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ABSTRACT 

Virtualization is the main technology that powers today’s cloud computing systems. 

Virtualization provides isolation as well as resource control that enable multiple workloads to 

run efficiently on a single shared machine and thus allows servers that traditionally require 

multiple physical machines to be consolidated to a single, cost-effective physical machine 

using virtual machines or containers. Due to virtual machine techniques, the strategies that 

improve performance like hardware acceleration, running concurrent virtual machines without 

the correct proper resource controls not used and correctly configured, the problems of 

scalability as well as service provisioning (crashing response time, resource contention and 

functionality or usability) for cloud computing, emanate from the configurations of the 

virtualized system. Virtualization performance is a critical factor in datacentre and cloud 

computing service delivery. To evaluate virtualization performance as well as to determine 

which virtual machine configuration provides effective performance, how to allocate and 

distribute resources for virtual machine performance equally is critical in this research study. 

In this study, datacentre purposed servers together with Type 1 (bare metal hypervisors), 

VMware ESXi 5.5, and Proxmox 5.3 were used to evaluate virtualization performance. The 

experimental environment was conducted on server Cisco UCS B200 M4 which was the host 

machine and the virtual environment that is encapsulated within the physical layer which hosts 

the guest virtual machines consisting of virtual hardware, Guest OSs, and third-party 

applications. The host server consists of virtual machines with one operating system, CentOS 

7 64 bit. For performance evaluation purposes, each guest operating system was configured 

and allocated the same amount of virtual system resources. Various Workload/benchmarking 

tools were used for Network, CPU, Memory as well as Disk performance, namely; Iperf, 

Unibench, Ramspeed, and IOzone, respectively. In the case of Iozone, VMware was more than 

twice as fast as Proxmox. Although CPU utilization in Proxmox was not noticeably affected, 

considerably less CPU utilization was observed in VMware. While testing the memory 

performance with ramspeed, VMware performs 16 to 26% better than Proxmox. In the case of 

writing, VMware observed 31 to 51% better than Proxmox. In a network, it was observed that 

the performance on Proxmox was very close to the level of bare metal setup. The results of the 

performance tests show that the additional operations required by virtualization can be 

confirmed utilizing test programs. The number of additional operations and their type influence 

specifically to performance as overhead. In memory and disk areas, where the virtualization 
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procedure was clear, the test outcomes demonstrate that the measure of overhead is little. 

Processor and network virtualization, then again, was more perplexing. Hence the overhead is 

more significant. At the point when the overall performance of a virtual machine running in 

VMware ESXi Server is contrasted with a conventional system, the virtualization causes 

approximately an increase of 33% in performance.Because of the  difficulty in providing 

optimal real system configurations, workload/benchmarks could provide close to real 

application systems for better results. The tests demonstrate that virtualization depends 

immensely on the host system and the virtualization software. Given the tests, both VMware 

ESXi Server and Proxmox are capable of providing Optimal performance. 
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LIST OF DEFINITIONS 

Virtual Machine - Is a software computer like a real physical machine that runs applications 

and operating systems, referred to as a guest machine.   

Hypervisor - A thin kernel layer that abstracts the physical hardware and presents virtual 

hardware to the guests. 

Virtual Machine Monitor - a layer of software that runs between a hypervisor or host 

operating system and one or more virtual machines that provide the virtual machine abstraction, 

This becomes the management portal of the virtualized machine. 

Guest Operating System - An operating system is running in a virtual machine environment 

that normally runs directly on a physical system. 

Virtual Resource - A physical resource, (for example, Disk, CPU, or memory) that is overseen 

by a hypervisor and allocated to a guest. Virtualized Changing a physical system to a virtual 

guest system. 

Overcommit - when more resources are assigned than are physically available. System-wide 

profiling Both the guest and VMM are profiled. 

Paravirtualization - A virtualization system where the native instruction set is not 

implemented. Generally, the Guest OS should be altered to realize it is virtualized. This is the 

procedure utilized by Xen. 

Overhead - The extra cost (time) required for virtualization. For every task, there might be 

extra resources required to virtualize the activity as operation t instead of interacting directly 

with the hardware. 

Snapshot- A complete state of the entire virtual machine saved to non-volatile disk for later 

Virtualization – “Virtualization is a technology that joins or partitions computing resources to 

exhibit one or many operating environments utilizing methodologies like hardware and 

partitioning or aggregation, partial or complete machine simulation, emulation, timesharing, 

and numerous others.” 
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Cloud computing - is shared pools of configurable computer system resources and more 

elevated services that can be quickly provisioned with minimal administration effort, regularly 

over the Internet. Cloud computing depends on sharing of resources to accomplish cognizance 

and economies of scale, like a public utility. 

Jitter - is the amount of variation in latency/response time, in milliseconds.
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CHAPTER 1  

INTRODUCTION 

1 INTRODUCTION 

1.1 BACKGROUND  

Virtualization is the main technology that powers today’s cloud computing systems. 

Virtualization provides isolation and resource control that enables multiple workloads to run 

efficiently on a single shared machine and thus allows servers that traditionally require multiple 

physical machines to be consolidated to a single, cost-effective physical machine using virtual 

machines or containers (Enberg, 2016). 

Server virtualization opens the present traditional balanced design of x86 servers by abstracting 

the operating system and applications from the physical hardware, empowering a more cost-

effective, coordinated, and improved server condition. Utilizing server virtualization, 

numerous operating systems can keep running on a single physical server as virtual machines, 

each with access to the fundamental server's computing resources. Most servers work at less 

than 15 percent capacity; not only is this highly inefficient, it also introduces server sprawl and 

complexity. Server virtualization addresses these inefficiencies(Sligh and Owusu, 2014). 

With virtualization, all software, drivers, and the operating system are put away on servers, as 

opposed to being installed on each client 's machine. This implies that extensive quantities of 

clients can be managed centrally, with all client data and information kept up in the datacentre. 

This reduces the time and costs necessary for administering a massive infrastructure. The users’ 

environment remains unchanged; they get the same experience as using a standard PC. The 

Information Technology(IT) manager, however, experiences greater efficiency. For instance, 

if new software is required for 50 clients, the IT administrator just needs to install the software 

once centrally and afterwards activate it for the different virtual machines, as opposed to 

installing it on multiple machines on an individual basis. Henceforth, the desktop virtualization 

model enables organizations to accomplish significant savings of both time and money while 

dealing with their IT infrastructure(A Vouk, 2008). 

Virtualization is likewise intended to improve the manageability of the enterprise 

infrastructure. As virtual servers and desktops can be live-migrated with no downtime, 

organizing hardware upgrades with clients or arranging work windows is required so that in 
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future, vital upgrades can occur whenever necessary, with no effect to the client. Additionally, 

high availability and dynamic load-balancing solutions given by virtualization product families 

can monitor and optimize the virtualized environment with a minimal manual contribution. 

Supporting similar capacities in a non-virtualized world would require much operational effort. 

Moreover, enterprises utilize virtualization to give Infrastructure as a Service(IaaS) cloud 

offerings that give clients access to computing resources on demand in the form of virtual 

machines. This can enhance developer productivity and lessen the time to showcase that is key 

in today’s fast-moving business environment. Since rolling out an application sooner can give 

a first-mover advantage, virtualization can help support the business(Morabito, 2017). 

Creating an efficient, responsive IT environment by virtualizing, the datacentres will be able 

to reduce datacentre footprint by consolidating physical servers, storage, and networking 

hardware. You can also improve asset utilization, lower capital and power, and cooling costs, 

reduce management touch points, accelerate IT service delivery, increase scalability and 

flexibility, increase redundancy and reliability, extend hardware lifecycles and improve support 

efficiency(Li et al., 2017). 

In this research, we focused on virtualized computers as well as server infrastructure, which is 

the foundation of a private cloud. We also compared resource utilization through computer 

systems performance stress tools in order to measure how the virtual machines handled 

workloads. 

1.2 RESEARCH PROBLEM  

More industries have moved to virtualization technology, and this has become the most 

dominant way in which datacentres and cloud computing are built(Babu et al., 2014). Due to 

the high demand for computerized infrastructure, virtualization performance is a critical factor 

in datacentre and cloud computing service delivery(Deshane et al., 2008). Virtual machines 

consist of many components and techniques that can hinder the performance of private clouds. 

If virtualized systems are not configured correctly such as hardware acceleration, running 

concurrent virtual machines without the correct and proper resource controls used, private 

clouds will have problems of scalability and service provisioning (crashing response time, 

resource contention and functionality or usability)(Matthews et al., 2007). This impacts on user 

experience(Somani and Chaudhary, 2009b).  
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1.3 PURPOSE OF THE STUDY 

The purpose of this study is to evaluate the performance of virtualization and to determine 

which virtual machine configuration provides effective performance. 

1.4 RESEARCH QUESTION 

• What configuration of virtualized systems provides an effective performance? 

In order to answer the main question, the following sub-questions will be answered: 

• What has been done in the literature to effectively measure the performance of a virtual 

environment? 

• How to set a virtualized environment in order to test different performance 

configurations? 

• How to measure the performance of different configurations in a virtualized 

environment? 

1.5 OBJECTIVES 

• To study existing literature to measure the performance of a virtual environment 

effectively. 

• To develop a virtualized environment in order to test different configurations. 

• To evaluate the performance of different configurations in a virtualized environment. 
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1.6 THESIS STRUCTURE GRAPH 

 

Figure 1: Thesis Structure 

 

1.7 THE STRUCTURE OF THE DISSERTATION: 

Chapter 1 Introduction: This is the chapter where the Project is introduced, the research 

problem, the purpose of the study, research question, and objectives; of the research are 

outlined. The focus area of the study is explained. 

Chapter 2 Literature Review: This chapter focuses on the background of virtualization, cloud 

computing, and related work done by other researches. 

Chapter 3 Methodology: This chapter focuses on related techniques that are relevant to 

tackling this problem. 
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Chapter 4 Experiments, Results, and Analysis: This chapter focuses on experimentation and 

results for the research  

Chapter 5 Conclusion and Recommendations: This chapter focuses on other alternatives 

that can be used and a summary of the entire research as well as the outcomes of the research. 

1.8 CHAPTER SUMMARY 

Chapter 1 serves as a basis for this research. The research problem, the purpose of the study, 

the research question, objectives, and thesis structure are described in this chapter. A brief 

discussion of what is virtualization is explained and how it is vital for cloud computing. The 

research problem elaborates how virtualization performance is a critical factor in datacentre 

and cloud computing service delivery. In the following chapter, virtualization technologies, 

their usage, and current research in the field of virtualization and cloud computing are 

thoroughly covered and explained. Review on the previous work by other authors is outlined 

from the leading concept that associate to virtualization and cloud computing in the technical 

review. 
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CHAPTER 2  

LITERATURE REVIEW 

2 INTRODUCTION 
 

We will look into previous work conducted on virtualization performance on clouds. 

Previous work done by other authors  will  provide a clear explanation of virtualization and 

cloud computing. 

Performance investigations of virtualization methods in cloud computing environments are 

done for various reasons. To begin with, numerous parts of the performance should be looked 

at, for example, networking, Central Processing Unit(CPU) use, and the disc I/O speeds, and 

that is just the beginning. Secondly, there is seldom an ideal approach to workload/benchmark 

these computing assignments. Thirdly, the different variety of software, for example, operating 

systems and core applications, lends many outcomes flawed or uncertain. There are a wide 

range of hypervisors, cloud suppliers, operating systems, and workload/benchmark software 

suites to look over. Dependent on which hypervisor is considered, there are specific hardware 

and software requirements that must be adhered to. Without considering the more significant 

part of the potential choices, a performance study may feel deficient. Regardless of these 

difficulties, it is vital, both for the advance of cloud computing and for the validation of 

procedures, that these tests exist(Rao and Rao, 2015).  

2.1 VIRTUALIZATION  

Chiueh and Brook (2005) define Virtualization “as a technology that combines or divides 

computing resources to present one or many operating environments utilizing methodologies 

like hardware and software partitioning or aggregation, partial or complete machine simulation, 

emulation, timesharing, and many others.” 

Isolated environments over hardware for application operating system applications are 

provided by virtualization. Virtualization has opportunity advantages from hardware resources 

that are closed to physical machines as users want to get maximum utilization from the 

hardware. (Smith and Nair, 2005) explain that virtualization refers to ”abstraction of logical 

resources away from their underlying physical resources”. Virtualization plays a significant 



 

7 
 

role in cloud computing since it provides many advantages in sharing, management, and 

isolation of the resources in the cloud (Rimal et al., 2009). 

A system that has physical hardware capable of running many virtual machines concurrently 

is known as a virtualization host, whereas virtual machines running on it are called guests. This 

virtualization system usually consists of underlying hardware like network cards, CPUs, hard 

disk drives, and memory(Ali and Meghanathan, 2011). 

Virtual Machine Monitor (VMM) is software that manages the usage of hardware resources 

and the concurrent running of virtual machines (Lee and Brooks, 2006). The hypervisor makes 

it possible to run multiple virtual machines at the same time on the hardware resources 

(Hauswirth et al., 2005). The hypervisor, which works between different operating systems and 

system resources is responsible for managing multiple virtual machines that are competing for 

resources such as memory, CPU, network, and data. 

Type 1 hypervisors, like Xen, include a different hypervisor software component, which runs 

correctly on the hardware and gives a virtual machine abstraction to VMs running on the 

hypervisor. Type 2 hypervisors, like Kernel-based Virtual Machine (KVM) , run a current OS 

on the hardware and run both VMs and applications over the OS. Type 2 hypervisors regularly 

alter the current OS to facilitate the running of VMs, either by incorporating the Virtual 

Machine Monitor (VMM) into the current OS source code base or by installing the VMM as 

drivers into the OS. KVM incorporates explicitly with Linux where other solutions, for 

example, VMware Workstation, utilize a loadable driver in the current OS kernel to monitor 

virtual machines. The OS incorporated with a Type 2 hypervisor is usually referred to as the 

host OS, rather than the guest OS which keeps running in a Virtual Machine M. One advantage 

of Type 2 hypervisors over Type 1 hypervisors is the reuse of existing OS code, particularly 

device drivers for an extensive variety of accessible hardware. This is particularly valid for 

server systems with PCI where any commercially accessible PCI connector can be utilized. A 

Type 1 hypervisor experiences are having to re-implement device drivers for all upheld 

hardware(Morabito et al., 2015). 

Notwithstanding, Xen, a Type 1 hypervisor, maintains a strategic distance from this by just 

executing a negligible measure of hardware support directly in the hypervisor and running a 

particular privileged VM, Dom0, which runs a current OS, for example, Linux and uses all the 

existing device drivers for that OS. Xen at that point utilizes Dom0 to perform I/O utilizing 
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existing device drivers in the interest of typical VMs, otherwise called DomUs (Dall et al., 

2016) 

Nevertheless, to move applications from physical machines to virtualized consolidated 

platforms, one should have the capacity to assess the performance these applications will 

accomplish in the new environment. Will moved applications keep running with competitive 

performance as they keep running on their immediate environment? What number of servers 

will be expected to make a virtual environment ready to help the execution of the services 

given, with acceptable performance? What is the best configuration of resources in the virtual 

environment for a specific application? In this way, there is a current requirement for new tools 

for anticipating performance, giving data to resource allocation, and determining optimal 

system configuration (Benevenuto et al., 2006). 

Performance models (Benevenuto et al., 2006) help foresee the values of performance 

measures of a system from an arrangement of values of workload, operating system, and 

hardware parameters. Performance expectation is the way towards assessing performance 

measures of a computer system for a given arrangement of parameters. Typical performance 

measures incorporate reaction time, throughput, resource use, and resource queue length. The 

input parameters to such a model fall into one of three categories: workload, necessary 

software, and hardware parameters. The workload parameters describe the load imposed on the 

system of interest by the applications, i.e., the transactions submitted to it. The software 

parameters describe features of the necessary software, such as the Xen virtual machine 

monitor overhead. Examples of such parameters are virtualization overhead, CPU dispatching 

priority, etc. Examples of hardware performance parameters include the components of the 

servers that support a Xen system, for example, processor speeds, disk latencies, and transfer 

rates, and local area network speed. The output of a performance model is a set of performance 

measures, for example, reaction times, throughput, and resource utilization.  

2.2 CONCEPTS OF VIRTUALIZATION 

The software abstraction among hardware and the operating system is called virtualization. 

Every one of the applications is kept running in the operating system that is running over the 

abstraction layer, additionally called the virtual machine monitor or hypervisor (Marinescu and 

Kröger, 2007). The hypervisor is used to hide the hardware system resources from the operating 

system that allows running different operating systems at the same time as the hardware is not 

directly accessible by the operating system. Further, (Marinescu and Kröger, 2007) explains 
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that available hardware is logically divided into some logical units that each called virtual 

machine. 

