
i

Virtualization performance in private cloud computing

By

KHATHUTSHELO NICHOLAS THOVHEYI

Student Number: 209106093

A research dissertation submitted in fulfilment for the Degree

MAGISTER TECHNOLOGIAE

In
Informat ion Communication Techno logy

Faculty of Applied and Computer Sciences

VAAL UNIVERSITY OF TECHNOLOGY

Supervisor: Prof Tranos Zuva
Co-Supervisor: Prof Kazeem Okosun

04 October 2019

ii

Mama, Papa, Sesi, Buthi, Makhulu Kuku,Thendo,Bethu,Robane and Ouma

Thank you

iii

Always find a Way

iv

DECLARATION

This dissertation is the result of my own work. It has not been previously submitted, in part or

whole, to any university of the institution for any degree, diploma, or other qualification.

Signed: __

Date: ___

Khathutshelo Nicholas Thovheyi (209106093)

Vaal University of Technology

04 October 2019

v

ABSTRACT

Virtualization is the main technology that powers today’s cloud computing systems.

Virtualization provides isolation as well as resource control that enable multiple workloads to

run efficiently on a single shared machine and thus allows servers that traditionally require

multiple physical machines to be consolidated to a single, cost-effective physical machine

using virtual machines or containers. Due to virtual machine techniques, the strategies that

improve performance like hardware acceleration, running concurrent virtual machines without

the correct proper resource controls not used and correctly configured, the problems of

scalability as well as service provisioning (crashing response time, resource contention and

functionality or usability) for cloud computing, emanate from the configurations of the

virtualized system. Virtualization performance is a critical factor in datacentre and cloud

computing service delivery. To evaluate virtualization performance as well as to determine

which virtual machine configuration provides effective performance, how to allocate and

distribute resources for virtual machine performance equally is critical in this research study.

In this study, datacentre purposed servers together with Type 1 (bare metal hypervisors),

VMware ESXi 5.5, and Proxmox 5.3 were used to evaluate virtualization performance. The

experimental environment was conducted on server Cisco UCS B200 M4 which was the host

machine and the virtual environment that is encapsulated within the physical layer which hosts

the guest virtual machines consisting of virtual hardware, Guest OSs, and third-party

applications. The host server consists of virtual machines with one operating system, CentOS

7 64 bit. For performance evaluation purposes, each guest operating system was configured

and allocated the same amount of virtual system resources. Various Workload/benchmarking

tools were used for Network, CPU, Memory as well as Disk performance, namely; Iperf,

Unibench, Ramspeed, and IOzone, respectively. In the case of Iozone, VMware was more than

twice as fast as Proxmox. Although CPU utilization in Proxmox was not noticeably affected,

considerably less CPU utilization was observed in VMware. While testing the memory

performance with ramspeed, VMware performs 16 to 26% better than Proxmox. In the case of

writing, VMware observed 31 to 51% better than Proxmox. In a network, it was observed that

the performance on Proxmox was very close to the level of bare metal setup. The results of the

performance tests show that the additional operations required by virtualization can be

confirmed utilizing test programs. The number of additional operations and their type influence

specifically to performance as overhead. In memory and disk areas, where the virtualization

vi

procedure was clear, the test outcomes demonstrate that the measure of overhead is little.

Processor and network virtualization, then again, was more perplexing. Hence the overhead is

more significant. At the point when the overall performance of a virtual machine running in

VMware ESXi Server is contrasted with a conventional system, the virtualization causes

approximately an increase of 33% in performance.Because of the difficulty in providing

optimal real system configurations, workload/benchmarks could provide close to real

application systems for better results. The tests demonstrate that virtualization depends

immensely on the host system and the virtualization software. Given the tests, both VMware

ESXi Server and Proxmox are capable of providing Optimal performance.

vii

ACKNOWLEDGEMENTS

I thank Professor Tranos Zuva for this dissertation, for the advice and guidance that I have

received during the writing process. Mr David Ramasodi, Mr Braam van der Walt, Mr Attie

Naude,Mr Carel Bosman and Mr Makalo Motsamai, thank you for all the support and

upbringing, I am what I am because of you all.

viii

CONTENTS

1 CHAPTER 1: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Research problem .. 2

1.3 Purpose of the study ... 3

1.4 Research question .. 3

1.5 Objectives .. 3

1.6 Thesis structure graph .. 4

1.7 The structure of the dissertation ... 4

1.8 Chapter summary ... 5

2 CHAPTER 2: LITERATURE REVIEW ... 6

2.1 Virtualization ... 6

2.2 Concepts of virtualization .. 8

2.2.1 Types of virtualization .. 9

2.2.2 Virtualization benefits .. 9

2.3 Types of hypervisors .. 10

2.3.1 VMware ESXi virtualization technology 11

2.3.2 Proxmox .. 11

2.4 Cloud computing ... 11

2.4.1 Types of clouds .. 13

2.5 Cloud computing benefits .. 14

2.6 Performance of virtualization in private clouds 14

2.7 A combination of methods/framework 34

2.8 Chapter Summary .. 36

3 CHAPTER 3: METHODOLOGY .. 37

3.1 Measuring virtualization effects by tests 37

3.1.1 Test types of performance test .. 38

3.2 Experimental environment ... 39

3.2.1 Host system .. 39

3.3 Performance... 41

3.3.1 Network performance... 41

ix

3.3.2 Disk performance .. 44

3.3.3 Memory performance ... 47

3.3.4 CPU performance .. 49

3.3.5 Measurement procedure .. 50

3.3.6 Validation .. 51

3.3.7 Test cases in a virtualized scenario (CPU) 51

3.3.8 VMware ... 52

3.3.9 Proxmox .. 53

3.3.10 Summary ... 54

4 CHAPTER 4: EXPERIMENTS, RESULTS AND ANALYSYS 55

4.1 Configurations for hardware and software used 55

4.2 Network ... 55

4.2.1 Analysis of network performance ... 55

4.2.2 Network conclusion.. 61

4.3 Disk ... 62

4.3.1 Analysis of disk performance ... 63

4.3.2 Disk conclusion ... 69

4.4 Cpu .. 69

4.4.1 Vmware ... 70

4.4.2 Proxmox .. 71

4.4.3 Result summary ... 72

4.4.4 CPU conclusion ... 74

4.5 Memory ... 75

4.5.1 Ram speed ... 75

4.5.2 Integer and writing .. 75

4.5.3 Integer and reading ... 76

4.5.4 Float and writing ... 76

4.5.5 Float and reading .. 77

4.5.6 RamSpeed test results in discussion ... 77

4.5.7 Overall ram speed results .. 77

4.5.8 Memory conclusion .. 79

4.6 Chapter summary ... 80

5 CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 81

5.1 Discussion ... 81

x

5.2 Future work ... 82

5.3 Conclusion ... 83

5.4 Recommendations.. 87

xi

LIST OF TABLES

TABLE 1: METHODS / FRAMEWORK .. 35

TABLE 2: RESOURCE DISTRIBUTION PLAN ... 41

TABLE 3: AVAILABLE TOOLS FOR NETWORK PERFORMANCE ... 42

TABLE 4: TOOLS AVAILABLE FOR DISK PERFORMANCE ... 44

TABLE 5: MEMORY PERFORMANCE TOOLS ... 47

TABLE 6: LIST OF AVAILABLE CPU PERFORMANCE TOOLS ... 50

TABLE 7: VMWARE - TEST CASES FOR THE 16 CORE SETUP .. 52

TABLE 8: VMWARE- TEST CASES FOR THE 12 CORE SETUP... 52

TABLE 9: VMWARE- TEST CASES FOR THE 6 CORE SETUP .. 52

TABLE 10: PROXMOX- TEST CASES FOR THE 16 CORE SETUP .. 53

TABLE 11: PROXMOX- TEST CASES FOR THE 12 CORE SETUP .. 53

TABLE 12: PROXMOX- TEST CASES FOR 6 CORE SETUP ... 53

TABLE 13: HARDWARE CONFIGURATIONS... 55

TABLE 14: SOFTWARE CONFIGURATIONS .. 55

TABLE 15: WRITE PERFORMANCE TESTS ... 67

TABLE 16: READ PERFORMANCE TESTS .. 68

TABLE 17: VMWARE- CPU UTILIZATION OVERVIEW .. 73

TABLE 18:PROXMOX- CPU UTILIZATION OVERVIEW ... 73

TABLE 19: VMWARE- RESPONSE TIME OVERVIEW... 73

TABLE 20: PROXMOX- RESPONSE TIME OVERVIEW .. 74

TABLE 21: INTEGER AND FLOAT WRITING RESULTS .. 78

TABLE 22: INTEGER AND FLOAT READING RESULTS ... 79

xii

LIST OF FIGURES

FIGURE 1: THESIS STRUCTURE .. 4

FIGURE 2:VMWARE ESXI SERVER ARCHITECTURE ... 40

FIGURE 3:PROXMOX SERVER ARCHITECTURE .. 40

FIGURE 4: THE COMPARISON OF TCP BANDWIDTH BETWEEN VMWARE AND PROXMOX 56

FIGURE 5: THE COMPARISON OF TCP THROUGHPUT AMONG VMWARE AND PROXMOX. 57

FIGURE 6: THE COMPARISON OF UDP BANDWIDTH AMONG VMWARE AND PROXMOX 57

FIGURE 7: THE COMPARISON OF UDP THROUGHPUT AMONG VMWARE AND PROXMOX 58

FIGURE 8: THE COMPARISON OF DATAGRAM LOSS BETWEEN PROXMOX AND VMWARE. 59

FIGURE 9: THE COMPARISON OF JITTER BETWEEN VMWARE AND PROXMOX 60

FIGURE 10: THE COMPARISON OF A MAXIMUM NUMBER OF THE REQUESTS SENT BY CLIENTS

BETWEEN VMWARE AND PROXMOX.. 60

FIGURE 11: IOZONE AVERAGE WRITE .. 63

FIGURE 12: IOZONE AVERAGE RE-WRITE ... 63

FIGURE 13: IOZONE AVERAGE READ .. 64

FIGURE 14: IOZONE AVERAGE RE-READ .. 64

FIGURE 15: IOZONE AVERAGE RANDOM READ ... 65

FIGURE 16: IOZONE AVERAGE RANDOM WRITE .. 66

FIGURE 17: WRITE PERFORMANCE .. 67

FIGURE 18: CONSOLIDATED READ PERFORMANCE ... 69

FIGURE 19: VMWARE - CPU UTILIZATION .. 70

FIGURE 20: VMWARE - AVERAGE RESPONSE TIME .. 71

FIGURE 21:PROXMOX - CPU UTILIZATION .. 72

FIGURE 22: PROXMOX - AVERAGE RESPONSE TIME .. 72

FIGURE 23: RAM SPEED AVERAGE INTEGER AND WRITING .. 75

FIGURE 24: RAMSPEED AVERAGE FLOAT AND WRITING .. 76

xiii

FIGURE 25:: FLOAT AND READING AVERAGE FOR RAMSPEED ... 77

FIGURE 26: INTEGER AND FLOAT WRITING .. 78

FIGURE 27: INTEGER AND FLOAT READING ... 79

xiv

LIST OF ABBREVIATIONS AND ACRONYMS

I/O Input/output

OS Operating System

CPU Central Processing Unit

RAM Random Access Memory

VM Virtual Machine

PC Personal Computer

P2V Physical-to-Virtual

VMM Virtual Machine Monitor

IT Information Technology

SAAS Software as a Service

PAAS Platform as a Service

IAAS Infrastructure as a Service

HPC High Performance Computing

QoS Quality of Service

VT Virtualization Technology

ARM Advanced RISC Machine

KVM Kernel-based Virtual Machine

xv

LIST OF DEFINITIONS

Virtual Machine - Is a software computer like a real physical machine that runs applications

and operating systems, referred to as a guest machine.

Hypervisor - A thin kernel layer that abstracts the physical hardware and presents virtual

hardware to the guests.

Virtual Machine Monitor - a layer of software that runs between a hypervisor or host

operating system and one or more virtual machines that provide the virtual machine abstraction,

This becomes the management portal of the virtualized machine.

Guest Operating System - An operating system is running in a virtual machine environment

that normally runs directly on a physical system.

Virtual Resource - A physical resource, (for example, Disk, CPU, or memory) that is overseen

by a hypervisor and allocated to a guest. Virtualized Changing a physical system to a virtual

guest system.

Overcommit - when more resources are assigned than are physically available. System-wide

profiling Both the guest and VMM are profiled.

Paravirtualization - A virtualization system where the native instruction set is not

implemented. Generally, the Guest OS should be altered to realize it is virtualized. This is the

procedure utilized by Xen.

Overhead - The extra cost (time) required for virtualization. For every task, there might be

extra resources required to virtualize the activity as operation t instead of interacting directly

with the hardware.

Snapshot- A complete state of the entire virtual machine saved to non-volatile disk for later

Virtualization – “Virtualization is a technology that joins or partitions computing resources to

exhibit one or many operating environments utilizing methodologies like hardware and

partitioning or aggregation, partial or complete machine simulation, emulation, timesharing,

and numerous others.”

xvi

Cloud computing - is shared pools of configurable computer system resources and more

elevated services that can be quickly provisioned with minimal administration effort, regularly

over the Internet. Cloud computing depends on sharing of resources to accomplish cognizance

and economies of scale, like a public utility.

Jitter - is the amount of variation in latency/response time, in milliseconds.

1

CHAPTER 1

INTRODUCTION

1 INTRODUCTION

1.1 BACKGROUND

Virtualization is the main technology that powers today’s cloud computing systems.

Virtualization provides isolation and resource control that enables multiple workloads to run

efficiently on a single shared machine and thus allows servers that traditionally require multiple

physical machines to be consolidated to a single, cost-effective physical machine using virtual

machines or containers (Enberg, 2016).

Server virtualization opens the present traditional balanced design of x86 servers by abstracting

the operating system and applications from the physical hardware, empowering a more cost-

effective, coordinated, and improved server condition. Utilizing server virtualization,

numerous operating systems can keep running on a single physical server as virtual machines,

each with access to the fundamental server's computing resources. Most servers work at less

than 15 percent capacity; not only is this highly inefficient, it also introduces server sprawl and

complexity. Server virtualization addresses these inefficiencies(Sligh and Owusu, 2014).

With virtualization, all software, drivers, and the operating system are put away on servers, as

opposed to being installed on each client 's machine. This implies that extensive quantities of

clients can be managed centrally, with all client data and information kept up in the datacentre.

This reduces the time and costs necessary for administering a massive infrastructure. The users’

environment remains unchanged; they get the same experience as using a standard PC. The

Information Technology(IT) manager, however, experiences greater efficiency. For instance,

if new software is required for 50 clients, the IT administrator just needs to install the software

once centrally and afterwards activate it for the different virtual machines, as opposed to

installing it on multiple machines on an individual basis. Henceforth, the desktop virtualization

model enables organizations to accomplish significant savings of both time and money while

dealing with their IT infrastructure(A Vouk, 2008).

Virtualization is likewise intended to improve the manageability of the enterprise

infrastructure. As virtual servers and desktops can be live-migrated with no downtime,

organizing hardware upgrades with clients or arranging work windows is required so that in

2

future, vital upgrades can occur whenever necessary, with no effect to the client. Additionally,

high availability and dynamic load-balancing solutions given by virtualization product families

can monitor and optimize the virtualized environment with a minimal manual contribution.

Supporting similar capacities in a non-virtualized world would require much operational effort.

Moreover, enterprises utilize virtualization to give Infrastructure as a Service(IaaS) cloud

offerings that give clients access to computing resources on demand in the form of virtual

machines. This can enhance developer productivity and lessen the time to showcase that is key

in today’s fast-moving business environment. Since rolling out an application sooner can give

a first-mover advantage, virtualization can help support the business(Morabito, 2017).

Creating an efficient, responsive IT environment by virtualizing, the datacentres will be able

to reduce datacentre footprint by consolidating physical servers, storage, and networking

hardware. You can also improve asset utilization, lower capital and power, and cooling costs,

reduce management touch points, accelerate IT service delivery, increase scalability and

flexibility, increase redundancy and reliability, extend hardware lifecycles and improve support

efficiency(Li et al., 2017).

In this research, we focused on virtualized computers as well as server infrastructure, which is

the foundation of a private cloud. We also compared resource utilization through computer

systems performance stress tools in order to measure how the virtual machines handled

workloads.

1.2 RESEARCH PROBLEM

More industries have moved to virtualization technology, and this has become the most

dominant way in which datacentres and cloud computing are built(Babu et al., 2014). Due to

the high demand for computerized infrastructure, virtualization performance is a critical factor

in datacentre and cloud computing service delivery(Deshane et al., 2008). Virtual machines

consist of many components and techniques that can hinder the performance of private clouds.

If virtualized systems are not configured correctly such as hardware acceleration, running

concurrent virtual machines without the correct and proper resource controls used, private

clouds will have problems of scalability and service provisioning (crashing response time,

resource contention and functionality or usability)(Matthews et al., 2007). This impacts on user

experience(Somani and Chaudhary, 2009b).

3

1.3 PURPOSE OF THE STUDY

The purpose of this study is to evaluate the performance of virtualization and to determine

which virtual machine configuration provides effective performance.

1.4 RESEARCH QUESTION

• What configuration of virtualized systems provides an effective performance?

In order to answer the main question, the following sub-questions will be answered:

• What has been done in the literature to effectively measure the performance of a virtual

environment?

• How to set a virtualized environment in order to test different performance

configurations?

• How to measure the performance of different configurations in a virtualized

environment?

1.5 OBJECTIVES

• To study existing literature to measure the performance of a virtual environment

effectively.

• To develop a virtualized environment in order to test different configurations.

• To evaluate the performance of different configurations in a virtualized environment.

4

1.6 THESIS STRUCTURE GRAPH

Figure 1: Thesis Structure

1.7 THE STRUCTURE OF THE DISSERTATION:

Chapter 1 Introduction: This is the chapter where the Project is introduced, the research

problem, the purpose of the study, research question, and objectives; of the research are

outlined. The focus area of the study is explained.

Chapter 2 Literature Review: This chapter focuses on the background of virtualization, cloud

computing, and related work done by other researches.

Chapter 3 Methodology: This chapter focuses on related techniques that are relevant to

tackling this problem.

5

Chapter 4 Experiments, Results, and Analysis: This chapter focuses on experimentation and

results for the research

Chapter 5 Conclusion and Recommendations: This chapter focuses on other alternatives

that can be used and a summary of the entire research as well as the outcomes of the research.

1.8 CHAPTER SUMMARY

Chapter 1 serves as a basis for this research. The research problem, the purpose of the study,

the research question, objectives, and thesis structure are described in this chapter. A brief

discussion of what is virtualization is explained and how it is vital for cloud computing. The

research problem elaborates how virtualization performance is a critical factor in datacentre

and cloud computing service delivery. In the following chapter, virtualization technologies,

their usage, and current research in the field of virtualization and cloud computing are

thoroughly covered and explained. Review on the previous work by other authors is outlined

from the leading concept that associate to virtualization and cloud computing in the technical

review.

6

CHAPTER 2

LITERATURE REVIEW

2 INTRODUCTION

We will look into previous work conducted on virtualization performance on clouds.

Previous work done by other authors will provide a clear explanation of virtualization and

cloud computing.

Performance investigations of virtualization methods in cloud computing environments are

done for various reasons. To begin with, numerous parts of the performance should be looked

at, for example, networking, Central Processing Unit(CPU) use, and the disc I/O speeds, and

that is just the beginning. Secondly, there is seldom an ideal approach to workload/benchmark

these computing assignments. Thirdly, the different variety of software, for example, operating

systems and core applications, lends many outcomes flawed or uncertain. There are a wide

range of hypervisors, cloud suppliers, operating systems, and workload/benchmark software

suites to look over. Dependent on which hypervisor is considered, there are specific hardware

and software requirements that must be adhered to. Without considering the more significant

part of the potential choices, a performance study may feel deficient. Regardless of these

difficulties, it is vital, both for the advance of cloud computing and for the validation of

procedures, that these tests exist(Rao and Rao, 2015).

2.1 VIRTUALIZATION

Chiueh and Brook (2005) define Virtualization “as a technology that combines or divides

computing resources to present one or many operating environments utilizing methodologies

like hardware and software partitioning or aggregation, partial or complete machine simulation,

emulation, timesharing, and many others.”

