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Abstract 

Acid mine drainage (AMD) refers to acidic water generated during mining activities and is 

characterised by a low pH, high salt content, and the presence of heavy metals. To treat water 

sources contaminated with AMD, sampling and laboratory analysis will have to be done for 

each water source to determine the concentrations of heavy metals. This process is time-

consuming, high in cost and may involve human error or negligence. 

The application of neural network (NN) techniques to predict the heavy metals in AMD from 

South African mines has been presented. Four specific objectives were pursued in this 

dissertation. The first one was to identify AMD and analyse for heavy metals in the AMD. 

Heavy metals that were identified and found to be in high concentrations in the AMD sample 

from Sibanye Western Basin AMD Treatment Plant are Zn, Fe, Mn, Si, and Ni. The other 

objectives of the study were to determine the input, output, and hidden layers of the NN 

structure (application of NN); (2) to find the appropriate algorithm to train the NN, and to 

compare the NN results (outputs) with the measured concentrations of major heavy metals 

sampled (targets).  

The Backpropagation Neural Network (BPNN) model had three layers which included the 

input layer (pH, SO4
2−, and TDS), the hidden layer (five neurons) with a tangent sigmoid 

transfer function (tansig) and the output layer (Cu, Fe, Mn, and Zn) with linear transfer function 

(purelin). The predictions for heavy metals (Zn, Fe, Mn, Si, and Ni) using the NN method 

focusing on a BP forward pass (feed-forward backpropagation NN) with ten different 

algorithms were presented and compared with the measured data. The mean square error 

(MSE) value was calculated for ten algorithms and compared to identify the one that is most 

appropriate for the prediction process and the model by having the lowest value. It was 

determined that the Levenberg-Marquardt back-propagation (trainlm) algorithm resulted in the 

best fitting during training because it resulted in an MSE value of 0.00041, meaning the error 

was very low when this algorithm was used. 
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Glossary  

Acid Mine Drainage (AMD): Acidic mine water generated during mining activities also Acid 

Rock Drainage 

Back Propagation Neural Network (BPNN): A supervised algorithm employed for network 

training with experimental data-set used to develop the network model.  

Deoxyribonucleic Acid (DNA): An organic chemical found in most cells of every organism 

and contains genetic information and instructions for the purpose of protein synthesis. 

Elements: A substance that is pure which is only made up of atoms with the same numbers of 

protons in their atomic nuclei.  

General Regression Neural Network (GRNN): An algorithm based on the estimation of 

probability density functions and, feature fast training times, and it can model nonlinear 

functions.  

Heavy Metals: Chemical metallic elements with relatively high densities, atomic weights, or 

atomic numbers. 

Learning Algorithms: The steps used to train networks. 

Light Metals: Chemical metallic or non-metallic elements with relatively lower densities and 

atomic numbers.   

Lime: An inorganic mineral that contains calcium and primarily oxides and hydroxide. The 

oxides and hydroxides are usually in the form of calcium oxide and/ or calcium hydroxide. 

MATLAB Toolbox: The MATLAB® technical computing environment with a collection of 

functions built.  

MSE: A function that tells you how close a regression line is to a set of points.  

Neural Network (NN): A network of equations where inputs are taken in and outputs returned. 

Parallel methods of processing information are used and they can extract relationships that are 

nonlinear and complex. 

Neurons: Elements where information processing takes place. 

Neutralisation: An acid and a base react quantitatively with each other in this chemical 

reaction.   
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Neutralising Agents: An assistant to the qualitative reaction between an acid and a base, 

known as an emulsifier.  

Precipitation: Converting the substance into an insoluble form or a super-saturated solution 

so that the process of converting a chemical substance into a solid from a solution takes place.  

Pyrite (Fool’s Gold): Iron Sulphide (FeS₂) which is considered the most common of the 

sulphide minerals in ores. 

Reinforcement Learning: An algorithm with a variation of supervised learning techniques 

since they continuously analyse the difference between the response produced by the network 

and the corresponding desired output. 

Solidification/Stabilisation (s/s) Operations: It is a process that physically encapsulates the 

contaminants as they are locked in the soil. 

Sulphate/ Sulfate: A polyatomic anion with SO4
2−as an empirical formula. 

Sulphide Bearing Minerals: A type of ore containing oxygen-free compounds of sulphur 

found beneath the earth's surface. 

Supervised Learning: An algorithm where the desired outputs for a given set of input signals 

are available. It behaves like a “coach”, teaching the network what is the correct response for 

each sample presented for its input. 

Unsupervised Learning: An algorithm that does not require any knowledge of the respective 

desired outputs and where the network organises itself. 
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Chapter 1: Introduction 

1.1 Background of the study 

The mining industry in South Africa has managed to elevate the country in the global market 

and has provided economic benefits over the years. However, these mining activities produce 

acid mine drainage (AMD) which is acid mine water characterised by a low pH, and high salt 

and inorganic element (light and heavy metals) contents (McCarthy, 2011). In this dissertation, 

heavy metals are referred to as chemical metallic elements with relatively high densities, 

atomic weights, or atomic numbers, while the light metals are referred to as the chemical 

metallic or non-metallic elements with relatively lower densities and atomic numbers. AMD 

plays a significant part in contaminating the water system. The cause of interest was brought 

about by the Cradle of Humankind receiving water that was contaminated by the old gold mines 

in Krugersdorp. This led to the formation of an investigative committee in late 2010 in order 

to tackle the arising AMD problems (McCarthy, 2011).  

This is a global problem because other parts of the world are also experiencing environmental 

problems due to AMD. In Southeast Iran, the Sarcheshmeh Mine (where mining of Cu takes 

place) has played a role in contaminating the Shur River (Rooki et al., 2011). Acidic water is 

generated during mining when sulphide minerals or pyrite becomes oxidised and the acidic 

water contains heavy metals, dissolved sulphate (SO4
2−), and iron (Fe) in high concentrations 

(Rooki et al., 2011).  

Oxidation occurs on the pyrite in two stages. The initial stage produces sulphuric acid and 

ferrous sulphate (FeSO4) and the second stage produces orange-red ferric hydroxide (Fe(OH)3)  

and additional sulphuric acid (McCarthy, 2011).  AMD also goes as far as contaminating 

ground water as in the situation in Arak region. In South Africa and other parts of the world, 

there is interconnectivity in the groundwater and surface water systems which makes it possible 

for high volumes of contaminated water to affect the water supply (Ghadimi, 2015).  

The heavy metals contained in AMD are of most significant concern because they are non-

degradable, therefore making them persist in the environment. They are considered metals with 

densities that are relatively high, ranging from 3.5 gcm-3 to 7 gcm-3, and are also considered 

toxic at low concentration levels (Gautam et al., 2014). They are dangerous to the human body, 

aquatic life, soil and plants.  
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The bio-accumulative nature in biotic systems is the reason why the hazardous nature of heavy 

metals was recognised. Mining activities, industrial discharge, and household applications are 

the carriers of heavy metals into the environment, mostly to nearby water bodies (Gautam et 

al., 2014).  

A study done by Ahsan et al. (2006) stated that arsenic (As) consumed through drinking water 

led to an increase in the occurrence of skin lesions from a dose as little as 0.0012 mg/kg/day. 

Lead (Pb) showed toxic effects to the nervous and reproductive systems as well as the kidneys. 

Bone degradation, renal dysfunction, and blood and liver damage are some of the effects of 

exposure to cadmium (Cd). High levels of Cu dust exposure cause irritation of the nose, eyes 

and mouth as well as the possibility of nausea and diarrhea. Even low concentrations of Cu are 

toxic to a variety of aquatic organisms (Gautam et al., 2014). 

Zinc (Zn) is another heavy metal that carries problematic effects. Its toxicity in large amounts 

causes children to feel nauseated and vomit. It also causes anaemia and cholesterol problems 

due to a higher concentration of Zn in human beings. Babies who were mentally disturbed and 

physically deformed were born in Minata Bay (Japan) to mothers who were exposed to toxic 

mercury (Hg) due to contaminated fish consumption. The major problems of contamination in 

aquatic systems are also caused by water soluble salts of nickel (Ni) (Gautam et al., 2014). The 

International Agency for Research on Cancer (IARC), classifies inorganic As and Cd as human 

carcinogens (International Agency for Research on Cancer, 2014). Cd is a metal and As is a 

metalloid and both of them are related to the risk of cancer, skin damage and kidney damage 

as well as other diseases.  

Heavy metals also have negative effects on aquatic life. Less than one percent of living mass 

organisms is contained in heavy metals, and they cause disorders due to their different 

densities. Oceans receive heavy metals from surface water and acid rain and even though metal 

pollution of the ocean is low compared to other types of water pollution, these metals affect 

the marine ecosystem. Fish and other aquatic organisms directly receive the pollutants from 

water and indirectly through food. Heavy metals have the ability to reduce developmental 

growth of the aquatic species as well as increase anomalies in development. They can also 

reduce the chances of survival for the fish at the start of exogenous feeding and even possibly 

cause fish extinction. Little absorption of manganese (Mn) occurs through the gut via food but 

high concentrations of it was detected in the gills as the main route of uptake. Higher 
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concentrations of Fe were found in the livers and lower concentrations in the muscles of fish 

species (Khayatzadeh & Abbasi, 2010).  

There are 13 essential mineral nutrients necessary for a plant’s life cycle completion and among 

them macro-elements are required in large quantities while micro-nutrients are needed in low 

concentrations (Sela, 2020). Zn and Cu consist of essential micronutrients for the growth of 

plants, however, at higher levels they may prove to be toxic (Roopali et al., 2017). Some of 

these plants are the Argyroderma Testiculare, the Baby Rubber Plant, the Bunny Ear Cactus, 

and Aloe Vera, to name a few (Anon., 2013).  

Therefore, plants need a certain number of heavy metals to survive. However, once they 

become toxic, the plant is affected directly and indirectly. Cell structures become damaged by 

oxidative stress and cytoplasmic enzyme inhibition. These are some of the direct effects of too 

much heavy metals. The indirect effect is when an essential nutrient in a plant is replaced at 

cation exchange sites (Chibuike & Obiora, 2014). Indian mustard (Brassica juncea) and Water 

Hyacinths are plants that do not find heavy metals toxic. They can grow in soil that has a high 

metal concentration and are effective in the extraction of heavy metals such as Pb from the 

toxic dumping grounds during soil and water treatment (Marry-Lissy & Madhu, 2011). 