2.2.1 Types of Virtualization  

• Full virtualization: Full virtualization is based on the emulation of the hardware. In this 

approach, the guest operating systems do not require any modification since they are 

not aware of being virtualized. It provides security and isolation for virtual machines 

and also facilitates migration and portability (Mahjoub et al., 2011). 

• Paravirtualization: In paravirtualization, the guest OSes are aware of the hypervisor, 

and the OS kernel is modified to provide an interface for communication between the 

hypervisor and the OS kernel, which improves performance and efficiency. 

Compatibility and portability of para-virtualization are weak since it does not support 

unmodified OSes (Li et al., 2010). 

• Hardware-assisted virtualization: Hardware-assisted virtualization uses virtualization 

hardware extensions, mainly host CPU, to provide full virtualization. Consequently, it 

needs explicit support in the host CPU, which is not available in all processors. Intel 

VT and AMD-V processors include virtualization technology support. Guests that are 

using this technique are usually slower than the guests who are using para-virtualization 

due to a high CPU overhead caused by emulation. However, hardware-assisted 

virtualization does not require modification of the guest OS (Matthews et al., 2007). 

2.2.2 Virtualization Benefits 

Some of the significant benefits of using virtualization are discussed below (Younge et al., 

2011; Che et al., 2008; Lombardi and Di Pietro, 2011; (Yaqub, 2012) : 

• One can support multiple operating systems and virtual machines on a single pane of 

glass. 

• Performance measurement and debugging of virtual machines are possible using the 

hypervisor management console.  

• Through environment isolation, Research academics can run experiments without the 

fear of breaking the system. This creates great testing and safe environment.  
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• It provides a safe test environment before taking application servers to the production 

environment.  

• One can create multiple virtual machines from one physical machine through the 

resource sharing capabilities of virtualization. 

•  Through resource consolidation, virtualization becomes cost effective as it reduces the 

requirements for hardware. 

• For secure computing, one can isolate virtual machines which have untrusted 

applications and keeping them separate from the rest of the virtual machines in the 

same cluster. 

• Consolidating workloads is possible with virtual machines .on a single server 

Virtualization can be utilized to consolidate workload, which has advantages in terms 

of hardware and software costs as well as management and server infrastructure 

administration. 

• Operating system new feature testing on a virtual machine before actual 

implementation.  

• It is faster and easier to perform backup and recovery as well as the migration of virtual 

machines. 

• Dynamic resource provisioning makes it feasible due to virtualized resources 

utilization in clustered environments.  

• The pay-per-use model that is used in cloud computing allows users to pay for the 

resources they use, which makes it virtualization flexible and scalable.  

• virtual machine migration from one host or cluster to another is effortless.   

2.3 TYPES OF HYPERVISORS 

Type 1: Native or Bare-Metal Hypervisor: This type of hypervisor runs directly on the host's 

hardware. Guest OS can be installed on top of this hypervisor. Such hypervisors have lesser 

memory footprint as compared to Type 2 hypervisor. Examples of the bare metal hypervisor 

are Citrix XenServer, VMware ESX, and Hyper-V. 
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Type 2: Hosted Hypervisor: This type of hypervisor requires a base OS that acts as a host. 

Such hypervisors abstract the presence of host from the guest OS. They may use hardware 

support for virtualization or can emulate the sensitive instructions using binary translation. 

Examples of the hosted hypervisor are VMware Workstation, VirtualBox, and KVM. 

2.3.1 VMware ESXi Virtualization Technology 

Virtualization is an innovation that is expanding by each passing day in the IT industry due to 

its number of advantages, higher usage of costly hardware, enhanced security, ease of 

administration, and enhanced data integrity. World's biggest provider of virtualization 

software, platforms, and tools are provided by VMware, and their products are widely utilized 

across numerous industries. The ESXi is the most advanced hypervisor design of VMware. 

VMware Inc. ESXi is a Bare Metal hypervisor and installed over the physical machine. ESXi 

was introduced in 2007 by VMware with conveying industry-driving performance and 

adaptability while setting another bar for reliability, security, and hypervisor administration 

effectivenes (Elsayed and Abdelbaki, 2013). 

2.3.2 Proxmox 

Proxmox is a Linux distribution based on Debian (64 bits) that carries OpenVZ and KVM. 

Proxmox allows performing centralized management of many physical servers. Proxmox at 

least consists of a single master and node (Ali, 2015).  

2.4 CLOUD COMPUTING  

Cloud computing is a service-oriented model, and abstraction and accessibility are two crucial 

factors in this model. The underlying cloud architecture is abstracted and hidden from the user 

as a result of virtualization and consolidation. Concurrently, the key components of underlying 

cloud architecture can be easily accessed. In general, cloud computing transparently delivers 

the following services (Wang et al., 2010); (Gong et al., 2010): 

• Software-as-a-service; 

• Hardware-as-a-service; 

• Data-as-a-service; and 

• Platform-as-a-service. 

Cloud Computing technology is an on-demand service which provides optimal resources 

allocation and dynamic computing infrastructure which has the hardware, network, storage, 
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and interfaces that enable the delivery of computing as a service. These services in the cloud 

include the software as a service, infrastructure as a service, and storage as service over the 

internet based on user demand (Kumar and Singh, 2015). While Cloud computing has been 

driven from the start predominantly by the industry through Amazon, Google, and Microsoft, 

a shift is also occurring within the academic setting as well. Due to the many benefits, Cloud 

computing is becoming immersed in the area of High-Performance Computing (HPC), 

specifically with the deployment of scientific clouds and virtualized clusters (Younge et al., 

2011). 

For Cloud computing to be possible, underlying services, technologies, and configurations 

exist, and one of that technology is virtualization. Virtualization is a mechanism of hardware 

and system resource abstraction. This is typically performed in  Cloud environments running 

on clustered hypervisors servers. In this environment,  multiple virtual machines can 

concurrently run, which is one of the critical advantages of Cloud computing. This allows 

resources consolidation within data centres. From the hypervisor level, Cloud computing 

systems depend on the virtualization technologies to maintaining  QoS and utility to users while 

reaching optimal performance(Younge et al., 2011). 

The internet and virtualization technology is required to make cloud computing have such 

capabilities such as on-demand access and server or service provisioning. The software that 

does virtualize in hardware resources such as CPU, Memory, Disk, and NIC and by providing 

infrastructural support to multiple virtual machines is called a Hypervisor. It is essential to 

understand different hypervisor performance in private Clouds. Hypervisors come in 3 primary 

forms, which are Full Virtualization Paravirtualization and Hybrid virtualization. comparing 

these in private clouds for performance measurements is essential (Reddy and Rajamani, 2014). 

Through resources on demand, this allows customers to have cost-effective, high-quality 

servers, and applications and services with excellent high performance that they need in the 

cloud (Reddy and Rajamani, 2014).  

Virtualization is fundamental to cloud computing. It allows abstraction centred on services and 

isolation of lower level functionalities and underlying hardware. Modelling, analyzing, and 

verifying cloud systems necessarily involve virtualization and services. However, there exist 

few efforts to effectively formalizing virtualization in cloud computing(Li et al., 2013). Cloud 

computing is becoming a prominent distributed computing framework as the number of 
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systems and servers moving to the cloud increase. It is essential to test the performance effects 

of virtualization in cloud computing to provide quality service to customers. Services such as 

storage, private, and hybrid clouds are offered in cloud computing but they are typically offered 

as a service (PaaS) in the forms of infrastructure (IaaS), platform (PaaS), and software (SaaS). 

Comprehensive computing capabilities by virtualizing processing, storage, and network 

resources are provided in cloud environments (Kumar and Singh, 2015). 

Online interactive systems like Facebook, Wikipedia, Twitter, and many others employ cloud 

infrastructures to meet user demands. Large scale scientific simulations and high-performance 

computing (HPC)Computing draw attention by the benefits of Cloud outsourced. It is enticing 

to have computing resources that are endless, scalable, and compatible with different systems 

and applications. The term cloud computing often refers to computing distribution, hardware, 

and software encapsulating in an overall system. Thus, the cloud represents the fuzzy notion 

of networked computing resources. Users can provision computing resources depending on the 

demand or task. Multi-node computing infrastructures such as clusters and grids have been 

around for many years (Overby, 2014).  

2.4.1 Types of clouds  

• Private cloud: Private cloud service model is hosted within the organization. It can be 

hosted internally or externally. This type of cloud service is more expensive since it 

requires more involvement for the organization to virtualize the business 

environment(Luo et al.). 

• Public cloud: Public cloud is a cloud which is made available to the general public. Its 

customers share the same infrastructure pool, which makes this type of cloud very 

vulnerable and insecure. Public clouds operate on a low-cost or pay-per-use model. 

Public clouds can be accessed only via the Internet(Gong et al., 2010). 

• Community cloud: Community cloud service model is shared between several 

organizations within the same community. Its primary purpose is to bring the benefits 

of the public cloud with an added level of security of the private cloud. Community 

clouds can be either on-premise (local) or off-premise (remote)(Zhang et al., 2010). 
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• Hybrid cloud: Hybrid cloud is a combination of two or more clouds (private, 

community, or public) that are handled as unique entities but are bound together (Mell 

and Grance, 2009). 

2.5 CLOUD COMPUTING BENEFITS  

In Cloud computing, users are able to migrate their data and servers to remote locations and 

used as a disaster recovery site. This provides some benefits which could not otherwise be 

achieved(Younge et al., 2011). 

Such benefits include: 

• Cost-Effectiveness - only pay for the needed infrastructure while maintaining the option 

to increase services as needed in the future. 

• Scalability - Clouds enough computing power as required by the user and lowers 

dependence on specialized hardware. 

• Simplified Access Interfaces - a vast amount of computing are easy to access through 

options like web portals and client consoles.  

• Quality of Service (QoS) - A well-designed Cloud provides higher QoS than 

traditionally possible with advanced computing.  

• Customization - Within a Cloud, a  user can customize their environment to need their 

requirements and needs, such as backward compatibility.   

2.6 PERFORMANCE OF VIRTUALIZATION IN PRIVATE CLOUDS 

Reddy and Rajamani (2014) evaluated and provided quantitative comparison regarding the 

performance of three hypervisors ESXi, XenServer, and KVM, utilizing SIGAR structure for 

framework information and Passmark for system workloads in the private cloud condition. 

(Reddy and Rajamani, 2014) designed a private cloud utilizing open source cloud computing 

software CloudStack. Hypervisors are conveyed as hosts in the CloudStack. They suggested 

best-suited hypervisors for respective workloads in the private cloud based on the performance 

of system information and system workloads. In the test, CloudStack 4.0.2 (open source cloud 

computing programming) is utilized to make a private cloud, in which administration server 

was introduced on Ubuntu 12.04 – 64-bit operating system. Hypervisors as XenServer 6.0, 
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ESXi 4.1 and KVM (Ubuntu 12.04) were installed as hosts in the separate bunches, and their 

exhibitions have been assessed in detail by utilizing SIGAR Framework, Passmark and 

NetPerf.  

The tests were performed utilizing a Windows 2008 R2 64-bit as a guest operating system. 

Moreover, the workload/benchmark mentioned above test suits were used in the experiments. 

On general XenServer and ESXi, two hypervisors are dependable, reasonable and offer the 

windows or some other guest operating system IT proficient an elite stage for server 

solidification for production workloads (Reddy and Rajamani, 2014). KVM needs to enhance 

on all fronts if it needs to wind up keeping pace with the other two hypervisors. ESXi and 

XenServer have developed hypervisors as a contrast with KVM, and their Reliability, 

Availability, and Serviceability (RAS) is altogether higher than that of KVM. The series of 

tests conducted on CPU, Memory and Network performance for the paper demonstrates that 

VMware ESXi Server and XenServer conveys the production-ready performance expected to 

actualize a proficient and responsive datacentre in the private cloud condition. (Reddy and 

Rajamani, 2014), advised that for future work, one can include multiple clients send and receive 

network tests for hypervisors. It was furthermore suggested that the experiment could likewise 

be done with para-virtualized Linux guest operating system. With more workloads, adaptability 

tests can be performed with different hypervisors which are not canvassed in the present trial. 

Furthermore, future work can likewise consider the open public cloud for experimentation.  

The primary target of this investigation is to workload/benchmark the performance of 32bit 

Debian 6.0 virtual machines running on Xen and VMware ESXi. The workload/benchmark 

tests will endeavour to quantify the performance of virtual machines concerning network 

activity, file system I/O, CPU, and memory performance. Its outcomes were utilized as a 

pattern when contrasting the two hypervisors. Tests were completed on network activity, file 

system I/O, CPU, and memory performance (Perera and Keppitiyagama, 2011). 

Memory workload/benchmarking was finished utilizing Read, Write, and Number-crunching 

operations on Integers and Floating point numbers. An open source device RAMSpeed/SMP 

was utilized. Network activity workload/benchmark was finished by measuring Unidirectional 

TCP/UDP information exchange throughput between the test machines. Netperf, an open 

source instrument, was used. Amid the parameter, the CPU usage of the sending virtual 

machine was observed. The information exchange latency likewise measured and looked at 

between two hypervisors. To workload/benchmark the document arrangement of ESXi and 
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Xen, IOzone workload/benchmark instrument was utilized. Read, Write, Re-read, Re-

compose, Random read, Random compose, backward read, Backwards compose, and Strided 

read tests on the document framework were done on shifting document and record sizes. To 

workload/benchmark the CPU performance, a progression of tests were completed speaking to 

various sorts of uses that may keep running on a PC framework, which may use the CPU 

vigorously. A Linux kernel compiles, a data compression test, a data encoding test, an 

application build test, and a graphics manipulation test were used. By analyzing the 

workload/benchmark comes about in light of memory operations; as a rule, (Perera and 

Keppitiyagama, 2011) watched that both hypervisors perform similarly well when the guests 

are conducting activities that need high memory transmission capacity (exchanging 

information amongst CPU and RAM). Quantitatively Xen is marginally quicker than ESXi. In 

network-based exercises too, we watched that the two stages are reasonable, however, ESXi is 

marginally superior to Xen. Utilization of fully virtualized guests (HVM) on Xen for network 

intensive deployments is not suggested as HVM guest displays inferior system performance on 

Xen. For file system based activities (disk110), ESXi performs superior to Xen, particularly 

Xen displays a performance degradation in writing to the file system. For CPU severe 

applications, both hypervisors perform similarly well, yet Xen is somewhat better. At the point 

when wholly virtualized guest operating systems are running on Xen, an immense performance 

disintegration was seen because of the emulation by the hypervisor on all test cases (Perera and 

Keppitiyagama, 2011). 

Bhukya et al. (2010) presented a comprehensive evaluation methodology to 

workload/benchmark the performance of sequential programs by running them in several 

virtualized environments by the technique called virtualization and checking the throughput in 

those environments using a method called experimental design or design of the experiment. 

The workload/benchmark in this paper is running on Linux guests on virtualization technology 

(VT-x) enabled platforms. The results show that the how the performance of the following 

program in both Xen and VMware changes concerning the factors viz. type of hypervisor, size 

of RAM, and the number of virtual CPUs affecting it. In their experiment, the hardware 

platform is Intel® Core ™ 2 DUO with an Intel processor at 2.93 GHz. It has got an L1 data 

cache of 32KB for private data of each core. It also has an L1 instruction cache of 32KB for 

instructions. It has an L2 cache of 3MB that is used for fast data access; it includes a SCSI disk 

of size 300GB with the RAM of size 4GB with DMA enabled. Their experiment is conducted 

by repeatedly executing the workload/benchmarks in NPB3.3 Serial and collecting the 
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performance data. (Bhukya et al., 2010) use the DOE (Design Of Experiment) methodology 

and formulate the results.   

The experimenter should select a suitable design type considering the experiment. In this 

analysis, a Full Factorial design is selected. The design will provide an option for experimental 

runs. In this task, add up to quantities of runs are 36. The experimenter will be furnished with 

an alternative of choosing methods like replication, randomization, and hindering in the 

experiment to decrease the test blunders. Analysis Of Variance (ANOVA) is a customarily 

utilized actual procedure for inspecting the information by looking at the methods for subsets 

of the data. ANOVA is also used to assess the important impact of variables at various levels 

and their interaction impacts. The diagrams are plotted by considering their mean esteems. The 

exploratory outcomes give an understanding of how the productivity of the successive program 

impacts in both virtualized environments. (Bhukya et al., 2010) run CFD applications in 

virtualized environments and inspect their performance. These assist the clients to pick which 

hypervisor is useful for their successive application. Xen gives better performance when 

contrasted with VMware concerning the factors that we considered for our experiment. In the 

case of Xen, (Bhukya et al., 2010) explored that efficiency may always not be increased with 

increase in the size of RAM. 