Isolated environments over hardware for application operating system applications are

provided by virtualization. Virtualization has opportunity advantages from hardware resources

that are closed to physical machines as users want to get maximum utilization from the

hardware. (Smith and Nair, 2005) explain that virtualization refers to ”abstraction of logical

resources away from their underlying physical resources”. Virtualization plays a significant

7

role in cloud computing since it provides many advantages in sharing, management, and

isolation of the resources in the cloud (Rimal et al., 2009).

A system that has physical hardware capable of running many virtual machines concurrently

is known as a virtualization host, whereas virtual machines running on it are called guests. This

virtualization system usually consists of underlying hardware like network cards, CPUs, hard

disk drives, and memory(Ali and Meghanathan, 2011).

Virtual Machine Monitor (VMM) is software that manages the usage of hardware resources

and the concurrent running of virtual machines (Lee and Brooks, 2006). The hypervisor makes

it possible to run multiple virtual machines at the same time on the hardware resources

(Hauswirth et al., 2005). The hypervisor, which works between different operating systems and

system resources is responsible for managing multiple virtual machines that are competing for

resources such as memory, CPU, network, and data.

Type 1 hypervisors, like Xen, include a different hypervisor software component, which runs

correctly on the hardware and gives a virtual machine abstraction to VMs running on the

hypervisor. Type 2 hypervisors, like Kernel-based Virtual Machine (KVM) , run a current OS

on the hardware and run both VMs and applications over the OS. Type 2 hypervisors regularly

alter the current OS to facilitate the running of VMs, either by incorporating the Virtual

Machine Monitor (VMM) into the current OS source code base or by installing the VMM as

drivers into the OS. KVM incorporates explicitly with Linux where other solutions, for

example, VMware Workstation, utilize a loadable driver in the current OS kernel to monitor

virtual machines. The OS incorporated with a Type 2 hypervisor is usually referred to as the

host OS, rather than the guest OS which keeps running in a Virtual Machine M. One advantage

of Type 2 hypervisors over Type 1 hypervisors is the reuse of existing OS code, particularly

device drivers for an extensive variety of accessible hardware. This is particularly valid for

server systems with PCI where any commercially accessible PCI connector can be utilized. A

Type 1 hypervisor experiences are having to re-implement device drivers for all upheld

hardware(Morabito et al., 2015).

Notwithstanding, Xen, a Type 1 hypervisor, maintains a strategic distance from this by just

executing a negligible measure of hardware support directly in the hypervisor and running a

particular privileged VM, Dom0, which runs a current OS, for example, Linux and uses all the

existing device drivers for that OS. Xen at that point utilizes Dom0 to perform I/O utilizing

8

existing device drivers in the interest of typical VMs, otherwise called DomUs (Dall et al.,

2016)

Nevertheless, to move applications from physical machines to virtualized consolidated

platforms, one should have the capacity to assess the performance these applications will

accomplish in the new environment. Will moved applications keep running with competitive

performance as they keep running on their immediate environment? What number of servers

will be expected to make a virtual environment ready to help the execution of the services

given, with acceptable performance? What is the best configuration of resources in the virtual

environment for a specific application? In this way, there is a current requirement for new tools

for anticipating performance, giving data to resource allocation, and determining optimal

system configuration (Benevenuto et al., 2006).

Performance models (Benevenuto et al., 2006) help foresee the values of performance

measures of a system from an arrangement of values of workload, operating system, and

hardware parameters. Performance expectation is the way towards assessing performance

measures of a computer system for a given arrangement of parameters. Typical performance

measures incorporate reaction time, throughput, resource use, and resource queue length. The

input parameters to such a model fall into one of three categories: workload, necessary

software, and hardware parameters. The workload parameters describe the load imposed on the

system of interest by the applications, i.e., the transactions submitted to it. The software

parameters describe features of the necessary software, such as the Xen virtual machine

monitor overhead. Examples of such parameters are virtualization overhead, CPU dispatching

priority, etc. Examples of hardware performance parameters include the components of the

servers that support a Xen system, for example, processor speeds, disk latencies, and transfer

rates, and local area network speed. The output of a performance model is a set of performance

measures, for example, reaction times, throughput, and resource utilization.

2.2 CONCEPTS OF VIRTUALIZATION

The software abstraction among hardware and the operating system is called virtualization.

Every one of the applications is kept running in the operating system that is running over the

abstraction layer, additionally called the virtual machine monitor or hypervisor (Marinescu and

Kröger, 2007). The hypervisor is used to hide the hardware system resources from the operating

system that allows running different operating systems at the same time as the hardware is not

directly accessible by the operating system. Further, (Marinescu and Kröger, 2007) explains

9

that available hardware is logically divided into some logical units that each called virtual

machine.

2.2.1 Types of Virtualization

• Full virtualization: Full virtualization is based on the emulation of the hardware. In this

approach, the guest operating systems do not require any modification since they are

not aware of being virtualized. It provides security and isolation for virtual machines

and also facilitates migration and portability (Mahjoub et al., 2011).

• Paravirtualization: In paravirtualization, the guest OSes are aware of the hypervisor,

and the OS kernel is modified to provide an interface for communication between the

hypervisor and the OS kernel, which improves performance and efficiency.

Compatibility and portability of para-virtualization are weak since it does not support

unmodified OSes (Li et al., 2010).

• Hardware-assisted virtualization: Hardware-assisted virtualization uses virtualization

hardware extensions, mainly host CPU, to provide full virtualization. Consequently, it

needs explicit support in the host CPU, which is not available in all processors. Intel

VT and AMD-V processors include virtualization technology support. Guests that are

using this technique are usually slower than the guests who are using para-virtualization

due to a high CPU overhead caused by emulation. However, hardware-assisted

virtualization does not require modification of the guest OS (Matthews et al., 2007).

2.2.2 Virtualization Benefits

Some of the significant benefits of using virtualization are discussed below (Younge et al.,

2011; Che et al., 2008; Lombardi and Di Pietro, 2011; (Yaqub, 2012) :

• One can support multiple operating systems and virtual machines on a single pane of

glass.

• Performance measurement and debugging of virtual machines are possible using the

hypervisor management console.

• Through environment isolation, Research academics can run experiments without the

fear of breaking the system. This creates great testing and safe environment.

10

• It provides a safe test environment before taking application servers to the production

environment.

• One can create multiple virtual machines from one physical machine through the

resource sharing capabilities of virtualization.

• Through resource consolidation, virtualization becomes cost effective as it reduces the

requirements for hardware.

• For secure computing, one can isolate virtual machines which have untrusted

applications and keeping them separate from the rest of the virtual machines in the

same cluster.

• Consolidating workloads is possible with virtual machines .on a single server

Virtualization can be utilized to consolidate workload, which has advantages in terms

of hardware and software costs as well as management and server infrastructure

administration.

• Operating system new feature testing on a virtual machine before actual

implementation.

• It is faster and easier to perform backup and recovery as well as the migration of virtual

machines.

• Dynamic resource provisioning makes it feasible due to virtualized resources

utilization in clustered environments.

• The pay-per-use model that is used in cloud computing allows users to pay for the

resources they use, which makes it virtualization flexible and scalable.

• virtual machine migration from one host or cluster to another is effortless.

2.3 TYPES OF HYPERVISORS

Type 1: Native or Bare-Metal Hypervisor: This type of hypervisor runs directly on the host's

hardware. Guest OS can be installed on top of this hypervisor. Such hypervisors have lesser

memory footprint as compared to Type 2 hypervisor. Examples of the bare metal hypervisor

are Citrix XenServer, VMware ESX, and Hyper-V.

11

Type 2: Hosted Hypervisor: This type of hypervisor requires a base OS that acts as a host.

Such hypervisors abstract the presence of host from the guest OS. They may use hardware

support for virtualization or can emulate the sensitive instructions using binary translation.

Examples of the hosted hypervisor are VMware Workstation, VirtualBox, and KVM.

2.3.1 VMware ESXi Virtualization Technology

Virtualization is an innovation that is expanding by each passing day in the IT industry due to

its number of advantages, higher usage of costly hardware, enhanced security, ease of

administration, and enhanced data integrity. World's biggest provider of virtualization

software, platforms, and tools are provided by VMware, and their products are widely utilized

across numerous industries. The ESXi is the most advanced hypervisor design of VMware.

VMware Inc. ESXi is a Bare Metal hypervisor and installed over the physical machine. ESXi

was introduced in 2007 by VMware with conveying industry-driving performance and

adaptability while setting another bar for reliability, security, and hypervisor administration

effectivenes (Elsayed and Abdelbaki, 2013).

2.3.2 Proxmox

Proxmox is a Linux distribution based on Debian (64 bits) that carries OpenVZ and KVM.

Proxmox allows performing centralized management of many physical servers. Proxmox at

least consists of a single master and node (Ali, 2015).

2.4 CLOUD COMPUTING

Cloud computing is a service-oriented model, and abstraction and accessibility are two crucial

factors in this model. The underlying cloud architecture is abstracted and hidden from the user

as a result of virtualization and consolidation. Concurrently, the key components of underlying

cloud architecture can be easily accessed. In general, cloud computing transparently delivers

the following services (Wang et al., 2010); (Gong et al., 2010):

• Software-as-a-service;

• Hardware-as-a-service;

• Data-as-a-service; and

• Platform-as-a-service.

Cloud Computing technology is an on-demand service which provides optimal resources

allocation and dynamic computing infrastructure which has the hardware, network, storage,

12

and interfaces that enable the delivery of computing as a service. These services in the cloud

include the software as a service, infrastructure as a service, and storage as service over the

internet based on user demand (Kumar and Singh, 2015). While Cloud computing has been

driven from the start predominantly by the industry through Amazon, Google, and Microsoft,

a shift is also occurring within the academic setting as well. Due to the many benefits, Cloud

computing is becoming immersed in the area of High-Performance Computing (HPC),

specifically with the deployment of scientific clouds and virtualized clusters (Younge et al.,

2011).

For Cloud computing to be possible, underlying services, technologies, and configurations

exist, and one of that technology is virtualization. Virtualization is a mechanism of hardware

and system resource abstraction. This is typically performed in Cloud environments running

on clustered hypervisors servers. In this environment, multiple virtual machines can

concurrently run, which is one of the critical advantages of Cloud computing. This allows

resources consolidation within data centres. From the hypervisor level, Cloud computing

systems depend on the virtualization technologies to maintaining QoS and utility to users while

reaching optimal performance(Younge et al., 2011).

The internet and virtualization technology is required to make cloud computing have such

capabilities such as on-demand access and server or service provisioning. The software that

does virtualize in hardware resources such as CPU, Memory, Disk, and NIC and by providing

infrastructural support to multiple virtual machines is called a Hypervisor. It is essential to

understand different hypervisor performance in private Clouds. Hypervisors come in 3 primary

forms, which are Full Virtualization Paravirtualization and Hybrid virtualization. comparing

these in private clouds for performance measurements is essential (Reddy and Rajamani, 2014).

Through resources on demand, this allows customers to have cost-effective, high-quality

servers, and applications and services with excellent high performance that they need in the

cloud (Reddy and Rajamani, 2014).

Virtualization is fundamental to cloud computing. It allows abstraction centred on services and

isolation of lower level functionalities and underlying hardware. Modelling, analyzing, and

verifying cloud systems necessarily involve virtualization and services. However, there exist

few efforts to effectively formalizing virtualization in cloud computing(Li et al., 2013). Cloud

computing is becoming a prominent distributed computing framework as the number of

13

systems and servers moving to the cloud increase. It is essential to test the performance effects

of virtualization in cloud computing to provide quality service to customers. Services such as

storage, private, and hybrid clouds are offered in cloud computing but they are typically offered

as a service (PaaS) in the forms of infrastructure (IaaS), platform (PaaS), and software (SaaS).

Comprehensive computing capabilities by virtualizing processing, storage, and network

resources are provided in cloud environments (Kumar and Singh, 2015).

Online interactive systems like Facebook, Wikipedia, Twitter, and many others employ cloud

infrastructures to meet user demands. Large scale scientific simulations and high-performance

computing (HPC)Computing draw attention by the benefits of Cloud outsourced. It is enticing

to have computing resources that are endless, scalable, and compatible with different systems

and applications. The term cloud computing often refers to computing distribution, hardware,

and software encapsulating in an overall system. Thus, the cloud represents the fuzzy notion

of networked computing resources. Users can provision computing resources depending on the

demand or task. Multi-node computing infrastructures such as clusters and grids have been

around for many years (Overby, 2014).

2.4.1 Types of clouds

• Private cloud: Private cloud service model is hosted within the organization. It can be

hosted internally or externally. This type of cloud service is more expensive since it

requires more involvement for the organization to virtualize the business

environment(Luo et al.).

• Public cloud: Public cloud is a cloud which is made available to the general public. Its

customers share the same infrastructure pool, which makes this type of cloud very

vulnerable and insecure. Public clouds operate on a low-cost or pay-per-use model.

Public clouds can be accessed only via the Internet(Gong et al., 2010).

• Community cloud: Community cloud service model is shared between several

organizations within the same community. Its primary purpose is to bring the benefits

of the public cloud with an added level of security of the private cloud. Community

clouds can be either on-premise (local) or off-premise (remote)(Zhang et al., 2010).

14

• Hybrid cloud: Hybrid cloud is a combination of two or more clouds (private,

community, or public) that are handled as unique entities but are bound together (Mell

and Grance, 2009).

2.5 CLOUD COMPUTING BENEFITS

In Cloud computing, users are able to migrate their data and servers to remote locations and

used as a disaster recovery site. This provides some benefits which could not otherwise be

achieved(Younge et al., 2011).

Such benefits include:

• Cost-Effectiveness - only pay for the needed infrastructure while maintaining the option

to increase services as needed in the future.

• Scalability - Clouds enough computing power as required by the user and lowers

dependence on specialized hardware.

• Simplified Access Interfaces - a vast amount of computing are easy to access through

options like web portals and client consoles.

• Quality of Service (QoS) - A well-designed Cloud provides higher QoS than

traditionally possible with advanced computing.

• Customization - Within a Cloud, a user can customize their environment to need their

requirements and needs, such as backward compatibility.

2.6 PERFORMANCE OF VIRTUALIZATION IN PRIVATE CLOUDS

Reddy and Rajamani (2014) evaluated and provided quantitative comparison regarding the

performance of three hypervisors ESXi, XenServer, and KVM, utilizing SIGAR structure for

framework information and Passmark for system workloads in the private cloud condition.

(Reddy and Rajamani, 2014) designed a private cloud utilizing open source cloud computing

software CloudStack. Hypervisors are conveyed as hosts in the CloudStack. They suggested

best-suited hypervisors for respective workloads in the private cloud based on the performance

of system information and system workloads. In the test, CloudStack 4.0.2 (open source cloud

computing programming) is utilized to make a private cloud, in which administration server

was introduced on Ubuntu 12.04 – 64-bit operating system. Hypervisors as XenServer 6.0,

15

ESXi 4.1 and KVM (Ubuntu 12.04) were installed as hosts in the separate bunches, and their

exhibitions have been assessed in detail by utilizing SIGAR Framework, Passmark and

NetPerf.

The tests were performed utilizing a Windows 2008 R2 64-bit as a guest operating system.

Moreover, the workload/benchmark mentioned above test suits were used in the experiments.

On general XenServer and ESXi, two hypervisors are dependable, reasonable and offer the

windows or some other guest operating system IT proficient an elite stage for server

solidification for production workloads (Reddy and Rajamani, 2014). KVM needs to enhance

on all fronts if it needs to wind up keeping pace with the other two hypervisors. ESXi and

XenServer have developed hypervisors as a contrast with KVM, and their Reliability,

Availability, and Serviceability (RAS) is altogether higher than that of KVM. The series of

tests conducted on CPU, Memory and Network performance for the paper demonstrates that

VMware ESXi Server and XenServer conveys the production-ready performance expected to

actualize a proficient and responsive datacentre in the private cloud condition. (Reddy and

Rajamani, 2014), advised that for future work, one can include multiple clients send and receive

network tests for hypervisors. It was furthermore suggested that the experiment could likewise

be done with para-virtualized Linux guest operating system. With more workloads, adaptability

tests can be performed with different hypervisors which are not canvassed in the present trial.

Furthermore, future work can likewise consider the open public cloud for experimentation.

The primary target of this investigation is to workload/benchmark the performance of 32bit

Debian 6.0 virtual machines running on Xen and VMware ESXi. The workload/benchmark

tests will endeavour to quantify the performance of virtual machines concerning network

activity, file system I/O, CPU, and memory performance. Its outcomes were utilized as a

pattern when contrasting the two hypervisors. Tests were completed on network activity, file

system I/O, CPU, and memory performance (Perera and Keppitiyagama, 2011).

Memory workload/benchmarking was finished utilizing Read, Write, and Number-crunching

operations on Integers and Floating point numbers. An open source device RAMSpeed/SMP

was utilized. Network activity workload/benchmark was finished by measuring Unidirectional

TCP/UDP information exchange throughput between the test machines. Netperf, an open

source instrument, was used. Amid the parameter, the CPU usage of the sending virtual

machine was observed. The information exchange latency likewise measured and looked at

between two hypervisors. To workload/benchmark the document arrangement of ESXi and

16

Xen, IOzone workload/benchmark instrument was utilized. Read, Write, Re-read, Re-

compose, Random read, Random compose, backward read, Backwards compose, and Strided

read tests on the document framework were done on shifting document and record sizes. To

workload/benchmark the CPU performance, a progression of tests were completed speaking to

various sorts of uses that may keep running on a PC framework, which may use the CPU

vigorously. A Linux kernel compiles, a data compression test, a data encoding test, an

application build test, and a graphics manipulation test were used. By analyzing the

workload/benchmark comes about in light of memory operations; as a rule, (Perera and

Keppitiyagama, 2011) watched that both hypervisors perform similarly well when the guests

are conducting activities that need high memory transmission capacity (exchanging

information amongst CPU and RAM). Quantitatively Xen is marginally quicker than ESXi. In

network-based exercises too, we watched that the two stages are reasonable, however, ESXi is

marginally superior to Xen. Utilization of fully virtualized guests (HVM) on Xen for network

intensive deployments is not suggested as HVM guest displays inferior system performance on

Xen. For file system based activities (disk110), ESXi performs superior to Xen, particularly

Xen displays a performance degradation in writing to the file system. For CPU severe

applications, both hypervisors perform similarly well, yet Xen is somewhat better. At the point

when wholly virtualized guest operating systems are running on Xen, an immense performance

disintegration was seen because of the emulation by the hypervisor on all test cases (Perera and

Keppitiyagama, 2011).

Bhukya et al. (2010) presented a comprehensive evaluation methodology to

workload/benchmark the performance of sequential programs by running them in several

virtualized environments by the technique called virtualization and checking the throughput in

those environments using a method called experimental design or design of the experiment.

The workload/benchmark in this paper is running on Linux guests on virtualization technology

(VT-x) enabled platforms. The results show that the how the performance of the following

program in both Xen and VMware changes concerning the factors viz. type of hypervisor, size

of RAM, and the number of virtual CPUs affecting it. In their experiment, the hardware

platform is Intel® Core ™ 2 DUO with an Intel processor at 2.93 GHz. It has got an L1 data

cache of 32KB for private data of each core. It also has an L1 instruction cache of 32KB for

instructions. It has an L2 cache of 3MB that is used for fast data access; it includes a SCSI disk

of size 300GB with the RAM of size 4GB with DMA enabled. Their experiment is conducted

by repeatedly executing the workload/benchmarks in NPB3.3 Serial and collecting the

17

performance data. (Bhukya et al., 2010) use the DOE (Design Of Experiment) methodology

and formulate the results.

The experimenter should select a suitable design type considering the experiment. In this

analysis, a Full Factorial design is selected. The design will provide an option for experimental

runs. In this task, add up to quantities of runs are 36. The experimenter will be furnished with

an alternative of choosing methods like replication, randomization, and hindering in the

experiment to decrease the test blunders. Analysis Of Variance (ANOVA) is a customarily

utilized actual procedure for inspecting the information by looking at the methods for subsets

of the data. ANOVA is also used to assess the important impact of variables at various levels

and their interaction impacts. The diagrams are plotted by considering their mean esteems. The

exploratory outcomes give an understanding of how the productivity of the successive program

impacts in both virtualized environments. (Bhukya et al., 2010) run CFD applications in

virtualized environments and inspect their performance. These assist the clients to pick which

hypervisor is useful for their successive application. Xen gives better performance when

contrasted with VMware concerning the factors that we considered for our experiment. In the

case of Xen, (Bhukya et al., 2010) explored that efficiency may always not be increased with

increase in the size of RAM.

