150, y = 50) 

lblHeading.place(x = 430, y = 10) 

lblWhiteVal.place(x = 450, y = 550) 

lblWhite.place(x = 80, y = 550) 

 

#Start of main loop 

top.mainloop() 
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Annexure D: 

 

 