The general definition of neural networks (NNs) is that they are information processing 

representations of the biological NN (Rooki et al., 2011). They use a concept of prediction and 

consist of computing elements or processors, which are models of mathematics with biological 

neurons interlinked by weights (Vlad, 2004). This concept is presented in this work as a 

solution for laboratory inconsistencies and was inspired by the biological brain and the nervous 

system. Although there is a difference between the biological brain and the conventional digital 

computer. NNs have been applied in many diverse fields over the years and such applications 

have been found successful and satisfactory. Some of the applications include the recognition 

of patterns, processing of signals and images, system identification and modelling as well as 

predictions in the stock market (Sazli, 2006). The reason for such success can be attributed to 

the fact that NNs are parallel methods of processing information. They are able to extract 

relationships that are nonlinear and complex (Ghadimi, 2015). Other attributions include the 

capability to learn and adapt, tolerance of faults, and Very Large Scale Integrated 

Implementability (VLSI) (Sazli, 2006).  
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1.2 Motivation 

The development of any appropriate remediation strategy requires the prediction of the heavy 

metals in the AMD and this is of great significance. NNs are therefore the tool of such 

prediction. They are a network of equations that take in inputs and return outputs. They try to 

mimic brain function which learns through experience. Computers have the challenge of 

recognising even the simplest of patterns, unlike the brain, which is able to store information 

as patterns, of which some are complicated. An example is the ability of the brain to allow 

humans to recognise faces at different angles. A whole new field of computer studies is being 

investigated where information can be stored as patterns and used to solve problems. This will 

involve creating parallel networks and training them (Bangal, 2009). NNs are parallel methods 

of processing information and, they are able to extract relationships that are nonlinear and 

complex (Ghadimi, 2015).  

Plenty of remediation strategies have been developed over the years to treat the AMD after its 

effect and not before. These treatment processes include hydrated lime or calcium hydroxide 

(Ca(OH)2) precipitation which is the conventional process and heavy metal removal processes 

that are physico-chemical which include adsorption on new adsorbents, electrodialysis, 

membrane filtration and photocatalysis to name a few (Barakat, 2010).  

These treatment processes still require sampling and laboratory analysis for each water source 

to determine the toxicity (concentrations of heavy metals). This process is time consuming, 

expensive and may involve human error or negligence. It only gives results for the remediation 

of already contaminated water. NN is therefore going to bring remediation at a faster rate and 

solve problems that heavy metals cause to human beings, aquatic life, soil, and plants.
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1.3 Problem statement 

Acid mine water is characterised by a low pH, high salt and, heavy metal content, and other 

toxic elements. The heavy metals are non-degradable and are considered metals with densities 

that are relatively high, ranging from 3.5 gcm-3 to 7 gcm-3 and are also considered to be toxic. 

Some of these heavy metals are Hg, Cd, Pb, antimony (Sb), copper (Cu), Zn, and Fe. These 

metals are related to the risk of cancer and skin damage as well as kidney damage. Heavy 

metals also pose a risk for aquatic life (fish), soil, and plants. The conventional method of 

determining heavy metals present in AMD is time-consuming and expensive due to the fact 

that it involves taking samples and doing laboratory analysis. AMD prediction is commonly 

done by laboratory and field tests. The challenge is that AMD formation varies from site-to-

site based on a number of different factors. The tests are often done at small scale and during a 

short period of time which means many uncertainties are introduced for decision-makers when 

the method is conducted in the large-scale setting of mine sites (Betrie et al., 2012). 

This research will investigate using NNs to predict heavy metals in AMD. NNs are parallel 

methods of processing information and, they are able to extract relationships that are nonlinear 

and complex. The use of NN will be rapid, reliable, and cost-effective compared to the 

conventional method of predicting AMD. This will help in eliminating human error that may 

occur in laboratories. This will allow for the implementation of remediation methods earlier 

before mining effluents contaminate the environment. This will in turn save river and ground 

water from being contaminated and reduce or prevent other health risks caused by heavy metals 

can be reduced if not prevented.  

1.4. Objective 

To develop a neural network model to predict heavy metals in acid mine drainage from South 

African mines.  

1.4.1 Specific objectives 

a) To identify AMD and the heavy metals in AMD. 

b) To apply NN. 

c) To find the appropriate algorithm to train the NN. 

d) To compare the NN results (outputs) with the measured concentrations of major heavy 

metals sampled (targets). 



 

 

6 

 

1.5 Outline of dissertation 

Chapter 1: Introduction 

This chapter provides background information about the study as well as the motivation which 

reasons and argues why research on this study is necessary. The discussion of the problem 

statement is done to draw out a connection between the background and motivation. The main 

and specific objectives of the study are also presented. 

Chapter 2: Literature Review  

This chapter discusses the literature pertinent to this study. Information about AMD and heavy 

metals definitions and their sources, AMD chemical formation, and different waste water 

treatment processes are discussed. The theory of neutralisation and precipitation using different 

reagents are studied to understand the process of heavy metals removal in waste water. The 

different NN architectures and algorithms are discussed based on the point of views of different 

authors, their experiments, and results. The NN architectures and algorithms of importance in 

this study are discussed and elaborated on further. 

Chapter 3: Methodology 

The method of carrying out the study gives details of the materials and chemicals that were 

used. It also explains the procedure of sampling and software training, site identification, 

description of that site, sample collection, and analysis. The software training procedure gives 

details on how inputs, targets, and functions were decided upon as well as the steps of training 

the network using different parameters. 

Chapter 4: Results and Discussion  

Results obtained are of two samples of raw AMD and neutralised AMD solution. AMD 

properties were identified in the samples taken from Sibanye Western Basin Treatment Plant. 

The properties found correspond to the definition of AMD in the literature. Neutralisation using 

Ca(OH)2 proved to be successful in precipitating heavy metals, especially those identified to 

be problematic. 28 more samples were taken to continue the experiment after finding that the 

two samples gave lucrative results. The data from the 28 samples were used to train a NN 

model. The designing of a NN for its application focused on these four important aspects that 

had to be determined: (1) selection of the backpropagation (BP) training algorithm, (2) data 
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distribution, where the optimum algorithm was applied to train the NN, (3) selection of the NN 

structure, and (4) selection of the initial weight.  

Chapter 5: Conclusion and Recommendations 

This chapter concludes the results and findings of the study and shows how the research 

addresses the objectives set out for the study. It also gives a way forward on how to continue 

with the research by giving recommendations on focus areas that could be done differently and 

could enhance the results of the study. 

Chapter Summary 

This chapter explains the problems of AMD to the world as a whole as it contaminates other 

water sources. Heavy metals in high concentrations have been shown to have negative effects 

on human health, plants, soil, and aquatic animals which motivated the need to treat these water 

sources. Prior to treatment, laboratory analysis is required to identify and quantify the 

proportions of light and heavy metals contained in acid mine water samples. This conventional 

method of determining heavy metals present in AMD is time-consuming, expensive, and may 

involve human error. The application of NNs is then considered, where NNs are parallel 

methods of processing information and, able to extract relationships that are nonlinear and 

complex. The main objective is to develop and train a NN model to predict heavy metals in 

AMD. The use of NN will be rapid, reliable, and cost-effective compared to the conventional 

method. This will help in eliminating human error that may occur in laboratories and results 

will be made available quickly by the predicting model to allow for removal methods to be 

applied earlier before mining effluents contaminate the environment. The specific objectives 

of how the project will be carried out are also listed.
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Chapter 2: Literature Review 

2.1 Introduction 

A country’s economic wealth and growth largely depends on natural resources. These resources 

are also important for a country’s human-social development (Elçiçek et al., 2014). The mining 

of coal and gold (natural resources) contributes to the generation of AMD which in turn 

contributes to the contamination of river and ground water. AMD is formed when the pyrite 

mineral and oxygenated water come into contact and oxidation of pyrite occurs. In many 

mineral deposits, pyrite is the minor constituent that is common and is associated with the coal 

and gold deposits of South Africa. AMD is identified by low pH, high salt content, and most 

importantly, heavy metals (McCarthy, 2011).  

The current impacts of AMD are experienced at both local and regional levels and cause 

significant deterioration in the quality of scarce water resources. This means that contaminated 

water puts human health, fish (other aquatic life), and plants at risk (Shah, 2017). This has 

prompted the world to investigate techniques of predicting heavy metals found in AMD for 

better ways to manage the contamination and remedy the situation. The technique of interest 

so far involves the use of NN. NNs are models of mathematics with biological neurons 

interlinked by weights. These weights are modified during utilisation to satisfy a criterion of 

performance. The hope is that this technique will be accurate, cost-effective, and rapid (Rooki 

et al., 2011).  

The parameters of this study include learning about NNs and how other researchers have used 

them to determine how effective, the use of NN is in the prediction process compared to 

conventional laboratory analysis. There is a need to discover the most effective NN architecture 

for the best results possible. 

2.2 Sources and Formation of AMD 

The main source of AMD is mine waste from mines that are either active or abandoned and 

this AMD is often net acidic (Masindi et al., 2018). Oxidation of sulphide mineral ores is the 

main cause of AMD. Intensive mining causes them to be exposed to the environment as it 

contains elevated concentrations of metals and metalloids (Fosso-Kankeu, 2018). Pyrite ore is 

the most common sulphide mineral and is also known as fool’s gold. The combination of water, 

oxygen, and oxidising bacteria causes the pyrite and sulphide minerals in mine waste to oxidise 
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and form AMD. Pyrite oxidation is quite complex; therefore, different reactions can represent 

under different conditions (Kefeni et al., 2017).  Some of the examples of reactions for the 

major and common pyrite oxidation processes are as follows. 

The initial reaction involves sulphide mineral oxidation into dissolved Fe, SO4
2−, and hydrogen 

which Equation (1) illustrates. 