Kumar and M (2015) demonstrated that present measurements for the performance of offerings

by cloud suppliers are liable to imprecision and changeability. The thesis tried to elucidate

worries about performance in cloud computing, breaking down the variables that make the

performance of clouds unpredictable and recommending approaches to tackle this issue. The

performance degradation because of virtualization and the absence of isolation between virtual

machines were observationally assessed in a eucalyptus testbed given the KVM virtualizer.

Drawing upon past research, every one of the parts of the issue, from the conduct of particular

application types when facilitated in clouds to a proposition for another age of SLAs with

performance ensures, will be talked about.

This segment gives the outcomes along acquainting the system utilized to test the performance

seclusion capacity of a KVM-fueled Eucalyptus private cloud. The fundamental issue is the

effect on the performance of a specific virtual machine case when another VM is making

escalated utilization of at least one physical, and therefore shared resources. The physical

resources being considered are the CPU, memory, disk, and network interface. For each of

these, the consequences of a trial will be displayed trailed by an exchange of the possible

18

reasons for these outcomes, bolstered by additional references to past investigations when

fundamental. As it has been said before, a tweaked EMI was made to run these tests. This EMI

was made out of a spotless establishment of Ubuntu Server 10.04 and different

workload/benchmarking and testing programs. In the accompanying subsections, a short

clarification of how each of these testing programs functions will be given. If not

communicated unique, each experiment was performed with two running virtual machine

occurrences of the modified EMI, with 15 GB disk, 512 MB RAM, and 1 CPU core. The

approach depended on finding the components which the performance of cloud-facilitated

applications relies upon. Right off the bat, the effect on the performance of a virtualized and

shared physical server was tried all through the usage of a private cloud. This investigation, as

opposed to comparable workload/benchmarks found in literature, was executed in a controlled

domain as opposed to in a public cloud, where setup alternatives are constrained, and

foundation stack is by, and massive hard to know and uncontrollable and like this permitted

making some reasonable determinations (Kumar and M, 2015).

The main conclusion of this proposition is that cloud computing is, as a rule, arranged to host

most typical web applications effectively and with incredible cost funds, yet those applications

with strict inertness prerequisites or other network performance necessities, those that require

working with substantial datasets, or those whose requirements for accessibility are basic

should be considered precisely. In these cases, thought of particular performance necessities,

distinctive for each sort, and remuneration models for infringement of the SLA are critical.

Indeed, even with the development of SLAs, generally useful clouds will not will to different

certifications for the most requesting applications, in this way, there will be an open door for

more research in this area (Kumar and M, 2015).

Hypervisors are utilized as a part of cloud environments, and their effect on application

performance has been a point of critical research and viable interest. The current development

in cloud environments has quickened the progression of virtualization through hypervisors; be

that as it may, with such a large number of various virtualization advancements, it is hard to

discover how different hypervisors affect application performance and whether a similar

performance can be accomplished for each hypervisor. (Li et al., 2013), conducted

experimental estimations of a few workload/benchmarks utilizing Hadoop MapReduce to

assess and look at the performance effect of three prominent hypervisors: a commercial

hypervisor and open source Xen and KVM. (Li et al., 2013) found that distinctions in the

19

workload sort (CPU or I/O intensive), workload size and VM situation yielded excellent

performance contrasts among the hypervisors. Many different hypervisors (both opensource

and commercial) exist today, each with their advantages and disadvantages. This introduces a

large number of new and challenging research questions.

Some past work has focused on virtualization overhead of a single hypervisor on a particular

application or micro workload/benchmark. Other work has been aimed to provide a quantitative

performance comparison between different hypervisors using microbenchmarks. The authors

utilized the three hypervisors to run a few MapReduce workload/benchmarks, for example,

Word Count, TestDSFIO, and TeraSort and further approved (Li et al., 2013) observed theories

utilizing microbenchmarks. In our observation for CPU-bound workload/benchmark, the

performance distinction between the three hypervisors was negligible; be that as it may,

substantial performance varieties were seen for I/O-bound workload/benchmarks. Also,

including more virtual machines, the same physical host debased the performance on each of

the three hypervisors, yet they watched distinctive patterns among them. Solidly, the

commercial hypervisor is 46% quicker at TestDFSIO Write than KVM, however 49% slower

in the TeraSort workload/benchmark. What is more, expanding the workload estimate for

TeraSort yielded completion times for CVM that was two times that of Xen and KVM. The

performance contrasts shown between the hypervisors proposes that further examination and

consideration of hypervisors are required later in future deploying applications to cloud

environments (Li et al., 2013).

As cloud computing rises as a prevailing worldview in dispersed systems, it is vital to

comprehend the fundamental advances that make clouds conceivable entirely. One innovation,

and maybe the most essential, is virtualization. As of late, virtualization, using hypervisors, has

turned out to be broadly utilized and surely understood by numerous. There is an expansive

spread of various hypervisors, each with their advantages and disadvantages (Younge et al.,

2011).

In late history, there have been multiple comparisons identified with virtualization innovations

and Clouds. The primary performance analysis of different hypervisors began with, obviously,

the hypervisor merchants themselves. VMware has cheerfully put out its take on performance

as well as an original Xen article, which analyzes Xen, XenoLinux, and VMware over various

SPEC and standardized workload/benchmarks, bringing about contention between the two

works. From here, various more impartial reports began, focusing on server consolidation and

20

web application performance with fruitful yet sometimes incompatible results. A feature-based

survey on virtualization technologies likewise shows the vast assortment of hypervisors that as

of now exist. Besides, there has been some investigation concerning the performance inside

HPC, particularly with InfiniBand performance of Xen, and of late, a detailed take at the

practicality of Amazon Elastic Compute cloud for HPC applications. Nonetheless, the two

works focus on a solitary deployment as opposed to a genuine comparison of advantages

(Younge et al., 2011). As these underlying hypervisors and virtualization implementations have

developed quickly alongside virtualization, sustained specifically by standard x86 hardware, it

is essential to painstakingly and precisely assess the performance ramifications of every

system. Consequently, we directed an investigation of a few virtualization advances,

specifically Xen, KVM, VirtualBox, and to a limited extent, VMware. Each hypervisor is

contrasted closely with each other and (with the particular case of VMware) run through some

High-Performance workload/benchmarking tools (Younge et al., 2011).

Younge et al. (2011) indicated that the goal of their manuscript was to viably thoroughly

analyze the different virtualization advancements, mainly to support HPC-based Clouds. The

first set of results speak to the performance of HPCC workload/benchmarks. Every

workload/benchmark was run a total of 20 times, and the mean brought with error bars

represented to indicate the standard deviation over the 20 runs. The workload/benchmarking

suite was fabricated utilizing the Intel 11.1 compiler, utilizing the Intel MPI and MKL runtime

libraries, set with defaults and no enhancements whatsoever. We open first with High-

Performance Linpack (HPL), the accepted standard for comparing resources. They could see

the comparison of Xen, KVM, and Virtual Box contrasted with native bare-metal performance.

To begin with, we see that the native bare-metal system is equipped for around 73.5 Gflops

which, without any improvements, accomplish 75% of the hypothetical peak performance.

KVM, Xen, and VirtualBox perform at 49.1, 51.8 and 51.3 Gflops, respectively, at the point

when finding the average value of more than 20 runs. However, Xen, not at all like KVM and

VirtualBox, has a high level of change between runs. This is a fascinating phenomenon for two

reasons(Ali, 2015).

To begin with, this may affect performance measurements for other HPC applications and

cause errors and postponements between even pleasingly-parallel applications and add to

reducer work delays. Second, this vast difference breaks a key segment of Cloud computing,

giving a particular and predefined nature of service. On the off chance that performance can

21

influence as broadly as what happened for Linpack, at that point, this may negatively affect

clients. Next, they swing to another key workload/benchmark inside the HPC community, Fast

Fourier Transforms (FFT). Dissimilar to the synthetic Linpack workload/benchmark, FFT is a

particular, deliberate, workload/benchmark which provides results about which are regularly

viewed as more concerning a client's useful application than HPL. (Younge et al., 2011) saw

rather particular outcomes from what was already given by HPL. Taking a look at Star and

Single FFT, its consistent performance overall hypervisors is equivalent to bare-metal

performance, a great sign that HPC applications might be appropriate for use on VMs. The

outcomes for MPI FFT also demonstrate similar outcomes except for Xen, which has a

diminished performance and high variance as found in the HPL workload/benchmark. Their

present speculation is that there is an adverse effect of using Intel's MPI runtime on Xen.

However, the investigation is still ongoing.

Taking everything into account, the authors project that KVM is the best general solution for

use inside HPC Cloud environments. KVM's component rich experience and near-native

performance make it a natural fit for deployment in an environment where ease of use and

performance are central. Inside the FutureGrid venture particularly, they would like to send the

KVM hypervisor over our Cloud stages shortly, as it offers clear advantages over the current

Xen deployment. Besides, we anticipate that these discoveries will be of remarkable

significance to other public and private Cloud deployments, as system usage, Quality of

Service, working expense, and computational effectiveness could all be enhanced through the

careful assessment of major virtualization advancements(Younge et al., 2011).

(Ha et al., 2016) studied the I/O performance of long, consecutive workloads that copy those

of Big Data applications, to comprehend the ramifications of framework virtualization on

information-intensive structures, for example, Apache Hadoop and Spark, which are as often

as possible keep running in groups of Virtual Machines (VMs). They do experimental

measurement campaign that collects low-level traces and metrics, to show the role played by

essential parameters such as the I/O schedulers and caching mechanisms involved in the I/O

path, and the VM configuration regarding dedicated resources. Our findings are significant,

especially for determining appropriate deployment strategies for today's emerging Analytics

Services host both on a public and private cloud.

Ha et al. (2016) used FIO, which is a flexible tool that allows designing a variety of workloads,

and that provides detailed statistics for computing our metrics. FIO is widely used in academia

22

and industry for standard workload/benchmarking, stress testing, and I/O verification purposes.

They run FIO on the physical host with different numbers of concurrent threads. Then with the

same configuration. Finally, they also study the case of multiple active VMs being instantiated

on the same physical host, each with one FIO thread performing I/O operations. (Ha et al.,

2016) used the same OS and settings for consistency across different measurement scenarios.

The same fixed amount of data, namely 4 GBs, was used and distributed evenly across all the

threads in our experiments. Their reported performance figures are the result of 10 runs with

error bars to verify results variability.

The goals of their work were to understand the implications and overheads of virtualization on

I/O performance, focusing on the storage subsystem. Indeed, many Big Data applications are

I/O bound in nature, and a proper assessment and understanding of I/O performance in Cloud

environments are essential. To answer our questions, we used an in-depth, low-level

measurement study and analyzed the behaviour of several configurations supporting the

specific workloads that characterize analytics applications, that is, extended sequential

operations (Ha et al., 2016). Findings are instrumental in defining how to configure cloud

computing environments to meet high I/O performance demands by modern Big Data

applications and to indicate areas requiring further research efforts. They showed that current

best practices for Big Data application deployments are not reaping the benefits of decades of

research and engineering done at the OS level.

The present virtualization arrangement in the Cloud broadly depends on hypervisor-based

technologies. Alongside the current prominence of Docker, the container-based virtualization

begins accepting more consideration for being a promising option. Since both of the

virtualization arrangements are not resource-free, their performance overheads would prompt

adverse effects on the nature of Cloud services. To help fundamentally comprehend the

performance difference between these two sorts of virtualization solutions, we utilize a physical

machine with "simple enough" assets as a gauge to examine the performance overhead of an

independent Docker holder against an independent virtual machine (VM). With discoveries as

opposed to the related work, results demonstrate that the virtualization's performance overhead

could shift not only on a feature-by-feature basis but also on a job-to-job basis (Li et al., 2017).

Even though the container-based arrangement is without a doubt lightweight, the hypervisor-

based innovation does not accompany higher performance overhead for each situation. For

23

instance, Docker containers especially display lower QoS as far as storage transaction speed

(Li et al., 2017).

Currently, several streaming servers are available to provide a variety of multimedia

applications such as VoD (Video on- Demand), IP-phone, and IP-TV. As a result, the provision

of multiple streaming servers on a single machine using the virtualization technology has

become essential to save the operational/management costs while enhancing the performance

and the reliability of the system. The authors(Sritrusta et al., 2009), evaluated the performance

of two representative open source software for the virtualization technology, Xen, and OpenVZ,

in various configurations of applications on three open source streaming servers, Red5, Darwin,

and VLC. Their experimental results indicated that OpenVZ provided better performance for

streaming applications with Darwin and VLC, whereas Red5 can run only on Xen. They

compared the application-level performance such as the throughput and the response time when

they run three open source software for multimedia applications, Red5, Darwin Streaming

Server, and VLC, on a virtualization software by preparing three scenarios for the platform,

namely on the Linux native system, on Xen, and on OpenVZ for comparisons. Their results

showed that OpenVZ achieved higher performance for Darwin and VLC, whereas Red5 could

only run on Xen. Siege was used for a stress test on the streaming servers and Unibench for

performance evaluation. For future studies, they suggest to incorporate performance

assessments of Internet servers, for example, Radius, DHCP, and LDAP, and different

applications on the virtualization innovation (Sritrusta et al., 2009).

Virtual machines (VMs) have as of late risen as the reason for allocating resources in enterprise

settings and hosting centres. One advantage of VMs in these environments is the capacity to

multiplex a few operating systems on hardware based in light of progressively changing system

characteristics. Be that as it may, such multiplexing must frequently be done while observing

per-VM performance assurances or service level agreements. Accordingly, one vital

prerequisite in this condition is robust performance isolation among VMs. Virtual machines

empower fault isolation - "encapsulating" diverse applications in independent execution

environments, so a failure in one virtual machine does not influence different VMs facilitated

on the same physical equipment. Performance isolation is another vital objective Individual

VMs are often configured with performance guarantees furthermore, desires, e.g., in light of

service level agreements. Along these lines, the resource utilization of one virtual machine

ought not to affect the guaranteed assurances to different VMs on the same hardware.

24

Virtualization is quickly turning into a commercially suitable option for expanding system

utilization. However, from a customer perspective, virtualization cannot succeed without

providing appropriate resource and performance isolation guarantees. The Authors (Gupta et

al., 2006) proposed two mechanisms – SEDF-DC and ShareGuard – that improve CPU and

network resource isolation in Xen. They demonstrated how these mechanisms enable new

policies to ensure performance isolation under a variety of configurations and workloads. They

trust that performance isolation requires suitable resource distribution arrangements. In this

way, another region for future examination is strategies for proficient capacity planning and

workload administration and also plan to extend these mechanisms to support other resources

such as disk I/O and memory (Gupta et al., 2006).

Dall et al. (2016), presented the first study of ARM virtualization performance on server

hardware, including multi-core measurements of the two major ARM hypervisors, KVM, and

Xen. They acquaint a suite of microbenchmarks with measure regular hypervisor operations

on multi-core systems. The two major ARM hypervisors, KVM and Xen, acquaint a suite of

microbenchmarks with measuring normal hypervisor operations on multi-core systems.

Utilizing this suite, they demonstrate that ARM empowers Type 1 hypervisors, for example,

Xen to transition between a VM and the hypervisor significantly faster than on x86, however,

this low change cost does not stretch out to Type 2 hypervisors, for example, KVM, in light of

the fact that they cannot run entirely in the EL2 CPU mode ARM intended for running

hypervisors. While this quick change cost is valuable for supporting virtual interferes with, it

doesn't help with I/O performance in light of the fact that a Type 1 hypervisor like Xen needs

to communicate with I/O backends in an extraordinary Dom0 VM, requiring more complex

interactions than basically progressing to and from the EL2 CPU mode. (Dall et al., 2016)

demonstrate that present hypervisor outlines cannot use ARM's conceivably quick VM-to-

hypervisor transition cost in practice for genuine application workloads. KVM ARM surpasses

the performance of Xen ARM for generally genuine application workloads including I/O. This

is because of contrasts in hypervisor software design and usage that assume a more significant

part than how the hardware underpins low-level hypervisor operations. For instance, KVM

ARM effectively gives zero duplicate I/O since its host OS has full access to the more

significant part of the VM's memory, where Xen authorizes a strict I/O isolation approach

bringing about poor performance despite Xen's considerably quicker VM-to-hypervisor

transition mechanism. They demonstrate that ARM hypervisors have comparable overhead to

their x86 counterparts on certain applications. At long last, (Dall et al., 2016) indicate how

25

changes to the ARM engineering may permit Type 2 hypervisors to bring ARM's quick VM-

to-hypervisor transition cost to genuine application workloads involving I/O.

Benevenuto et al. (2006) proposed queuing models for predicting the performance that

applications running on a Linux system, will accomplish if migrated to a Xen virtual system,

with the same hardware arrangement. To exhibit the reasons for virtualization overhead on the

Xen VMM, the authors give a performance assessment of three workload/benchmarks running

on Xen and Linux. They use a case study of an application Apache as a Web server to validate

the performance models by sending requests from HTTPERF as clients to the Web server,

measuring throughput and server response time of the requests. They wanted to predict the

performance of a Web server application, running on a physical system, will accomplish

whenever relocated to a Xen virtual machine. Their research strategy consisted of a

performance study of a Web server which provided static content. They presented some results

to discuss which components of the Xen environment need to be considered in a model. To

develop performance models (Benevenuto et al., 2006) needed to be able to measure the

virtualized system. By developing an application called Xencpu to measure CPU busy time on

Xen. This tool depends on the source code of XM top tool, furnished with Xen, and was

designed aiming at the automatic execution of scripts. The CPU busy time on the Linux system

was acquired based on data from/proc directory. Disk busy time, on both Linux and Xen, was

likewise acquired from the/proc directory. Different parameters, for example, experiment

duration and some processed requests, are acquired with scripts or from the

workload/benchmarks utilized based on data from /proc directory. Disk busy time, on both Xen

and Linux, was also from the /proc directory. Different parameters, for example, experiment

duration and some processed requests, are obtained with scripts or from the

workload/benchmarks used.

To harvest high-performance systems, cluster operating environment has pressed on additional

abstraction using virtualization technology. Specific problem-solving environments are

isolated at the operating system level, where real executions are performed in the virtualization

domain. Virtualization technology helps not only to increase the utilization of computing

resources but also reduce configuration workload, administrative cost, application porting, and

energy saving. Numerous product operating systems are permitted to share ordinary hardware

in a safe environment. (Prueksaaroon et al., 2009) investigated the implementation of a

virtualized computing cluster. Performance evaluation results of the virtualized cluster based

26

on HPL is shown where the maximum of 20% performance degradation from virtualization

overhead is observed. (Prueksaaroon et al., 2009) describe a straightforward approach to deploy

virtualization onto the cluster. The management of virtualization images is discussed and the

process of considering computational cluster resources in the virtualization environment is

described. The objective of this work is to the virtualized resources running with a production

of the virtual cluster environment.

Padala et al. (2007) evaluate two representative virtualization innovations, Xen and OpenVZ,

in different arrangements. They merge at least one multi-layered system onto a couple of hubs

and drive the system with a bartering workload called RUBiS. They contrast the two

advancements and a base system as far as application performance, resource utilization,

versatility, low-level system measurements like cache misses, and virtualization-specific

measurements like Domain-0 utilization in Xen. Their analyses demonstrate that the average

reaction time can increment by more than 400% in Xen and just an unassuming 100% in

OpenVZ as the number of application instances occurrences develops from one to four. The

higher virtualization overhead causes this expansive error in Xen, which is likely because of

higher L2 cache misses and misses per instruction. A similar pattern is seen in CPU utilization

of virtual containers. (Padala et al., 2007) give an overhead examination with kernel-symbol-

specific information created by Oprofile.