Kumar and M (2015) demonstrated that present measurements for the performance of offerings 

by cloud suppliers are liable to imprecision and changeability. The thesis tried to elucidate 

worries about performance in cloud computing, breaking down the variables that make the 

performance of clouds unpredictable and recommending approaches to tackle this issue. The 

performance degradation because of virtualization and the absence of isolation between virtual 

machines were observationally assessed in a eucalyptus testbed given the KVM virtualizer. 

Drawing upon past research, every one of the parts of the issue, from the conduct of particular 

application types when facilitated in clouds to a proposition for another age of SLAs with 

performance ensures, will be talked about.  

This segment gives the outcomes along acquainting the system utilized to test the performance 

seclusion capacity of a KVM-fueled Eucalyptus private cloud. The fundamental issue is the 

effect on the performance of a specific virtual machine case when another VM is making 

escalated utilization of at least one physical, and therefore shared resources. The physical 

resources being considered are the CPU, memory, disk, and network interface. For each of 

these, the consequences of a trial will be displayed trailed by an exchange of the possible 
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reasons for these outcomes, bolstered by additional references to past investigations when 

fundamental. As it has been said before, a tweaked EMI was made to run these tests. This EMI 

was made out of a spotless establishment of Ubuntu Server 10.04 and different 

workload/benchmarking and testing programs. In the accompanying subsections, a short 

clarification of how each of these testing programs functions will be given. If not 

communicated unique, each experiment was performed with two running virtual machine 

occurrences of the modified EMI, with 15 GB disk, 512 MB RAM, and 1 CPU core. The 

approach depended on finding the components which the performance of cloud-facilitated 

applications relies upon. Right off the bat, the effect on the performance of a virtualized and 

shared physical server was tried all through the usage of a private cloud. This investigation, as 

opposed to comparable workload/benchmarks found in literature, was executed in a controlled 

domain as opposed to in a public cloud, where setup alternatives are constrained, and 

foundation stack is by, and massive hard to know and uncontrollable and like this permitted 

making some reasonable determinations (Kumar and M, 2015). 

The main conclusion of this proposition is that cloud computing is, as a rule, arranged to host 

most typical web applications effectively and with incredible cost funds, yet those applications 

with strict inertness prerequisites or other network performance necessities, those that require 

working with substantial datasets, or those whose requirements for accessibility are basic 

should be considered precisely. In these cases, thought of particular performance necessities, 

distinctive for each sort, and remuneration models for infringement of the SLA are critical. 

Indeed, even with the development of SLAs, generally useful clouds will not will to different 

certifications for the most requesting applications, in this way, there will be an open door for 

more research in this area (Kumar and M, 2015). 

Hypervisors are utilized as a part of cloud environments, and their effect on application 

performance has been a point of critical research and viable interest. The current development 

in cloud environments has quickened the progression of virtualization through hypervisors; be 

that as it may, with such a large number of various virtualization advancements, it is hard to 

discover how different hypervisors affect application performance and whether a similar 

performance can be accomplished for each hypervisor. (Li et al., 2013), conducted 

experimental estimations of a few workload/benchmarks utilizing Hadoop MapReduce to 

assess and look at the performance effect of three prominent hypervisors: a commercial 

hypervisor and open source  Xen and KVM.  (Li et al., 2013) found that distinctions in the 
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workload sort (CPU or I/O intensive), workload size and VM situation yielded excellent 

performance contrasts among the hypervisors. Many different hypervisors (both opensource 

and commercial) exist today, each with their advantages and disadvantages. This introduces a 

large number of new and challenging research questions. 

Some past work has focused on virtualization overhead of a single hypervisor on a particular 

application or micro workload/benchmark. Other work has been aimed to provide a quantitative 

performance comparison between different hypervisors using microbenchmarks. The authors 

utilized the three hypervisors to run a few MapReduce workload/benchmarks, for example, 

Word Count, TestDSFIO, and TeraSort and further approved (Li et al., 2013) observed theories 

utilizing microbenchmarks. In our observation for CPU-bound workload/benchmark, the 

performance distinction between the three hypervisors was negligible; be that as it may, 

substantial performance varieties were seen for I/O-bound workload/benchmarks. Also, 

including more virtual machines, the same physical host debased the performance on each of 

the three hypervisors, yet they watched distinctive patterns among them. Solidly, the 

commercial hypervisor is 46% quicker at TestDFSIO Write than KVM, however 49% slower 

in the TeraSort workload/benchmark. What is more, expanding the workload estimate for 

TeraSort yielded completion times for CVM that was two times that of Xen and KVM. The 

performance contrasts shown between the hypervisors proposes that further examination and 

consideration of hypervisors are required later in future deploying applications to cloud 

environments (Li et al., 2013). 

As cloud computing rises as a prevailing worldview in dispersed systems, it is vital to 

comprehend the fundamental advances that make clouds conceivable entirely. One innovation, 

and maybe the most essential, is virtualization. As of late, virtualization, using hypervisors, has 

turned out to be broadly utilized and surely understood by numerous.  There is an expansive 

spread of various hypervisors, each with their advantages and disadvantages (Younge et al., 

2011). 

In late history, there have been multiple comparisons identified with virtualization innovations 

and Clouds. The primary performance analysis of different hypervisors began with, obviously, 

the hypervisor merchants themselves. VMware has cheerfully put out its take on performance 

as well as an original Xen article, which analyzes Xen, XenoLinux, and VMware over various 

SPEC and standardized workload/benchmarks, bringing about contention between the two 

works. From here, various more impartial reports began, focusing on server consolidation and 
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web application performance with fruitful yet sometimes incompatible results. A feature-based 

survey on virtualization technologies likewise shows the vast assortment of hypervisors that as 

of now exist. Besides, there has been some investigation concerning the performance inside 

HPC, particularly with InfiniBand performance of Xen, and of late, a detailed take at the 

practicality of Amazon Elastic Compute cloud for HPC applications. Nonetheless, the two 

works focus on a solitary deployment as opposed to a genuine comparison of advantages 

(Younge et al., 2011). As these underlying hypervisors and virtualization implementations have 

developed quickly alongside virtualization, sustained specifically by standard x86 hardware, it 

is essential to painstakingly and precisely assess the performance ramifications of every 

system. Consequently, we directed an investigation of a few virtualization advances, 

specifically Xen, KVM, VirtualBox, and to a limited extent, VMware. Each hypervisor is 

contrasted closely with each other and (with the particular case of VMware) run through some 

High-Performance workload/benchmarking tools (Younge et al., 2011). 

Younge et al. (2011) indicated that the goal of their manuscript was to viably thoroughly 

analyze the different virtualization advancements, mainly to support HPC-based Clouds. The 

first set of results speak to the performance of HPCC workload/benchmarks. Every 

workload/benchmark was run a total of 20 times, and the mean brought with error bars 

represented to indicate the standard deviation over the 20 runs. The workload/benchmarking 

suite was fabricated utilizing the Intel 11.1 compiler, utilizing the Intel MPI and MKL runtime 

libraries, set with defaults and no enhancements whatsoever. We open first with High-

Performance Linpack (HPL), the accepted standard for comparing resources. They could see 

the comparison of Xen, KVM, and Virtual Box contrasted with native bare-metal performance. 

To begin with, we see that the native bare-metal system is equipped for around 73.5 Gflops 

which, without any improvements, accomplish 75% of the hypothetical peak performance. 

KVM, Xen, and VirtualBox perform at 49.1, 51.8 and 51.3 Gflops, respectively, at the point 

when finding the average value of more than 20 runs. However, Xen, not at all like KVM and 

VirtualBox, has a high level of change between runs. This is a fascinating phenomenon for two 

reasons(Ali, 2015). 

To begin with, this may affect performance measurements for other HPC applications and 

cause errors and postponements between even pleasingly-parallel applications and add to 

reducer work delays. Second, this vast difference breaks a key segment of Cloud computing, 

giving a particular and predefined nature of service. On the off chance that performance can 
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influence as broadly as what happened for Linpack, at that point, this may negatively affect 

clients. Next, they swing to another key workload/benchmark inside the HPC community, Fast 

Fourier Transforms (FFT). Dissimilar to the synthetic Linpack workload/benchmark, FFT is a 

particular, deliberate, workload/benchmark which provides results about which are regularly 

viewed as more concerning a client's useful application than HPL. (Younge et al., 2011) saw 

rather particular outcomes from what was already given by HPL. Taking a look at Star and 

Single FFT, its consistent performance overall hypervisors is equivalent to bare-metal 

performance, a great sign that HPC applications might be appropriate for use on VMs. The 

outcomes for MPI FFT also demonstrate similar outcomes except for Xen, which has a 

diminished performance and high variance as found in the HPL workload/benchmark. Their 

present speculation is that there is an adverse effect of using Intel's MPI runtime on Xen. 

However, the investigation is still ongoing.  

Taking everything into account, the authors project that KVM is the best general solution for 

use inside HPC Cloud environments. KVM's component rich experience and near-native 

performance make it a natural fit for deployment in an environment where ease of use and 

performance are central. Inside the FutureGrid venture particularly, they would like to send the 

KVM hypervisor over our Cloud stages shortly, as it offers clear advantages over the current 

Xen deployment. Besides, we anticipate that these discoveries will be of remarkable 

significance to other public and private Cloud deployments, as system usage, Quality of 

Service, working expense, and computational effectiveness could all be enhanced through the 

careful assessment of major virtualization advancements(Younge et al., 2011).  

(Ha et al., 2016) studied the I/O performance of long, consecutive workloads that copy those 

of Big Data applications, to comprehend the ramifications of framework virtualization on 

information-intensive structures, for example, Apache Hadoop and Spark, which are as often 

as possible keep running in groups of Virtual Machines (VMs). They do experimental 

measurement campaign that collects low-level traces and metrics, to show the role played by 

essential parameters such as the I/O schedulers and caching mechanisms involved in the I/O 

path, and the VM configuration regarding dedicated resources. Our findings are significant, 

especially for determining appropriate deployment strategies for today's emerging Analytics 

Services host both on a public and private cloud.  

Ha et al. (2016) used FIO, which is a flexible tool that allows designing a variety of workloads, 

and that provides detailed statistics for computing our metrics. FIO is widely used in academia 
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and industry for standard workload/benchmarking, stress testing, and I/O verification purposes. 

They run FIO on the physical host with different numbers of concurrent threads. Then with the 

same configuration. Finally, they also study the case of multiple active VMs being instantiated 

on the same physical host, each with one FIO thread performing I/O operations. (Ha et al., 

2016) used the same OS and settings for consistency across different measurement scenarios. 

The same fixed amount of data, namely 4 GBs, was used and distributed evenly across all the 

threads in our experiments. Their reported performance figures are the result of 10 runs with 

error bars to verify results variability. 

The goals of their work were to understand the implications and overheads of virtualization on 

I/O performance, focusing on the storage subsystem. Indeed, many Big Data applications are 

I/O bound in nature, and a proper assessment and understanding of I/O performance in Cloud 

environments are essential. To answer our questions, we used an in-depth, low-level 

measurement study and analyzed the behaviour of several configurations supporting the 

specific workloads that characterize analytics applications, that is, extended sequential 

operations (Ha et al., 2016). Findings are instrumental in defining how to configure cloud 

computing environments to meet high I/O performance demands by modern Big Data 

applications and to indicate areas requiring further research efforts. They showed that current 

best practices for Big Data application deployments are not reaping the benefits of decades of 

research and engineering done at the OS level.  

The present virtualization arrangement in the Cloud broadly depends on hypervisor-based 

technologies. Alongside the current prominence of Docker, the container-based virtualization 

begins accepting more consideration for being a promising option. Since both of the 

virtualization arrangements are not resource-free, their performance overheads would prompt 

adverse effects on the nature of Cloud services. To help fundamentally comprehend the 

performance difference between these two sorts of virtualization solutions, we utilize a physical 

machine with "simple enough" assets as a gauge to examine the performance overhead of an 

independent Docker holder against an independent virtual machine (VM). With discoveries as 

opposed to the related work, results demonstrate that the virtualization's performance overhead 

could shift not only on a feature-by-feature basis but also on a job-to-job basis (Li et al., 2017). 

Even though the container-based arrangement is without a doubt lightweight, the hypervisor-

based innovation does not accompany higher performance overhead for each situation. For 
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instance, Docker containers especially display lower QoS as far as storage transaction speed 

(Li et al., 2017). 

Currently, several streaming servers are available to provide a variety of multimedia 

applications such as VoD (Video on- Demand), IP-phone, and IP-TV. As a result, the provision 

of multiple streaming servers on a single machine using the virtualization technology has 

become essential to save the operational/management costs while enhancing the performance 

and the reliability of the system. The authors(Sritrusta et al., 2009), evaluated the performance 

of two representative open source software for the virtualization technology, Xen, and OpenVZ, 

in various configurations of applications on three open source streaming servers, Red5, Darwin, 

and VLC. Their experimental results indicated that OpenVZ provided better performance for 

streaming applications with Darwin and VLC, whereas Red5 can run only on Xen. They 

compared the application-level performance such as the throughput and the response time when 

they run three open source software for multimedia applications, Red5, Darwin Streaming 

Server, and VLC, on a virtualization software by preparing three scenarios for the platform, 

namely on the Linux native system, on Xen, and on OpenVZ for comparisons. Their results 

showed that OpenVZ achieved higher performance for Darwin and VLC, whereas Red5 could 

only run on Xen. Siege was used for a stress test on the streaming servers and Unibench for 

performance evaluation. For future studies, they suggest to incorporate performance 

assessments of Internet servers, for example, Radius, DHCP, and LDAP, and different 

applications on the virtualization innovation (Sritrusta et al., 2009). 

Virtual machines (VMs) have as of late risen as the reason for allocating resources in enterprise 

settings and hosting centres. One advantage of VMs in these environments is the capacity to 

multiplex a few operating systems on hardware based in light of progressively changing system 

characteristics. Be that as it may, such multiplexing must frequently be done while observing 

per-VM performance assurances or service level agreements. Accordingly, one vital 

prerequisite in this condition is robust performance isolation among VMs. Virtual machines 

empower fault isolation - "encapsulating" diverse applications in independent execution 

environments, so a failure in one virtual machine does not influence different VMs facilitated 

on the same physical equipment. Performance isolation is another vital objective Individual 

VMs are often configured with performance guarantees furthermore, desires, e.g., in light of 

service level agreements. Along these lines, the resource utilization of one virtual machine 

ought not to affect the guaranteed assurances to different VMs on the same hardware. 
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Virtualization is quickly turning into a commercially suitable option for expanding system 

utilization. However, from a customer perspective, virtualization cannot succeed without 

providing appropriate resource and performance isolation guarantees. The Authors (Gupta et 

al., 2006) proposed two mechanisms – SEDF-DC and ShareGuard – that improve CPU and 

network resource isolation in Xen. They demonstrated how these mechanisms enable new 

policies to ensure performance isolation under a variety of configurations and workloads. They 

trust that performance isolation requires suitable resource distribution arrangements. In this 

way, another region for future examination is strategies for proficient capacity planning and 

workload administration and also plan to extend these mechanisms to support other resources 

such as disk I/O and memory (Gupta et al., 2006). 

Dall et al. (2016), presented the first study of ARM virtualization performance on server 

hardware, including multi-core measurements of the two major ARM hypervisors, KVM, and 

Xen. They acquaint a suite of microbenchmarks with measure regular hypervisor operations 

on multi-core systems. The two major ARM hypervisors, KVM and Xen, acquaint a suite of 

microbenchmarks with measuring normal hypervisor operations on multi-core systems. 

Utilizing this suite, they demonstrate that ARM empowers Type 1 hypervisors, for example, 

Xen to transition between a VM and the hypervisor significantly faster than on x86, however, 

this low change cost does not stretch out to Type 2 hypervisors, for example, KVM, in light of 

the fact that they cannot run entirely in the EL2 CPU mode ARM intended for running 

hypervisors. While this quick change cost is valuable for supporting virtual interferes with, it 

doesn't help with I/O performance in light of the fact that a Type 1 hypervisor like Xen needs 

to communicate with I/O backends in an extraordinary Dom0 VM, requiring more complex 

interactions than basically progressing to and from the EL2 CPU mode. (Dall et al., 2016) 

demonstrate that present hypervisor outlines cannot use ARM's conceivably quick VM-to-

hypervisor transition cost in practice for genuine application workloads. KVM ARM surpasses 

the performance of Xen ARM for generally genuine application workloads including I/O. This 

is because of contrasts in hypervisor software design and usage that assume a more significant 

part than how the hardware underpins low-level hypervisor operations. For instance, KVM 

ARM effectively gives zero duplicate I/O since its host OS has full access to the more 

significant part of the VM's memory, where Xen authorizes a strict I/O isolation approach 

bringing about poor performance despite Xen's considerably quicker VM-to-hypervisor 

transition mechanism. They demonstrate that ARM hypervisors have comparable overhead to 

their x86 counterparts on certain applications. At long last, (Dall et al., 2016) indicate how 
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changes to the ARM engineering may permit Type 2 hypervisors to bring ARM's quick VM-

to-hypervisor transition cost to genuine application workloads involving I/O. 