FeS2 + 
7

2
 𝑂2 + 𝐻2𝑂 → 𝐹𝑒

2+ + 2𝑆𝑂4
2− + 2𝐻+      Equation 1

     

An increase in total dissolved solids (TDS) and acidity in the water is represented by the 

dissolved Fe, SO4
2−, and hydrogen. If they are not neutralised, they cause a pH decrease. If the 

environment contains enough oxygen, pH, and bacteria activity (which are the oxidising 

requirements), then a lot of the ferrous iron (FeO) will be oxidised to ferric iron (Fe3+), as 

shown in Equation (2).  

Fe2++ 
1

4
𝑂2 +𝐻

+ → 𝐹𝑒3+ +
1

2
𝐻2𝑂        Equation 2 

When the pH values lie between 2.3 and 3.5, Fe3+ precipitates as Fe(OH)3 and jarosite which 

then leaves a little Fe3+ in the solution while the pH is simultaneously lowered, as shown in 

Equation (3). 

Fe3++ 3𝐻2𝑂 → 𝐹𝑒 (𝑂𝐻)3 + 3𝐻
+       Equation 3 

Any Fe3+ from the second Equation that does not precipitate from the solution through Equation 

3 can be used to oxidise additional pyrite as shown in Equation (4). 

FeS2 + 4 𝑂2 + 3𝐻2𝑂 → 𝐹𝑒 (𝑂𝐻)3 + 2𝑆𝑂4
2− + 3𝐻+     Equation 4 

A combination of Equations (1) to (3) represents acid generation that produces Fe which 

eventually precipitates as Fe(OH)3, as shown in Equation 5. 

FeS2 + 𝐹𝑒3+ + 8𝐻2𝑂 →  2𝐹𝑒
2+ + 2𝑆𝑂4

2− + 16𝐻+     Equation 5 

The overall Equation for stable Fe3+ that is used to oxidise additional pyrite is a combination 

of Equations (1) to (3), as indicated by Equation 6. 

FeS2 + 3 𝑂2 + 2𝐻2𝑂 → 𝐹𝑒
3+ + 2𝑆𝑂4

2− + 4𝐻+      Equation 6 

 

All the equations above, except for (2) and (3), have assumed that the mineral being oxidised 

is pyrite and that oxygen is the oxidant. There are other sulphide minerals like pyrrhotite (FeS) 
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and chalcocite (Cu2S) which have other ratios of metal sulphide and metals other than Fe. There 

are different reaction pathways, rates and stoichiometries for additional oxidants and sulphide 

minerals, however, there is limited research on those variations (Akcil & Koldas, 2005). 

The rate of AMD production on a mining site is influenced by many factors such as 

temperature, bacteria, alternative oxidants (Mn/Fe), and the starting pH. Waste that contains 

reactive sulphides is considered hazardous materials. Places where these sulphides are found 

include impoundments, open cuts, pit walls, waste dumps, leach pads, and other areas that are 

exposed (Kirby, 2014). 

Balci and Demirel (2017) worked on predicting the sources that release AMD and metals 

specifically at the Küre Cu Mine Site, situated in Kastamonu, NW Turkey. There were different 

methods and criteria used for the classification and assessment of the waste rock’s Aquifer 

Protection Permit (APP) and lithological units around deposits in Küre for the identification of 

possible sources of AMD generation. Pyrite and chalcopyrite are the most common sulphur 

minerals that were identified in the wastes. The common gangue minerals were found to be 

illite, calcite, muscovite, dolomite, feldspar, albite, kaolinite, quartz, olivine, chloride, and 

gypsum.  

The pH value of acid mine water usually ranges around 3, often containing metals such as Fe, 

Mn, Al, and anions such as SO4
2− in high concentrations. Increased concentrations of Zn, Co, 

Pb, Cr, and Cu have also been observed in acid mine water. It is not always possible to specify 

typical mine water for individual deposits unambiguously because the source conditions of 

mine water vary. Incomparable hydrochemical water mixtures can possibly be identified even 

in one geological structure (Heviánková et al., 2013). 

2.3 Acid Mine Drainage and Heavy Metals  

AMD is also termed acid rock drainage (ARD) (McCarthy, 2011). It is one of the pollutants in 

the environment that is caused by mining activities. It is generally characterised by low pH, 

high heavy metal content and high salinity. Metal concentrations and SO4
2− in the water vary 

based on the properties of the mine. According to Fig (2011), AMD samples were once found 

to have 5000 mg/L of SO4
2− in measure and it was considered to be beyond the maximum point. 

The toxic and potentially carcinogenic metals found, which were Mn, aluminium (Al), Fe, Ni, 

Zn, cobalt (Co), Cu, Cd, As, and Pb (Fig, 2011). Elemental silicon was also found but it is 

chemically inactive and therefore the property that causes lung tissue fibrosis is lacking. 

However, laboratory animals have been found to experience slight pulmonary lesions due to 
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intra-tracheal injections of silicon dust. Chronic respiratory effects are likely to be caused by 

Si (LennTech, 1998-2020). 

Over the years, AMD has also been defined as acidic water outflow from mines that are either 

active or abandoned. Additional risk is posed to the environment because AMD consists of 

elevated metal concentrations such as Mn, Fe, Al, and other heavy metals and metalloids 

(Offeddu et al., 2014). 

A metalloid is a type of chemical element with properties between those of metals and non-

metals or that consists of a mixture of metals and non-metals. There is no standard definition 

of a metalloid or complete agreement about the elements appropriately classified as metalloids. 

However, there are six commonly recognised metalloids which are As, Sb, B, Ge, Si, and Te. 

Al, At, C, Se, and Po are the five elements that are less frequently so classified. A standard 

periodic table shows all eleven elements located on the p-block in a diagonal region starting 

from boron on the upper left to astatine on the lower right. In some periodic tables, a dividing 

line is included between metals and nonmetals with the metalloids being found close to this 

line (Chemicool, 2017). 

The appearance of typical metalloids is metallic; however, they are brittle and only fair 

conductors of electricity. They have a nonmetal behavior in the chemical state and can form 

alloys with metals. These metalloids have properties that are intermediate in nature when it 

comes to their other physical and chemical properties and they are usually too brittle to have 

any structural uses. 

Metalloids can be used in alloys, flame retardants, biological agents, catalysts, optical storage 

and optoelectronics, glasses, semiconductors, pyrotechnics and electronics (Chemicool, 2017). 

Mine drainage can be categorised into two types, net-acidic and net-alkaline. They are both 

considered highly acidic due to the misconstruction of the terms acid and acidity. Acid refers 

to pH while acidity refers to total acidity with both pH and mineral acidity included, meaning 

that even at a pH of higher than 7, acidity is still possible. The produced concentration of 

hydrogen ions or hydronium (H3O
+) during metal hydroxide (OH-) formation at a certain pH is 

referred to as mineral acidity (Moodely et al., 2017). 

Lakovleva et al. (2015) highlight that there are three categories of mine water based on the 

acid-base properties. If the pH is at 6 or below it is considered as AMD. A pH of 6 and above 
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is considered as neutral mine drainage. A pH greater than 6 which contains carbonates of more 

than 1000 mg/L, is considered saline mine drainage. 

Serious human health and environmental problems may be experienced due to AMD, and this 

is a global problem (Betrie et al., 2012). The biggest problem with AMD is that it carries with 

it heavy metals that can cause contamination to soil and, surface and groundwater (Akcil & 

Koldas, 2005). Such contaminated sources become dangerous to the human body, aquatic life, 

soil and plants. The heavy metals in AMD are of most significant concern because they are 

non-degradable, therefore making them persist in the environment. They are considered metals 

with densities that are relatively high, ranging from 3.5 gcm-3 to 7 gcm-3, and are also 

considered to be toxic at low concentration levels (Gautam et al., 2014).  

According to LennTech (2020), any metallic chemical element with a relatively high density 

that is toxic at low concentrations is termed a heavy metal. Some of the examples include As, 

Cd, Cr, Hg, Tl, and Pb. They are the natural components found in the Earth’s crust, which 

cannot be degraded or destroyed. Food, air and drinking water are some of the ways in which 

these metals enter our bodies to a small extent. The human body needs some heavy metals in 

the form of trace metals, such as Cu, Zn, and Se, as they are essential to maintain the body’s 

metabolism. Poisoning only occurs if these metals are in higher concentrations as a result of 

drinking water from lead pipes, breathing in high ambient air concentrations near emission 

sources or food intake.  

Metals that also pose health risks include antimony (Sb) which can cause heart diseases and 

cholesterol, Pb which can be linked to anaemia, Hg which can be linked to kidney and liver 

damage, and gastrointestinal disorders which can be attributed to Cu (Malik & Khan, 2016). 

Even if the level of exposure to these metallic elements (Hg, As, and Pb) is low, they have the 

ability to induce toxicity (Jan et al., 2015). 

The heavy metals of most concern are As, Cd, Ni, Cr, Cu, Hg, and Pb, because they have 

negative effects on human health and are found in high concentrations in drinking water in 

some areas. In one’s lifetime, drinking 1 L/day of water contaminated with 50 μg/L of As could 

potentially lead to liver, kidney, bladder, and lung cancer in 13 out of 1000 people (Smith, 

Lingas and Rahman, 2000). However, as stated by Moodley et al. (2017), the SO4
2− and metal 

concentrations in the acid water vary based on the mine characteristics and therefore other 

metals can be of concern to living organisms and the environment. 



 

 

13 

 

Jan et al. (2015) detail the dangers that heavy metals pose to the human body. The human body 

has control mechanisms which metals can escape and cause lethal effects on the body. Some 

of the control mechanisms include transportation, homeostasis, specified cell constituents 

binding and compartmentalisation. The ability of heavy metals to displace metals of importance 

from their sites can lead to cellular process malfunction in the body.  

The primary cause of oxidative deterioration of the biological macro-molecules is the binding 

of metals to the deoxyribonucleic acid (DNA) and nuclear proteins. Contamination can be seen 

through symptoms which may include disorders of the central nervous system, insomnia, 

depression, intellectual disability in children, kidney and liver diseases and instability of 

emotions. Basically, if the exposure to toxic metals (symptoms) is not identified and treated 

properly, an important medical problem can be experienced which will lead to an increase in 

the rate of morbidity and mortality (Jan et al., 2015).  