Another way to deal with building broad scale computing systems by virtualizing existing

resources utilizing system virtual machine (VM) innovations (e.g., VMware and Xen) to help

adaptable resource offering to solid disconnection and advantageous application deployment

on modified execution environments, is considered. VMs are ending up unavoidably utilized,

driven by the quick development and broad accessibility of VM products, and additionally, the

fast development of computing energy of present-day computers. Their deployments can be

found from big data centres for resource consolidation to PCs for multi-OS hosting. In their

proposed framework, (Martinez et al., 2009), mentioned that VMs can be progressively

conveyed to encourage the combination of uses and co-designation of the available resources

of existing PCs both scattered crosswise over associations and owned by people. Subsequently,

resource-requesting applications can be disseminated and executed alongside the VMs in a

considerably parallel manner. Remembering the actual objective to investigate the attainability

of building a vast scale virtualized computing framework and to recognize the potential

research challenges,(Martinez et al., 2009) have built up an extensive VM-based system

27

comprising of more than 100 VMs facilitated on 30+ shared existing physical servers at FIU.

Two delegate enormously parallel applications are tried on this condition, and an examination

of how the performance is influenced is introduced and analyzed accordingly taking into

consideration the nature of each application. VM advancements give a deep layer of abstraction

for resource sharing.

System-level VMs are considered in this thesis, which depends on the virtualization of whole

physical hosts' resources, including memory, CPU, and I/O devices, and introducing virtual

resources to the guest operating systems and applications. Even though the procedures

proposed in this paper can likewise be connected to a portion of other sorts of virtualization

(e.g., OS-extension based VMs), those are not the concentration of this paper. System VMs

incorporate the accompanying two sorts: full-virtualized VMs and paravirtualized VMs. Full-

virtualized VMs (e.g., VMware ESX) exhibit a similar hardware interface to guest OSs as the

physical machines and in this way bolster unmodified OSs in the VMs. Paravirtualized VMs

(e.g., Xen) introduce an altered hardware interface which is advanced to decrease the overhead

of virtualization, yet they require the guests OSs to be adjusted too with a specific end goal to

oblige these progressions. System virtualization is actualized by the layer of software called

virtual machine screen (VMM, a.k.a. hypervisor). VMM can be either hosted on a current OS

or run correctly on the hardware. Hosted VMs use the local OS to get to resources and in this

manner, ordinarily brings about more overhead, yet they can be helpfully sent on existing

resources and straightforwardly work with their OS installations. Illustrations incorporate

VMware Server on Windows and Linux, Parallels Desktop on Mac OS. Non-hosted VMs

require existing OSs to be evacuated so VMM can have coordinate control of the resources;

however, they can commonly convey better performance contrasted with hosted VMs. Cases

of non-hosted VM items incorporate Xen and VMware ESX Server. Accordingly, non-hosted

VMs are gradually picking up predominance in server virtualization environments, while

hosted VMs are all the more broadly utilized as a part of systems where VMM needs to exist

together with traditional OSs without upsetting the ordinary operation of those

systems(Martinez et al., 2009).

Voorsluys et al. (2009)Virtualization technology have become commonplace in modern

datacenters furthermore, cluster systems, regularly alluded as computing clouds". Specifically,

the capacity of the virtual machine (VM) movement brings various advantages, for example,

higher performance, enhanced sensibility, and adaptation to internal failure. Virtual machine

28

(VM) innovation has of late developed as a fundamental building block for data centres.

Furthermore, cluster systems, fundamentally because of its abilities to isolate, merging, and

relocating workload. Altogether, these features allow a data centre to serve multiple users in a

secure, flexible, and efficient way. Subsequently, these virtualized infrastructures are

considered a crucial part of driving the developing Cloud Computing worldview. Migration of

virtual machines tries to enhance manageability, performance, and fault tolerance of systems.

More specially, the reasons that legitimize VM relocation in a production system include the

need to adjust system load, which can be the expert by moving VMs out of over-

burden/overheated servers; and the need of explicitly bringing servers down for maintenance

in the wake of relocating their workload to different servers. The capacity to move a whole

operating system beats most troubles that traditionally have influenced process-level migration

a complex operation. Applications themselves and their comparing processes should not know

that relocation is happening. Hypervisors, for example, Xen and VMware, permit migrating an

OS as it keeps on running. Such method is named as \live" or \hot" movement, rather than \pure

stop-and-duplicate" or \cold" migration, which includes stopping the VM, replicating all its

memory pages to the destination host and after that restarting the new VM. The preferred

primary standpoint of live migration is the likelihood to migrate an OS with close to zero

downtime, a critical component when live services are being served (Voorsluys et al., 2009).

Hypervisors utilizing virtualization technology empower numerous operating systems to keep

running on one physical server. Cloud computing model is more affordable because it

streamlines the conveyance of services by giving a phase to improving sophisticated IT

resources in a flexible way with the assistance of virtualization technology and hypervisors.

Choosing a reasonable hypervisor for their organization's private cloud is a gigantic task for

current CIOs. Hypervisor merchants do guarantee that they have refuted virtualization

overhead totally contrast with native system, yet at the same time there exists minute

virtualization overhead on the grounds that virtual machines need to communicate with the

centre layer hypervisor to get to the underlying physical hardware and moreover there is an

impact of other virtual machines running on the equivalent hypervisor. Hypervisors are created

utilizing various virtualization procedures like full virtualization, para-virtualization, and

hybrid model virtualization. This paper assesses the performance of three hypervisors ESXi,

XenServer, and KVM utilizing SIGARframework for system data as well as Passmark for

system workloads in private cloud environments. The private cloud has been composed

utilizing open source cloud computing software CloudStack. Hypervisors are conveyed as

29

hosts in the CloudStack. This paper suggests best-suited hypervisors for respective workloads

in the private cloud based on the performance of system information and system workloads

(Reddy and Rajamani, 2014).

Cloud computing as a model empowers on-request access to servers, networks, applications

and gives the alternative to pay as you utilize way. The real advantages of cloud computing are

adaptable and versatile infrastructures, decreased execution and support costs, IT division

transformation, and expanded accessibility of high-performance applications. Cloud

computing model encourages availability and is made out of four deployment models. In

which, Private Clouds are sent behind the firewall of an organization, and the cloud

infrastructure is worked exclusively for an organization. Private cloud deployment shows

model exclusive computing design behind a firewall with full control over the infrastructure.

This paper utilizes a private cloud model for the experiment (Reddy and Rajamani, 2014).

Virtualization is an innovation that joins or partitions computing resources to exhibit many

operating environments utilizing procedures like hardware and software partitioning, machine

reproduction, emulation, and timesharing(Ali, 2015).

From the 1990s until the mid-2000s, the pattern in the data centre was to help the organization

by giving cheap and powerful x86 server setups isolated and committed to particular

applications. A decentralization administration approach hosted these applications due to the

utilization of a software development lifecycle (SDLC) as a systematic way to deal with

application improvement that regularly required a devoted server design to host isolated and

unmistakable iterations of an application (i.e., advancement, test, and production). The

commoditization of servers and PC hardware and the simplicity of server upkeep fixes or

upgrades could be connected without compromising or influencing other applications or

operating systems, giving extra purposes behind decentralizing the administration of the

application server-hosting environment also in a similar period, the late 1990s, associations

immensely expanded use of a blend of uses, for example, database access, Web systems,

decision support systems, dispersed file services, transaction processing systems, and high-

performance computing to help their business needs. This expansion of utilization use caused

an exponential development in application hosting servers, which made the requirement for

organizations to combine their server platforms inside an incorporated server farm. This is

ordinarily alluded to as server sprawl, which is a circumstance or the pattern in server

development in which various, under-utilized servers consume up more space and expend a

30

more significant number of resources that can be justified by their workload. In the 2000s,

associations saw this heightened server sprawl caused an expansion in power utilization

prerequisites, wasteful operational aspects, and upkeep overhead. IT organizations looked for

approaches to lessen the server sprawl affect since it has brought forth the accompanying

issues, underutilization of hardware, lack of space in server farms and expanded operational

expenses Thusly, numerous IT organizations were using server virtualization advancements to

merge applications inside servers to avoid server sprawl that would lessen the prerequisites for

extra server hardware, power spending, and data center space (Sligh and Owusu, 2014).

The virtualization innovation has been created quickly with the development of the hardware

supported virtualization advances and the presence of the different services. Numerous analysts

are focusing on building up the virtualization advances which are perceived as the most

significant core technology of the IT applications, for example, green IT and Cloud Computing.

The virtualization advancements have been considered for expanding usage of centralized

computer servers since the 1960s. The fundamental ideas of the virtualization initially

originated from the circumstance that loads of servers had low use rate around 10~20% around

then. For improvement, various servers worked on the virtualized machine which exists in one

actual physical machine to build server use and additionally support security. The conventional

virtualization advances have been fundamentally produced for the centralized computer servers

when desktop PC did not have enough performance. The exploration of the virtualization

innovation for desktop PC has been begun effectively since the 1990s through the improvement

of desktop PC. At present there are a few server virtual machines for desktop PC, for example,

VMware Corporation has distributed Xen which has been produced and maintained by open

source community and VMware ESX Server. The three parts of virtualization technologies are

processed virtualization, device virtualization, and memory virtualization (Kim et al., 2010).

Cloud Computing is a developing innovation which gives on-demand service, and it offers

dynamic computing infrastructure and allocation of resources optimally. Cloud is a set of

hardware, network, storage, and an interface that empower the conveyance of computing as a

service (Kumar and Singh, 2015). Cloud services incorporate conveyance of software,

infrastructure, and capacity over the internet based on user demand. The infrastructure might

be virtualized across the globe, means you may not know where your computing resources,

application, or even data reside. These service providers are designing their infrastructure for

scale. The leading Cloud deployment models are a private cloud, public cloud, hybrid cloud,

31

and community cloud. A particular entity controls private cloud and customarily used only by

that entity or one of its customers. The underlying technology may reside on-site or off-site. A

private cloud offers increased security at a more significant cost. A public cloud which is

available for use by the general public may be controlled by a substantial company or

organization providing cloud services. In a community cloud, the cloud is shared by two or

more organizations typically with shared concerns (such as schools within a university). A

hybrid cloud is a cloud that consists of two or more private, public, or community cloud.

Service providers offer economically efficient services using virtualization of resources

(Kumar and Singh, 2015).

Virtualization was developed over thirty years before enabling substantial, costly mainframes

to be effortlessly shared among various application environments. As hardware costs went

down, the requirement for virtualization blurred away. All the more as of late, virtualization at

all levels (system, storage, and network) wound up essential again as an approach to enhance

system security, reliability, decrease costs, and give more prominent adaptability.

Virtualization is being utilized to help server consolidation endeavours. Many virtual machines

running diverse application environments share the same hardware resources System

virtualization includes a hardware abstraction layer, called Virtual Machine Monitor (VMM),

over the bare hardware. This layer gives an interface that is practically proportionate to the real

hardware to various virtual machines. These virtual machines may then run standard operating

systems, which would regularly run correctly over the actual hardware. There are different

virtualization methods and in additional requirements for architectures to be virtualizable. The

principle inspiration for virtualization in the mid-seventies was to build the level of sharing and

use of costly computing resources, for example, the mainframes. The eighties saw a decline in

hardware costs that caused a considerable part of the computing needs of an organization to be

moved far from extensive incorporated centralized servers to an accumulation of departmental

minicomputers. The primary inspiration for virtualization vanished what is more, with it their

commercial exemplifications. The approach of microcomputers in the late eighties and their

boundless appropriation amid the nineties alongside omnipresent networking brought the

dissemination of computing to new grounds. The expansive number of customer machines

connected to many servers of various types gave rise to new computational paradigms such as

client-server and peer-to-peer systems. These new environments carried with them a few

difficulties and issues including, security, reliability, expanded administration cost and

complexity, expanded floor space, energy consumption, and thermal dissemination necessities.

32

The current resurrection of the utilization of virtualization methods in commodity, economical

servers, and client machines is ready to address these issues in a prosperous manner.

Virtualization might be utilized for server consolidation. Each Virtual Machine underpins the

operating system and application environments of a server being consolidated in the virtualized

environment (Jiang et al., 2014).

The computational humankind is complimenting to a high degree, cumbersome and

multifaceted. Cloud Computing is getting to be a standout amongst the most growing

methodologies in the computing business. It is a novel approach for its deliverance services on

the World Wide Web. This model gives computing resources in the puddle for customers,

entirely through the Internet. In cloud computing, resource designation and scheduling of

various total web services are a goal and this paper gauges the different network resource

allocation methodologies and their applications in the Cloud Computing environment. A short

depiction for network resource allocation in Cloud Computing, given differentially adjusted

dynamic extents, has additionally been finished. This research addresses and orders the

preeminent difficulties ordinary to the resource allocation progress of Cloud Computing as far

as different sorts of resource allocation techniques (Mohan and Raj, 2012). Cloud Computing

is a computing model that keeps up measurements and applications, utilizing web and focal

detached servers. This approach licenses end clients and organizations to utilize applications

without putting in and entrée their private records at any PC with web entrée.

Cloud computing grants for considerably more capable computing by centralizing storage,

memory, dispensation, and data transfer capacity. A few cases of cloud computing are Yahoo

email, Google, Gmail, or Hotmail. Cloud Computing goes about as an administration modestly

than stock, whereby common resources, software, and data are given to PCs and different

procedures. Cloud computing can be arranged into three services, namely, i) SaaS (software-

as-a-service), ii) PaaS (platform-as-a-service), and iii) IaaS (infrastructure-as-a-service)

respectively. Designation of Cloud resources ought not just to ensure Quality of Service (QoS)

requirements specified by customers using Service Level Agreements (SLAs), yet additionally

to consolidate energy consumption. Resource allocation is one of the urgent issues in cloud

computing, where rare resources are distributed. From a buyer's perspective, resource

allocation identifies with how products and services are dispersed amidst clients. Capable

resource distribution brings about a more enterprising economy (Mohan and Raj, 2012).

33

The virtualization technology (VT) can be classified into three major approaches: full-

virtualization, para-virtualization, and OS-level virtualization. Differences among these

approaches are considered regarding performance, ease of installation and administration, level

of security between each virtualization images, and supported hardware platforms. Several

virtualization platforms are mainly accomplished using the software, so-called virtualization

software. The virtualization software creates and manages virtual tools, such as a processor

unit, a memory unit, and I/O units for the virtual operating system (Prueksaaroon et al., 2009).

Virtual machine innovations are a vital and necessary part of Cloud Computing. They lessen

administration complexity by permitting multiple operating systems, separated process

environments, and adaptation to non-critical failure. Workloads can be all the more effortlessly

merged, and keeping software refreshed is not anymore a tedious undertaking. As cloud

infrastructure gets more modern, the quantity of utilizations moving to the cloud develops.

Virtual machines give many advantages to these applications. Presently, like never before, it

fundamentally critical to look at and audit the performance impacts of virtualization in Cloud

Computing infrastructure. Virtual machines give many advantages and are regularly used to

better use the more significant part of the hardware resources accessible powerful servers and

hardware such as workload consolidation, updated applications, simultaneous operating

systems, and machine isolation (Overby, 2014).

There are two primary sorts of virtualization innovations today — hypervisor-based technology

such as VMware vSphere, Microsoft Hyper-V Virtual Server, KVM and Xen, and operating

system (OS) level virtualization such as VMware Workstation, Microsoft Virtual Server,

Oracle VirtualBox, OpenVZ, Linux VServer and Solaris Zones (Padala et al., 2007).

The Authors(Hwang et al., 2013) extensively compared four hypervisors: Hyper-V, KVM,

vSphere, and Xen. They show their performance differences and similarities in a variety of

situations. Their results indicate that there is no perfect hypervisor and that different workloads

may be best suited for different hypervisors. They believe that the results of the study

demonstrate the benefits of building a highly heterogeneous data centre and cloud

environments that support a variety of virtualization and hardware platforms. While this has

the potential to improve efficiency, it also will introduce some new management challenges so

that system administrators and automated systems can adequately make use of this diversity.

(Hwang et al., 2013). Results also illustrate how competing VMs can have a high degree of

performance interference. They noted that correctly determining how to place and allocate

34

resources to virtual servers will remain a vital management challenge due to the shared nature

of virtualization environments. Moreover, more research should be done in the future to solve

those problems.

To utilize one physical server with the ability to convey the performance of multiple servers.

Virtualization enables IT Managers to boost resources by consolidating them on a single server.

With virtualization, new applications will be made accessible inside a couple of minutes and

without the cost of extra equipment (Elsayed and Abdelbaki, 2013).

The enthusiasm for virtualization has been developing quickly in the IT business on account

of essential advantages like better resource use and simplicity of system manageability. The

experimentation and utilization of virtualization, and also the concurrent deployment of virtual

software, are progressively getting mainstream and being used by educational institutions for

research and educating (Ali and Meghanathan, 2011).

With the advent of cloud computing and virtualization, modern distributed applications run on

virtualized environments for hardware resource utilization and flexibility of operations in an

infrastructure. However, when it comes to virtualization, resource overhead is involved. Linux

containers can be an alternative to traditional virtualization technologies because of their high

resource utilization and less overhead. (Joy, 2015) provided a comparison between Linux

containers and virtual machines regarding performance and scalability. Containers have

outperformed virtual machines regarding performance and scalability. Because of their better

scalability and resource utilization, containers can be used for application deployments to

reduce resource overhead. However, there are use cases where virtual machines would be a

better fit than Linux containers. One of the use cases is running applications with business-

critical data (Joy, 2015).

The expression "virtualization" portrays the production of a Virtual Computer System (VCS)

or Virtual Machine (Strobl et al., 2013).

2.7 A COMBINATION OF METHODS/FRAMEWORK

A combination of methods/framework is used in this thesis; the table below summarizes the

methods that are was taken into consideration as well as their strengths and weaknesses:

35

Table 1: Methods / Framework

Work Model/Framework Strengths Weaknesses

(Buyya et al.,

2011)

A framework for SLA

management with

particular reference to

managing QoS

requirements

Successfully integrates the

market-based resource

provisioning with

virtualization technologies

for flexible resource

allocations.

Does not integrate IaaS,

PaaS and SaaS in a

combined manner.

(Chen and

Zhang, 2012)

A set-based PSO approach

scheduling problem in

cloud computing

Multiple parameter

optimizations are possible.

However, no monitoring

mechanism is

implemented- ed for

catching violations.

(Emeakaroha

et al., 2011)

A scheduling heuristic

that takes multiple SLA

parameters when

deploying applications in

the Cloud

Considers deployment

attributes such as CPU

time, network bandwidth,

storage capacity, etc.,

before installation of

applications in the cloud

system.

Does not consider

performance parameters

such as response time,

performance time, etc.,

(Li et al.,

2012)

Profit-Based Analysis of

Resource Allocation on QoS

An innovative method for

analyzing the impact of

resource provisioning.

No discussion on how to

optimally allocate

resources.

(Stoicuta et

al., 2012)

A monitoring application

for QoS parameters in iOS5.

Can be used by clients to

monitor the performance of

service providers.

Minimal application due to

focusing only on available

transfer rate and one-way

delay as QoS parameters.

36

2.8 CHAPTER SUMMARY

Virtualization is an essential aspect of Cloud Computing. It allows abstraction centred on

services and isolation of lower level functionalities and underlying hardware. However, few

efforts exist to configure virtualization in cloud computing optimally. Cloud Computing

provides a new way of computing resource distributing based on virtualization (Jiang et al.,

2014). Virtualization techniques are essential to Cloud Computing since it improves service

delivery by giving a platform to optimizing sophisticated IT resources in a versatile way.

Virtualization’s three attributes; partitioning, isolation, and encapsulation makes it perfect for

cloud computing. In cloud computing, virtualization has been used in all computing services

that include memory, storage, operating systems, networks, applications, and hardware.

37

CHAPTER 3

METHODOLOGY

3 INTRODUCTION

This chapter defines the experimental environment used. This section states the experiments

used to complete this study. We also distinguish data required from these layers, and a method

to gather the information. Finally, we depict a method to break down extra information and

decide whether the virtual machine is encountering performance costs or not.

We first need to set up a known baseline for the resources by calculating overhead in that setup.

When running different systems in production, we can think about throughput and latency of

the resources at the virtual machine and host layer.