Benevenuto et al. (2006) proposed queuing models for predicting the performance that 

applications running on a Linux system, will accomplish if migrated to a Xen virtual system, 

with the same hardware arrangement. To exhibit the reasons for virtualization overhead on the 

Xen VMM, the authors give a performance assessment of three workload/benchmarks running 

on Xen and Linux. They use a case study of an application Apache as a Web server to validate 

the performance models by sending requests from HTTPERF as clients to the Web server, 

measuring throughput and server response time of the requests. They wanted to predict the 

performance of a Web server application, running on a physical system, will accomplish 

whenever relocated to a Xen virtual machine. Their research strategy consisted of a 

performance study of a Web server which provided static content. They presented some results 

to discuss which components of the Xen environment need to be considered in a model. To 

develop performance models (Benevenuto et al., 2006) needed to be able to measure the 

virtualized system. By developing an application called Xencpu to measure CPU busy time on 

Xen. This tool depends on the source code of XM top tool, furnished with Xen, and was 

designed aiming at the automatic execution of scripts. The CPU busy time on the Linux system 

was acquired based on data from/proc directory. Disk busy time, on both Linux and Xen, was 

likewise acquired from the/proc directory. Different parameters, for example, experiment 

duration and some processed requests, are acquired with scripts or from the 

workload/benchmarks utilized based on data from /proc directory. Disk busy time, on both Xen 

and Linux, was also from the /proc directory.  Different parameters, for example, experiment 

duration and some processed requests, are obtained with scripts or from the 

workload/benchmarks used.  

To harvest high-performance systems, cluster operating environment has pressed on additional 

abstraction using virtualization technology. Specific problem-solving environments are 

isolated at the operating system level, where real executions are performed in the virtualization 

domain. Virtualization technology helps not only to increase the utilization of computing 

resources but also reduce configuration workload, administrative cost, application porting, and 

energy saving. Numerous product operating systems are permitted to share ordinary hardware 

in a safe environment. (Prueksaaroon et al., 2009) investigated the implementation of a 

virtualized computing cluster. Performance evaluation results of the virtualized cluster based 
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on HPL is shown where the maximum of 20% performance degradation from virtualization 

overhead is observed. (Prueksaaroon et al., 2009) describe a straightforward approach to deploy 

virtualization onto the cluster. The management of virtualization images is discussed and the 

process of considering computational cluster resources in the virtualization environment is 

described. The objective of this work is to the virtualized resources running with a production 

of the virtual cluster environment. 

Padala et al. (2007) evaluate two representative virtualization innovations, Xen and OpenVZ, 

in different arrangements. They merge at least one multi-layered system onto a couple of hubs 

and drive the system with a bartering workload called RUBiS. They contrast the two 

advancements and a base system as far as application performance, resource utilization, 

versatility, low-level system measurements like cache misses, and virtualization-specific 

measurements like Domain-0 utilization in Xen. Their analyses demonstrate that the average 

reaction time can increment by more than 400% in Xen and just an unassuming 100% in 

OpenVZ as the number of application instances occurrences develops from one to four. The 

higher virtualization overhead causes this expansive error in Xen, which is likely because of 

higher L2 cache misses and misses per instruction. A similar pattern is seen in CPU utilization 

of virtual containers. (Padala et al., 2007) give an overhead examination with kernel-symbol-

specific information created by Oprofile. 

Another way to deal with building broad scale computing systems by virtualizing existing 

resources utilizing system virtual machine (VM) innovations (e.g., VMware and Xen) to help 

adaptable resource offering to solid disconnection and advantageous application deployment 

on modified execution environments, is considered. VMs are ending up unavoidably utilized, 

driven by the quick development and broad accessibility of VM products, and additionally, the 

fast development of computing energy of present-day computers. Their deployments can be 

found from big data centres for resource consolidation to PCs for multi-OS hosting. In their 

proposed framework, (Martinez et al., 2009), mentioned that VMs can be progressively 

conveyed to encourage the combination of uses and co-designation of the available resources 

of existing PCs both scattered crosswise over associations and owned by people. Subsequently, 

resource-requesting applications can be disseminated and executed alongside the VMs in a 

considerably parallel manner. Remembering the actual objective to investigate the attainability 

of building a vast scale virtualized computing framework and to recognize the potential 

research challenges,(Martinez et al., 2009) have built up an extensive VM-based system 
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comprising of more than 100 VMs facilitated on 30+ shared existing physical servers at FIU. 

Two delegate enormously parallel applications are tried on this condition, and an examination 

of how the performance is influenced is introduced and analyzed accordingly taking into 

consideration the nature of each application. VM advancements give a deep layer of abstraction 

for resource sharing.  

System-level VMs are considered in this thesis, which depends on the virtualization of whole 

physical hosts' resources, including memory, CPU, and I/O devices, and introducing virtual 

resources to the guest operating systems and applications. Even though the procedures 

proposed in this paper can likewise be connected to a portion of other sorts of virtualization 

(e.g., OS-extension based VMs), those are not the concentration of this paper. System VMs 

incorporate the accompanying two sorts: full-virtualized VMs and paravirtualized VMs. Full-

virtualized VMs (e.g., VMware ESX) exhibit a similar hardware interface to guest OSs as the 

physical machines and in this way bolster unmodified OSs in the VMs. Paravirtualized VMs 

(e.g., Xen) introduce an altered hardware interface which is advanced to decrease the overhead 

of virtualization, yet they require the guests OSs to be adjusted too with a specific end goal to 

oblige these progressions. System virtualization is actualized by the layer of software called 

virtual machine screen (VMM, a.k.a. hypervisor). VMM can be either hosted on a current OS 

or run correctly on the hardware. Hosted VMs use the local OS to get to resources and in this 

manner, ordinarily brings about more overhead, yet they can be helpfully sent on existing 

resources and straightforwardly work with their OS installations. Illustrations incorporate 

VMware Server on Windows and Linux, Parallels Desktop on Mac OS. Non-hosted VMs 

require existing OSs to be evacuated so VMM can have coordinate control of the resources; 

however, they can commonly convey better performance contrasted with hosted VMs. Cases 

of non-hosted VM items incorporate Xen and VMware ESX Server. Accordingly, non-hosted 

VMs are gradually picking up predominance in server virtualization environments, while 

hosted  VMs are all the more broadly utilized as a part of systems where VMM needs to exist 

together with traditional  OSs without upsetting the ordinary operation of those 

systems(Martinez et al., 2009).  

Voorsluys et al. (2009)Virtualization technology have become commonplace in modern 

datacenters furthermore, cluster systems, regularly alluded as computing clouds". Specifically, 

the capacity of the virtual machine (VM) movement brings various advantages, for example, 

higher performance, enhanced sensibility, and adaptation to internal failure. Virtual machine 
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(VM) innovation has of late developed as a fundamental building block for data centres. 

Furthermore, cluster systems, fundamentally because of its abilities to isolate, merging, and 

relocating workload. Altogether, these features allow a data centre to serve multiple users in a 

secure, flexible, and efficient way. Subsequently, these virtualized infrastructures are 

considered a crucial part of driving the developing Cloud Computing worldview. Migration of 

virtual machines tries to enhance manageability, performance, and fault tolerance of systems. 

More specially, the reasons that legitimize VM relocation in a production system include the 

need to adjust system load, which can be the expert by moving VMs out of over-

burden/overheated servers; and the need of explicitly bringing servers down for maintenance 

in the wake of relocating their workload to different servers. The capacity to move a whole 

operating system beats most troubles that traditionally have influenced process-level migration 

a complex operation.  Applications themselves and their comparing processes should not know 

that relocation is happening. Hypervisors, for example, Xen and VMware, permit migrating an 

OS as it keeps on running. Such method is named as \live" or \hot" movement, rather than \pure 

stop-and-duplicate" or \cold" migration, which includes stopping the VM, replicating all its 

memory pages to the destination host and after that restarting the new VM. The preferred 

primary standpoint of live migration is the likelihood to migrate an OS with close to zero 

downtime, a critical component when live services are being served (Voorsluys et al., 2009). 

Hypervisors utilizing virtualization technology empower numerous operating systems to keep 

running on one physical server. Cloud computing model is more affordable because it 

streamlines the conveyance of services by giving a phase to improving sophisticated IT 

resources in a flexible way with the assistance of virtualization technology and hypervisors. 

Choosing a reasonable hypervisor for their organization's private cloud is a gigantic task for 

current CIOs. Hypervisor merchants do guarantee that they have refuted virtualization 

overhead totally contrast with native system, yet at the same time there exists minute 

virtualization overhead on the grounds that virtual machines need to communicate with the 

centre layer hypervisor to get to the underlying physical hardware and moreover there is an 

impact of other virtual machines running on the equivalent hypervisor. Hypervisors are created 

utilizing various virtualization procedures like full virtualization, para-virtualization, and 

hybrid model virtualization. This paper assesses the performance of three hypervisors ESXi, 

XenServer, and KVM utilizing SIGARframework for system data as well as Passmark for 

system workloads in private cloud environments. The private cloud has been composed 

utilizing open source cloud computing software CloudStack. Hypervisors are conveyed as 
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hosts in the CloudStack. This paper suggests best-suited hypervisors for respective workloads 

in the private cloud based on the performance of system information and system workloads 

(Reddy and Rajamani, 2014). 

Cloud computing as a model empowers on-request access to servers, networks, applications 

and gives the alternative to pay as you utilize way. The real advantages of cloud computing are 

adaptable and versatile infrastructures, decreased execution and support costs, IT division 

transformation, and expanded accessibility of high-performance applications. Cloud 

computing model encourages availability and is made out of four deployment models. In 

which, Private Clouds are sent behind the firewall of an organization, and the cloud 

infrastructure is worked exclusively for an organization. Private cloud deployment shows 

model exclusive computing design behind a firewall with full control over the infrastructure. 

This paper utilizes a private cloud model for the experiment (Reddy and Rajamani, 2014).  

Virtualization is an innovation that joins or partitions computing resources to exhibit many 

operating environments utilizing procedures like hardware and software partitioning, machine 

reproduction, emulation, and timesharing(Ali, 2015).  

From the 1990s until the mid-2000s, the pattern in the data centre was to help the organization 

by giving cheap and powerful x86 server setups isolated and committed to particular 

applications. A decentralization administration approach hosted these applications due to the 

utilization of a software development lifecycle (SDLC) as a systematic way to deal with 

application improvement that regularly required a devoted server design to host isolated and 

unmistakable iterations of an application (i.e., advancement, test, and production). The 

commoditization of servers and PC hardware and the simplicity of server upkeep fixes or 

upgrades could be connected without compromising or influencing other applications or 

operating systems, giving extra purposes behind decentralizing the administration of the 

application server-hosting environment  also in a similar period, the late 1990s, associations 

immensely expanded use of a blend of uses, for example, database access, Web systems,  

decision support systems, dispersed file services, transaction processing systems, and high-

performance computing to help their business needs. This expansion of utilization use caused 

an exponential development in application hosting servers, which made the requirement for 

organizations to combine their server platforms inside an incorporated server farm. This is 

ordinarily alluded to as server sprawl, which is a circumstance or the pattern in server 

development in which various, under-utilized servers consume up more space and expend a 
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more significant number of resources that can be justified by their workload. In the 2000s, 

associations saw this heightened server sprawl caused an expansion in power utilization 

prerequisites, wasteful operational aspects, and upkeep overhead. IT organizations looked for 

approaches to lessen the server sprawl affect since it has brought forth the accompanying 

issues, underutilization of hardware, lack of space in server farms and expanded operational 

expenses Thusly, numerous IT organizations were using server virtualization advancements to 

merge applications inside servers to avoid  server sprawl that would lessen the prerequisites for 

extra server hardware, power spending, and data center space (Sligh and Owusu, 2014). 

The virtualization innovation has been created quickly with the development of the hardware 

supported virtualization advances and the presence of the different services. Numerous analysts 

are focusing on building up the virtualization advances which are perceived as the most 

significant core technology of the IT applications, for example, green IT and Cloud Computing. 

The virtualization advancements have been considered for expanding usage of centralized 

computer servers since the 1960s. The fundamental ideas of the virtualization initially 

originated from the circumstance that loads of servers had low use rate around 10~20% around 

then. For improvement, various servers worked on the virtualized machine which exists in one 

actual physical machine to build server use and additionally support security. The conventional 

virtualization advances have been fundamentally produced for the centralized computer servers 

when desktop PC did not have enough performance. The exploration of the virtualization 

innovation for desktop PC has been begun effectively since the 1990s through the improvement 

of desktop PC. At present there are a few server virtual machines for desktop PC, for example, 

VMware Corporation has distributed Xen which has been produced and maintained by open 

source community and VMware ESX Server. The three parts of virtualization technologies are 

processed virtualization, device virtualization, and memory virtualization (Kim et al., 2010). 

Cloud Computing is a developing innovation which gives on-demand service, and it offers 

dynamic computing infrastructure and allocation of resources optimally. Cloud is a set of 

hardware, network, storage, and an interface that empower the conveyance of computing as a 

service (Kumar and Singh, 2015). Cloud services incorporate conveyance of software, 

infrastructure, and capacity over the internet based on user demand. The infrastructure might 

be virtualized across the globe, means you may not know where your computing resources, 

application, or even data reside. These service providers are designing their infrastructure for 

scale. The leading Cloud deployment models are a private cloud, public cloud, hybrid cloud, 
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and community cloud. A particular entity controls private cloud and customarily used only by 

that entity or one of its customers. The underlying technology may reside on-site or off-site. A 

private cloud offers increased security at a more significant cost. A public cloud which is 

available for use by the general public may be controlled by a substantial company or 

organization providing cloud services. In a community cloud, the cloud is shared by two or 

more organizations typically with shared concerns (such as schools within a university). A 

hybrid cloud is a cloud that consists of two or more private, public, or community cloud. 

Service providers offer economically efficient services using virtualization of resources 

(Kumar and Singh, 2015). 

Virtualization was developed over thirty years before enabling substantial, costly mainframes 

to be effortlessly shared among various application environments. As hardware costs went 

down, the requirement for virtualization blurred away. All the more as of late, virtualization at 

all levels (system, storage, and network) wound up essential again as an approach to enhance 

system security, reliability, decrease costs, and give more prominent adaptability. 

Virtualization is being utilized to help server consolidation endeavours. Many virtual machines 

running diverse application environments share the same hardware resources System 

virtualization includes a hardware abstraction layer, called Virtual Machine Monitor (VMM), 

over the bare hardware. This layer gives an interface that is practically proportionate to the real 

hardware to various virtual machines. These virtual machines may then run standard operating 

systems, which would regularly run correctly over the actual hardware. There are different 

virtualization methods and in additional requirements for architectures to be virtualizable. The 

principle inspiration for virtualization in the mid-seventies was to build the level of sharing and 

use of costly computing resources, for example, the mainframes. The eighties saw a decline in 

hardware costs that caused a considerable part of the computing needs of an organization to be 

moved far from extensive incorporated centralized servers to an accumulation of departmental 

minicomputers. The primary inspiration for virtualization vanished what is more, with it their 

commercial exemplifications. The approach of microcomputers in the late eighties and their 

boundless appropriation amid the nineties alongside omnipresent networking brought the 

dissemination of computing to new grounds. The expansive number of customer machines 

connected to many servers of various types gave rise to new computational paradigms such as 

client-server and peer-to-peer systems. These new environments carried with them a few 

difficulties and issues including, security, reliability, expanded administration cost and 

complexity, expanded floor space, energy consumption, and thermal dissemination necessities. 



 

32 
 

The current resurrection of the utilization of virtualization methods in commodity, economical 

servers, and client machines is ready to address these issues in a prosperous manner. 

Virtualization might be utilized for server consolidation. Each Virtual Machine underpins the 

operating system and application environments of a server being consolidated in the virtualized 

environment (Jiang et al., 2014).  