Aquatic animals such as fish experience situations where heavy metals gather in their various 

organs which then leads to death. The effects of the heavy metals are first observed in the blood 

of the fish where its blood components are altered and it becomes weak, anaemic, and left 

exposed to diseases. The haematological indices of the fish are increased or decreased which 

leads to a decline in the protein and glycogen reserves due to heavy metals (Shah, 2017). Heavy 

metals can reduce developmental growth of aquatic species as well as increase anomalies in 

developments. They can also reduce the chances of survival for the fish at the start of 

exogenous feeding and even possibly lead to fish extinction. Little absorption of Mn occurs 

through the gut via food but high concentrations of it was detected in the gills as the main route 

of uptake. Higher concentrations of Fe were found in the livers and lower concentrations in the 

muscles of fish species (Khayatzadeh & Abbasi, 2010).  

Heavy metals affect the soil and plants which grow from it. Metals can either combine with 

soil components or exist separately. The components that metals may exist with could be 

exchangeable or nonexchangeable ions, or insoluble inorganic metal compound such as 

carbonates and silicate minerals. Metals that exist separately are the ones that cause pollution 

while those that attach themselves to silicate minerals do not cause any contamination and 

simply represent the background soil metal concentration. The heavy metals which are 

available as soluble components in soil solutions are the ones that are required for the plant 

uptake (Chibuike & Obiora, 2014). 



 

 

14 

 

There 13 essential mineral nutrients necessary for a plant’s life cycle completion and it requires 

macro-elements in large quantities and micro-nutrients in low concentrations (Sela, 2020). Zn 

and Cu consist of essential micronutrients for the growth of plants, however, at higher levels 

they may prove to be toxic (Roopali et al., 2017). Some of these plants are the Argyroderma 

Testiculare, the Baby Rubber Plant, the Bunny Ear Cactus, and Aloe Vera, to name a few 

(Anon., 2013). Heavy metals contribute negatively to the activities and growth of micro-

organisms in the soil, and this could affect the growth of plants indirectly. When heavy metals 

cause a reduction in beneficial soil micro-organisms, it could lead to a reduction in the 

decomposition of organic matter and ultimately reduce the soil nutrients. When heavy metals 

interfere with soil microorganisms, they tamper with enzyme activities which are necessary for 

plant metabolism. All the above-mentioned direct and indirect toxic effects of heavy metals 

can inhibit the growth of the plant or even kill it (Chibuike & Obiora, 2014). 

Therefore, plants need a certain number of heavy metals to survive. However, once they 

become toxic, the plant is affected directly and indirectly. Some of the direct effects of too 

much heavy metals include cell structures becoming damaged by oxidative stress and 

cytoplasmic enzyme inhibition. The indirect effect is when an essential nutrient in a plant is 

replaced at cation exchange sites (Chibuike & Obiora, 2014). Indian mustard (Brassica juncea) 

and Water Hyacinths are plants that do not find heavy metals toxic. They can grow in soil that 

has a high metal concentration and are effective in the extraction of heavy metals such as Pb 

from toxic dumping grounds during soil and water treatment (Marry-Lissy & Madhu, 2011). 

2.4 AMD Treatment Methods 

There is a wide variety of treatment options with the ability to accomplish the task of remedying 

industrial wastewater of heavy metals. A few of them include chemical precipitation, solvent 

extraction, activated carbon adsorption, foam flotation, complexation, electro-deposition, 

coagulation, cementation, ion exchange and membrane operations. The most common 

treatment options are chemical precipitations (because it is most economical), ion exchange, 

conventional adsorption, electro-remediation methods, and membrane separation methods 

(Gunatilake, 2015). 

The most important step in acid mine water treatment is acid neutralisation or neutralisation of 

acid water. Effective treatment methods are used for the purpose of neutralising pH and, 

removing harmful ions and suspended solids. After treatment, mine water quality must result 

in water quality indicators that are able to sustain life conditions for organisms in rivers and 
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can be utilised for further uses of water such as service water. The neutralisation of mine water 

using various agents has been studied, world-wide in numerous localities with the occurrence 

of acid mine water. Some of these agents are Ca(OH)2 or portlandite (also known as calcium 

oxide (CaO) or slacked lime or quicklime mixed with water), calcium carbonate (also known 

as limestone (CaCO3)), CaO and caustic soda (NaOH) (Heviánková et al., 2013).  

 

CaO is a white crystalline solid and its melting point is 2572℃. The manufacturing of CaO 

involves heating CaCO3 items such as limestone, sea-shells, coral, or chalk to drive off carbon 

dioxide (CO2), as Equation (7) illustrates. 

CaCO3(s) 
500−600℃
→       CaO(s) + CO2(g)       Equation 7 

This is a reversible reaction where CaO can react with carbon dioxide to form CaCO3 again. In 

order to drive this reaction to the right, CO2 is flushed from the mixture as it is released. This 

reaction is one of the oldest chemical transformations produced by man with its use predating 

recorded history. The word CaO is found in most ancient languages such as Latin, where it is 

known calx. Calx is the word from which the calcium element got its name. The name of this 

element in old English is lim, which serves as the origin of the commercial name known as 

lime (Science is fun in the laboratory of Shakhashira, 2017). It has so many uses but the oldest 

uses of lime have focused on the regeneration of CaCO3 by exploiting its ability to react with 

carbon dioxide. A mixture of lime with sand and water results in mortar, which has long been 

used in securing bricks and stones together in construction. When laid in bricks, mortar starts 

off as a stiff paste that hardens gradually to cement those bricks together (Science is fun in the 

laboratory of Shakhashira, 2017).  

According to Cavalcante et al. (2010) Ca(OH)2 is described by Estrela et al. (1994) as an 

alkaline powder (white in colour) with poor solubility in water. It has a pH of 12.8, which 

makes it a strong base which can be formed by reversing a CaCO3 reaction or calcining or 

roasting CaCO3 until it transforms into CaO. CaO can be hydrated to form Ca(OH)2 and the 

reaction between the latter and CO2 leads to CaCO3 formation. Equations (8), (9), and (10) 

represent these reactions. 

  

CaCO3(s) → CaO + CO2(g)       Equation 8 

        

CaO(s) + H2O → Ca(OH)2(s)       Equation 9 
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Ca(OH)2(s) + CO2(g) → CaCO3(s) + H2O      Equation 10 

     

CaO reacting with CO2 at room temperature is a very slow process, however, the addition of 

water speeds it up. Therefore, to reduce the hardening time of mortar, CaO is mixed with water 

to form Ca(OH)2 so that when it reacts with CO2, the reaction to form CaCO3 is faster. This is 

shown in Equations (11) and (12). 

 

CaO(s) + H2O(l) → Ca(OH)2(s)      Equation 11 

 

Ca(OH)2(s) + CO2(g) → CaCO3(s) + H2O(l)     Equation 12 

 

Portland cement and CaO plaster form part of more quicklime based products in the 

construction industry. Glass production from quicklime is one of the oldest reactions using 

CaO. The heating of CaO with silica or sand (SiO2) and sodium carbonate (Na2CO3) forms a 

solution that hardens into an amorphous (non-crystalline) phase, clear and colourless solid 

instead of crystalising when it is cooled. Glass does not have a distinct melting point because 

it is a mixture, so it softens gradually as it is heated. This is the result of one of the important 

qualities of quicklime the ability to form solutions with silicates (Science is fun in the 

laboratory of Shakhashira, 2017). 

Quicklime has played an important role in chemical manufacturing where it is used to produce 

calcium carbide (CaC2), which is manufactured by heating CaO with coke. See Equation (13). 

 

 2 CaO(s) + 5 C(s) → 2 CaC2(s) + CO2(g)      Equation 13 

 

Reacting CaC2 with water yields acetylene (C2H2), which plays a vital role as a welding fuel 

and as a starting material for raw materials of polymers, as shown in Equation (14). 

 

CaC2(s) + 2 H2O(l) →C2H2(g) + Ca(OH)2(aq)     Equation 14 

 

Another important use for quicklime is its addition to sewage for phosphate removal. See 

Equation 15. 
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 3 CaO(s) + 3 H2O(l) + 2𝑃𝑂4
3−(aq) → Ca3(PO4)2(s) + 6 OH− (aq)  Equation 15 

 

Water supply pretreatment makes use of lime to decrease the acidity, soften and clear drinking 

water (Science is fun in the laboratory of Shakhashira, 2017). CaCO3 is an agent found in rocks 

such as limestone and through the following reactions, it can neutralise the acid. CaCO3 has in 

fact been used in treating AMD water in treatment plants as well. See Equations (16) and (17). 

 

CaCO3 (s) + H+ (aq) → HCO3- (aq) + Ca2+ (aq)    Equation 16 

 

CaCO3 (s) + 2H+ (aq) → H2CO3 (aq) + Ca2+ (aq)    Equation 17 

 

The pathways of both reaction Equations (16) and (17) indicate the acid (H+ (aq)) as a reactant 

and is therefore consumed. The H+ (aq) decrease will lead to acidity decrease while the pH 

increases (Garland, 2011). pH changes steadily over the pH range as acidic water/waste 

water/AMD is neutralised by an alkaline by any of the agents mentioned above. The pH is 

bound to end up on the alkaline side when excess alkali is added. Different neutralising agents 

have different effects, with CaO expected to take the pH across to a moderately alkaline value 

of about 10 or lower while limestone should take the pH change only as far as about 7, 

depending on the acidic water/waste water/AMD complexity (Nuttfield, 2020). Mine 

Wastewater Treatment Plant (MWTP) Svatava focuses on the elimination of high Fe contents, 

lowering the concentration of Mn and suspended solids, and controlling of mine water with 

low pH values (Heviánková et al., 2013).  