Even though server virtualization can utilize all resources productively, optimizing

virtualization software can empower a more significant number of guest machines to run

concurrently. Popular optimization methods are lessening the overhead caused by

virtualization and comparable resources sharing between guest machines. Virtualization

overhead is caused by operations which directly cannot be executed on the hardware and by

extra mappings which are used to give the guest VM a typical environment.

3.1 MEASURING VIRTUALIZATION EFFECTS BY TESTS

Notwithstanding the theoretical perspective, tests are used to measure the impacts of

virtualization. Measurements are partitioned into three primary classes, given their character

(Smith and Nair, 2005):

• Operation under various circumstances;

• Pure performance; and

• Environmental isolation and security.

Performance tests in a virtualized domain are comparatively contrasted with conventional one;

the objective is discovering the ideal configuration for performance. For a theoretical

perspective in virtualization overheads, comparative operations are performed in virtualized

and traditional conditions (Benevenuto et al., 2006).

38

Albeit unadulterated performance influences the after effects of operation tests, it likewise

considers other essential features, for example, system administration and joining to existing

infrastructure. If re-establishing a virtual machine from a backup requires special tools or

additional phases contrasted with restoring a conventional system, the distinction can be found

by utilizing these operation tests.

Unadulterated performance tests are utilized to measure conceivable overhead that

virtualization causes contrasted with performance utilizing the native hardware. Operation tests

give a better general picture of the contrasts between a traditional and virtualized environment.

Furthermore, performance tests can be utilized to check diverse improvement and resource

sharing plans. Environment security tests are utilized to guarantee that virtualization software

is equipped for giving comparative security and isolation features than independent physical

systems in a familiar environment. Performing tests in a virtualized environment do not

fundamentally vary from testing a traditional environment. The main significant contrast is that

rather than utilizing a few physical systems, an essential piece of testing should be possible in

an isolated physical system(Li et al., 2013).

3.1.1 Test types of performance test

Performance tests have three classifications in light of what is the primary focus of the test.

The classifications are the following (Jiang et al., 2014):

• Hardware. The impact of the operating system is reduced so that only device drivers

and essential OS parts are utilized to run the tests;

• Software. Operating system testing and different parts of various software; and

• Overall performance: incorporates software and hardware particular capacities.

While the hardware has a specific performance as per details and models, a poor software

execution of, e.g., device drivers can decrease this performance altogether. A case of a standard

hardware test is estimating the disk’s reading and writing speed, while conventional software

test can be, e.g., testing memory administration or the scheduler of OS. General tests more

often than not contain performing a common task that utilizations both hardware and software

resources intensively (Sligh and Owusu, 2014).

Performance testing between virtualized and physical environments is easy if the host and

virtual machine have the same operating systems. Performance tests joined with factual

39

information about utilizing resources can be utilized to give an estimate of what number of

virtual machines they chose hardware is competent to run fluidly. In the arranging phase of

server virtualization, this data is valuable since choosing appropriate hardware arrangement

winds up less demanding (Ali, 2015).

3.2 EXPERIMENTAL ENVIRONMENT

As seen in the literature review, authors evaluated virtualization performance either using Type

1 or Type 2 hypervisor on desktop computers to present cloud computing or data centre (private

or public) (Morabito et al., 2015). In this study, datacentre purposed servers together with Type

1 (bare metal hypervisors) were used to evaluate virtualization performance. To create a private

cloud environment, the methodology and resources used the same design template and outlook

as how many other researchers have done with variation in the type of hardware and software

specifications (Morabito et al., 2015). Section 3.2.1 below shows the hardware and software

specifications for the physical machine that was used to build the private cloud environment

and sub-section 3.2.1.1 shows the specifications for the virtual machine which will be evaluated

for performance in line with objectives that have to be met. (Reddy and Rajamani, 2014).

3.2.1 Host system

The experimental environment was conducted on server Cisco UCS B200 M4, which was the

host machine with the following hardware and software specifications below. Cisco UCS was

chosen because many experiments of this nature have not used this model before, and it would

provide a new variable in the experiment setup (Elsayed and Abdelbaki, 2013):

Hardware:

• Processor type: Intel® Xeon CPU E5620 @ 2.40GHz

• Cores: 8 CPUs x 2,393 GHz

• Memory: 47,99 GB

• Storage: 131 GB local and 5,87 TB from SAN (NetApp Storage Area Network)

• Processor sockets: 2

• Cores per Socket: 4

• Logical Processors: 16

• NICs: 4

40

Figure 2:VMware ESXI Server architecture

Figure 3:Proxmox Server architecture

Software:

• VMware ESXi 5.5, as seen in Figure 2, is managed through VMware vSphere was the

chosen hypervisor because VMware can provide secure and stable virtual

environments. Is it the world leading hypervisor for virtualization with some benefits?

VMware has a significantly advanced Graphic User Interface as well as a Web-

based interface that users make use of to manage VMware hosts remotely and

centrally easily (Younge et al., 2011). VMware is commercial.

• Proxmox 5.3 with an illustration on Figure 3 was chosen as the second hypervisor as it

a data centre virtualization software which is freely available because it is open source

(Kovari and Dukan, 2012). This will provide not only results for virtual machine

performance only holistically but compare between open source and commercial as the

first hypervisor,

3.2.1.1 Virtual machines

The virtual environment that is encapsulated within the physical layer, which hosts the guest

virtual machines have of Guest OSs, virtual hardware, as well as applications. The host server

consists of one operating system, CentOS 7 64 bit. The same amount of virtual resources are

allocated for performance evaluation for each guest operating system. Table 2 virtual setup for

the guest operating system.

41

Table 2: Resource distribution plan

3.3 PERFORMANCE

We discuss the performance tools used to measure various parameters. These

workload/benchmark measurements help to recognize the utilization of network, CPU, disk,

and memory resources that can be allocated for virtual machines. Information about the tools

or procedures that are utilized for estimating the performance of different workload/benchmark

parameters like Network, CPU, Memory, Disk, and are given here.

Workload/benchmarking tools measure performance characteristics. Testing hardware feature

performance is vital because it makes performance measurements evaluation in the thesis

meaningful. From the literature review, it can be seen that performance evaluation can be

determined with workload/benchmark results. Performance results can be the same when the

performance characteristics of the two machines are similar. These tools were chosen from a

list of options in table form that can be seen in between sections 3.3.1 and 3.3.4

3.3.1 Network performance

Network performance can be a noteworthy estimation in virtualized systems. The effect of

virtualization on network performance experienced by clients can be calculated to portray

virtual machine instances networking performance. Network transmission capacity, as well as

network trace, are observed and estimated by utilizing network performance

workload/benchmark. Measurement of network performance can be experimented using

various workload/benchmarking tools such as the ones in table 3.

Operating system CPU Memory Storage

CentOS 7 64 bit 4vCPU ,2,40Ghz 4GB 40GB

42

 Table 3: Available Tools for Network Performance

This study selected the Iperf tool for estimating TCP and UDP data transfer capacity

performance. The Iperf workload/benchmarking tool is utilized for measuring TCP and UDP

transmission capacity performance (Somani and Chaudhary, 2009a). This tool quantifies the

network connections of virtual machines that send data bundles and receive data packets. Iperf

instrument measures this sort of network connections (Wang and Varela, 2011). Written in

C++, it makes TCP and UDP data to quantify the throughput of a network that conveys them.

It measures throughput between two points that can either be unidirectional or bi-directional.

The Iperf instrument runs on Linux and Windows platforms (Walters et al., 2008a). This

specific tool is used to assess the bandwidth capacity over a test period, size of data transferred.

To implement Iperf, it needs to be with installing on the server and then on the client computer.

This tool is used to measure TCP and UDP bandwidth and throughput performance. After

running TCP and UDP test via Iperf on both the server and the client to measure network

performance is described in detail as following.

3.3.1.1 TCP Testing

The Iperf command was run in server mode in the server to simulate TCP tests.

root@localhost:/: Iperf -S

The second Iperf command to send the TCP data to the server was run in the client computer

in client mode.

S No. Software tools Operating System Version

1 Netmeter Linux and windows 3.6.0.437
2 Netperf Linux and windows 2.7.0
3 LAN speed test Windows and Mac OS 4.3.1
4 Sockperf Linux and Windows 3.5.1
5 Uperf Linux and windows 1.0.6
6 Iperf Linux and windows 3.6
7 LANBench Windows 1.1.0

43

root@zartec:/home/pratique1# Iperf -c 192.168.0.1 -i 10

A script was written to run the Iperf command multiple times, and the data were copied in an

array every time the command ran the average results of the data were saved in an output file.

The command was run ten times in each reiteration. The task was repeated up to 10th

reiterations to get more data so to confirm the reliability of the data. To test TCP, bandwidth

and throughput were measured for the network.

3.3.1.2 Testing UDP

Iperf command was run in the server to start the UDP test.

root@localhost: ~ Iperf -s -u

The server waited for connection and data from the client computer when the above command

was run.

The second Iperf command to send the UDP data to the server was run in the client computer

in client mode.

root@zartec:# Iperf 192.168.0.1 -I 10 -u -b 900M

The command gave results for bandwidth, jitter, throughput, and packet loss on the network,

as shown below:

44

For the experiment, the command was running several times. The same scripts were

implemented for both TCP and UDP tests. In the UDP test, more network metrics were

measured. The bandwidth throughput, jitter, and packet loss were measured in the UDP mode.

The data was saved in an output file to create a table and graphs later on. The average

bandwidth was measured for various clients. Results were discussed and analyzed in the next

chapter.

3.3.2 Disk performance

Disk performance identifies with the maximum values at which the read and write

computational operations are completed by the disk. Workload/benchmark tools are utilized to

evaluate disk speed. There are various workload/benchmarking tools available for Disk

performance, as seen in Table 4.

Table 4: Tools Available for Disk Performance

In this study, IOzone Filesystem Workload/benchmark is used (Somani and Chaudhary, 2009).

IOzone is used to measure are read and write performance of the disk. IOzone provides a

broader system performance that it is portable to any machine. This tool works on any operating

system like Windows and Linux.The I/O operations primary workloads for measuring disks

performance. Read, write,re-read,re-write are some of the essential operations. IOzone is

Written in ANSII Cand; it measures performance for both single and multiple streams (Walters

et al., 2008a).

S No. Software tool Operating System Version

1 Datamarck Windows Xp/Vista 0.0.4
2 IOzoneFilesystem

Linux and Windows 3.405
3 Crystal DiskMark Windows XP/7/8/10 6.0.2

4 DiskBench Windows all 4.0.0.0

45

IOzone is used to test I/O performance on CentOS 7. IOzone is a known a tool for disk I/O

operations in workload/benchmarking and gives the different helpful outcomes to decide the

I/O of the disk. To get effective results is to test the diverse file sizes and will use 1 Megabyte,

64 Megabytes, 128 Megabytes, 256 Megabytes, 512 Megabytes until 1 Gigabyte. Each file was

made utilizing a record size that is the measure of information composed into a file while a

single IO operation is 4 KB. For each size, the standard test was repeated at regular intervals a

few times by utilizing a shell script. For more positive outcomes, the test is repeated multiple

times, and information is gathered. The average data of the repeated tests were used to present

the results graphically. The outcomes were copied to a file that was moved to another shell

script to write the data to another file that can be imported to an excel file.IOzone uses options

to change file sizes and recordset. These options are described below:

• -s option: measured file size

• -r record size: Kilobytes

• -i: performance type

• I performance kinds of measurements

• -R Excel

• -c time calculation

IOzone tests the several types of properties for the I/O operation that includes: write, rewrite,

read, reread, random read, and random write. I/O performance is tested against all the variables

of the disk. IOzone results are in kilobytes but are changed into megabytes. An Iozone

command ran :

iozone -s 1024M -r 4k -Rac >> Result1.txt

46

This command gives the results for Iozone tests. On the file, it shows the command, size of the

47

file, size of the record, time is taken, and kilobytes/second. Secondly, the result shows the 13

operations that Iozone performs during disk I/O operation and the performance for each. The

data per second shown in kilobytes is larger and changed to megabytes to be able to interpret

it easily. Different formats for Iozone test is used for data collection. Iozone test.sh will

repeatedly run the test 70 times and copy results in a text file using the command below.

/iozone.sh

/file separator. Sh iozone.txt

Graphs and the summary that will include meaning, medians, minimum, and maximum values

will be generated and discussed in the next chapter.

3.3.3 Memory performance

Memory performance refers to RAM bandwidth and throughput measurements and the

capacity to store data. Ramspeed is a ram speed testing tool. Ramspeed is good to use as it has

the capability of utilizing memory at a lower capacity. It has read-write operations on the

memory to run error checks (Hwang et al., 2013). There are various workload/benchmarking

tools available for Memory performance, as seen in table 5.

Table 5: Memory Performance Tools

Ramspeed has different options to test various memory levels in a computer system. The

system which is under tests has more significant physical memory; it is a large block size that

is 2 GB and is the maximum allocated size in Ramspeed. Option -b determines the type of test

in a particular scenario that can be changed with an integer. Four options are used to test

memory performance, which includes integer read and write and float read and write, hence

S No. Software Tools Operating Systems Version

1 BenchMem Windows all/Redhat 0.1.5
2 Memtest86 Windows all/Redhat V5.0 Beta
3 Memtest Windows all/Redhat 4.0
4 Memtach Windows all/Redhat 0.93 Alpha

5 Ramspeed Linux 3.5.8

48

used from 1 to 4 with -b option. The ramsmp command below is used to test memory with -b1

which is integer writing with a block size of maximum 2 GB.

The command above puts workloads on memory with Integer write operations by using block

sizes from 2 KB up until 2 GB and exponentially incrementing. After every block size, it

calculates the bandwidth of memory per second.

The primary section in the above outcome is INTEGER, and WRITING is given the - b1

alternative. In the second segment, block size is specifies with exponential increment and

maximum of 2 GB on account of -m 2048 alternative utilized in the ram speed command. While

in the last segment, memory bandwidth in MB per second is created after the test.

[root@zartec ramsmp-3.5.8]# ./ramsmp -b1 -m 2048

49

As we watched while the block size expanded the speed of writing diminished. For block size

1 KB to 32 KB, the average writing speed is over 38000 MB for each second. That is

presumably L1 cache memory type which is quickest in the framework. From 64 KB to 256

KB, average bandwidth is over 33000 MB and could be an L2 cache of the framework that is

second most elevated speed after L1. Further, from block size 512 KB to 8 MB with average

bandwidth is over 26000 MB for every second and could be L3. From 16 MB to 2 GB block

size the average bandwidth is over 11000 MB for each second, and that could be the smash

with the slowest rate. The test is rehashed multiple times, and average outcomes are utilized to

ensure the information flawlessness in every one of the four cases that are Integer and Float

reading and writing.

To the procedure computerized, a Perl script was written in three documents. The principal

record slam speed. Sh runs the ramsmp command for multiple times with various choices of

integer and float with writing and readings and store the information in a text file. The

ramspeed.sh is run utilizing following command.

[root@zartec ramsmp-3.5.8]# ./ramspeed.sh

In the wake of completing the main test with 25-time iteration, the content record containing

the information is passed to another scripting document called information generator.sh. This

script will isolate the content record as indicated by their unique nature and block. Another

script called ramsingle-record. Sh then takes this separate file and convert the information in

an arrangement that will be later utilized in R for graphical presentation and examination. The

accompanying command will be utilized for this reason.

[root@zartec ramsmp-3.5.8]# ./ramsinglefile.sh ramdata.txt

3.3.4 CPU performance

CPU performance measurements appraise the speed at which the CPU (processor) works. For

this, unique measurements instruments are used. Unibench is a workload/benchmark tool is

utilized in this thesis to measure CPU performance (Babu et al., 2014). Unibench gives better

performance when utilized in VMware. Unibench is a reliable tool as VMware ESXi is one of

the hypervisors utilized for implementation. It does distinctive operations on the system such

as CPU speed tests, floating point operations, etc. It compares speeds of various processors like

50

AMD Opteron, Intel Core2 Quad, Intel Core i7, and mobile CPUs (Sritrusta et al., 2009). There

are various workload/benchmarking tools available for CPU performance, as seen in table 6.

Table 6: List of Available CPU Performance Tools

Unibench workload/benchmark is used for the CPU test. CPU measurements in VMware and

Proxmox were performed using UNIBENCH. UNIBENCH is a tool that performs

measurements of CPU utilization in VMware and Proxmox. The application provides statistical

data about response time and throughput. This approach was suitable thanks to the reliability

and simplicity of the statistical data sets, and it was used to identify the behaviour of

telecommunication services. MATLAB software was used to visualize the raw data and for

calculation of mean, variance, standard deviation, and margin of error.

3.3.5 Measurement procedure

The maximum traffic load that can be handled by the application had to be determined for the

setup in a non-virtual environment. Traffic generated by simulator was being gradually

increased until failed requests were detected to determine traffic load limits. Various test cases

for low, moderate, and high traffic loads were defined based on the maximum traffic load. In

the virtualized scenario, the application was not able to handle all test cases due to the

virtualization overhead.

Consequently, the test cases for each setup in a virtual environment were redefined to reflect

the traffic limitation. The whole traffic was sent to the active node. In case of the six core setup,

the traffic was split into two equal traffic loads which were sent to the active nodes. Each test

S No. Software tools Operating systems Version

1 Passmark Windows all/Redhat 8.0
2 SPECvirt-sc2013 Windows all/Redhat 1.00
3 Former CPU mark Windows all/Redhat 2.2
4 OCB(openCPU

Windows all/Redhat 0.1.01.07

 5 CPU-M

workload/benchmark

Windows all/Redhat 1.4.0.0

6 Unibench Windows all /Linux 3.04
7 Linpack Windows all,linux 11.1.0.00

51

case ran for twenty minutes with a constant traffic. The CPU utilization and average response

time were measured in ten-second intervals. The test cases were repeated two times.

3.3.6 Validation

The validity of the results was ensured by performing the following steps:

1. All measurements ran for 20 minutes in order to check that the results are stable;

2. All measurements were repeated twice in order to check the repeatability and stability

of the results; and

3. Statistical analysis of results was carried out in order to validate the results.

3.3.7 Test cases in a virtualized scenario (CPU)

The same test cases were performed for different configurations of CPU cores and memory

resources. Lack of CPU resources is the bottleneck in this experiment, and thus assessment of

the impact of using fewer CPU cores in VMs was critical.

In the first test case, one VM was created on each server with dedicated 16 cores of CPU and

24 GB of RAM as in the non-virtualized system. Therefore, a fair performance comparison of

these two scenarios was achieved.

In the previous test case, no CPU core resources were allotted to the hypervisor itself. Hence,

in the second test case, 12 CPU cores were dedicated to VMs, and four cores were retained for

the hypervisor’s internal use.

The primary objective of virtualization is to share resources among several instances to better

utilize the resources. In the next test case, 12 CPU cores were equally divided between two

VMs on each server (6 cores per each VM) with dedicated 14 GB of RAM. The traffic load

was also split between two VMs to achieve a fair comparison with the 12 core setup test case.

This setup is called the six core setup in this report.

All test cases are defined in the sections below.

52

3.3.8 VMware

Table 7: VMware - Test cases for the 16 core setup

Table 8: VMware- Test cases for the 12 core setup

Table 9: VMware- Test cases for the 6 core setup

Test case number Load [req/s] Total Load [req/s]

1 375 750

2 1125 2250

3 2250 4500

4 3225 6450

5 3675 7350

6 4425 8850

7 4725 9450

Test case number Load [req/s]

1 750

2 2250

3 4500

4 6450

5 7950

6 9450

Test case number Load [req/s]

1 750

2 2250

3 4500

4 6450

5 7350

6 7950

7 9450

53

3.3.9 Proxmox

Table 10: Proxmox- Test cases for the 16 core setup

Table 11: Proxmox- Test cases for the 12 core setup

Table 12: Proxmox- Test cases for 6 core setup

Test case number Load [req/s]

1 75

2 2250

3 4500

4 6450

5 7950

6 9450

Test case number Load [req/s]

1 750

2 2250

3 4500

4 5700

5 6450

6 7950

7 9450

Test case number Load [req/s] Total Load [req/s]

1 375 750

2 1125 2250

3 2250 4500

4 3225 6450

5 3975 7950

6 4725 9450

54

3.3.10 Summary

The tools which can be utilized for performance workload/benchmarks are indicated. Different

tools can be utilized for performance measurements.