The computational humankind is complimenting to a high degree, cumbersome and 

multifaceted. Cloud Computing is getting to be a standout amongst the most growing 

methodologies in the computing business. It is a novel approach for its deliverance services on 

the World Wide Web. This model gives computing resources in the puddle for customers, 

entirely through the Internet. In cloud computing, resource designation and scheduling of 

various total web services are a goal and this paper gauges the different network resource 

allocation methodologies and their applications in the Cloud Computing environment. A short 

depiction for network resource allocation in Cloud Computing, given differentially adjusted 

dynamic extents, has additionally been finished. This research addresses and orders the 

preeminent difficulties ordinary to the resource allocation progress of Cloud Computing as far 

as different sorts of resource allocation techniques (Mohan and Raj, 2012). Cloud Computing 

is a computing model that keeps up measurements and applications, utilizing web and focal 

detached servers. This approach licenses end clients and organizations to utilize applications 

without putting in and entrée their private records at any PC with web entrée. 

Cloud computing grants for considerably more capable computing by centralizing storage, 

memory, dispensation, and data transfer capacity. A few cases of cloud computing are Yahoo 

email, Google, Gmail, or Hotmail. Cloud Computing goes about as an administration modestly 

than stock, whereby common resources, software, and data are given to PCs and different 

procedures. Cloud computing can be arranged into three services, namely, i) SaaS (software-

as-a-service), ii) PaaS (platform-as-a-service), and iii) IaaS (infrastructure-as-a-service) 

respectively. Designation of Cloud resources ought not just to ensure Quality of Service (QoS) 

requirements specified by customers using Service Level Agreements (SLAs), yet additionally 

to consolidate energy consumption. Resource allocation is one of the urgent issues in cloud 

computing, where rare resources are distributed. From a buyer's perspective, resource 

allocation identifies with how products and services are dispersed amidst clients. Capable 

resource distribution brings about a more enterprising economy (Mohan and Raj, 2012).  
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The virtualization technology (VT) can be classified into three major approaches: full-

virtualization, para-virtualization, and OS-level virtualization. Differences among these 

approaches are considered regarding performance, ease of installation and administration, level 

of security between each virtualization images, and supported hardware platforms. Several 

virtualization platforms are mainly accomplished using the software, so-called virtualization 

software. The virtualization software creates and manages virtual tools, such as a processor 

unit, a memory unit, and I/O units for the virtual operating system (Prueksaaroon et al., 2009).  

Virtual machine innovations are a vital and necessary part of Cloud Computing. They lessen 

administration complexity by permitting multiple operating systems, separated process 

environments, and adaptation to non-critical failure. Workloads can be all the more effortlessly 

merged, and keeping software refreshed is not anymore a tedious undertaking. As cloud 

infrastructure gets more modern, the quantity of utilizations moving to the cloud develops. 

Virtual machines give many advantages to these applications. Presently, like never before, it 

fundamentally critical to look at and audit the performance impacts of virtualization in Cloud 

Computing infrastructure. Virtual machines give many advantages and are regularly used to 

better use the more significant part of the hardware resources accessible powerful servers and 

hardware such as workload consolidation, updated applications, simultaneous operating 

systems, and machine isolation (Overby, 2014). 

There are two primary sorts of virtualization innovations today — hypervisor-based technology 

such as VMware vSphere, Microsoft Hyper-V Virtual Server, KVM and Xen, and operating 

system (OS) level virtualization such as VMware Workstation, Microsoft Virtual Server, 

Oracle VirtualBox, OpenVZ, Linux VServer and Solaris Zones (Padala et al., 2007).  

The Authors(Hwang et al., 2013) extensively compared four hypervisors: Hyper-V, KVM, 

vSphere, and Xen. They show their performance differences and similarities in a variety of 

situations. Their results indicate that there is no perfect hypervisor and that different workloads 

may be best suited for different hypervisors. They believe that the results of the study 

demonstrate the benefits of building a highly heterogeneous data centre and cloud 

environments that support a variety of virtualization and hardware platforms. While this has 

the potential to improve efficiency, it also will introduce some new management challenges so 

that system administrators and automated systems can adequately make use of this diversity. 

(Hwang et al., 2013). Results also illustrate how competing VMs can have a high degree of 

performance interference. They noted that correctly determining how to place and allocate 
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resources to virtual servers will remain a vital management challenge due to the shared nature 

of virtualization environments. Moreover, more research should be done in the future to solve 

those problems. 

To utilize one physical server with the ability to convey the performance of multiple servers.  

Virtualization enables IT Managers to boost resources by consolidating them on a single server. 

With virtualization, new applications will be made accessible inside a couple of minutes and 

without the cost of extra equipment (Elsayed and Abdelbaki, 2013).   

The enthusiasm for virtualization has been developing quickly in the IT business on account 

of essential advantages like better resource use and simplicity of system manageability. The 

experimentation and utilization of virtualization, and also the concurrent deployment of virtual 

software, are progressively getting mainstream and being used by educational institutions for 

research and educating (Ali and Meghanathan, 2011). 

With the advent of cloud computing and virtualization, modern distributed applications run on 

virtualized environments for hardware resource utilization and flexibility of operations in an 

infrastructure. However, when it comes to virtualization, resource overhead is involved. Linux 

containers can be an alternative to traditional virtualization technologies because of their high 

resource utilization and less overhead. (Joy, 2015) provided a comparison between Linux 

containers and virtual machines regarding performance and scalability. Containers have 

outperformed virtual machines regarding performance and scalability. Because of their better 

scalability and resource utilization, containers can be used for application deployments to 

reduce resource overhead. However, there are use cases where virtual machines would be a 

better fit than Linux containers. One of the use cases is running applications with business-

critical data (Joy, 2015). 

The expression "virtualization" portrays the production of a Virtual Computer System (VCS) 

or Virtual Machine (Strobl et al., 2013). 

2.7 A COMBINATION OF METHODS/FRAMEWORK 

A combination of methods/framework is used in this thesis; the table below summarizes the 

methods that are was taken into consideration as well as their strengths and weaknesses: 
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Table 1: Methods / Framework 

Work Model/Framework Strengths Weaknesses 

(Buyya et al., 

2011) 

A framework for SLA 

management with 

particular reference to 

managing QoS 

requirements 

Successfully integrates the 

market-based resource 

provisioning with 

virtualization technologies 

for flexible resource 

allocations. 

Does not integrate IaaS, 

PaaS and SaaS in a 

combined manner. 

(Chen and 

Zhang, 2012) 

A set-based PSO approach 

scheduling problem in 

cloud computing 

Multiple parameter 

optimizations are possible. 

However, no monitoring 

mechanism is 

implemented- ed for 

catching violations. 

(Emeakaroha 

et al., 2011) 

A scheduling heuristic 

that takes multiple SLA 

parameters when 

deploying applications in 

the Cloud 

Considers deployment 

attributes such as CPU 

time, network bandwidth, 

storage capacity, etc., 

before installation of 

applications in the cloud 

system. 

Does  not  consider  

performance  parameters 

such as response time, 

performance time, etc., 

(Li et al., 

2012) 

Profit-Based Analysis  of  

Resource Allocation on QoS 

An innovative method for 

analyzing the impact of 

resource provisioning. 

No discussion on how to 

optimally allocate 

resources. 

(Stoicuta et 

al., 2012) 

A monitoring application 

for QoS parameters in iOS5. 

Can be used by clients to 

monitor the performance of 

service providers. 

Minimal application due to 

focusing only on available 

transfer rate and one-way 

delay as QoS parameters. 
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2.8 CHAPTER SUMMARY  

Virtualization is an essential aspect of Cloud Computing. It allows abstraction centred on 

services and isolation of lower level functionalities and underlying hardware. However, few 

efforts exist to configure virtualization in cloud computing optimally. Cloud Computing 

provides a new way of computing resource distributing based on virtualization (Jiang et al., 

2014). Virtualization techniques are essential to Cloud Computing since it improves service 

delivery by giving a platform to optimizing sophisticated IT resources in a versatile way. 

Virtualization’s three attributes; partitioning, isolation, and encapsulation makes it perfect for 

cloud computing. In cloud computing, virtualization has been used in all computing services 

that include memory, storage, operating systems, networks, applications, and hardware. 
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CHAPTER 3  

METHODOLOGY 

3 INTRODUCTION  

This chapter defines the experimental environment used. This section states the experiments 

used to complete this study. We also distinguish data required from these layers, and a method 

to gather the information. Finally, we depict a method to break down extra information and 

decide whether the virtual machine is encountering performance costs or not. 

We first need to set up a known baseline for the resources by calculating overhead in that setup. 

When running different systems in production, we can think about throughput and latency of 

the resources at the virtual machine and host layer. 

Even though server virtualization can utilize all resources productively, optimizing 

virtualization software can empower a more significant number of guest machines to run 

concurrently. Popular optimization methods are lessening the overhead caused by 

virtualization and comparable resources sharing between guest machines. Virtualization 

overhead is caused by operations which directly cannot be executed on the hardware and by 

extra mappings which are used to give the guest VM a typical environment. 

3.1  MEASURING VIRTUALIZATION EFFECTS BY TESTS 

Notwithstanding the theoretical perspective, tests are used to measure the impacts of 

virtualization. Measurements are partitioned into three primary classes, given their character 

(Smith and Nair, 2005): 

• Operation under various circumstances; 

• Pure performance; and 

• Environmental isolation and security. 

Performance tests in a virtualized domain are comparatively contrasted with conventional one; 

the objective is discovering the ideal configuration for performance. For a theoretical 

perspective in virtualization overheads, comparative operations are performed in virtualized 

and traditional conditions (Benevenuto et al., 2006).  
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Albeit unadulterated performance influences the after effects of operation tests, it likewise 

considers other essential features, for example, system administration and joining to existing 

infrastructure. If re-establishing a virtual machine from a backup requires special tools or 

additional phases contrasted with restoring a conventional system, the distinction can be found 

by utilizing these operation tests. 

Unadulterated performance tests are utilized to measure conceivable overhead that 

virtualization causes contrasted with performance utilizing the native hardware. Operation tests 

give a better general picture of the contrasts between a traditional and virtualized environment. 

Furthermore, performance tests can be utilized to check diverse improvement and resource 

sharing plans. Environment security tests are utilized to guarantee that virtualization software 

is equipped for giving comparative security and isolation features than independent physical 

systems in a familiar environment. Performing tests in a virtualized environment do not 

fundamentally vary from testing a traditional environment. The main significant contrast is that 

rather than utilizing a few physical systems, an essential piece of testing should be possible in 

an isolated physical system(Li et al., 2013). 

3.1.1 Test types of performance test 

Performance tests have three classifications in light of what is the primary focus of the test. 

The classifications are the following (Jiang et al., 2014): 

• Hardware. The impact of the operating system is reduced so that only device drivers 

and essential OS parts are utilized to run the tests; 

• Software. Operating system testing and different parts of various software; and 

• Overall performance: incorporates software and hardware particular capacities.  

While the hardware has a specific performance as per details and models, a poor software 

execution of, e.g., device drivers can decrease this performance altogether. A case of a standard 

hardware test is estimating the disk’s reading and writing speed, while conventional software 

test can be, e.g., testing memory administration or the scheduler of OS. General tests more 

often than not contain performing a common task that utilizations both hardware and software 

resources intensively (Sligh and Owusu, 2014).  

Performance testing between virtualized and physical environments is easy if the host and 

virtual machine have the same operating systems. Performance tests joined with factual 
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information about utilizing resources can be utilized to give an estimate of what number of 

virtual machines they chose hardware is competent to run fluidly. In the arranging phase of 

server virtualization, this data is valuable since choosing appropriate hardware arrangement 

winds up less demanding (Ali, 2015). 

3.2 EXPERIMENTAL ENVIRONMENT  

As seen in the literature review,  authors evaluated virtualization performance either using Type 

1 or Type 2 hypervisor on desktop computers to present cloud computing or data centre (private 

or public) (Morabito et al., 2015). In this study, datacentre purposed servers together with Type 

1 (bare metal hypervisors) were used to evaluate virtualization performance. To create a private 

cloud environment, the methodology and resources used the same design template and outlook 

as how many other researchers have done with variation in the type of hardware and software 

specifications (Morabito et al., 2015). Section 3.2.1 below shows the hardware and software 

specifications for the physical machine that was used to build the private cloud environment 

and sub-section 3.2.1.1 shows the specifications for the virtual machine which will be evaluated 

for performance in line with objectives that have to be met. (Reddy and Rajamani, 2014).   

3.2.1 Host system 

The experimental environment was conducted on server Cisco UCS B200 M4, which was the 

host machine with the following hardware and software specifications below. Cisco UCS was 

chosen because many experiments of this nature have not used this model before, and it would 

provide a new variable in the experiment setup (Elsayed and Abdelbaki, 2013): 

Hardware: 

• Processor type: Intel® Xeon CPU E5620 @ 2.40GHz 

• Cores: 8 CPUs x 2,393 GHz 

• Memory: 47,99 GB 

• Storage: 131 GB local and 5,87 TB from SAN (NetApp Storage Area Network) 

• Processor sockets: 2 

• Cores per Socket: 4 

• Logical Processors: 16 

• NICs: 4 

 

 



 

40 
 

 

 

Figure 2:VMware ESXI Server architecture 

Figure 3:Proxmox Server architecture 

Software: 

• VMware ESXi 5.5, as seen in Figure 2, is managed through VMware vSphere was the 

chosen hypervisor because VMware can provide secure and stable virtual 

environments. Is it the world leading hypervisor for virtualization with some benefits? 

VMware has a significantly advanced Graphic User Interface as well as a Web-

based interface that users make use of to manage VMware hosts remotely and 

centrally easily (Younge et al., 2011). VMware is commercial. 

 

 

 

 

 

 

 

• Proxmox 5.3 with an illustration on Figure 3 was chosen as the second hypervisor as it 

a data centre virtualization software which is freely available because it is open source 

(Kovari and Dukan, 2012). This will provide not only results for virtual machine 

performance only holistically but compare between open source and commercial as the 

first hypervisor,  

 

 

 

 

 

 

 

 

3.2.1.1 Virtual machines 

The virtual environment that is encapsulated within the physical layer, which hosts the guest 

virtual machines have of Guest OSs, virtual hardware,  as well as applications. The host server 

consists of one operating system, CentOS 7 64 bit. The same amount of virtual resources are 

allocated for performance evaluation for each guest operating system. Table 2 virtual setup for 

the guest operating system.  
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Table 2: Resource distribution plan 

 

3.3 PERFORMANCE   

We discuss the performance tools used to measure various parameters. These 

workload/benchmark measurements help to recognize the utilization of network, CPU, disk, 

and memory resources that can be allocated for virtual machines. Information about the tools 

or procedures that are utilized for estimating the performance of different workload/benchmark 

parameters like Network, CPU, Memory, Disk, and are given here. 

Workload/benchmarking tools measure performance characteristics. Testing hardware feature 

performance is vital because it makes performance measurements evaluation in the thesis 

meaningful. From the literature review, it can be seen that performance evaluation can be 

determined with workload/benchmark results. Performance results can be the same when the 

performance characteristics of the two machines are similar. These tools were chosen from  a 

list of options in table form that can be seen in  between sections 3.3.1 and 3.3.4 

3.3.1 Network performance  

Network performance can be a noteworthy estimation in virtualized systems. The effect of 

virtualization on network performance experienced by clients can be calculated to portray 

virtual machine instances networking performance. Network transmission capacity, as well as 

network trace, are observed and estimated by utilizing network performance 

workload/benchmark. Measurement of network performance can be experimented using 

various workload/benchmarking tools such as the ones in table 3. 

 

 

 

 

 

 

 

 

Operating system CPU Memory Storage 

CentOS 7 64 bit 4vCPU ,2,40Ghz 4GB 40GB 
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 Table 3: Available Tools for Network Performance 

 

 

 

 

 

This study selected the Iperf tool for estimating TCP and UDP data transfer capacity 

performance. The Iperf workload/benchmarking tool is utilized for measuring TCP and UDP 

transmission capacity performance (Somani and Chaudhary, 2009a). This tool quantifies the 

network connections of virtual machines that send data bundles and receive data packets. Iperf 

instrument measures this sort of network connections (Wang and Varela, 2011). Written in 

C++, it makes TCP and UDP data to quantify the throughput of a network that conveys them. 

It measures throughput between two points that can either be unidirectional or bi-directional. 

The Iperf instrument runs on Linux and Windows platforms (Walters et al., 2008a). This 

specific tool is used to assess the bandwidth capacity over a test period, size of data transferred. 

To implement Iperf, it needs to be with installing on the server and then on the client computer. 

This tool is used to measure TCP and UDP bandwidth and throughput performance. After 

running TCP and UDP test via Iperf on both the server and the client to measure network 

performance is described in detail as following. 

3.3.1.1 TCP Testing 

The Iperf command was run in server mode in the server to simulate TCP tests. 