Caustic soda, also known as sodium hydroxide, is produced naturally as a co-product during 

chlorine production, which is electrolysis of sodium chloride. According to the laws of 

chemistry, for every tonne of chlorine, 1100 kg of caustic soda and 28 kg of hydrogen can be 

produced. Most of the time it is traded as an aqueous solution, but it can also be traded as 

concentrated solid pellets, flaks, or bulk fused. The important properties of caustic soda are 

that it is a strong hydrophilic and highly alkaline, which makes it highly corrosive to skin tissue. 

It is hazardous to plants and animals and therefore, it is important to avoid unprotected direct 

physical contact. It is not volatile (EuroChlor, 2016).  

Neutralisation and precipitation  
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Chemical precipitation involves the addition of chemicals to transform a soluble compound 

into an insoluble form. A fine line exists between chemical precipitation and 

solidification/stabilisation (s/s) operations. The contaminants are rendered less prone to 

leaching in s/s operations, because they become incorporated into a cement-like matrix. The 

objective of s/s technologies is to ensure that the leaching potential of the contaminants is 

minimised. This is no different from chemical precipitation where the objective is to make the 

contaminant less soluble (Peters & Shem, 1998).  

Solidification/stabilisation operations techniques immobilise heavy metals as well as organic 

contaminants because organics with low water solubility are generally immobilised fairly well 

in this technique, unlike those with high solubility. The difference between the two techniques 

is visible in that it is rare for precipitation to be used on organic compounds, although organics 

can adsorb or absorb onto precipitate forms such as hydrous metal oxides (Peters & Shem, 

1998). 

Metal-containing wastewater is commonly treated by the chemical precipitation technique with 

oxidation/reduction plus precipitation as a closely related technique. Precipitation has its own 

advantage, namely a high volume can be treated at a low cost. High ionic strength often 

improves the process and it is a reliable process which is well suited for osmotic control. 

However, its disadvantages include stoichiometric chemical addition requirements, the 

disposal of high-water-content sludge, flows are small and intermittent which makes them not 

ready for processing ready and application, and two-stage precipitation may be required for a 

part per billion effluent contaminant. There are three stages through which precipitation 

proceeds: nucleation, crystal growth, and flocculation. Hydroxide precipitation (primarily 

hydroxide treatment) is usually employed to accomplish treatment of wastewater. Precipitation 

treatment is employed by nearly 75% of plating facilities as the treatment technique scheme 

for heavy metals removal from solutions (Peters & Shem, 1998). 

The treatment of AMD has been using six primary chemicals and each one is more or less 

appropriate for a specific condition based on its characteristics. Technical factors (levels of 

acidity, flow, the metal types and concentrations in the water, the required rate and degree of 

chemical treatment, and the final water quality desired) and economic factors (reagent prices, 

labour, machinery and equipment, the number of years that treatment will be needed, the 

interest rate, and risk factors) determine the best choice among the different alternatives 

(Lehigh Earth Observatory EnviroSci, 2011). 



 

 

19 

 

For the dissolved metals in water to form insoluble metal hydroxides and settle out of the water, 

enough alkalinity must be added for the water pH to be raised and OH- to be supplied. The pH 

range of 6 to 9 is required for most metals to precipitate from water, except for Fe2O3, which 

precipitates at a pH of about 3.5. Therefore, the types of metals as well as their amounts in the 

water have a great influence when it comes to selecting an AMD treatment system. At a pH 

greater than 8.5, FeO is converted to a solid bluish-green ferrous hydroxide (Fe(OH)2). As 

expected when oxygen is present, Fe2+ is oxidised to Fe3+ while Fe(OH)3 forms a yellowish-

orange solid known as yellow boy, which precipitates at a pH greater than 3.5 (Lehigh Earth 

Observatory EnviroSci, 2011). 

In AMD without oxygen exposure, Fe is primarily in the Fe2+ state and this means that enough 

alkalinity must be added to raise the pH of the solution to 8.5 before Fe(OH)2 precipitation 

occurs. The efficient treatment of high Fe2+ AMD requires that the AMD be initially outgassed 

of the CO2, also known as aeration of water. This causes the Fe2+ to convert to Fe3+ so that the 

addition of a neutralising chemical raises the pH to 6 or 7 and Fe(OH)3 is formed. There is also 

a benefit to aeration post-chemical addition because it reduces the amount of neutralising 

reagent required to precipitate Fe from AMD (Lehigh Earth Observatory EnviroSci, 2011). 

The general precipitation pH of aluminium hydroxide (Al(OH)3 is at pH > 5.0. However, it 

also redissolves into a solution to form aluminate (AlO2
- or AlO3

-3) at a pH of 9.0. Mn 

precipitation varies based on its many oxidation states. However, the general pH of Mn 

precipitation is at a pH of 9.0 to 9.5. A pH of 10.5 is sometimes necessary for the complete 

removal of Mn. As much as the oxidation state and concentrations of metals determine the 

appropriate treatment chemical, another factor to take into consideration is that the interactions 

among metals have an influence on the degree and rate of precipitation. For instance, if Fe 

concentration in the water is about four times greater than the Mn content, Fe precipitation is 

largely able to remove Mn from the water at a pH of 8 due to co-precipitation. Co-precipitation 

may not remove Mn if the Fe concentration in the AMD is not greater than the Mn content 

because a pH greater than 9 is required to remove Mn (Lehigh Earth Observatory EnviroSci, 

2011). 

AMD consists of various combinations of acidity and metals, making each AMD unique. This 

means that different sites will require unique treatment by the appropriate chemicals. It is 

possible that AMD from one site, at pH 8.0 is completely neutralised and contains no dissolved 



 

 

20 

 

solids but another site may still have metal concentrations that fail to meet effluent limits even 

after the pH has been raised to 10 (Lehigh Earth Observatory EnviroSci, 2011). 

When caustic soda is used to adjust the pH of a solution to convert dissolved (ionic) metals 

into insoluble particles, metal hydroxides form as expected. There are several conditions that 

affect the results that are obtained, and one is the pH of the solution. Every metal within an 

AMD sample has a specific pH at which optimum hydroxide precipitation can take place. Take 

Cd, for instance, which can achieve optimum precipitation at a pH of 11.0. Other examples 

include Cu at pH 8.1, Cr at pH 7.5, Ni at pH 10.8 and Zn at pH 10.1. Metal hydroxides are of 

amphoteric nature (increased solubility at both low and high pH). The point of minimum 

solubility is achieved at different pH values for every metal. The solubility of one metal 

hydroxide may be minimised at a certain pH while another metal hydroxide’s solubility is 

relatively high at that very same pH. Therefore, a slight change in pH causes OH- to start going 

back into the solution since metal hydroxides are quite soluble (Water Specialists 

Technologies, 2020). 

2.5 Application of Neural Network  

NNs have been applied in many diverse fields over the years and such applications have been 

found successful and satisfactory. Some of the applications include the recognition of patterns, 

processing of signals and images, system identification and modelling, and predictions in the 

stock market (Sazli, 2006). The reason for such success can be attributed to the fact that NNs 

are parallel methods of processing information and that they are able to extract relationships 

that are nonlinear and complex (Ghadimi, 2015). Other attributions include the capability to 

learn and adapt, tolerance of faults and Very Large Scale Integrated Implementability (VLSI) 

(Sazli, 2006). 

The inspiration of NNs came from their biological counterparts (the biological brain and the 

nervous system). However, there is a difference between the biological brain and the 

conventional digital computer based on its structure and the manner of information processing. 

The biological brain can “learn” and “adapt” but a conventional computer can only accomplish 

specific tasks by following instructions loaded onto it, which are known as “programmes” or 

“software” (Sazli, 2006). 

A NN consists of computing elements or processors, which are models of mathematics with 

biological neurons interlinked by weights. These weights are modified during utilisation to 
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satisfy a criterion of performance. A NN basically adds up the signal that comes from its inputs 

and multiplies them with the correspondent weights. If the result goes beyond the threshold, 

the neuron can fire and transmit a signal at the output using a transfer function (Vlad, 2004). 

Rooki et al. (2011) used four main assumptions to explain the mechanism of NNs. The first 

one indicated that the processing of information happens in neurons which are simple 

processing elements. The second stated that information signals travel between the neurons 

through connection links. The third stated that the signal that is being transmitted is multiplied 

at the connection link due to the weight it is associated with. The fourth indicated that an 

activation function is applied on the net input by the neuron to get an output signal. 

 

 

 

 

 

 

 

 

 

 

 

NNs, like every other thing, have their own advantages and disadvantages. A NN is not a tool 

that is universal for problem-solving, so there is no existing method to choose, train, and verify 

a suitable NN. The NN requires excessive training time based on the data set accuracy and 

quality. It is able to learn an input data set as well as the output responses very well, but its 

abilities of generalisation may be poor. It can work well with a data-set that is missing and 

incomplete (Vlad, 2004). 

The selection of appropriate architecture and the network training choice are crucial steps 

(Rooki et al., 2011). NNs can be categorised into two main network architectures: feed-forward 

NNs and recurrent NNs. This is based on the way in which the neurons are connected. A NN 

Connection links 

Figure 1: Image of a typical neuron (Rooki et al., 2011) 
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is referred to as feed-forward if there is no feedback from the outputs of the neurons towards 

the inputs throughout the network. However, if such a connection exists, which is known as a 

synaptic connection, then it is called a recurrent NN. This also applies if the feedback 

connection is towards their own inputs or the inputs of other neurons. NNs are arranged in layer 

form. Feed-forward and recurrent NNs can also be categorised based on the number of layers 

which are either single layer or multi-layer (Sazli, 2006). 

A single-layer structure consists of two layers (the input and output layer) with the input not 

counted because no computation takes place in that layer. On the other hand, a multi-layer 

structure consists of at least one or more hidden layers which are useful for intervening between 

the external input and the network output between the input and output layer. Higher-order 

statistics can be extracted by the network because of the hidden layer. The NN structure is 

named based on the number of neurons in each layer. If there is a connection between every 

neuron in each layer to every neuron in the next layer, the network is considered fully 

connected, but if some connections are not there, then the network is considered partially 

connected (Sazli, 2006). 