The ideal approach to keep the virtual machine from expending the majority of the resources

is to limit the resources allocated to the guest machines. One conceivable strategy to limit the

resources is to seclude the resources like network, memory, CPU. Isolating network interfaces

are considered here. In like manner, the performance of the virtual machines is contrasted with

VMware and other virtualization technologies. For this, resources like CPU use of virtual

machines and are considered to indicate performance.

Proxmox and VMware ESXi Hypervisors are used upon which guest Os’s are run. Proxmox is

a portal for creating, operating and managing and Virtual Machines. Proxmox Virtual

Environment (Proxmox VE; short PVE) is an open-source server virtualization environment.

It is a Debian-based Linux distribution with a modified Ubuntu LTS kernel and allows

deployment and management of virtual machines and containers. Proxmox VE includes a Web

console and command-line tools and provides a REST API for third-party tools (Kovari and

Dukan, 2012). Two types of virtualization are supported: container-based with LXC (starting

from version 4.0 replacing OpenVZ used in version up to 3.4, included), and full virtualization

with KVM. It comes with a bare-metal installer and includes a Web-based management

interface.

In this section, the research methodology chosen for this exploration think about was clarified.

Unique methodologies and methods for performing this study were explained, and reasonable

methods were featured. This part additionally portrayed the hypervisors utilized for

implementing performance tests on the VMs, and additionally, performance tools were

depicted and decided for this theory. The following section covers data on making the

experimental environment and the usage of performance tools that are used in this dissertation.

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/OpenVZ
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

55

CHAPTER 4

EXPERIMENTS, RESULTS, AND ANALYSIS

4 INTRODUCTION

This section deals with experiments performed as described in the previous chapter. The set-

up is shown in the figure below. Sections below show results by utilizing the graphs for each

workload/benchmarking tool.

4.1 CONFIGURATIONS FOR HARDWARE AND SOFTWARE USED

Table 13: Hardware Configurations

CPU speed 2.50GHz

Host Memory 24 Gigabytes

Guest Memory 4 Gigabytes

Processor Intel(R) Xeon(R) CPU E5-26400

Host Disk 2 Terabytes

Guest Disk 40 Gigabytes

 Table 14: Software Configurations

4.2 NETWORK

4.2.1 Analysis of Network Performance

The implementation of Iperf was installed on both the server and client. TCP Test and UDP

test were done, and the following results were obtained.

Operating System used CentOS 7

Hypervisors Proxmox, VMware ESXi

Tool for Network performance Iperf

Tool for CPU performance Unibench

Tool for Memory performance Ramspeed

Tool for Disk performance IOzone Filesystem Workload/benchmark

56

4.2.1.1 Average bandwidth (TCP)

Figure 4 demonstrates the comparison of TCP bandwidth among VMware and Proxmox. The

bandwidth is nearly the equivalent for Proxmox though VMware platform recorded a lower

bandwidth in comparison with Proxmox. Notwithstanding, there is a particular case when all

the five clients were sending data, the bandwidth in VMware was somewhat higher than the

Proxmox. The trend of the chart demonstrates that when there is a single client, at that point it

is connected with most extreme bandwidth however when there are numerous clients

simultaneously active the bandwidth is divided between them resulting in less bandwidth per

client on the network. The work of (Younge et al., 2011) indicates that there is agreement in

terms of results obtained.

Figure 4: The comparison of TCP bandwidth between VMware and Proxmox

4.2.1.2 Average throughput(TCP)

Figure 5 is merely a comparison between TCP throughput in VMware and Proxmox. Proxmox

performance level is almost the same value while VMware showed a lower throughput because

of lower bandwidth. The work of (Overby, 2014) indicates that there is an agreement in terms

of results obtained.

0 200 400 600 800 1000 1200

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Average bandwidth(MB/SEC)

N
um

be
r o

f c
lie

nt
s

Average Bandwidth(TCP) on Proxmox VS Vmware

Proxmov Vmware

57

Figure 5: The comparison of TCP throughput among VMware and proxmox.

4.2.1.3 Average bandwidth(UDP)

Figure 6 shows the correlation of UDP bandwidth among Proxmox and VMware. Not at all

like in TCP mode, VMware recorded somewhat higher bandwidth than Proxmox. This can be

viewed as an outliner. The bandwidth is most extreme for a single client, and it is appropriated

to different clients when they have connected effectively on the network. The work of (Overby,

2014) indicates that there is an agreement in terms of results obtained.

Figure 6: The comparison of UDP bandwidth among VMware and Proxmox

0 200 400 600 800 1000 1200

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Average throughput(MB/SEC)

N
um

be
r o

f c
lie

nt
s

Average throughput(TCP) on Proxmox VS
Vmware

Proxmov Vmware

0 200 400 600 800 1000 1200

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Average bandwidth(MB/SEC)

N
um

be
r o

f c
lie

nt
s

Bandwidth(UDP) on Proxmox VS Vmware

Provmox Vmware

58

4.2.1.4 Average throughput(UDP)

Figure 7 depicts the comparison between VMware UDP throughput and Proxmox UDP

throughput. Throughput trend followed the trend of bandwidth, that is why VMware has a

slightly higher throughput than Proxmox.In client 3; Vmware had less bandwidth than

Proxmox, which is an exception or some abnormal behaviour in client 3. Reference to (Overby,

2014)reveals that the results obtained below are similar and follow the same protocols in terms

of measuring UDP throughput.

Figure 7: The comparison of UDP throughput among VMware and Proxmox

4.2.1.5 Datagram loss in UDP

Figure 8 depicts the comparison of datagram loss between Proxmox and VMware. The graph

shows enormous datagram loss in VMware. Datagram loss is negligible for bare metal, and

slight datagram loss is recorded in Proxmox when transferring large amounts of data. Loss in

the datagram is inversely proportional to the number of active clients on the network. As the

number of client increases, then the datagram loss lowers down. Reference to (Tsugawa et al.,

2009) reveals that the results obtained here are similar and follow the same protocols in terms

of measuring UDP loss.

0 100 200 300 400 500 600 700 800 900

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Average throuhput(MB/SEC)

N
um

be
r o

f c
lie

nt
s

Throughput(UDP) on Proxmox VS Vmware

Proxmov Vmware

59

Figure 8: The comparison of datagram loss between Proxmox and VMware.

4.2.1.6 Average jitter Test

Figure 9 compares the jitter between Proxmox and VMware. Jitter on VMware was higher than

Proxmox. Proxmox recorded some jitter but almost negligible in comparison with VMware.

Jitter increases with the increase of some clients on the network, as you can see on the graph.

generally, this is correct, but sometimes a little bit deviation is also observed in Proxmox.

Reference to(Cheng et al., 2011) reveals that the results obtained here are similar and follow

the same protocols in terms of measuring jitter.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 CLIENT 2 CLIENTS 3 CLIENTS 4 CLIENTS 5 CLIENTS

Pe
rc

en
ta

ge
Datagram loss (UDP) on Proxmox VS

Vmware

Proxmov

Vmware

60

Figure 9: The comparison of jitter between VMware and Proxmox

4.2.1.7 Maximum average request before saturation

Figure 10 compares the maximum number of requests sent by the client before the server

reaches saturation; this is between VMware and Proxmox. The lowest request sent by the client

is observed in Proxmox. VMware performance is slightly better than Proxmox. More the

number of clients the less is the maximum number of requests sent by clients to the

server(Ahmed et al., 2008).

Figure 10: The comparison of a maximum number of the requests sent by clients between VMware and Proxmox

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

0 200 400 600 800 1000

N
um

be
r o

f C
lie

nt
s

Number of Requests per second

The maximum average request sent by client
before server is saturated

VMware Proxmov

 M

ill
ise

co
nd

s

61

4.2.2 Network Conclusion

In accordance to other results from other authors (Gulati et al., 2010, Guo et al., 2016), it very

well may be seen that the outcomes above represent the comparison of average TCP bandwidth

and UDP bandwidth on Proxmox and Vmware virtualization. Bandwidth for an isolated client

in TCP test is higher than UDP. At the point when more clients are available on the network

sending data, the bandwidth is distributed between clients. After adding a second client

machine, UDP has marginally higher bandwidth than TCP. This is because when less data is

transferred, UDP is superior to TCP because UDP does not perform three-handshaking or any

acknowledgement process. There is a comparison between the average TCP and average UDP

throughput. At the point when there is more than one client active on the network and sending

data, the throughput of UDP is higher than TCP throughput. It very well may be anticipated

that the higher bandwidth prompted higher throughput in UDP data transfer.

The essential result of this task is the investigation of the impact of the virtualization on the

performance of the computer network. The idea behind this experimental setup is to observe

the performance of the network in the virtualized environment. After a reasonable vision

performance level, it is significantly more advantageous to make sense of the impact of the

virtualized server on the network. The measurement of the performance of a server is a

beneficial undertaking achieved in this task. To measure virtual computer network

performance, Iperf was the tool that was used. By implementing Iperf, the maximum bandwidth

with which the clients were connected on the network and maximum throughput were

measured in the TCP data transfer.

Jitter and datagram loss on the network along with maximum bandwidth and throughput was

measured in UDP data transfer mode.

Proxmox and VMware ESXi were the deployed hypervisors. There were five virtual clients,

and a virtualized server was provisioned for a small private datacenter. The performance was

close to the physical machine level. However, there was some deviation on VMware

experimental setup. There was Datagram with the abnormal loss, which showed that data

transfer was not as reliable for VMware in UDP mode. Jitter, which is the amount of variation

in latency/response time on a network, was found to be higher on VMware in comparison to

Proxmox.

62

On VMware during TCP data transfer, low bandwidth and throughput were recorded. Jitter

and datagram loss was higher in the virtual environment compared to the physical machine. To

measure the performance of the network, the response transferred by the server and the clients

were stored in a text file for graphs and analysis. VMware had a slightly better result over

Proxmox.

When the number of active virtual machine increases, less bandwidth becomes available for

the virtual machines resulting in fewer throughput. The graph shows that datagram loss is high

when there is only one client. By increasing virtual machines, the datagram reduces, and when

it reaches the fifth virtual machine, it is an almost negligible amount of datagram. When small

amounts of data are being sent by the virtual machine, then the datagram loss is fewer. We can

conclude that when the virtual clients are supposed to spend fewer amounts of data, then UDP

is efficient, but TCP can be better than the UDP when a bulk of data is required.

4.3 DISK

The implementation of IOzone was done in the previous chapter, and the following results were

obtained. The review of the data in graphical format for discussion and analysis and is seen

below. In the last section, the analysis of the data was made using various statistical methods.

After 70 running Iozone tests 70 times, the average data was obtained. To generate the

combined graphs for Proxmox and VMware, the average values were used. IOzone was used

to put the workload on various guests to measure disk I/O performance. To calculate the

performance with different workloads, file sizes ranging from 1 Megabyte, 64 MegaBytes, 128

MegaBytes, 256 MegaBytes, 512 MegaBytes, to 1 Gigabyte were used. The graphs below show

the performance of Proxmox and VMware virtual machines. In accordance with other results

from(Gschwandtner et al., 2011, Ha et al., 2016), it can be seen that the results are measured

the same way and have a similar outcome.

63

4.3.1 Analysis of Disk performance

4.3.1.1 Write

Figure 11: Iozone average write

4.3.1.2 Re-Write

Figure 12: Iozone average re-write

Writing and re-writing performance Iozone tests was shown in figure 11 and figure 12

Performance of Virtualization remained high between VMware and Proxmox. The

performance for VMware was similar to that of Bare Metal systems. It was observed that both

0

200

400

600

800

1 000

1 200

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Write

Vmware Proxmov

0

500

1 000

1 500

2 000

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Re-Write

Vmware Proxmov

64

the two graphs in figure 11 and 12 show an increase in performance while the file size increased

from 1 MB to 1 GB. Re-writing in fine is usually faster than file writing. Evidence from the

graphs shows that re-writing was almost twice faster than writing. For the 64 MB file size,

Proxmox shows 12% better performance than VMware.

4.3.1.3 Read

Figure 13: Iozone average read

4.3.1.4 Re-Read

Figure 14: Iozone average re-read

Re-read is faster than reading because the file is cached in its system. In figure 13 and figure

14, it showed that the performance of re-read was more efficient than reading. VMware’s

performance increased in the case of reading from file size 1 MB to 1 GB. In re-read, there was

0

1 000

2 000

3 000

4 000

5 000

6 000

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Read

Vmware Proxmov

0
1 000
2 000
3 000
4 000
5 000
6 000

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Re-Read

Vmware Proxmov

65

increment from 64 Megabytes to 1 Gigabyte file size. Proxmox continuously increments for

reading and decrements for re-read when the file size is increasing from 1 Megabyte to 1

Gigabyte. Read performance for VMware remained constant while the file size increased. In

smaller file sizes for reading, VMware gave an outstanding performance, which was in line

with Bare Metal performance.

4.3.1.5 Random Read

Figure 15: Iozone average random read

Random read in figure 15, shows Proxmox and VMware had a continuous decrease in

performance while the size of the file increased. VMware performed better than Proxmox with

the difference of 28%, 37%, 36%, 42% and 37% for file sizes 64 MB, 128 MB, 256 MB, 512

MB, and 1 GB respectively.

0

1 000

2 000

3 000

4 000

5 000

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Random Read

Vmware Proxmov

66

4.3.1.6 Random Write

Figure 16: Iozone average random write

Figure 16 shows that Proxmox outperformed VMware with an average of 46% in all file sizes.

Proxmox performs better than VMware for 64 MB file size.

4.3.1.7 Discussion of Iozone test results

With 13 different kinds of tests, Iozone measures disk I/O performance. Virtualization guest

performance is usually lower as compared with Bare Metal because it adds overhead due to

layer abstraction. There is room for the improvement of virtualization technologies to reduce

the overhead for better performance. As illustrated in the graphs above, VMware had better

performance than Proxmox. Some instances were unusual especially in the case of 64 MB with

write, rewrite and random write where proxmox performed better than VMware

In the case of large file sizes, the Proxmox had the worst performance. In most of the cases for

a 1 GB file size, the proxmox performance was three times poorer than VMware. For smaller

file sizes, Proxmox performed better, but VMware had less overhead. For all kinds of reading

Proxmox had better performance.

4.3.1.8 Consolidated Iozone results

Iozone tests performed are either write or read. Write tests include write, re-write, random

write, record rewrite, forward write and re-forward write whereas read tests include reading,

0

500

1 000

1 500

2 000

2 500

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Random Write

Vmware Proxmov

67

re-read, random read, backward read, stride read, forward read, re-forward read. All the write

and read test results are tabulated in different file sizes.

4.3.1.9 Write performance (consolidated)

Iozone writes performance tests were consolidated, and the percentage of Proxmox and

VMware was calculated. The sum of all Iozone write tests was added converted into a

percentage. Bare Metal was a base to calculate the percentage of write for Proxmox and

VMware. The values are given in table 15 in percentages.

Table 15: Consolidated Write performance of Iozone test

Table 15: Write performance tests

Size of File Proxmox VMware

1 MB 62.0 % 92.4 %

64 MB 78.1 % 57.3 %

128MB 75.1 % 95.5 %

256MB 68.5 % 88.5 %

512MB 66.4 % 85.7 %

1GB 36.2 % 83.8 %

The consolidated graph for Iozone writes test presented regarding percentage.

Figure 17: write performance

0%

20%

40%

60%

80%

100%

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

Block Size

Write Performance

Vmware Proxmov

68

In almost all the file size, VMware has had better performance compared to Proxmox. For a

file size of 64 MB, Proxmox had 89% performance, and VMware was at 68%. In case of

VMware with a file size of 1 GB, the performance was 86% and was more than twice as fast

compared to Proxmox. VMware shows the best performance for 128 MB file size.

4.3.1.10 Read performance (Consolidated)

Read performance for Iozone tests for Proxmox and VMware were consolidated and analyzed.

Iozone read tests were added, and the calculation for Proxmox and VMware percentage was

obtained using Bare Metal as a base. Table 16 shown below with figures in percentages.

Table 16: Read performance tests

Sizes of file Proxmox VMware

1 MB 66.5 % 92.1 %

64 MB 83.2 % 100 %

128MB 78.4 % 100 %

256MB 68.8 % 86.8 %

512MB 68.9 % 84.5 %

1GB 68.5 % 82.5 %

Consolidated Iozone read test are in graph form below:

69

Figure 18: Consolidated read performance

4.3.2 Disk conclusion

VMware outperformed Proxmox in all Iozone file sizes for consolidated read performance. 64

MB and 128 MB files sizes for VMware performance were identical to the Bare Metal system.

In a 1 MB file size, Proxmox had a 66% performance rate compared to Bare Metal. Reference

to (Ha et al., 2016, Xavier et al., 2015, Chen et al., 2016, Li et al., 2013) reveals that the results

obtained here are similar and follow the same protocols in terms of measuring disk

performance.

4.4 CPU

While increasing the traffic, the CPU utilization is growing almost linearly. It means that the

system behaviour is predictable regarding CPU utilization. On the contrary, the slopes vary for

different core setups. System behaviour can be divided into low and high traffic scenarios based

on the intersection point. The 16 core setup has poor overall performance. For the low traffic

environment, the 12 core setup would be the best replacement for the non-virtualized

environment. As regards the high traffic scenario, the six core setup has the lowest CPU

utilization, even lower than the non-virtualized system.

Moreover, it is capable of handling more traffic. Therefore, it seems better to have several

instances with fewer CPU cores for high traffic loads. The results below are in accordance to

0%

20%

40%

60%

80%

100%

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

Block Size

Read Performance

Vmware Proxmov

70

results from other authors, (Gupta et al., 2006, Hwang et al., 2013, Wang and Varela, 2011)

and it can be seen that they follow the same format.

4.4.1 Vmware

4.4.1.1 CPU utilization

Figure 21 shows CPU utilization for different core setups. As can be seen, CPU utilizations

differ depending on the number of cores.

Figure 19: VMware - CPU utilization

4.4.1.2 Average response time

Figure 22 shows the average response times for different core setups. While increasing the

traffic, the average response times are growing exponentially. As it can be observed, the six

core setup performed the best among virtualized scenarios regarding average response time

and handling the maximum traffic load.

71

Figure 20: VMware - Average response time

4.4.2 Proxmox

CPU utilization for Proxmox also shows an almost linear pattern. The values are much higher

than in the non-virtual scenario. This fact affects the maximum traffic which could be handled

by the system. Among the practical scenarios, there is also an intersection point in CPU

utilization, but in a higher traffic range than for VMware.

The 12 and the 16 core setups had quite similar behaviour. However, the 16 core setup would

be a better replacement for the non-virtualized environment since it performed better regarding

maximum traffic, and the CPU utilization difference is insignificant. The six core setup has a

high CPU utilization, and it would only be a good option for high traffic loads because it shows

less CPU utilization in comparison with the 16 core setup.

4.4.2.1 CPU utilization

Figure 23 shows CPU utilization for different core setups.

72

Figure 21:Proxmox - CPU utilization

4.4.2.2 Average response time

Figure 22 shows the average response times measured for different core setups. Average

response times follow the exponential pattern as the traffic increases. The 16 core setup

has the best performance among virtualized scenarios regarding average response time.

The 12 core setup has a better response time in low traffic, while the six-core setup

performed better in a high traffic. However, the non-virtualized system had always

lower response time.

Figure 22: Proxmox - Average response time

4.4.3 Result summary

Since the application is CPU-dependent, availability of CPU resources becomes more vital for

higher traffic loads. Moreover, the system also must perform the handling and scheduling of

the CPU resources simultaneously. The experimental measurements have shown that the six

73

core setup provides the best performance for high traffic. This is most probably caused by less

fight over the CPU resources (Ramalho and Neto, 2016).

Differences in performance behaviour between the two hypervisors were noticeable. The

significance of this finding lies in identifying the strengths and weaknesses of each hypervisor.

Thus telecommunication companies can use this information to select and employ the most

suitable hypervisor based on the requirements.

Results of the experiments are summarized below. Three traffic loads were selected from the

middle of the traffic spectrum since the system performs better and is more stable in that range.