## root@localhost:/: Iperf -S 

 

The second Iperf command to send the TCP data to the server was run in the client computer 

in client mode. 

S No. Software tools Operating System Version 

1 Netmeter Linux and windows 3.6.0.437 
2 Netperf Linux and windows 2.7.0 
3 LAN speed test Windows and Mac OS 4.3.1 
4 Sockperf Linux and  Windows  3.5.1 
5 Uperf Linux and windows 1.0.6 
6 Iperf Linux and windows 3.6 
7 LANBench Windows 1.1.0 
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root@zartec:/home/pratique1# Iperf -c 192.168.0.1 -i 10 

 

A script was written to run the Iperf command multiple times, and the data were copied in an 

array every time the command ran the average results of the data were saved in an output file. 

The command was run ten times in each reiteration. The task was repeated up to 10th 

reiterations to get more data so to confirm the reliability of the data. To test TCP, bandwidth 

and throughput were measured for the network. 

3.3.1.2  Testing UDP 

Iperf command was run in the server to start the UDP test. 

root@localhost: ~ Iperf -s -u 

The server waited for connection and data from the client computer when the above command 

was run. 

The second Iperf command to send the UDP data to the server was run in the client computer 

in client mode. 

root@zartec:# Iperf 192.168.0.1 -I 10 -u -b 900M 

The command gave results for bandwidth, jitter, throughput, and packet loss on the network, 

as shown below:  
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For the experiment, the command was running several times. The same scripts were 

implemented for both TCP and UDP tests. In the UDP test, more network metrics were 

measured. The bandwidth throughput, jitter, and packet loss were measured in the UDP mode. 

The data was saved in an output file to create a table and graphs later on. The average 

bandwidth was measured for various clients. Results were discussed and analyzed in the next 

chapter. 

3.3.2 Disk performance  

Disk performance identifies with the maximum values at which the read and write 

computational operations are completed by the disk. Workload/benchmark tools are utilized to 

evaluate disk speed. There are various workload/benchmarking tools available for Disk 

performance, as seen in Table 4. 

Table 4: Tools Available for Disk Performance 

 

 

 

 

 

 

In this study, IOzone Filesystem Workload/benchmark is used (Somani and Chaudhary, 2009). 

IOzone is used to measure are read and write performance of the disk. IOzone provides a 

broader system performance that it is portable to any machine. This tool works on any operating 

system like Windows and Linux.The I/O operations primary workloads for measuring disks 

performance. Read, write,re-read,re-write are some of the essential operations. IOzone is 

Written in ANSII Cand; it measures performance for both single and multiple streams (Walters 

et al., 2008a). 

S No. Software tool Operating System Version 

1 Datamarck Windows Xp/Vista 0.0.4 
2 IOzoneFilesystem 

 

Linux and Windows 3.405 
3 Crystal DiskMark Windows XP/7/8/10 6.0.2 

4 DiskBench Windows all 4.0.0.0 
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IOzone is used to test I/O performance on CentOS 7. IOzone is a known a tool for disk I/O 

operations in workload/benchmarking and gives the different helpful outcomes to decide the 

I/O of the disk. To get effective results is to test the diverse file sizes and will use 1 Megabyte, 

64 Megabytes, 128 Megabytes, 256 Megabytes, 512 Megabytes until 1 Gigabyte. Each file was 

made utilizing a record size that is the measure of information composed into a file while a 

single IO operation is 4 KB. For each size, the standard test was repeated at regular intervals a 

few times by utilizing a shell script.  For more positive outcomes, the test is repeated multiple 

times, and information is gathered. The average data of the repeated tests were used to present 

the results graphically. The outcomes were copied to a file that was moved to another shell 

script to write the data to another file that can be imported to an excel file.IOzone uses options 

to change file sizes and recordset. These options are described below: 

• -s option: measured file size 

• -r record size: Kilobytes 

• -i: performance type  

• I performance kinds of measurements 

• -R Excel  

• -c time calculation 

IOzone tests the several types of properties for the I/O operation that includes: write, rewrite, 

read, reread, random read, and random write. I/O performance is tested against all the variables 

of the disk. IOzone results are in kilobytes but are changed into megabytes. An Iozone 

command ran : 

iozone -s 1024M -r 4k -Rac >> Result1.txt 
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This command gives the results for Iozone tests. On the file, it shows the command, size of the 
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file, size of the record, time is taken, and kilobytes/second. Secondly, the result shows the 13 

operations that Iozone performs during disk I/O operation and the performance for each. The 

data per second shown in kilobytes is larger and changed to megabytes to be able to interpret 

it easily. Different formats for Iozone test is used for data collection. Iozone test.sh will 

repeatedly run the test 70 times and copy results in a text file using the command below. 

/iozone.sh 

/file separator. Sh iozone.txt 

Graphs and the summary that will include meaning, medians, minimum, and maximum values 

will be generated and discussed in the next chapter. 

3.3.3 Memory performance  

Memory performance refers to RAM bandwidth and throughput measurements and the 

capacity to store data. Ramspeed is a ram speed testing tool. Ramspeed is good to use as it has 

the capability of utilizing memory at a lower capacity. It has read-write operations on the 

memory to run error checks (Hwang et al., 2013). There are various workload/benchmarking 

tools available for Memory performance, as seen in table 5. 

Table 5: Memory Performance Tools 

 

 

 

 

 

 

 

Ramspeed has different options to test various memory levels in a computer system. The 

system which is under tests has more significant physical memory; it is a large block size that 

is 2 GB and is the maximum allocated size in Ramspeed. Option -b determines the type of test 

in a particular scenario that can be changed with an integer. Four options are used to test 

memory performance, which includes integer read and write and float read and write, hence 

S No. Software  Tools Operating Systems Version 

1 BenchMem Windows all/Redhat 0.1.5 
2 Memtest86 Windows all/Redhat V5.0 Beta 
3 Memtest Windows all/Redhat 4.0 
4 Memtach Windows all/Redhat 0.93 Alpha 

5 Ramspeed Linux 3.5.8 
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used from 1 to 4 with -b option. The ramsmp command below is used to test memory with -b1 

which is integer writing with a block size of maximum 2 GB. 

 

 

The command above puts workloads on memory with Integer write operations by using block 

sizes from 2 KB up until 2 GB and exponentially incrementing. After every block size, it 

calculates the bandwidth of memory per second. 

 

The primary section in the above outcome is INTEGER, and WRITING is given the - b1 

alternative. In the second segment, block size is specifies with exponential increment and 

maximum of 2 GB on account of -m 2048 alternative utilized in the ram speed command. While 

in the last segment, memory bandwidth in MB per second is created after the test.  

[root@zartec ramsmp-3.5.8]# ./ramsmp -b1 -m 2048 
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As we watched while the block size expanded the speed of writing diminished. For block size 

1 KB to 32 KB, the average writing speed is over 38000 MB for each second. That is 

presumably L1 cache memory type which is quickest in the framework. From 64 KB to 256 

KB, average bandwidth is over 33000 MB and could be an L2 cache of the framework that is 

second most elevated speed after L1. Further, from block size 512 KB to 8 MB with average 

bandwidth is over 26000 MB for every second and could be L3. From 16 MB to 2 GB block 

size the average bandwidth is over 11000 MB for each second, and that could be the smash 

with the slowest rate. The test is rehashed multiple times, and average outcomes are utilized to 

ensure the information flawlessness in every one of the four cases that are Integer and Float 

reading and writing. 

To the procedure computerized, a Perl script was written in three documents. The principal 

record slam speed. Sh runs the ramsmp command for multiple times with various choices of 

integer and float with writing and readings and store the information in a text file. The 

ramspeed.sh is run utilizing following command.  

[root@zartec ramsmp-3.5.8]# ./ramspeed.sh 

In the wake of completing the main test with 25-time iteration, the content record containing 

the information is passed to another scripting document called information generator.sh. This 

script will isolate the content record as indicated by their unique nature and block. Another 

script called ramsingle-record. Sh then takes this separate file and convert the information in 

an arrangement that will be later utilized in R for graphical presentation and examination. The 

accompanying command will be utilized for this reason.  

[root@zartec ramsmp-3.5.8]# ./ramsinglefile.sh ramdata.txt 

3.3.4 CPU performance  

CPU performance measurements appraise the speed at which the CPU (processor) works. For 

this, unique measurements instruments are used. Unibench is a workload/benchmark tool is 

utilized in this thesis to measure CPU performance (Babu et al., 2014). Unibench gives better 

performance when utilized in VMware. Unibench is a reliable tool as VMware ESXi is one of 

the hypervisors utilized for implementation. It does distinctive operations on the system such 

as CPU speed tests, floating point operations, etc. It compares speeds of various processors like 
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AMD Opteron, Intel Core2 Quad, Intel Core i7, and mobile CPUs (Sritrusta et al., 2009). There 

are various workload/benchmarking tools available for CPU performance, as seen in table 6. 

Table 6: List of Available CPU Performance Tools 

 

 

 

 

 

 

 

 

 

Unibench workload/benchmark is used for the CPU test. CPU measurements in VMware and 

Proxmox were performed using UNIBENCH. UNIBENCH is a tool that performs 

measurements of CPU utilization in VMware and Proxmox. The application provides statistical 

data about response time and throughput. This approach was suitable thanks to the reliability 

and simplicity of the statistical data sets, and it was used to identify the behaviour of 

telecommunication services. MATLAB software was used to visualize the raw data and for 

calculation of mean, variance, standard deviation, and margin of error. 

 

3.3.5 Measurement procedure 

The maximum traffic load that can be handled by the application had to be determined for the 

setup in a non-virtual environment. Traffic generated by simulator was being gradually 

increased until failed requests were detected to determine traffic load limits. Various test cases 

for low, moderate, and high traffic loads were defined based on the maximum traffic load. In 

the virtualized scenario, the application was not able to handle all test cases due to the 

virtualization overhead. 

Consequently, the test cases for each setup in a virtual environment were redefined to reflect 

the traffic limitation. The whole traffic was sent to the active node. In case of the six core setup, 

the traffic was split into two equal traffic loads which were sent to the active nodes. Each test 

S No. Software tools Operating systems Version 

1 Passmark Windows all/Redhat 8.0 
2 SPECvirt-sc2013 Windows all/Redhat 1.00 
3 Former CPU mark Windows all/Redhat 2.2 
4 OCB(openCPU 

 

Windows all/Redhat 0.1.01.07

 5 CPU-M 

workload/benchmark 

Windows all/Redhat 1.4.0.0 

6 Unibench Windows all /Linux 3.04 
7 Linpack Windows all,linux 11.1.0.00
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case ran for twenty minutes with a constant traffic. The CPU utilization and average response 

time were measured in ten-second intervals. The test cases were repeated two times. 

3.3.6 Validation 

The validity of the results was ensured by performing the following steps: 

1. All measurements ran for 20 minutes in order to check that the results are stable; 

2. All measurements were repeated twice in order to check the repeatability and stability 

of the results; and 

3. Statistical analysis of results was carried out in order to validate the results. 

3.3.7 Test cases in a virtualized scenario (CPU) 

The same test cases were performed for different configurations of CPU cores and memory 

resources. Lack of CPU resources is the bottleneck in this experiment, and thus assessment of 

the impact of using fewer CPU cores in VMs was critical. 

In the first test case, one VM was created on each server with dedicated 16 cores of CPU and 

24 GB of RAM as in the non-virtualized system. Therefore, a fair performance comparison of 

these two scenarios was achieved. 

In the previous test case, no CPU core resources were allotted to the hypervisor itself. Hence, 

in the second test case, 12 CPU cores were dedicated to VMs, and four cores were retained for 

the hypervisor’s internal use. 

The primary objective of virtualization is to share resources among several instances to better 

utilize the resources. In the next test case, 12 CPU cores were equally divided between two 

VMs on each server (6 cores per each VM) with dedicated 14 GB of RAM. The traffic load 

was also split between two VMs to achieve a fair comparison with the 12 core setup test case. 

This setup is called the six core setup in this report. 

All test cases are defined in the sections below. 
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3.3.8 VMware 

Table 7: VMware - Test cases for the 16 core setup 

 

 

        

 

 

 

 

 
Table 8: VMware- Test cases for the 12 core setup 

 

 

 

 

 

 

 
Table 9: VMware- Test cases for the 6 core setup   

Test case number Load [req/s] Total Load [req/s] 

1 375 750 

2 1125 2250 

3 2250 4500 

4 3225 6450 

5 3675 7350 

6 4425 8850 

7 4725 9450 

 

 

Test case number Load [req/s] 

1 750 

2 2250 

3 4500 

4 6450 

5 7950 

6 9450 

Test case number Load [req/s] 

1 750 

2 2250 

3 4500 

4 6450 

5 7350 

6 7950 

7 9450 
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3.3.9 Proxmox 

Table 10: Proxmox- Test cases for the 16 core setup  

 

 
  

          

 

 
Table 11: Proxmox- Test cases for the 12 core setup 

 

 

 

 

 

 

 
 

Table 12: Proxmox- Test cases for 6 core setup 

 

 

 

 

 

 

Test case number Load [req/s] 

1 75 

2 2250 

3 4500 

4 6450 

5 7950 

6 9450 

Test case number Load [req/s] 

1 750 

2 2250 

3 4500 

4 5700 

5 6450 

6 7950 

7 9450 

Test case number Load [req/s] Total Load [req/s] 

1 375 750 

2 1125 2250 

3 2250 4500 

4 3225 6450 

5 3975 7950 

6 4725 9450 
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3.3.10 Summary 

The tools which can be utilized for performance workload/benchmarks are indicated. Different 

tools can be utilized for performance measurements. 

The ideal approach to keep the virtual machine from expending the majority of the resources 

is to limit the resources allocated to the guest machines. One conceivable strategy to limit the 

resources is to seclude the resources like network, memory, CPU. Isolating network interfaces 

are considered here. In like manner, the performance of the virtual machines is contrasted with 

VMware and other virtualization technologies. For this, resources like CPU use of virtual 

machines and are considered to indicate performance. 

Proxmox and VMware ESXi Hypervisors are used upon which guest Os’s are run. Proxmox is 

a portal for creating, operating and managing and Virtual Machines. Proxmox Virtual 

Environment (Proxmox VE; short PVE) is an open-source server virtualization environment. 

It is a Debian-based Linux distribution with a modified Ubuntu LTS kernel and allows 

deployment and management of virtual machines and containers. Proxmox VE includes a Web 

console and command-line tools and provides a REST API for third-party tools (Kovari and 

Dukan, 2012). Two types of virtualization are supported: container-based with LXC (starting 

from version 4.0 replacing OpenVZ used in version up to 3.4, included), and full virtualization 

with KVM. It comes with a bare-metal installer and includes a Web-based management 

interface.  

In this section, the research methodology chosen for this exploration think about was clarified. 

Unique methodologies and methods for performing this study were explained, and reasonable 

methods were featured. This part additionally portrayed the hypervisors utilized for 

implementing performance tests on the VMs, and additionally, performance tools were 

depicted and decided for this theory. The following section covers data on making the 

experimental environment and the usage of performance tools that are used in this dissertation.  

 

 

  

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/OpenVZ
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine


 

55 
 

CHAPTER 4  

EXPERIMENTS, RESULTS, AND ANALYSIS 

4 INTRODUCTION 

This section deals with experiments performed as described in the previous chapter. The set-

up is shown in the figure below. Sections below show results by utilizing the graphs for each 

workload/benchmarking tool. 

4.1 CONFIGURATIONS FOR HARDWARE  AND SOFTWARE USED 

Table 13: Hardware Configurations 

CPU speed 2.50GHz 

Host Memory  24 Gigabytes 

Guest Memory  4 Gigabytes 

Processor  Intel(R) Xeon(R) CPU E5-26400 

Host Disk  2 Terabytes 

Guest Disk  40 Gigabytes 

 

 
 Table 14: Software Configurations 

 

4.2 NETWORK 

4.2.1 Analysis of Network Performance 

The implementation of Iperf was installed on both the server and client. TCP Test and UDP 

test were done, and the following results were obtained. 

Operating System used                                               CentOS 7 

Hypervisors                                                                  Proxmox, VMware ESXi 

Tool for Network performance                                  Iperf 

Tool for CPU performance                                        Unibench 

Tool for Memory performance                                  Ramspeed  

Tool for Disk performance                                         IOzone Filesystem Workload/benchmark 
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4.2.1.1 Average bandwidth (TCP) 

Figure 4 demonstrates the comparison of TCP bandwidth among VMware and Proxmox. The 

bandwidth is nearly the equivalent for Proxmox though VMware platform recorded a lower 

bandwidth in comparison with Proxmox. Notwithstanding, there is a particular case when all 

the five clients were sending data, the bandwidth in VMware was somewhat higher than the 

Proxmox. The trend of the chart demonstrates that when there is a single client, at that point it 

is connected with most extreme bandwidth however when there are numerous clients 

simultaneously active the bandwidth is divided between them resulting in less bandwidth per 

client on the network. The work of (Younge et al., 2011) indicates that there is agreement in 

terms of results obtained. 