 

Figure 2: A single-layer feed-forward NN (Sazli, 2006) 
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Figure 3: A multi-layer feed-forward NN (Sazli, 2006)   

 

In order for the NN to perform all the tasks that have been observed, a process of learning, 

known as a learning algorithm, has to take place. This is a process where a NN learns from its 

environment and improves its performance. Learning is defined as a process of using 

environmental stimulation in which the network is embedded to adapt free parameters of a NN. 

There are different types of learning, and they are determined by the way in which the 

parameter changes occur (Sazli, 2006). 

Different architectures and algorithms to predict various contaminants in ground water and 

AMD using a variety of methods have been studied and some of the results obtained from those 

methods are discussed to understand which method has worked best so far. Rooki et al. (2011) 

used a NN in Southeast Iran for heavy metal prediction in AMD. The Shur River was used as 

the site of sample collection since it received AMD from the Sarcheshmeh Porphyry Cu Mine.  

Three algorithms were considered and compared: the Backpropagation Neural Network 

(BPNN), the General Regression Neural Network (GRNN), and the Multiple Linear 

Regression (MLR). The correlation coefficients values were high between the heavy metals 

and concentrations of pH, 𝑆𝑂4
2−, and Mg2+, which is why these concentrations were chosen as 

input data for the NN models (Rooki et al., 2011). 

The BPNN was multi-layer (three layers) with a tansig activation function applied in the hidden 

layer and a linear activation function on the output layer. The GRNN was also multi-layer 
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(three layers) with a radbas activation function applied in the hidden layer and a linear 

activation function on the output layer. The correlation coefficient (R) and root mean square 

(RMS) were used to compare the effectiveness of the three NNs for training and test data 

(Rooki et al., 2011). 

The authors found that between the predicted concentrations and data measured, a close 

agreement was observed when the BPNN and GRNN were used. The MLR resulted in low 

prediction capability because low correlation values were observed between the predictions of 

the model and the data measured. They then concluded that the BPNN and GRNN algorithms 

were more effective in predicting heavy metals in AMD compared to the MLR (Rooki et al., 

2011). 

It is crucial to note that the automated Bayesian regularisation was implemented for the training 

of the BPNN. Two subsets of data were developed. One subset was the training set for the 

purpose of computing the gradient and updating the network weights and biases. The other 

subset was the test set. This is where the mean square error (MSE) method was used. It 

modified the performance function chosen to be the sum of squares of the network errors on 

the training set. Feed forward NNs are trained using the typical performance function known 

as the mean sum of squares of the network errors illustrated in Equation (18). 

N
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Equation 18 

There are plenty of other performance functions used to assess the effectiveness of NNs. The 

simple linear regression is one of them and it used the least squares method to find the line of 

best fit for a set of paired data, also known as the best linear equations (BLE). The line of best 

fit is described by Equation (19). 

ŷ = bX + a         Equation 19 

This equation allows for the estimation of the value of a dependent variable (Y) from a given 

independent variable (X). b defines the slope of the line and a is the intercept.  

Machine learning techniques were studied for the development of models that would be used 

to predict the quality of AMD. The mine site’s historical data was used. The following machine 

learning techniques were considered: NN, support vector machine with radial base function 

(SVM-RBF) kernels, support vector machine with polynomial (SVM-Poly), K-nearest 

neighbours (K-NN), and model tree (M5P). The identification of physico-chemical parameters 
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(which are referred to as input variables) with the ability to influence drainage dynamics was 

done. This was then used for the development of models that would predict concentrations of 

Cu. The evaluation of uncertainty and predictive accuracy of the chosen techniques was reliant 

on various statistical measures. The SVM-Poly proved to be the best performing technique, 

followed by the SVM-RBF, NN, M5P, and K-NN. These results led to the conclusion that there 

is great potential for machine learning techniques as tools for AMD quality prediction (Betrie 

et al., 2012). 

Gholami et al. (2011) compared the support vector machine and BPNN techniques. The SVM 

is a novel method of machine learning which is based on statistical learning theory (SLT). One 

of the features is that the problem of kernel and the nature of the optimisation requirement leads 

to a uniquely global optimum, high performance of generalisation, and local optimal solution 

converging prevention. The authors showed a comparison of the application of SVM and 

BPNN to predict Fe and Ni concentrations using the chemical and physical parameters found 

through a sampling process conducted in the Sarcheshmeh Cu mine in Iran. The methods are 

both data-driven, however, SVM results in higher accuracy and a faster running time. Less 

RMS error was observed with the SVM. Running time is an important factor when choosing a 

model that is appropriate and high-performing data-driven. A smaller fraction of computational 

time is required by SVM than with the BPNN (Gholami et al., 2011). 

The development of proper remediation strategies for ground water contamination is dependent 

upon the ability to predict heavy metals. The study done by Ghadimi (2015) was to attempt to 

predict Pb, Cu and Zn in the Arak City groundwater by using a NN algorithm. These heavy 

metals are associated with bicarbonate (HCO3-) and SO4
2− to form heavy metal HCO3 and SO4

2− 

species in water. There was high Pb, Zn, and Cu concentrations found, which were emitted by 

sources that were anthropogenic. The proposed NN model was generated using a dataset which 

consisted of 150 samples. The input parameters used were HCO3 and SO4 while the output 

parameters were the heavy metals (Pb, Zn, and Cu). The conclusion was made that the reliable 

system modelling technique for heavy metal estimation in Arak City groundwater is NN, and 

it did so with a high degree of accuracy and robustness. The Multilayer Perceptron (MLP) NNs 

model method showed low capability of predicting heavy metal concentrations due to the low 

correlation values between the predictions of the model and the measured data (Ghadimi, 

2015). 
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Sadeghiamirshahidi et al. (2013) applied the NN model to predict the oxidation of pyrite in the 

spoil of the Alborz Sharghi coal washing refuse pile located in Northeast Iran. The input 

parameters for the network included the spoil depth, initial pyrite amount that the spoil particle 

contained, annual precipitation, and the effective diffusion coefficient. The amount of pyrite 

remaining in the spoils at various depths counted as the output of the network. 

Sadeghiamirshahidi et al. (2013) applied the feedforward network which is the simplest 

network and entails data moving in one direction. Data moved through the input nodes and left 

through the output nodes. The neurons have weights and biases that are learnable. It was 

applied with the back-propagation learning algorithm with an arrangement of 4-7-4-1 which 

was found to have the capability of predicting the pyrite oxidation rate. Three trenches over the 

refuse pile were considered and the network predicted the remaining pyrite at various depths. 

There was a very close similarity between the values obtained by the network during simulation 

and the experimental results.  

Fard et al. (2017) contributed by using NN to determine heavy metal distribution in 

groundwater so that necessary strategies of management could be developed at mining sites. 

The authors of this paper explored artificial intelligence in varieties wide than just NN. NN, 

the multi-output adaptive neural fuzzy inference system (MANFIS) and hybrid NN with 

biogeography-based optimisation (NN-BBO) were considered to estimate heavy metal 

distribution in the Lakan Pb-Zn mine’s groundwater. The groundwater quality monitoring data 

that already existed were used to determine groundwater contaminants. The collected data was 

used to train and test several models to find the optimum model which used three inputs and 

four outputs. The MANFIS model was found to have the best chances of estimating heavy 

metal distribution in groundwater when the predicted and measured data were compared. It 

was found to have a high degree of robustness and accuracy (Fard et al., 2017). 

Fard et al. (2017) were able to determine high concentrations of Fe, Mn, Pb and Zn in the 

groundwater of the Lakan Pb-Zn mine as output parameters. This was attributed to historical 

mining operations. The input parameters used for NN, NN-BBO, and MANFIS-SCM models 

were 𝑆𝑂4
2−, Cl, and TDS. They concluded that it demonstrated in detail the implementation of 

a hybrid for BBO as an optimiser of connecting weights of NN for the prediction of heavy 

metal concentrations in groundwater. They also made clear that the MANFIS-SCM model was 

the best option to estimate heavy metal concentrations in groundwater due to its accuracy. 
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One of the most significant processes for industries that produce boric acid or fabricate heat 

resistant glass and cleaning agents is dissolution. An examination was done on the dissolution 

of colemanite water saturated with carbon dioxide solutions. NN, the type based on MLP, was 

used to predict the dissolution rate. The input parameters for the network were reaction 

temperature, stirring speed, total pressure, particle size, reaction time, and solid/liquid ratio. 

The MLP was trained by an experimental dataset so that dissolution kinetics could be predicted. 

The predictions were considered highly accurate compared to those obtained from the 

regression model. They therefore concluded that conventional statistic methods for prediction 

of boron minerals are not as accurate and the best alternative would be to use NN (Elçiçek et 

al., 2014). 

Stream water quality has been tested using dissolved oxygen (DO) as a primary indicator. Ways 

to retain stream water quality and DO concentration maintenance using different pollution 

control activities have been a big social problem. The use of NN has assisted in the estimation 

of DO concentrations, downstream of Mathura City in India, located at the bank of the Yamuna 

River in the state of Uttar Pradesh (Sarkar & Pandey, 2015). 

The most commonly used technique is the feedforward error back propagation NN. Mathura 

(upstream), Mathura (central), and Mathura (downstream) are the three locations that were 

considered with the following parameters being used for analysis: monthly data sets on 

temperature, biochemical oxygen demand (BOD), flow discharge, pH and DO. Three types of 

NN models were developed using NN with the use of different input variables combined and 

input stations. The input variables were (a) all the data sets for stations Mathura (upstream, 

central, and downstream), except the DO values at Mathura (downstream), (b) all data sets for 

the stations Mathura (upstream and central), and (c) all the data sets for the stations Mathura 

(upstream). Statistical tools used to evaluate the NN technique performance were coefficient 

of correlation and RMS. The predicted DO values with high correlations between the values 

predicted and measured showed prominent accuracy (Sarkar & Pandey, 2015).
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Table 1: Summary of some research done on NN technology by different authors 

Topic NN Used Reference 

Prediction of heavy metal 

concentrations in AMD using 

neural networks from the Shur 

River of the Sarcheshmeh 

Porphyry Cu Mine, Southeast Iran. 