The following tables provide the comparison of results

4.4.3.1 Various CPU core setups

Table 17: VMware- CPU utilization overview

 2000 [req/s] 3500 [req/s] 5000 [req/s]

The 16 core setup 22% 35% 48%

The 12 core setup 21% 31% 43%

The six core setup 24% 33% 42%

Table 18:Proxmox- CPU utilization overview

 2000 [req/s] 3500 [req/s 5000 [req/s]

the 16 core setup 25% 41% 58%

the 12 core setup 25% 42% 58%

the six core setup 29% 50% 65%

Table 19: VMware- Response time overview

 2000 [req/s] 3500 [req/s] 5000 [req/s]

the 16 core setup 3ms 4ms 7ms

the 12 core setup 3ms 5ms 8ms

the six core setup 2ms 4ms 6ms

74

Table 20: Proxmox- Response time overview

 2000 [req/s] 3500 [req/s] 5000 [req/s]

the 16 core setup 3ms 6ms 10ms

the 12 core setup 4ms 8ms 17ms

the six core setup 4ms 9ms 14ms

4.4.4 CPU Conclusion

This master thesis presents a comparison study of different virtualization technologies and their

impacts on performance Performance tests were conducted in virtualized environments in order

to investigate the effects of virtualization. Moreover, various testbed configurations were used

to clearly distinguish which of the hypervisors better complies with the requirements of cloud

computing.

Two questions were formulated to get a clear answer on the CPU configuration performance:

How does virtualization impact the response time and CPU utilization of telecommunication

services?

In order to obtain comparable statistical data from both virtualized and non-virtualized systems,

the same number of CPU cores and RAM was used during the tests. As can be seen from the

tables above, virtualization adds overheads to both CPU utilization and response time.

Which hypervisor has better performance regarding migration, response time, and CPU

utilization?

VMware demonstrated better performance regarding CPU utilization and response time.

Therefore, VMware would be a better choice for telecommunication services sensitive to CPU

resources and response time. On the contrary, Proxmox has shown less downtime in

comparison to VMware, which makes it more suitable for large environments where

maintenance, fault-tolerance, and manageability are essential. The work of (Li et al., 2013)

indicates that there is an agreement in terms of results obtained. Many other authors have

obtained similar results, and outcomes follow the same principle (Morabito, 2017, Ramalho

and Neto, 2016).

75

4.5 MEMORY

4.5.1 Ram speed

Results for ramspeed are shown below. Ramspeed test was repeated 25 times using a script for

data reliability. The test was done using exponential of 2 KB block size with a maximum of 2

GB. Test results were calculated into average and converted in the following graphs. The

results below are in accordance to results from other authors (Wang et al., 2015, Wu et al.,

2016), they agree with the type of data obtained for memory performance measurement.

4.5.2 Integer and Writing

Figure 23: Ram speed average integer and writing

0
5 000

10 000
15 000
20 000
25 000
30 000
35 000
40 000

1 kb 16 kb 256 kb 1 Mb 4 Mb 16 Mb32 Mb64 Mb 512
Mb

1GB 2GB

M
B/

S

Block Size

Interger and Writting

Vmware Proxmov

76

4.5.3 Integer and Reading

Figure 28: Ramspeed average integer and reading

4.5.4 Float and Writing

Figure 24: Ramspeed average float and writing

0
5 000

10 000
15 000
20 000
25 000
30 000
35 000
40 000

1 kb 16 kb 256 kb 1 Mb 4 Mb 16 Mb32 Mb64 Mb 512
Mb

1GB 2GB

M
B/

S

Block Size

Interger and Reading

Vmware Proxmov

0
5 000

10 000
15 000
20 000
25 000
30 000
35 000
40 000

1 kb 16 kb 256 kb 1 Mb 4 Mb 16 Mb32 Mb64 Mb 512
Mb

1GB 2GB

M
B/

S

Block Size

Float and Writting

Vmware Proxmov

77

4.5.5 Float and Reading

Figure 25:: float and reading average for ramspeed

4.5.6 RamSpeed test results in Discussion

Ramspeed uses four various kinds of tests that include Integer reading and writing, Float

reading and writing to measure memory performance. Virtualization technologies for Proxmox

and VMware resembled almost the same performance as compared to physical servers.

 The performance of both was different with different memory block sizes. With a block size

smaller than 1 MB, Proxmox performs better than VMware. Block size larger than 1 MB,

VMware performance was better than Proxmox. In the case of float and writing with 4 MB

block size, Proxmox and VMware performance were almost the same.

4.5.7 Overall Ram speed results

Writing and reading results for Proxmox and VMware were calculated into a consolidated

percentage.

4.5.7.1 Integer and float writing performance (Consolidated)

Table 21 shows the Proxmox and VMware performance for writing.

0

10 000

20 000

30 000

40 000

1 kb 16 kb 256 kb 1 Mb 4 Mb 16 Mb 32 Mb 64 Mb 512
Mb

1GB 2GB

M
B/

S

Block Size

Float and Reading

Vmware Proxmov

78

Table 21: integer and float writing results

Size of File Proxmox VMware

1 KB 93.0 % 87.6 %
16 KB 94.6 % 89.3 %

256 KB 90.8 % 87.6 %
1 MB 76.6 % 80.0 %
4 MB 75.4 % 78.7 %
16 MB 71.5 % 81.6 %
32 MB 70.6 % 84.6 %
64 MB 69.8 % 83.7 %

512 MB 70.3 % 86.3 %
1 GB 68.5 % 86.2 %
2 GB 67.5 % 84.8 %

Figure 26: Integer and Float writing

Proxmox writing performance in small block sizes was better than VMware and remained at

93%. Whereas the performance of the Proxmox with block size larger than 1 MB, remained

constant with an average of 71%. The performance of VMware with a block size smaller than

1 MB was under 91%. Continuous rise in VMware performance was observed from 1 MB

block size.

4.5.7.2 The consolidated performance of integer and float reading

Table 22 shows Proxmox and VMware performance for reading.

0%

20%

40%

60%

80%

100%

1 kb 16 kb 256 kb 1 Mb 4 Mb 16 Mb 32 Mb 64 Mb 512
Mb

1GB 2GB

M
B/

S

Block size

Interger and Float write Performance

Vmware Proxmov

79

Table 22: integer and float reading results

File size Proxmox VMware
1 KB 93.8 % 88.6 %
16 KB 95.8 % 89.1 %

256 KB 94.3 % 89.2 %
1 MB 93.6 % 90.4 %
4 MB 85.9 % 88.9 %
16 MB 67.1 % 84.7 %
32 MB 69.4 % 85.3 %
64 MB 71.6 % 85.7 %

512 MB 71.9 % 85.6 %
1 GB 72.3 % 85.7 %
2 GB 71.4 % 84.4 %

The performance of Proxmox and VMware is shown in Figure 29

Figure 27: Integer and Float reading

4.5.8 Memory conclusion

Consolidated Proxmox performance was better when compared with VMware in smaller block

size for reading in a ram speed test. VMware performance remained 86% in larger block sizes.

In larger block sizes, Proxmox remained at 71%. Reference to (Huber et al., 2011, Wang and

Varela, 2011) reveals that the results obtained here are similar and follow the same protocols

in terms of measuring memory performance.

0%

20%

40%

60%

80%

100%

1 kb 16 kb 256 kb 1 Mb 4 Mb 16 Mb 32 Mb 64 Mb 512
Mb

1GB 2GB

M
B/

S

Block size

Interger and Float Read Performance

Vmware Proxmov

80

4.6 CHAPTER SUMMARY

Chapter 4 presented data in graphical view as well as analysis and discussion. Because of

variation in data, results from Iozone and Ram Speed were collected after a large number of

runs. For UnixBench, the data was collected after three runs as it had a small number in

variation. Perl scripts helped to collect data (Wu et al., 2016). The Above gives the data transfer

capacity of the network in every one of the virtual machines. Iperf provided the measure of

data transferred at specific interims of time. Iperf yielded results of data transferred, data

transfer capacity rate, and time intervals. The results above in comparison with other authors,

it can be seen that most virtual machine workloads and results behalf in the same manner with

variations in terms of hardware and software configurations (Hwang et al., 2013, Somani and

Chaudhary, 2009b).

81

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5 INTRODUCTION

If the optimum resource utilization were taken as a factor, the virtual servers would be in the

winning situation provided that the total demands regarding resource and capacity have been

correctly outlined before the virtualization infrastructure implementation. This critical aspect was

also supported by the CPU capacity and processing load demanded by the physical and the virtual

servers where the virtual servers always demanded more resources compared to those of the

physical servers. Different approaches to virtualization resource allocation and configuration

created the difference in performance.

5.1 DISCUSSION

It was observed that the Bare Metal resembles Proxmox and VMware in most of the tests.

Comparing Proxmox and VMware, impressive results were observed. For Iozone, writing large

files, VMware was more than twice as fast as Proxmox. It was observed that Proxmox was

more than 31% better than VMware in writing 64 MB files. VMware performs better than

Proxmox in reading. VMware was 21 to 26% better than Proxmox for smaller file sizes.

VMware was 41% better than Proxmox for 1 MB file.

With ramspeed memory performance with a block size smaller than 5 MB, Proxmox performs

5 to 8% better than VMware. Block size larger than 5 MB, VMware performs 16 to 26% better

than Proxmox. VMware was 31 to 51% better than Proxmox In the case of writing. UnixBench

was used to measure CPU performance. VMware performed better than Proxmox In overall

performance. VMware performed twice better than Proxmox in some cases. While Proxmox

had better results than VMware in some instances.

In general, high overheads were measured in Proxmox for all setups, while overhead values

observed in VMware were lower. An obvious difference between VMware and Proxmox

behaviour was observed during the six core setup tests. Overall, the six core setup had the best

performance among all setups using VMware, while it has the worst performance in Proxmox.

Two scenarios were used for the comparison of different test cases. The first scenario is a

comparison of the 16 and 12 core setups, which reflects the impact of a different number of

82

allocated CPU cores in VMs. Second is the comparison of the 12 and six-core setups, which

shows the effect of using multiple VMs with an even number of allocated CPU resources.

Analysis of the test results has shown that a decreasing number of allocated CPU cores causes

a higher response time in both hypervisors. Although CPU utilization in Proxmox was not

noticeably affected, considerably less CPU utilization was observed in VMware. Using

multiple VMs in VMware decreased the response time and CPU overhead. However, running

the same tests in Proxmox caused increased CPU utilization. Additionally, response time was

shorter for high traffic loads, and it was increased for low traffic loads.

Iperf was implemented to measure the performance of the computer network. The maximum

bandwidth clients were connected on the network, and maximum throughput was measured in

TCP data transfer. Jitter and datagram loss on the network along with maximum bandwidth

and throughput was measured in UDP data transfer mode. The data for the two protocols were

also compared.

A small private network was built with virtual clients and a single virtualized server. It was

seen that the performance was very close to the level of the physical environment. On VMware

experimental setup, some deviation was noticed. Abnormal datagram loss occurred on

VMware, which signified that data transfer was not reliable on the network in UDP. Jitter,

which is the amount of variation in latency/response time on the network, was found to be

higher on VMware than in Proxmox.

Transmitting data over network connections requires special connections in a virtualized

environment since the communications to the network utilize physical NIC of the host system.

The overhead caused more data transmissions can be seen obviously in the results of the

network performance tests. Network performances in virtual machines running under Proxmox

Server are about 5 to 56% higher than a similar design in a physical setup. With VMware ESXi,

the performance is around 36 to 71 % higher contrasted with the physical environment.

5.2 FUTURE WORK

It would be very compelling to continue this research for other hypervisors such as Citrix and

Hyper-V. The results of the additional tests would show how different CPU resource

scheduling and network configurations are implemented in the hypervisors. Particular

implementation can have a direct effect on the performance of telecommunication services.

83

Since the performance of the services is considerably improved by using multiple VMs in

VMware, it would be exciting to increase the number of VMs on each server. By repeating the

tests, it would be possible to investigate potential virtualization benefits regarding CPU

utilization. Another exciting experiment could be focused on identification of the maximum

number of simultaneously running VMs that would allow keeping the system stable from CPU

and network resources point of view. It would be nice to see how other various tests performed

using different hardware and operating systems.

5.3 CONCLUSION

This section concludes by answering the research question. Each chapter is also summarized.

• What has been done in the literature to measure the performance of a virtual

environment effectively?

To facilitate this, a comprehensive literature review was done in chapter 2, and the

following parameters were identified to measure virtualization performance which was

namely CPU, Disk, Memory, and Network (Reddy and Rajamani, 2014, Perera and

Keppitiyagama, 2011)

• How to set a virtualized environment in order to test different performance

configurations?

In this study, datacentre purposed servers together with Type 1 (bare metal

hypervisors), VMware ESXi 5.5, and Proxmox 5.3 were be used to evaluate

virtualization performance. The experimental environment was conducted on server

Cisco UCS B200 M4 which was the host machine and the virtual environment that is

encapsulated within the physical layer which hosts the guest virtual machines consists

of virtual hardware, Guest OSs, and third-party applications. The host server consists

of virtual machines with one operating system, CentOS 7 64 bit. For performance

evaluation purposes, each guest operating system was configured and allocated the

same amount of virtual system resources. This study developed a virtual environment

and experimental design to conducted tests on different configuration (Ali, 2015,

Martinez et al., 2009)

• How to measure the performance of different configurations in a virtualized

environment?

84

This study was able to use Different Workload/benchmarking tools for Network, CPU,

Memory and Disk performance, namely; Iperf, Unibench, Ramspeed, and IOzone,

respectively to simulate the workload as well as measure the various configurations on

the virtual environment(Hwang et al., 2013, Somani and Chaudhary, 2009a, Babu et

al., 2014, Walters et al., 2008b).

It is easier to figure out the performance of virtualized environments on private clouds.

Differentiating tests between real hardware and software is challenging because measuring

hardware performance means measuring virtualization overheads. Virtualization overhead

depends on the software implementation of the hypervisor, meaning measuring software

performance as well. The primary objective of this project was to evaluate virtualization

performance as well as to determine which virtual machine configuration provides effective

and optimal performance.

It can be seen that is vital to have dynamic hardware configuration, and the configuration

described in Chapter 3, section 3.3.1 proves to provide virtual machines with optimal resources

for performance in a private cloud and as well as capacity growth and this can be proven from

the various performance tests performed. The resources allocation to the virtual machines

proves, and the full performance capabilities of a virtual machine are only as good as the

hardware it sits on with adequate resources. VMware ESXi provided optimal performance

throughout the tests, which can be recommended when providing a private cloud solution.

Chapter 1 introduced us to Virtualization and the cloud. The research problem, the purpose of

the study, the research question, objectives, and the structure of the thesis are described in this

chapter. Chapter 2 discussed various literature in cloud computing and virtualization

computing and were thoroughly covered and explained. It was understood that the basis if the

cloud is the use of virtualization technology in information technology infrastructure. After

considering factors such as compatibility, cost, and features and performance from the findings

on the literature review, VMware EXSI 5.5 and Proxmox were selected for study and

experimentation. The first objective has been to review the previous work which has been done

on that subject. To be able to review on the previous work, it has been outlined at first the

primary concept associate to virtualization and cloud computing in the technical review. After

the technical review, the literature review has permitted to critic the previous work on

virtualization technology and cloud computing. The different articles review was showing that

85

much progress has been made to try to uniform cloud computing and improve virtualization

performances.

The second objective was to design and build and develop a virtualized environment to be able

to test the performances of different performances. This setup can be seen in the chapter. The

methodology used in the study for Chapter 3 was discussed. The mixed research methodology

was adopted has both quantitative and qualitative research methodologies so to obtain accurate

and relevant results from the study. Qualitative data from the literature was obtained using

qualitative research methodology and made qualitative comparisons. Mixed research

methodology allowed us to study and analyze the performance for VMware ESXi 5.5 and

Proxmox on CentOS 7. Chapter 4 presented detailed experimental results and analysis on the

performance of the different configuration on the operating system running on the different

hypervisors (VMware and Proxmox).

Chapter 4 also met the third objective, which was to evaluate the performances of different

configurations. The different instances have been tested for CPU performances, memory,

network performances, as well as hard drive performances. Also, it has been evaluating the

difference of performances between VMware and Proxmox.

Satisfactory results were obtained in this study by answering the research question. There were

Performance differences in different virtualization systems through different configurations.

For memory and disk, the test outcomes demonstrated measurements of overhead is little. For

Processor and network, was more perplexing and hence the overhead is more significant. At

the point of the overall performance of a virtual machine running in VMware ESXi Server is

contrasted with a conventional system, virtualization increased by 33% in terms of

performance.

It is not easy to provide a real system configuration. In such cases, workload/benchmarks could

provide close to real application systems for better results. The tests demonstrate that

virtualization relies on the host system and the hypervisor. Given the tests, both VMware ESXi

and Proxmox servers can provide Optimal performance.

There are various sections that overall performance depends on. One section that influences

the performance is the drivers utilized by the OS. On the off chance that a virtual device

contrasts in two virtualization products, additionally the driver utilized by the virtual machine

86

OS is unique. This distinction, at that point, influences the performance of the virtual machine

directly. An important region where the impact of lower performance ought to be inspected is

the production environment. After virtualization overhead is expelled from the overall system

resources, the number of virtual machines in a single host system can be chosen. These

machines will then keep running on the rest of the resources. The more there are several virtual

machines, the more valuable virtualization can be. In zones, for example, testing environments

where the requirements need high-performance server virtualization is the most optimal option.

These results are consistent with what has been done by other authors (Walters et al., 2008a,

Varrette et al., 2013, Perera and Keppitiyagama, 2011).

The prerequisite of this conclusion is that all 16 logical processors are occupied by vCPUs. For

tightly coupled CPU-intensive workloads, the total number of VMs, vCPUs per VM, and

memory allocated per VM become critical for performance. We obtained the best performance

when the ratio of the total number of vCPUs to processors is 2. The experimental measurements

have shown that the six core setup provides the best performance for high traffic Doubling the

memory size on each VM, for example from 1024MB to 2048MB, gave us at most 15%

improvement of performance when the ratio of total vCPUs to logical processors is 2. As

regards the high traffic scenario, the six core setup has the lowest CPU utilization, even lower

than the non-virtualized system.

Moreover, it is capable of handling more traffic. Therefore, it seems better to have several

instances with fewer CPU cores for high traffic loads. The total virtual memory of all VMs

allocated to a physical machine has to be less than the physical memory of the machine to avoid

poor performance due to swapping. From the Network results, there is less bandwidth available

allocated for the clients resulting in fewer throughputs when the numbers of active Clients

increase. When there is more than one client active on the network and sending data, the

throughput of UDP is slightly higher than TCP throughput. It can be predicted that the higher

bandwidth led to higher throughput in UDP data transfer. From the results, we can see that

UDP is efficient when the clients spend fewer amounts of data, but when data is sent in bulk,

then TCP can be better than UDP VMware results comparing them to with Proxmox. The

optimal requests sent by the client before server saturation is when there are three clients. The

consolidated write performance for Iozone test has shown the comparison of Proxmox and

VMware with Bare Metal. VMware has shown better performance in almost all the file size as

compared with Proxmox. Proxmox has shown 79% performance, and VMware was at 60%

87

when compared to Bare Metal with 64 MB file size. The performance of VMware in case of 1

GB file size was 86%, which was more than twice fast while compared with Proxmox. In the

case of 128 MB file size, VMware outperformed the Proxmox in all file sizes, showing it has

the best performance. VMware performance was identical to the Bare Metal system in

consolidated read performance of for file size 64 MB and 128 MB. While the rest of the cases,

VMware performance was better than Proxmox has shown 66% performance while compared

with Bare Metal in 1 MB file size.

5.4 RECOMMENDATIONS

Cloud computing brings benefits for service providers and users because of its characteristics:

such as pay for use, on-demand, and scalable computing. Managing Virtualization

configurations is a critical task to accomplish effective sharing of physical resources and

scalability (Ha et al., 2016). The scale of the workloads submitted to a cloud environment is

much larger than the benchmarks in our experiments; the difference of performance, resource

consumption, or cost on different virtual configurations is essential. Therefore, it is crucial to

know the impact of different virtual configurations in a cloud environment for users, service

providers, and private cloud owners. Our findings help us decide appropriate methods to deploy

services hosted both on public and private clouds as well as the VM configuration in terms of

dedicated resources(Jiang et al., 2014). Virtualization is an essential factor in cloud computing

because it provides a way to analyze, verify, and configure computing resources from clouds

and dynamically to assign or to reassign virtual resources. This research will help private cloud

administrators, owners, and users decide how to configure virtual resources for given

workloads to optimize performance.