 

 

Figure 4: The comparison of TCP bandwidth between VMware and Proxmox 

4.2.1.2 Average throughput(TCP) 

Figure 5 is merely a comparison between TCP throughput in VMware and Proxmox. Proxmox 

performance level is almost the same value while VMware showed a lower throughput because 

of lower bandwidth. The work of (Overby, 2014) indicates that there is an agreement in terms 

of results obtained. 
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Figure 5: The comparison of TCP throughput among VMware and proxmox. 

4.2.1.3 Average bandwidth(UDP) 

Figure 6 shows the correlation of UDP bandwidth among Proxmox and VMware. Not at all 

like in TCP mode, VMware recorded somewhat higher bandwidth than Proxmox. This can be 

viewed as an outliner. The bandwidth is most extreme for a single client, and it is appropriated 

to different clients when they have connected effectively on the network. The work of (Overby, 

2014) indicates that there is an agreement in terms of results obtained. 

 

Figure 6: The comparison of UDP bandwidth among VMware and Proxmox 

0 200 400 600 800 1000 1200

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Average throughput(MB/SEC)

N
um

be
r o

f c
lie

nt
s 

Average throughput(TCP ) on Proxmox VS 
Vmware

Proxmov Vmware

0 200 400 600 800 1000 1200

1 Client

2 Clients

3 Clients

4 Clients

5 Clients

Average bandwidth(MB/SEC)

N
um

be
r o

f c
lie

nt
s 

Bandwidth(UDP ) on Proxmox VS Vmware

Provmox Vmware



 

58 
 

4.2.1.4 Average throughput(UDP) 

Figure 7 depicts the comparison between VMware UDP throughput and Proxmox UDP 

throughput. Throughput trend followed the trend of bandwidth, that is why VMware has a 

slightly higher throughput than Proxmox.In client 3; Vmware had less bandwidth than 

Proxmox, which is an exception or some abnormal behaviour in client 3. Reference to (Overby, 

2014)reveals that the results obtained below are similar and follow the same protocols in terms 

of measuring UDP throughput. 

 

Figure 7: The comparison of UDP throughput among  VMware and Proxmox 

4.2.1.5 Datagram loss in UDP 

Figure 8 depicts the comparison of datagram loss between Proxmox and VMware. The graph 

shows enormous datagram loss in VMware.  Datagram loss is negligible for bare metal, and 

slight datagram loss is recorded in Proxmox when transferring large amounts of data. Loss in 

the datagram is inversely proportional to the number of active clients on the network. As the 

number of client increases, then the datagram loss lowers down. Reference to (Tsugawa et al., 

2009) reveals that the results obtained here are similar and follow the same protocols in terms 

of measuring UDP loss. 
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Figure 8: The comparison of datagram loss between Proxmox and VMware. 

4.2.1.6 Average jitter Test 

Figure 9 compares the jitter between Proxmox and VMware. Jitter on VMware was higher than 

Proxmox. Proxmox recorded some jitter but almost negligible in comparison with VMware. 

Jitter increases with the increase of some clients on the network, as you can see on the graph. 

generally, this is correct, but sometimes a little bit deviation is also observed in Proxmox. 

Reference to(Cheng et al., 2011) reveals that the results obtained here are similar and follow 

the same protocols in terms of measuring jitter.  

 

 

 

 

 

 

 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 CLIENT 2 CLIENTS 3 CLIENTS 4 CLIENTS 5 CLIENTS 

Pe
rc

en
ta

ge
Datagram loss (UDP ) on Proxmox VS 

Vmware

Proxmov

Vmware



 

60 
 

 

 

 

 

 

 

 

Figure 9: The comparison of jitter between VMware and  Proxmox 

4.2.1.7 Maximum average request before saturation  

Figure 10 compares the maximum number of requests sent by the client before the server 

reaches saturation; this is between VMware and Proxmox. The lowest request sent by the client 

is observed in Proxmox.  VMware performance is slightly better than Proxmox. More the 

number of clients the less is the maximum number of requests sent by clients to the 

server(Ahmed et al., 2008).  

 

Figure 10: The comparison of a maximum number of the requests sent by clients between VMware and Proxmox 
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4.2.2 Network Conclusion  

In accordance to other results from other authors (Gulati et al., 2010, Guo et al., 2016), it very 

well may be seen that the outcomes above represent the comparison of average TCP bandwidth 

and UDP bandwidth on Proxmox and Vmware virtualization.  Bandwidth for an isolated client 

in TCP test is higher than UDP. At the point when more clients are available on the network 

sending data, the bandwidth is distributed between clients. After adding a second client 

machine, UDP has marginally higher bandwidth than TCP. This is because when less data is 

transferred, UDP is superior to TCP because UDP does not perform three-handshaking or any 

acknowledgement process. There is a comparison between the average TCP and average UDP 

throughput. At the point when there is more than one client active on the network and sending 

data, the throughput of UDP is higher than TCP throughput. It very well may be anticipated 

that the higher bandwidth prompted higher throughput in UDP data transfer.  

 

The essential result of this task is the investigation of the impact of the virtualization on the 

performance of the computer network. The idea behind this experimental setup is to observe 

the performance of the network in the virtualized environment. After a reasonable vision 

performance level, it is significantly more advantageous to make sense of the impact of the 

virtualized server on the network. The measurement of the performance of a server is a 

beneficial undertaking achieved in this task. To measure virtual computer network 

performance, Iperf was the tool that was used. By implementing Iperf, the maximum bandwidth 

with which the clients were connected on the network and maximum throughput were 

measured in the TCP data transfer. 

Jitter and datagram loss on the network along with maximum bandwidth and throughput was 

measured in UDP data transfer mode. 

Proxmox and VMware ESXi were the deployed hypervisors. There were five virtual clients, 

and a virtualized server was provisioned for a small private datacenter. The performance was 

close to the physical machine level. However, there was some deviation on VMware 

experimental setup. There was Datagram with the abnormal loss, which showed that data 

transfer was not as reliable for VMware in UDP mode. Jitter, which is the amount of variation 

in latency/response time on a network, was found to be higher on VMware in comparison to 

Proxmox. 



 

62 
 

On VMware during TCP data transfer, low bandwidth and throughput were recorded.  Jitter 

and datagram loss was higher in the virtual environment compared to the physical machine. To 

measure the performance of the network, the response transferred by the server and the clients 

were stored in a text file for graphs and analysis. VMware had a slightly better result over 

Proxmox. 

When the number of active virtual machine increases, less bandwidth becomes available for 

the virtual machines resulting in fewer throughput. The graph shows that datagram loss is high 

when there is only one client. By increasing virtual machines, the datagram reduces, and when 

it reaches the fifth virtual machine, it is an almost negligible amount of datagram. When small 

amounts of data are being sent by the virtual machine, then the datagram loss is fewer. We can 

conclude that when the virtual clients are supposed to spend fewer amounts of data, then UDP 

is efficient, but TCP can be better than the UDP when a bulk of data is required. 

4.3 DISK  

The implementation of IOzone was done in the previous chapter, and the following results were 

obtained. The review of the data in graphical format for discussion and analysis and is seen 

below. In the last section, the analysis of the data was made using various statistical methods.  

After 70 running Iozone tests 70 times, the average data was obtained. To generate the 

combined graphs for  Proxmox and VMware, the average values were used. IOzone was used 

to put the workload on various guests to measure disk I/O performance. To calculate the 

performance with different workloads, file sizes ranging from 1 Megabyte, 64 MegaBytes, 128 

MegaBytes, 256 MegaBytes, 512 MegaBytes, to 1 Gigabyte were used. The graphs below show 

the performance of Proxmox and VMware virtual machines. In accordance with other results 

from(Gschwandtner et al., 2011, Ha et al., 2016), it can be seen that the results are measured 

the same way and have a similar outcome. 
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4.3.1 Analysis of Disk performance 

 

4.3.1.1 Write 

 

Figure 11: Iozone average write 

4.3.1.2 Re-Write 

 

Figure 12: Iozone average re-write 
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the two graphs in figure 11 and 12 show an increase in performance while the file size increased 

from 1 MB to 1 GB. Re-writing in fine is usually faster than file writing. Evidence from the 

graphs shows that re-writing was almost twice faster than writing. For the 64 MB file size, 

Proxmox shows 12% better performance than VMware. 

4.3.1.3 Read 

 

Figure 13: Iozone average read 

4.3.1.4 Re-Read 

 

Figure 14: Iozone average re-read 
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increment from 64 Megabytes to 1 Gigabyte file size. Proxmox continuously increments for 

reading and decrements for re-read when the file size is increasing from 1 Megabyte to 1 

Gigabyte. Read performance for VMware remained constant while the file size increased. In 

smaller file sizes for reading, VMware gave an outstanding performance, which was in line 

with Bare Metal performance. 

4.3.1.5  Random Read 

 

Figure 15: Iozone average random read 

Random read in figure 15,  shows Proxmox and VMware had a continuous decrease in 

performance while the size of the file increased. VMware performed better than Proxmox with 

the difference of 28%, 37%, 36%, 42% and 37% for file sizes 64 MB, 128 MB, 256 MB, 512 

MB, and 1 GB respectively. 

0

1 000

2 000

3 000

4 000

5 000

1 Mb 64 Mb 128 Mb 256 Mb 512 Mb 1GB

M
B/

S

Block Size

Random Read  

Vmware Proxmov



 

66 
 

4.3.1.6  Random Write 

 

Figure 16: Iozone average random write 

Figure 16 shows that Proxmox outperformed VMware with an average of 46% in all file sizes. 

Proxmox performs better than VMware for 64 MB file size. 
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re-read, random read, backward read, stride read, forward read, re-forward read. All the write 

and read test results are tabulated in different file sizes. 

4.3.1.9  Write performance (consolidated) 

Iozone writes performance tests were consolidated, and the percentage of Proxmox and 

VMware was calculated. The sum of all Iozone write tests was added converted into a 

percentage. Bare Metal was a base to calculate the percentage of write for Proxmox and 

VMware. The values are given in table 15 in percentages. 

Table 15: Consolidated Write performance of Iozone test 

 

Table 15: Write performance tests 

Size of File Proxmox VMware 

1 MB 62.0 % 92.4 % 

64 MB 78.1 % 57.3 % 

128MB 75.1 % 95.5 % 

256MB 68.5 % 88.5 % 

512MB 66.4 % 85.7 % 

1GB 36.2 % 83.8 % 
 

The consolidated graph for Iozone writes test presented regarding percentage. 

 

Figure 17:  write performance 
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In almost all the file size, VMware has had better performance compared to Proxmox. For a 

file size of 64 MB, Proxmox had 89% performance, and VMware was at 68%. In case of 

VMware with a file size of 1 GB, the performance was 86% and was more than twice as fast 

compared to Proxmox. VMware shows the best performance for 128 MB file size. 

4.3.1.10  Read performance (Consolidated) 

Read performance for Iozone tests for Proxmox and VMware were consolidated and analyzed. 

Iozone read tests were added, and the calculation for Proxmox and VMware percentage was 

obtained using Bare Metal as a base. Table 16 shown below with figures in percentages. 

 

 

 

Table 16:  Read performance tests 

Sizes of file Proxmox VMware 

1 MB 66.5 % 92.1 % 

64 MB 83.2 % 100 % 

128MB 78.4 % 100 % 

256MB 68.8 % 86.8 % 

512MB 68.9 % 84.5 % 

1GB 68.5 % 82.5 % 

 

Consolidated Iozone read test are in graph form below: 
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Figure 18: Consolidated read performance 

4.3.2 Disk conclusion 

VMware outperformed Proxmox in all Iozone file sizes for consolidated read performance. 64 

MB and 128 MB files sizes for VMware performance were identical to the Bare Metal system. 

In a 1 MB file size, Proxmox had a 66% performance rate compared to Bare Metal. Reference 

to (Ha et al., 2016, Xavier et al., 2015, Chen et al., 2016, Li et al., 2013) reveals that the results 

obtained here are similar and follow the same protocols in terms of measuring disk 

performance. 
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results from other authors, (Gupta et al., 2006, Hwang et al., 2013, Wang and Varela, 2011) 

and it can be seen that they follow the same format. 

 

4.4.1 Vmware 

4.4.1.1 CPU utilization 

Figure 21 shows CPU utilization for different core setups. As can be seen, CPU utilizations 

differ depending on the number of cores. 

 

Figure 19: VMware - CPU utilization 

4.4.1.2 Average response time 

Figure 22 shows the average response times for different core setups. While increasing the 

traffic, the average response times are growing exponentially. As it can be observed, the six 

core setup performed the best among virtualized scenarios regarding average response time 

and handling the maximum traffic load. 
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Figure 20: VMware - Average response time 

4.4.2 Proxmox 

CPU utilization for Proxmox also shows an almost linear pattern. The values are much higher 

than in the non-virtual scenario. This fact affects the maximum traffic which could be handled 

by the system. Among the practical scenarios, there is also an intersection point in CPU 

utilization, but in a higher traffic range than for VMware. 

The 12 and the 16 core setups had quite similar behaviour. However, the 16 core setup would 

be a better replacement for the non-virtualized environment since it performed better regarding 

maximum traffic, and the CPU utilization difference is insignificant. The six core setup has a 

high CPU utilization, and it would only be a good option for high traffic loads because it shows 

less CPU utilization in comparison with the 16 core setup. 

4.4.2.1 CPU utilization 

Figure 23 shows CPU utilization for different core setups. 
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Figure 21:Proxmox - CPU utilization 

4.4.2.2 Average response time 

Figure 22 shows the average response times measured for different core setups. Average 

response times follow the exponential pattern as the traffic increases. The 16 core setup 

has the best performance among virtualized scenarios regarding average response time. 

The 12 core setup has a better response time in low traffic, while the six-core setup 

performed better in a high traffic. However, the non-virtualized system had always 

lower response time. 

 

 

Figure 22: Proxmox - Average response time 

4.4.3 Result summary 

Since the application is CPU-dependent, availability of CPU resources becomes more vital for 

higher traffic loads. Moreover, the system also must perform the handling and scheduling of 

the CPU resources simultaneously. The experimental measurements have shown that the six 
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core setup provides the best performance for high traffic. This is most probably caused by less 

fight over the CPU resources (Ramalho and Neto, 2016). 

Differences in performance behaviour between the two hypervisors were noticeable. The 

significance of this finding lies in identifying the strengths and weaknesses of each hypervisor. 

Thus telecommunication companies can use this information to select and employ the most 

suitable hypervisor based on the requirements. 

Results of the experiments are summarized below. Three traffic loads were selected from the 

middle of the traffic spectrum since the system performs better and is more stable in that range. 

The following tables provide the comparison of results 

4.4.3.1 Various CPU core setups 
 

Table 17: VMware- CPU  utilization overview 

  2000 [req/s] 3500 [req/s] 5000 [req/s] 

The 16 core setup 22% 35% 48% 

The 12 core setup 21% 31% 43% 

The six core setup  24% 33% 42% 
 

 

Table 18:Proxmox- CPU utilization overview 

  2000 [req/s] 3500 [req/s 5000 [req/s] 

the 16 core setup 25% 41% 58% 

the 12 core setup 25% 42% 58% 

the six core setup 29% 50% 65% 

 

Table 19: VMware- Response time overview 

  2000 [req/s] 3500 [req/s] 5000 [req/s] 

the 16 core setup 3ms 4ms 7ms 

the 12 core setup 3ms 5ms 8ms 

the six core setup 2ms 4ms 6ms 
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Table 20: Proxmox- Response time overview 

  2000 [req/s] 3500 [req/s] 5000 [req/s] 

the 16 core setup 3ms 6ms 10ms 

the 12 core setup 4ms 8ms 17ms 

the six core setup 4ms 9ms 14ms 

 

4.4.4 CPU Conclusion 

This master thesis presents a comparison study of different virtualization technologies and their 

impacts on performance Performance tests were conducted in virtualized environments in order 

to investigate the effects of virtualization. Moreover, various testbed configurations were used 

to clearly distinguish which of the hypervisors better complies with the requirements of cloud 

computing. 

Two questions were formulated to get a clear answer on the CPU configuration performance: 

How does virtualization impact the response time and CPU utilization of telecommunication 

services? 

In order to obtain comparable statistical data from both virtualized and non-virtualized systems, 

the same number of CPU cores and RAM was used during the tests. As can be seen from the 

tables above, virtualization adds overheads to both CPU utilization and response time. 