 

Backpropagation Neural Network,  

General Regression Neural Network, 

Multiple Linear Regression 

 

(Rooki et al., 2011) 

Predicting Cu concentrations in 

AMD: a comparative analysis of 

five machine learning techniques. 

 

Neural Networks  

Support Vector Machine with Radial 

Base Function (SVM-RBF) Kernels 

Support Vector Machine with 

Polynomial (SVM-Poly) 

K-Nearest Neighbours (K-NN)  

Model Tree (M5P). 

 

(Betrie et al., 2012) 

Prediction of toxic metal 

concentrations using artificial 

intelligence techniques. 

 

Support Vector Machine  

Backpropagation Neural Network 

 

(Gholami et al., 2011) 

Prediction of heavy metal 

contaminations in the groundwater 

of the Arak region using neural 

networks and multiple linear 

regression. 

 

Neural Network 

Multilayer Perceptron Neural 

Networks Model 

(Ghadimi, 2015) 

 

Applied neural network model to 

predict the oxidation of pyrite in 

the spoil of the Alborz Sharghi 

coal washing refuse pile located in 

Northeast Iran. 

 

 

Feed-Forward Network  

  

Back-propagation 

Learning Algorithm  

 

 

NN to determine heavy metal 

distribution in groundwater so that 

Multi-output Adaptive Neural Fuzzy 

Inference System (MANFIS)  

(Fard et al., 2017) 

(Sadeghiamirshahidi et 

al., 2013) 
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necessary strategies of 

management could be developed 

at mining sites. 

Hybrid NN with Biogeography-

Based Optimization (NN-BBO) 

 

Examination was done on the 

dissolution of colemanite water 

saturated with carbon dioxide 

solutions 

 

Multilayer Perceptron (MLP) (Elçiçek et al., 2014) 

 

The use of NN in the estimation of 

DO concentrations, in stream 

water, downstream of Mathura 

City in India, located at the bank of 

the Yamuna River in the state of 

Uttar Pradesh 

 

Backpropagation Neural Network 

(BPNN) 

 

(Sarkar & Pandey, 2015) 

 



 

 

31 

 

Chapter Summary 

This chapter explained in detail the definition of AMD and heavy metals. The source of AMD, 

which is pyrite and other sulphide minerals, as well as its chemical species formation in 

wastewater were also discussed. Wastewater is treated in different ways, and the special 

method used to treat AMD to prevent contamination of pure water sources investigated. The 

theory of neutralisation and precipitation using different reagents was studied in order to 

understand the process of heavy metals removal in waste water. NNs can ensure that water 

treatments and other remediation treatments are applied quicker without going through 

laboratory delays. The different NN architectures and algorithms were discussed based on 

different authors’ point of view, experiments, and results to assist in the methods that will be 

used in this project to predict heavy metal concentrations in water.
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Chapter 3: Methodology 

3.1 Materials and Chemicals 

Samples of raw AMD (30) and neutralised AMD (8) from Sibanye Western Basin AMD Plant 

in Randfontein, which collects AMD from Shaft 9 in the western area, were collected using 2L 

sample containers. 10% Ca(OH)2 was used as the neutralising agent for raw AMD. The dosing 

was done according to the pH. A lower pH required more lime to be dosed. A pH probe was 

used to send the information to the programmable logic controller (PLC) which controls the 

speed of the pump supplying the lime. 

3.2. Experimental Procedure 

 

 

 

 

 

  

 

 

  

  

  

 

Figure 4: Diagram indicating the flow of the experimental process 
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3.2.1 Site Identification and Sampling Procedure 

AMD Site Identification 

The Sibanye Western Basin AMD Plant was chosen for this research. It is 53,5 km (47 minutes) 

away from the Vaal University of Technology which was convenient for sample collection. 

This plant was chosen among the three areas which McCarthy (2011), did a report on in 

December 2010.  It stated that the primary focus was on the immediate problems caused by 

gold mining and in particular the Western Basin (Krugersdorp area), the Eastern Basin 

(Brakpan, Springs, and Nigel area) and the Central Basin (Roodepoort to Boksburg) which are 

now defunct mines. The site of AMD sampling was identified based on the concept that every 

mining area that releases AMD must send it to a plant to be treated to the compliance standards 

before releasing the water. The plant receives the acid water from different mines with different 

ores containing different mineralogical and chemical properties around the western area.  

Site Description 

Samples were taken at the Sibanye Western Basin AMD plant located in Randfontein. The 

coordinates of the location: 26.1341°S, 27.7162°E. 

 

Figure 5: Map of the Sibanye Western Basin AMD Plant in Randfontein 

 

Sibanye Western Basin AMD Treatment Plant is located in Randfontein, which is a gold 

mining city in the West Rand that is 40 km west of Johannesburg in the Gauteng province. The 
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main access road to the plant is the R28 

provincial route that connects Krugersdorp with 

Vereeniging through Randfontein. It receives 

AMD from West Rand Mine Shaft No. 9. 

 

 

Sample Collection (Raw and Neutralised 

Samples) 

The raw samples were collected from the 

pipeline where acid water enters the treatment plant (influent). The raw sample is the acid water 

prior to any chemical addition. The point of sample collection was opened and water was 

allowed to run for 10 minutes. The samples were then taken using 2L bottles and immediately 

stored in the dark (cooler box).  

The water sample looked like pure water until it was allowed to stand during storage. Further 

oxidation of dissolved Fe3+ ions to form ferric ions took place in the sample and formed ferric 

ions. The original colour of the wastewater samples changed to brownish and reddish. 

Thereafter, hydrolysis of Fe3+ with water occured to form the solid Fe(OH)3 (ferrihydrite) 

which is orange-red in colour, and release additional acidity. This reaction is pH-dependent 

and under very acidic conditions of less than about pH 3.5, the solid mineral does not form and 

Fe3+ remains in the solution. However, the sample pH was about 4, which is a higher value, 

and a precipitate, “yellow boy”, was formed (Amanda, 2008). The neutralised sample was 

taken from an area in the plant where treatment had already taken place by adding 95% 

Ca(OH)2 for neutralisation.   

Figure 6: Satellite representation of the Sibanye Western 

Basin AMD Plant in Randfontein map 
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Figure 7: Images of raw and neutralised samples from AMD treatment plant 

 

Analysis for AMD properties and analytical techniques 

 Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) analysis 

The acid mine water samples were submitted to Setpoint laboratories in Johannesburg for the 

ICP-OES analysis, using a model number Varian 700-ES.  The water samples were subjected 

to ICP-OES analysis to determine the concentrations of inorganic elements contained in these 

samples. The prepared standards of inorganic elements to be detected were used to calibrate 

the ICP-OES equipment for the ICP-OES analysis of the selected inorganic elements (TEs, 

lighter inorganic elements and hazardous heavy elements) in the leachate samples (Olesik, 

1994). 

 Ion Chromatography (IC analysis) 

A 20 μL sample was injected into a Metrosep A Supp 4-250/4 anion-exchange column 

(stationary phase), which was held at 25 °C, with a pressure of 5.83 MPa and a flow rate of 

1.00 ml/min. The IC analysis of the sample was carried out under isocratic conditions using 

disodium carbonate (Na2CO3) (1.8 mmol/L) and sodium hydrogen carbonate (NaHCO3) (1.7 

mmol/L) as the mobile phase with a pH of 10.30.  Different standards were used during the IC 
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analysis including fluoride 2.0 mg/L, chloride 2.0 mg/L, nitrite 5.0 mg/L, bromide 10.0 mg/L, 

and nitrate 10.0 mg/L. 

 EC, TDS, and pH value measurements  

The electrical conductivity (EC), which indicates the levels of salinity of the water, the TDS 

and the pH of the water samples were recorded using a Hana HI 991301 pH meter with a 

portable EC/pH/TDS/temperature probe. 

 NN model 

All the above were identified in the two initial raw samples as well as the two neutralised 

samples which were found free of harmful ions, suspended solids and metals, which meant that 

the acid water was treated. Twenty-eight (28) more samples were collected to analyse for the 

same properties as mentioned earlier to attain their concentrations and get data points (results 

of analysis) to be used on the MATLAB NN Software Toolbox. 

The input variables for the NN model were selected based on the physical and chemical 

characteristics that have greater impact on AMD. These characteristics appear mostly in water 

that contains heavy metals as they are considered to have most dependence on heavy metals. 

The targets were chosen based on the heavy metals that were high in concentration in the 

sample taken and are considered unhealthy for service water and needed to be removed before 

AMD is released to the public. The input variables identified were pH, SO4
2−, and TDS while 

Zn, Fe, Mn, Si, and Ni were chosen as targets.  

The decision to select Zn, Fe, Mn, Si, and Ni was based on the fact that they were found to be 

in high concentrations in the Western Basin AMD Plant samples and according to literature, 

Zn can contribute to signs of nausea, vomiting, anaemia, and cholesterol problems in human 

beings. Fe and Mn form part of heavy metals that can reduce the developmental growth of 

aquatic species as well as increase anomalies in development, while Ni forms part of metals 

that are considered potentially carcinogenic. Elemental silicon was also found but it is 

chemically inactive and therefore the property that causes lung tissue fibrosis is lacking. 

However, laboratory animals have been found to experience slight pulmonary lesions due to 

intra-tracheal injections of silicon dust. Chronic respiratory effects are likely to be caused by 

Si (LennTech, 1998-2020). 
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3.2.2 Neural Network Procedure 

Data processing 

A database is critical when modelling a NN. In the first part, the database was generated by 

collecting a large number of data points from the experimental data. After evaluating all the 

experimental results, the collected data were arranged in a set of input vectors as a column in 

a matrix. Then another set of target vectors were arranged (the correct output vectors for each 

of the input vectors) to a second matrix in an MS Excel sheet. The input variables were pH, 

SO4
2−, and TDS. The corresponding Zn, Fe, Mn, Si, and Ni were used as targets. To ensure that 

all variables in the input data were important, principal component analysis (PCA) was 

performed as an effective procedure for the determination of input parameters. In this 

dissertation, a multiple-layered perceptron (MLP) type BPNN was used for modeling. All the 

steps, taken to model the system, can be summarised as follows: 

• Step 1: The collected and integrated data points which were the result of the laboratory 

analyses were stored in a separate data file. 