88

REFERENCES

A VOUK, M. 2008. Cloud computing–issues, research and implementations. CIT. Journal of

Computing and Information Technology, 16, 235-246.

AHMED, M., ZAHDA, S. & ABBAS, M. Server consolidation using OpenVZ: Performance

evaluation. 2008 11th International Conference on Computer and Information

Technology, 2008. IEEE, 341-346.

ALI, E. 2015. Optimizing Server Resource by Using Virtualization Technology. Procedia

Computer Science, 59, 320-325.

ALI, I. & MEGHANATHAN, N. 2011. Virtual Machines and Networks-Installation,

Performance Study, Advantages and Virtualization Options. arXiv preprint

arXiv:1105.0061.

BABU, A., HAREESH, M., MARTIN, J. P., CHERIAN, S. & SASTRI, Y. System

performance evaluation of para virtualization, container virtualization, and full

virtualization using xen, openvz, and xenserver. Advances in Computing and

Communications (ICACC), Fourth International Conference on, 2014. IEEE, 247-250.

BENEVENUTO, F., FERNANDES, C., SANTOS, M., ALMEIDA, V., ALMEIDA, J.,

JANAKIRAMAN, G. J. & SANTOS, J. R. Performance models for virtualized

applications. International Symposium on Parallel and Distributed Processing and

Applications, 2006. Springer, 427-439.

BHUKYA, D. P., RAMACHANDRAM, S. & SONY, A. R. Evaluating performance of

sequential programs in virtual machine environments using design of experiment.

Computational Intelligence and Computing Research (ICCIC), 2010 IEEE

International Conference on, 2010. IEEE, 1-4.

BUYYA, R., GARG, S. K. & CALHEIROS, R. N. SLA-oriented resource provisioning for

cloud computing: Challenges, architecture, and solutions. Cloud and Service

Computing (CSC), 2011 International Conference on, 2011. IEEE, 1-10.

89

CHEN, Q., LIANG, L., XIA, Y. & CHEN, H. Mitigating sync amplification for copy-on-write

virtual disk. 14th {USENIX} Conference on File and Storage Technologies ({FAST}

16), 2016. 241-247.

CHEN, W.-N. & ZHANG, J. A set-based discrete PSO for cloud workflow scheduling with

user-defined QoS constraints. Systems, Man, and Cybernetics (SMC), 2012 IEEE

International Conference on, 2012. IEEE, 773-778.

CHENG, L., WANG, C. & DI, S. Defeating Network Jitter for Virtual Machines. 2011 Fourth

IEEE International Conference on Utility and Cloud Computing, 5-8 Dec. 2011 2011.

65-72.

CHIUEH, S. N. T.-C. & BROOK, S. 2005. A survey on virtualization technologies. Rpe

Report, 142.

DALL, C., LI, S.-W., LIM, J. T., NIEH, J. & KOLOVENTZOS, G. ARM virtualization:

performance and architectural implications. Proceedings of the 43rd International

Symposium on Computer Architecture, 2016. IEEE Press, 304-316.

DESHANE, T., SHEPHERD, Z., MATTHEWS, J., BEN-YEHUDA, M., SHAH, A. & RAO,

B. 2008. Quantitative comparison of Xen and KVM. Xen Summit, Boston, MA, USA,

1-2.

ELSAYED, A. & ABDELBAKI, N. Performance evaluation and comparison of the top market

virtualization hypervisors. 2013 8th International Conference on Computer

Engineering & Systems (ICCES), 26-28 Nov. 2013 2013. 45-50.

EMEAKAROHA, V. C., BRANDIC, I., MAURER, M. & BRESKOVIC, I. SLA-aware

application deployment and resource allocation in clouds. Computer Software and

Applications Conference Workshops (COMPSACW), 2011 IEEE 35th Annual, 2011.

IEEE, 298-303.

ENBERG, P. 2016. A Performance Evaluation of Hypervisor, Unikernel, and Container

Network I/O Virtualization.

90

GONG, C., LIU, J., ZHANG, Q., CHEN, H. & GONG, Z. The characteristics of cloud

computing. Parallel Processing Workshops (ICPPW), 2010 39th International

Conference on, 2010. IEEE, 275-279.

GSCHWANDTNER, P., FAHRINGER, T. & PRODAN, R. Performance analysis and

benchmarking of the intel scc. 2011 IEEE International Conference on Cluster

Computing, 2011. IEEE, 139-149.

GULATI, A., MERCHANT, A. & VARMAN, P. J. mClock: Handling Throughput Variability

for Hypervisor IO Scheduling. OSDI, 2010. 1-7.

GUO, J., LIU, F., LUI, J. C. & JIN, H. 2016. Fair network bandwidth allocation in IaaS

datacenters via a cooperative game approach. IEEE/ACM Transactions on Networking,

24, 873-886.

GUPTA, D., CHERKASOVA, L., GARDNER, R. & VAHDAT, A. Enforcing performance

isolation across virtual machines in Xen. Proceedings of the ACM/IFIP/USENIX 2006

International Conference on Middleware, 2006. Springer-Verlag New York, Inc., 342-

362.

HA, S.-H., VENZANO, D., BROWN, P. & MICHIARDI, P. On the impact of virtualization

on the I/O performance of analytic workloads. Cloud Computing Technologies and

Applications (CloudTech), 2016 2nd International Conference on, 2016. IEEE, 31-38.

HAUSWIRTH, M., DIWAN, A., SWEENEY, P. F. & MOZER, M. C. Automating vertical

profiling. ACM SIGPLAN Notices, 2005. ACM, 281-296.

HUBER, N., VON QUAST, M., HAUCK, M. & KOUNEV, S. Evaluating and Modeling

Virtualization Performance Overhead for Cloud Environments. CLOSER, 2011. 563-

573.

HWANG, J., ZENG, S., WU, F. Y. & WOOD, T. A component-based performance comparison

of four hypervisors. 2013 IFIP/IEEE International Symposium on Integrated Network

Management (IM 2013), 27-31 May 2013 2013. 269-276.

91

JIANG, J. M., ZHU, H., LI, Q., ZHANG, S., GONG, P. & HONG, Z. Configuration of Services

Based on Virtualization. 2014 Theoretical Aspects of Software Engineering

Conference, 1-3 Sept. 2014 2014. 177-184.

JOY, A. M. Performance comparison between Linux containers and virtual machines. 2015

International Conference on Advances in Computer Engineering and Applications, 19-

20 March 2015 2015. 342-346.

KIM, I., KIM, T. & EOM, Y. I. NHVM: Design and Implementation of Linux Server Virtual

Machine Using Hybrid Virtualization Technology. 2010 International Conference on

Computational Science and Its Applications, 23-26 March 2010 2010. 171-175.

KOVARI, A. & DUKAN, P. KVM & OpenVZ virtualization based IaaS open source

cloud virtualization platforms: OpenNode, Proxmox VE. 2012 IEEE 10th Jubilee

International Symposium on Intelligent Systems and Informatics, 20-22 Sept. 2012

2012. 335-339.

KUMAR, D. & SINGH, A. S. A survey on resource allocation techniques in cloud computing.

International Conference on Computing, Communication & Automation, 15-16 May

2015 2015. 655-660.

KUMAR, S. & M, V. 2015. Cloud Computing: Performance Study in an Eucalyptus Private

Cloud. International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com Certified Journal, 5, 9.

LEE, B. C. & BROOKS, D. M. Accurate and efficient regression modeling for

microarchitectural performance and power prediction. ACM SIGOPS Operating

Systems Review, 2006. ACM, 185-194.

LI, J., WANG, Q., JAYASINGHE, D., MALKOWSKI, S., XIONG, P., PU, C., KANEMASA,

Y. & KAWABA, M. Profit-based experimental analysis of IaaS cloud performance:

impact of software resource allocation. Services Computing (SCC), 2012 IEEE Ninth

International Conference on, 2012. IEEE, 344-351.

LI, J., WANG, Q., JAYASINGHE, D., PARK, J., ZHU, T. & PU, C. Performance Overhead

among Three Hypervisors: An Experimental Study Using Hadoop Benchmarks. 2013

IEEE International Congress on Big Data, June 27 2013-July 2 2013 2013. 9-16.

92

LI, Y., LI, W. & JIANG, C. A survey of virtual machine system: Current technology and future

trends. Electronic Commerce and Security (ISECS), 2010 Third International

Symposium on, 2010. IEEE, 332-336.

LI, Z., KIHL, M., LU, Q. & ANDERSSON, J. A. Performance Overhead Comparison between

Hypervisor and Container Based Virtualization. Advanced Information Networking

and Applications (AINA), 2017 IEEE 31st International Conference on, 2017. IEEE,

955-962.

LUO, H., EGBERT, A. & STAHLHUT, T. 2012 IEEE 3rd International Conference on

Software Engineering and Service Science (ICSESS).

MAHJOUB, M., MDHAFFAR, A., HALIMA, R. B. & JMAIEL, M. A comparative study of

the current cloud computing technologies and offers. Network Cloud Computing and

Applications (NCCA), 2011 First International Symposium on, 2011. IEEE, 131-134.

MARINESCU, D. & KRÖGER, R. 2007. State of the art in autonomic computing and

virtualization. Distributed Systems Lab, Wiesbaden University of Applied Sciences, 1-

24.

MARTINEZ, J. C., WANG, L., ZHAO, M. & SADJADI, S. M. Experimental study of large-

scale computing on virtualized resources. Proceedings of the 3rd international

workshop on Virtualization technologies in distributed computing, 2009. ACM, 35-42.

MATTHEWS, J. N., HU, W., HAPUARACHCHI, M., DESHANE, T., DIMATOS, D.,

HAMILTON, G., MCCABE, M. & OWENS, J. Quantifying the performance isolation

properties of virtualization systems. Proceedings of the 2007 workshop on

Experimental computer science, 2007. ACM, 6.

MELL, P. & GRANCE, T. 2009. The NIST definition of cloud computing. National institute

of standards and technology, 53, 50.

MOHAN, N. R. R. & RAJ, E. B. Resource Allocation Techniques in Cloud Computing --

Research Challenges for Applications. 2012 Fourth International Conference on

Computational Intelligence and Communication Networks, 3-5 Nov. 2012 2012. 556-

560.

93

MORABITO, R. 2017. Virtualization on internet of things edge devices with container

technologies: a performance evaluation. IEEE Access, 5, 8835-8850.

MORABITO, R., KJÄLLMAN, J. & KOMU, M. Hypervisors vs. Lightweight Virtualization:

A Performance Comparison. 2015 IEEE International Conference on Cloud

Engineering, 9-13 March 2015 2015. 386-393.

OVERBY, M. 2014. A Survey of Virtualization Performance in Cloud Computing. University

of Minnesota, Duluth, MN, USA.

PADALA, P., ZHU, X., WANG, Z., SINGHAL, S. & SHIN, K. G. 2007. Performance

evaluation of virtualization technologies for server consolidation. HP Labs Tec. Report.

PERERA, P. M. & KEPPITIYAGAMA, C. A performance comparison of hypervisors.

Advances in ICT for Emerging Regions (ICTer), 2011 International Conference on,

2011. IEEE, 120-120.

PRUEKSAAROON, S., VARAVITHYA, V. & VANNARAT, S. An implementation of

virtualization cluster: Extending Beowulf cluster using virtualization cluster

management and image storage. 2009 6th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology, 6-9 May 2009 2009. 700-703.

RAMALHO, F. & NETO, A. Virtualization at the network edge: A performance comparison.

2016 IEEE 17th International Symposium on A World of Wireless, Mobile and

Multimedia Networks (WoWMoM), 21-24 June 2016 2016. 1-6.

RAO, V. V. & RAO, M. V. 2015. A survey on performance metrics in server virtualization

with cloud environment. Journal of Cloud Computing, 2015.

REDDY, P. V. V. & RAJAMANI, L. 2014. Evaluation of different hypervisors performance

in the private cloud with SIGAR framework. International Journal of Advanced

Computer Science and Applications, 5.

RIMAL, B. P., CHOI, E. & LUMB, I. A taxonomy and survey of cloud computing systems.

INC, IMS and IDC, 2009. NCM'09. Fifth International Joint Conference on, 2009. Ieee,

44-51.

94

SLIGH, D. & OWUSU, T. D. 2014. CONSIDERATIONS FOR EMPLOYING SERVER

VIRTUALIZATION TECHNOLOGIES. Issues in Information Systems, 15.

SMITH, J. E. & NAIR, R. 2005. The architecture of virtual machines. Computer, 38, 32-38.

SOMANI, G. & CHAUDHARY, S. Application performance isolation in virtualization. Cloud

Computing. CLOUD'09. IEEE International Conference on, 2009a. IEEE, 41-48.

SOMANI, G. & CHAUDHARY, S. Application Performance Isolation in Virtualization. 2009

IEEE International Conference on Cloud Computing, 21-25 Sept. 2009 2009b. 41-48.

SRITRUSTA, S., NOBUO, F., TORU, N. & PRAMADIHANTO, D. A comparative study of

open source softwares for virtualization with streaming server applications. 2009 IEEE

13th International Symposium on Consumer Electronics, 25-28 May 2009 2009. 577-

581.

STOICUTA, F., IVANCIU, I., MINZAT, E., RUS, A. B. & DOBROTA, V. An OpenNetInf-

based cloud computing solution for cross-layer QoS: Monitoring part using iOS

terminals. Electronics and Telecommunications (ISETC), 2012 10th International

Symposium on, 2012. IEEE, 167-170.

STROBL, M., KUCERA, M., FOELDI, A., WAAS, T., BALBIERER, N. & HILBERT, C.

Towards automotive virtualization. 2013 International Conference on Applied

Electronics, 10-12 Sept. 2013 2013. 1-6.

TSUGAWA, M., MATSUNAGA, A. & FORTES, J. User-level virtual network support for

sky computing. 2009 Fifth IEEE International Conference on e-Science, 2009. IEEE,

72-79.

VARRETTE, S., GUZEK, M., PLUGARU, V., BESSERON, X. & BOUVRY, P. HPC

Performance and Energy-Efficiency of Xen, KVM and VMware Hypervisors. 2013

25th International Symposium on Computer Architecture and High Performance

Computing, 23-26 Oct. 2013 2013. 89-96.

VOORSLUYS, W., BROBERG, J., VENUGOPAL, S. & BUYYA, R. 2009. Cost of Virtual

Machine Live Migration in Clouds: A Performance Evaluation. CloudCom, 9, 254-265.

95

WALTERS, J. P., CHAUDHARY, V., CHA, M., GUERCIO JR, S. & GALLO, S. A

comparison of virtualization technologies for HPC. Advanced Information Networking

and Applications. AINA. 22nd International Conference on, 2008a. IEEE, 861-868.

WALTERS, J. P., CHAUDHARY, V., CHA, M., S, G., JR. & GALLO, S. A Comparison of

Virtualization Technologies for HPC. 22nd International Conference on Advanced

Information Networking and Applications (aina 2008), 25-28 March 2008 2008b. 861-

868.

WANG, L., VON LASZEWSKI, G., YOUNGE, A., HE, X., KUNZE, M., TAO, J. & FU, C.

2010. Cloud computing: a perspective study. New Generation Computing, 28, 137-146.

WANG, P., GAO, R. X. & FAN, Z. 2015. Cloud computing for cloud manufacturing: benefits

and limitations. Journal of Manufacturing Science and Engineering, 137, 040901.

WANG, Q. & VARELA, C. A. Impact of Cloud Computing Virtualization Strategies on

Workloads' Performance. 2011 Fourth IEEE International Conference on Utility and

Cloud Computing, 5-8 Dec. 2011 2011. 130-137.

WU, H., REN, S., GARZOGLIO, G., TIMM, S., BERNABEU, G., CHADWICK, K. & NOH,

S. 2016. A Reference Model for Virtual Machine Launching Overhead. IEEE

Transactions on Cloud Computing, 4, 250-264.

XAVIER, M. G., DE OLIVEIRA, I. C., ROSSI, F. D., DOS PASSOS, R. D., MATTEUSSI,

K. J. & DE ROSE, C. A. A performance isolation analysis of disk-intensive workloads

on container-based clouds. 2015 23rd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, 2015. IEEE, 253-260.

YAQUB, N. 2012. Comparison of Virtualization Performance: VMWare and KVM.

YOUNGE, A. J., HENSCHEL, R., BROWN, J. T., LASZEWSKI, G. V., QIU, J. & FOX, G.

C. Analysis of Virtualization Technologies for High Performance Computing

Environments. 2011 IEEE 4th International Conference on Cloud Computing, 4-9 July

2011 2011. 9-16.

ZHANG, Q., CHENG, L. & BOUTABA, R. 2010. Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications, 1, 7-18.

96

	1 introduction
	1.1 Background
	1.2 Research problem
	1.3 Purpose of the study
	1.4 Research Question
	1.5 Objectives
	1.6 Thesis Structure graph
	1.7 THE STRUCTURE OF THE DISSERTATION:
	1.8 CHAPTER SUMMARY

	2 Introduction
	2.1 Virtualization
	2.2 Concepts of virtualization
	2.2.1 Types of Virtualization
	2.2.2 Virtualization Benefits

	2.3 types of hypervisors
	2.3.1 VMware ESXi Virtualization Technology
	2.3.2 Proxmox

	2.4 Cloud Computing
	2.4.1 Types of clouds

	2.5 Cloud computing benefits
	2.6 Performance of Virtualization in private clouds
	2.7 A combination of methods/framework
	2.8 Chapter Summary

	3 Introduction
	3.1 Measuring Virtualization Effects By Tests
	3.1.1 Test types of performance test

	3.2 Experimental Environment
	3.2.1 Host system
	3.2.1.1 Virtual machines

	3.3 Performance
	3.3.1 Network performance
	3.3.1.1 TCP Testing
	3.3.1.2 Testing UDP

	3.3.2 Disk performance
	3.3.3 Memory performance
	3.3.4 CPU performance
	3.3.5 Measurement procedure
	3.3.6 Validation
	3.3.7 Test cases in a virtualized scenario (CPU)
	3.3.8 VMware
	3.3.9 Proxmox
	3.3.10 Summary

	4 introduction
	4.1 Configurations for Hardware and Software used
	4.2 NETWORK
	4.2.1 Analysis of Network Performance
	4.2.1.1 Average bandwidth (TCP)
	4.2.1.2 Average throughput(TCP)
	4.2.1.3 Average bandwidth(UDP)
	4.2.1.4 Average throughput(UDP)
	4.2.1.5 Datagram loss in UDP
	4.2.1.6 Average jitter Test
	4.2.1.7 Maximum average request before saturation

	4.2.2 Network Conclusion

	4.3 DISK
	4.3.1 Analysis of Disk performance
	4.3.1.1 Write
	4.3.1.2 Re-Write
	4.3.1.3 Read
	4.3.1.4 Re-Read
	4.3.1.5 Random Read
	4.3.1.6 Random Write
	4.3.1.7 Discussion of Iozone test results
	4.3.1.8 Consolidated Iozone results
	4.3.1.9 Write performance (consolidated)
	4.3.1.10 Read performance (Consolidated)

	4.3.2 Disk conclusion

	4.4 CPU
	4.4.1 Vmware
	4.4.1.1 CPU utilization
	4.4.1.2 Average response time

	4.4.2 Proxmox
	4.4.2.1 CPU utilization
	4.4.2.2 Average response time

	4.4.3 Result summary
	4.4.3.1 Various CPU core setups

	4.4.4 CPU Conclusion

	4.5 MEMORY
	4.5.1 Ram speed
	4.5.2 Integer and Writing
	4.5.3 Integer and Reading
	4.5.4 Float and Writing
	4.5.5 Float and Reading
	4.5.6 RamSpeed test results in Discussion
	4.5.7 Overall Ram speed results
	4.5.7.1 Integer and float writing performance (Consolidated)
	4.5.7.2 The consolidated performance of integer and float reading

	4.5.8 Memory conclusion

	4.6 CHAPTER SUMMARY

	5 Introduction
	5.1 Discussion
	5.2 Future work
	5.3 Conclusion
	5.4 recommendations