Which hypervisor has better performance regarding migration, response time, and CPU 

utilization? 

VMware demonstrated better performance regarding CPU utilization and response time. 

Therefore, VMware would be a better choice for telecommunication services sensitive to CPU 

resources and response time. On the contrary, Proxmox has shown less downtime in 

comparison to VMware, which makes it more suitable for large environments where 

maintenance, fault-tolerance, and manageability are essential. The work of (Li et al., 2013) 

indicates that there is an agreement in terms of results obtained. Many other authors have 

obtained similar results, and outcomes follow the same principle (Morabito, 2017, Ramalho 

and Neto, 2016). 
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4.5 MEMORY 

4.5.1 Ram speed 

Results for ramspeed are shown below. Ramspeed test was repeated 25 times using a script for 

data reliability. The test was done using exponential of 2 KB block size with a maximum of 2 

GB. Test results were calculated into average and converted in the following graphs. The 

results below are in accordance to results from other authors (Wang et al., 2015, Wu et al., 

2016), they agree with the type of data obtained for memory performance measurement. 

 

4.5.2 Integer and Writing 

 

Figure 23: Ram speed average integer and writing 
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4.5.3 Integer and Reading 

 

Figure 28: Ramspeed average integer and reading 

4.5.4 Float and Writing 

 

Figure 24: Ramspeed average float and writing 
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4.5.5 Float and Reading 

 

Figure 25::  float and reading average for ramspeed 
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4.5.7 Overall Ram speed results 
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Table 21: integer and float writing results 

Size of File Proxmox VMware 

1 KB 93.0 %    87.6 % 
16 KB      94.6 %  89.3 % 

256 KB 90.8 % 87.6 % 
1 MB 76.6 % 80.0 % 
4 MB 75.4 % 78.7 % 
16 MB 71.5 % 81.6 % 
32 MB 70.6 % 84.6 % 
64 MB 69.8 % 83.7 % 

512 MB 70.3 % 86.3 % 
1 GB 68.5 % 86.2 % 
2 GB 67.5 % 84.8 % 

 

 

Figure 26: Integer and Float writing 
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Table 22:  integer and float reading results 

File size Proxmox VMware 
1 KB 93.8 % 88.6 % 
16 KB 95.8 % 89.1 % 

256 KB 94.3 % 89.2 % 
1 MB 93.6 % 90.4 % 
4 MB 85.9 % 88.9 % 
16 MB 67.1 % 84.7 % 
32 MB 69.4 % 85.3 % 
64 MB 71.6 % 85.7 % 

512 MB 71.9 % 85.6 % 
1 GB 72.3 % 85.7 % 
2 GB 71.4 % 84.4 % 

The performance of Proxmox and VMware is shown in Figure 29 

 

Figure 27: Integer and Float reading 
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4.6 CHAPTER SUMMARY 

Chapter 4 presented data in graphical view as well as analysis and discussion. Because of 

variation in data, results from Iozone and Ram Speed were collected after a large number of 

runs. For UnixBench, the data was collected after three runs as it had a small number in 

variation. Perl scripts helped to collect data (Wu et al., 2016). The Above gives the data transfer 

capacity of the network in every one of the virtual machines. Iperf provided the measure of 

data transferred at specific interims of time. Iperf yielded results of data transferred, data 

transfer capacity rate, and time intervals. The results above in comparison with other authors, 

it can be seen that most virtual machine workloads and results behalf in the same manner with 

variations in terms of hardware and software configurations (Hwang et al., 2013, Somani and 

Chaudhary, 2009b).  
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CHAPTER 5  

CONCLUSION AND RECOMMENDATIONS 

5 INTRODUCTION 

If the optimum resource utilization were taken as a factor, the virtual servers would be in the 

winning situation provided that the total demands regarding resource and capacity have been 

correctly outlined before the virtualization infrastructure implementation. This critical aspect was 

also supported by the CPU capacity and processing load demanded by the physical and the virtual 

servers where the virtual servers always demanded more resources compared to those of the 

physical servers. Different approaches to virtualization resource allocation and configuration 

created the difference in performance. 

5.1 DISCUSSION  

It was observed that the Bare Metal resembles Proxmox and VMware in most of the tests. 

Comparing Proxmox and VMware, impressive results were observed. For Iozone, writing large 

files, VMware was more than twice as fast as Proxmox. It was observed that Proxmox was 

more than 31% better than VMware in writing 64 MB files. VMware performs better than 

Proxmox in reading. VMware was 21 to 26% better than Proxmox for smaller file sizes. 

VMware was 41% better than Proxmox for 1 MB file. 

With ramspeed memory performance with a block size smaller than 5 MB, Proxmox performs 

5 to 8% better than VMware. Block size larger than 5 MB, VMware performs 16 to 26% better 

than Proxmox. VMware was 31 to 51% better than Proxmox In the case of writing. UnixBench 

was used to measure CPU performance. VMware performed better than Proxmox In overall 

performance. VMware performed twice better than Proxmox in some cases. While Proxmox 

had better results than VMware in some instances. 

In general, high overheads were measured in Proxmox for all setups, while overhead values 

observed in VMware were lower. An obvious difference between VMware and Proxmox 

behaviour was observed during the six core setup tests. Overall, the six core setup had the best 

performance among all setups using VMware, while it has the worst performance in Proxmox. 

Two scenarios were used for the comparison of different test cases. The first scenario is a 

comparison of the 16 and 12 core setups, which reflects the impact of a different number of 
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allocated CPU cores in VMs. Second is the comparison of the 12 and six-core setups, which 

shows the effect of using multiple VMs with an even number of allocated CPU resources. 

Analysis of the test results has shown that a decreasing number of allocated CPU cores causes 

a higher response time in both hypervisors. Although CPU utilization in Proxmox was not 

noticeably affected, considerably less CPU utilization was observed in VMware. Using 

multiple VMs in VMware decreased the response time and CPU overhead. However, running 

the same tests in Proxmox caused increased CPU utilization. Additionally, response time was 

shorter for high traffic loads, and it was increased for low traffic loads. 

Iperf was implemented to measure the performance of the computer network. The maximum 

bandwidth clients were connected on the network, and maximum throughput was measured in 

TCP data transfer. Jitter and datagram loss on the network along with maximum bandwidth 

and throughput was measured in UDP data transfer mode. The data for the two protocols were 

also compared.  

A small private network was built with virtual clients and a single virtualized server. It was 

seen that the performance was very close to the level of the physical environment. On VMware 

experimental setup, some deviation was noticed. Abnormal datagram loss occurred on 

VMware, which signified that data transfer was not reliable on the network in UDP. Jitter, 

which is the amount of variation in latency/response time on the network, was found to be 

higher on VMware than in Proxmox. 

Transmitting data over network connections requires special connections in a virtualized 

environment since the communications to the network utilize physical NIC of the host system. 

The overhead caused more data transmissions can be seen obviously in the results of the 

network performance tests. Network performances in virtual machines running under Proxmox 

Server are about 5 to 56% higher than a similar design in a physical setup. With VMware ESXi, 

the performance is around 36 to 71 % higher contrasted with the physical environment.  

5.2 FUTURE WORK 

It would be very compelling to continue this research for other hypervisors such as Citrix and 

Hyper-V. The results of the additional tests would show how different CPU resource 

scheduling and network configurations are implemented in the hypervisors. Particular 

implementation can have a direct effect on the performance of telecommunication services. 
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Since the performance of the services is considerably improved by using multiple VMs in 

VMware, it would be exciting to increase the number of VMs on each server. By repeating the 

tests, it would be possible to investigate potential virtualization benefits regarding CPU 

utilization. Another exciting experiment could be focused on identification of the maximum 

number of simultaneously running VMs that would allow keeping the system stable from CPU 

and network resources point of view. It would be nice to see how other various tests performed 

using different hardware and operating systems. 

5.3 CONCLUSION  

This section concludes by answering the research question. Each chapter is also summarized. 

• What has been done in the literature to measure the performance of a virtual 

environment effectively? 

To facilitate this, a comprehensive literature review was done in chapter 2, and the 

following parameters were identified to measure virtualization performance which was 

namely CPU, Disk, Memory, and Network (Reddy and Rajamani, 2014, Perera and 

Keppitiyagama, 2011) 

• How to set a virtualized environment in order to test different performance 

configurations? 

In this study, datacentre purposed servers together with Type 1 (bare metal 

hypervisors), VMware ESXi 5.5, and Proxmox 5.3 were be used to evaluate 

virtualization performance. The experimental environment was conducted on server 

Cisco UCS B200 M4 which was the host machine and the virtual environment that is 

encapsulated within the physical layer which hosts the guest virtual machines consists 

of virtual hardware, Guest OSs, and third-party applications. The host server consists 

of virtual machines with one operating system, CentOS 7 64 bit. For performance 

evaluation purposes, each guest operating system was configured and allocated the 

same amount of virtual system resources. This study developed a virtual environment 

and experimental design to conducted tests on different configuration (Ali, 2015, 

Martinez et al., 2009) 

• How to measure the performance of different configurations in a virtualized 

environment? 
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This study was able to use Different Workload/benchmarking tools for Network, CPU, 

Memory and Disk performance, namely; Iperf, Unibench, Ramspeed, and IOzone, 

respectively to simulate the workload as well as measure the various configurations on 

the virtual environment(Hwang et al., 2013, Somani and Chaudhary, 2009a, Babu et 

al., 2014, Walters et al., 2008b). 

It is easier to figure out the performance of virtualized environments on private clouds. 

Differentiating tests between real hardware and software is challenging because measuring 

hardware performance means measuring virtualization overheads. Virtualization overhead 

depends on the software implementation of the hypervisor, meaning measuring software 

performance as well. The primary objective of this project was to evaluate virtualization 

performance as well as to determine which virtual machine configuration provides effective 

and optimal performance. 

It can be seen that is vital to have dynamic hardware configuration, and the configuration 

described in Chapter 3, section 3.3.1 proves to provide virtual machines with optimal resources 

for performance in a private cloud and as well as capacity growth and this can be proven from 

the various performance tests performed. The resources allocation to the virtual machines 

proves, and the full performance capabilities of a virtual machine are only as good as the 

hardware it sits on with adequate resources. VMware ESXi provided optimal performance 

throughout the tests, which can be recommended when providing a private cloud solution.  

Chapter 1 introduced us to Virtualization and the cloud. The research problem, the purpose of 

the study, the research question, objectives, and the structure of the thesis are described in this 

chapter. Chapter 2 discussed various literature in cloud computing and virtualization 

computing and were thoroughly covered and explained. It was understood that the basis if the 

cloud is the use of virtualization technology in information technology infrastructure. After 

considering factors such as compatibility, cost, and features and performance from the findings 

on the literature review, VMware EXSI 5.5 and Proxmox were selected for study and 

experimentation. The first objective has been to review the previous work which has been done 

on that subject. To be able to review on the previous work, it has been outlined at first the 

primary concept associate to virtualization and cloud computing in the technical review. After 

the technical review, the literature review has permitted to critic the previous work on 

virtualization technology and cloud computing. The different articles review was showing that 
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much progress has been made to try to uniform cloud computing and improve virtualization 

performances. 

The second objective was to design and build and develop a virtualized environment to be able 

to test the performances of different performances. This setup can be seen in the chapter. The 

methodology used in the study for Chapter 3 was discussed. The mixed research methodology 

was adopted has both quantitative and qualitative research methodologies so to obtain accurate 

and relevant results from the study. Qualitative data from the literature was obtained using 

qualitative research methodology and made qualitative comparisons. Mixed research 

methodology allowed us to study and analyze the performance for VMware ESXi 5.5 and 

Proxmox on CentOS 7. Chapter 4 presented detailed experimental results and analysis on the 

performance of the different configuration on the operating system running on the different 

hypervisors (VMware and Proxmox).  

Chapter 4 also met the third objective, which was to evaluate the performances of different 

configurations. The different instances have been tested for CPU performances, memory, 

network performances, as well as hard drive performances. Also, it has been evaluating the 

difference of performances between VMware and Proxmox. 

Satisfactory results were obtained in this study by answering the research question. There were 

Performance differences in different virtualization systems through different configurations. 

For memory and disk, the test outcomes demonstrated measurements of overhead is little. For 

Processor and network, was more perplexing and hence the overhead is more significant. At 

the point of the overall performance of a virtual machine running in VMware ESXi Server is 

contrasted with a conventional system, virtualization increased by 33% in terms of 

performance. 

It is not easy to provide a real system configuration. In such cases, workload/benchmarks could 

provide close to real application systems for better results. The tests demonstrate that 

virtualization relies on the host system and the hypervisor. Given the tests, both VMware ESXi 

and Proxmox servers can provide Optimal performance. 

There are various sections that overall performance depends on. One section that influences 

the performance is the drivers utilized by the OS. On the off chance that a virtual device 

contrasts in two virtualization products, additionally the driver utilized by the virtual machine 
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OS is unique. This distinction, at that point, influences the performance of the virtual machine 

directly. An important region where the impact of lower performance ought to be inspected is 

the production environment. After virtualization overhead is expelled from the overall system 

resources, the number of virtual machines in a single host system can be chosen. These 

machines will then keep running on the rest of the resources. The more there are several virtual 

machines, the more valuable virtualization can be. In zones, for example, testing environments 

where the requirements need high-performance server virtualization is the most optimal option. 

These results are consistent with what has been done by other authors (Walters et al., 2008a, 

Varrette et al., 2013, Perera and Keppitiyagama, 2011). 

The prerequisite of this conclusion is that all 16 logical processors are occupied by vCPUs. For 

tightly coupled CPU-intensive workloads, the total number of VMs, vCPUs per VM, and 

memory allocated per VM become critical for performance. We obtained the best performance 

when the ratio of the total number of vCPUs to processors is 2. The experimental measurements 

have shown that the six core setup provides the best performance for high traffic Doubling the 

memory size on each VM, for example from 1024MB to 2048MB, gave us at most 15% 

improvement of performance when the ratio of total vCPUs to logical processors is 2. As 

regards the high traffic scenario, the six core setup has the lowest CPU utilization, even lower 

than the non-virtualized system. 

Moreover, it is capable of handling more traffic. Therefore, it seems better to have several 

instances with fewer CPU cores for high traffic loads.  The total virtual memory of all VMs 

allocated to a physical machine has to be less than the physical memory of the machine to avoid 

poor performance due to swapping. From the Network results, there is less bandwidth available 

allocated for the clients resulting in fewer throughputs when the numbers of active Clients 

increase. When there is more than one client active on the network and sending data, the 

throughput of UDP is slightly higher than TCP throughput. It can be predicted that the higher 

bandwidth led to higher throughput in UDP data transfer. From the results, we can see that 

UDP is efficient when the clients spend fewer amounts of data, but when data is sent in bulk, 

then TCP can be better than UDP VMware results comparing them to with Proxmox. The 

optimal requests sent by the client before server saturation is when there are three clients. The 

consolidated write performance for Iozone test has shown the comparison of Proxmox and 

VMware with Bare Metal. VMware has shown better performance in almost all the file size as 

compared with Proxmox. Proxmox has shown 79% performance, and VMware was at 60% 
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when compared to Bare Metal with 64 MB file size. The performance of VMware in case of 1 

GB file size was 86%, which was more than twice fast while compared with Proxmox. In the 

case of 128 MB file size, VMware outperformed the Proxmox in all file sizes, showing it has 

the best performance. VMware performance was identical to the Bare Metal system in 

consolidated read performance of for file size 64 MB and 128 MB. While the rest of the cases, 

VMware performance was better than Proxmox has shown 66% performance while compared 

with Bare Metal in 1 MB file size. 

5.4 RECOMMENDATIONS 

Cloud computing brings benefits for service providers and users because of its characteristics: 

such as pay for use, on-demand, and scalable computing. Managing Virtualization 

configurations is a critical task to accomplish effective sharing of physical resources and 

scalability (Ha et al., 2016). The scale of the workloads submitted to a cloud environment is 

much larger than the benchmarks in our experiments; the difference of performance, resource 

consumption, or cost on different virtual configurations is essential. Therefore, it is crucial to 

know the impact of different virtual configurations in a cloud environment for users, service 

providers, and private cloud owners. Our findings help us decide appropriate methods to deploy 

services hosted both on public and private clouds as well as the VM configuration in terms of 

dedicated resources(Jiang et al., 2014). Virtualization is an essential factor in cloud computing 

because it provides a way to analyze, verify, and configure computing resources from clouds 

and dynamically to assign or to reassign virtual resources. This research will help private cloud 

administrators, owners, and users decide how to configure virtual resources for given 

workloads to optimize performance. 
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