• Step 2: Data transformation was done before starting the network training. The pre-processed 

data was randomly divided by input vectors and target vectors into three different sets - training, 

testing and validation. 

• Step 3: The developed MATLAB programme (NN Toolbox V4.0 of MATLAB mathematical 

software) was used for data transformation, network construction, network training, and 

selecting the best model. 

The NN model comparison was mainly used to choose the optimum number of neurons in the 

hidden layer and identify the type of transfer functions to use in each layer. The performance 

of the NN during training was measured based on the mean square error. 

NN design procedure 

Four important aspects that must be determined in the design procedure of NNs are: (1) 

selection of the BP training algorithm, (2) data distribution, (3) selection of the NN structure, 

and (4) selection of the initial weight. 

Selection of inputs, targets and functions 
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The data points which were the results of the laboratory analyses, were exported to the NN 

software on Matlab. The inputs (3) and targets (5) were defined from the exported data. 

Selections of training, adaptation learning, and performance functions were done. 

Train NN using information and parameters 

The training was done using the input and target as training information. The parameters 

included information such as epochs, goal, time and showing of command line. 

Trial and error 

Testing of the NN was done using the parameters mentioned earlier as well as the gradient. 

The validation check parameter was used to check the validity of the NN and overall data 

regression, which tells the plots of the NN. Fitting was observed. If the fitting was over or 

under, then there were re-initialising and editing of weights. The cycle of training, testing, 

validation and regression was done until the fitting was good. When the fitting was good, the 

output and error results were retrieved, and the targets and outputs were compared.  
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Chapter Summary 

This chapter explained the actual experimental process, data processing followed to 

predict heavy metals in AMD, and the NN design procedure. The data generated were 

used to create the network and the use of the MATLAB NN Toolbox software was 

explained.  It showed the procedure from the process of identifying an area where 

AMD water is found, how this area was identified, as well as the confirmation of the 

water as AMD. The process also showed how the software uses the laboratory data 

to apply algorithms, transfer functions and perform trial and error calculations to 

determine the output results and errors. These results were then compared to the 

target values that were found in the laboratory results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

40 

 

Chapter 4: Results and Discussion 

4.1 Identification of AMD and analysis of raw AMD and treated AMD samples 

The most important action in the initial stage was to determine if the collected samples 

from the chosen site were indeed AMD. The water characteristics results of the raw 

samples and samples treated with Ca(OH)2 are shown in Table 2. The results are of 

the ten representative samples and the other 20 can be seen in Appendix. The results 

obtained indicated that the lowest recorded pH of the raw AMD was 2.57 and the 

sulphate content was found to be between 1334 mg/L (minimum) and 1634 mg/L 

(maximum), which is very high. A measure above 600 mg/L of sulphate concentration 

is considered to be harmful to the human health (Moodely et al., 2017). This confirms 

that the samples analysed were indeed AMD. According to literature by Moodley et al. 

(2017) AMD is generally characterised by low pH, high heavy metal content, and high 

salinity, but the sulphate and metal concentrations in the water vary based on the mine 

(Moodely et al., 2017).  

Samples treated with Ca(OH)2 were of cleaner standards. The data showed an 

increase in pH from 2.57 to a maximum of 9 due to the addition of Ca(OH)2. This also 

led to an increase in the total alkalinity of the treated samples due to the addition of 

Ca. An insignificant reduction in TDS was observed in the neutralised solutions when 

compared to the raw solution in the samples, which means that the treatment of AMD 

had very little impact in reducing TDS. This can be attributed to the fact that ions (Al, 

Ag, Cr, Mo, Fe, and Pb) react with OH-  from the added Ca(OH)2 with pH of 7.9 and 

8.26 to form metal hydroxide precipitates. Conductivity indicates the level of salinity of 

water and the AMD conductivity was high due to high salinity. The addition of Ca(OH)2 

increases pH and lowers the salinity of the AMD and therefore, the conductivity of the 

treated solution also decreased as seen in Table 2.
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Table 2: Water characteristics analysis results for AMD (raw and treated) at Sibanye Western Basin AMD Plant 

 Raw AMD: R AMD; Treated AMD: T AMD 

Water 

Characteristics 

SAMPLE NUMBERS 

  1         2          3        4        5      6       7      8      9       10 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

   T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R    

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

Conductivity 

(mS/m @ 25℃) 

 

362 331 364 327 487 371 489 374 487 385 485 388 478 365 472 369 481 383 479 388 

pH 4.17 7.90 4.17 8.26 2.66 8.69 2.64 8.81 2.64 8.34 2.65 8.45 2.66 9.00 2.62 9 2.66 8.52 2.6 8.64 

Sulphate (mg/L) 1627 1510 1634 1520 1547 1430 1565 1437 1562 1465 1556 1482 1550 1436 1544 1418 1573 1515 1558 1518 

Total Alkalinity 

(mg/L CaCO3) 

 

< 0.10 25.8 < 0.10 20.2 < 0.10 25.8 < 0.10 25.2 < 0.10 24.6 < 0.10 24.8 < 0.10 24.8 <0.10 24.8 <0.10 25.6 <0.10 24.4 

TDS  

(mg/L @ 180℃) 

2357 2153 2370 2127 3110 2377 3130 2397 3110 2463 3103 2480 3057 2337 3027 2367 3070 2457 3067 2477 
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Heavy metals were identified, with Zn, Fe, Mn, Si, and Ni in high concentrations. A heavy 

metals analysis was done on the raw and treated AMD samples to determine if the heavy metals 

were removed by the neutralisation process in order get the water to cleaner standards. Table 

3 shows that in the presence of oxygen, ferrous iron was oxidised to ferric iron which 

precipitated at a pH of about 3.5. Ferric hydroxide formed a yellowish-orange solid, known as 

yellow boy, which usually precipitates at a pH greater than 3.5. Therefore, when the pH 

increased to 7.9 and 8.26, ferric hydroxide was precipitated. In all samples, Fe went from high 

concentrations to ˂10.0 which is below detection. This can be seen in sample 1, where the 

initial concentration of Fe went from 289 mg/L to ˂10.0 mg/L.   

Mn precipitation was variable due to its many oxidation states, but it generally precipitates at 

a pH of 9.0 to 9.5. In samples that reached a pH of 9.0, it was precipitated as shown in Table 

3. In samples that did not reach a pH of 9.0, Fe precipitation largely removed Mn from the 

water at a pH of 8 due to co-precipitation, because the Fe concentration in the water was much 

greater than the Mn content. Some of the Mn remained as dissolved Mn but in very small 

concentrations. 

Complete precipitation of Zn occurs at pH 10.1. However, the pH of the samples was only 

raised from 7.0 to 9.0. At these pH values, most of the Zn forms zinc hydroxide and precipitates 

out of the solution while some of the Zn remains as dissolved Zn. In sample 1, for instance, the 

concentration of Zn was reduced from 0.33 mg/L to 0.07 mg/L. The same concept applies for 

Ni, which completely precipitates at pH 10.8 to 11. At a pH between 7.0 and 9.0, most of the 

Ni forms nickel hydroxide and precipitates out of the solution leaving the rest as dissolved Ni. 

In sample 1, for instance, the concentration of Ni was reduced from 0.521 mg/L to 0.0272 

mg/L.  
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Table 3: Heavy metal analysis results for AMD (raw and treated) at Sibanye Western Basin AMD Plant 

 Raw AMD: R AMD; Treated AMD: T AMD 

Heavy Metals 

(Mg/L) 

SAMPLE NUMBERS 

  1         2          3        4        5      6       7      8      9       10 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

   T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R    

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

Zn 0.33 0.07 0.36 0.08 0.28 <0.06 0.16 <0.06 0.18 <0.06 0.18 <0.06 0.19 <0.06 0.20 <0.06 0.23 <0.06 0.22 <0.06 

Fe 289 < 0.10 289 < 0.10 37.7 < 0.10 41.1 < 0.10 38.8 < 0.10 38.3 < 0.10 41.3 < 0.10 35.4 < 0.10 39.6 < 0.10 39.8 < 0.10 

Mn 45 0.0533 46.5 0.0502 38.2 0.0272 39.2 0.0139 39.3 0.0383 39.4 0.0332 39.4 0.0155 39.6 0.0676 39.7 0.0159 40.0 0.0161 

Ni 0.521 0.0272 0.490 0.0203 0.452 0.0195 0.443 0.0201 0.450 0.0218 0.443 0.0437 0.594 0.0210 0.586 0.0248 0.558 0.0194 0.540 0.0229 

Si 8.56 0.37 8.58 0.38 9.48 0.49 9.46 0.47 9.52 0.57 9.86 0.54 9.38 0.46 9.54 0.44 9.44 0.43 9.43 0.43 
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Ca and Na were identified. The addition of the neutralising agent led to an increase in Ca 

concentration and this can be seen in sample 1 where Ca increased from 683 mg/L to 872 mg/L. 

Table 4 shows that other elements such as Li, Na, K, and Al, remained in the same range and 

that there was no significant increase or decrease in their concentrations when the neutralising 

agent was added. Al was even below the standards of detection. Trace metals that were 

identified include Ag, As, Cd, Co, Cr, Cu, Mo and Pb. These results can be found in Appendix 

A. The trace metals were found in very small concentrations which make them non-hazardous.  
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Table 4: Elemental analysis results for AMD (raw and treated) at Sibanye Western Basin AMD Plant 

 Raw AMD: R AMD; Treated AMD: T AMD 

 

 

Elements 

Mg/L 

SAMPLE NUMBERS 

  1         2          3        4        5      6       7      8      9       10 

R 

AMD 

T  AMD R 

AMD 

T  

AM

D 

R 

AMD 

T  

AMD 

R 

AMD 

   T  

AMD 

R 

AMD 

T  

AMD 

R 

AMD 

T  

AMD 

R    

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

R 

AMD 

T 

AMD 

Li 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.12 21.2 0.12 0.11 0.11 0.11 0.11 0.12 

Na 170 180 175 175 153 162 156 157 158 158 163 153 154 157 155 151 144 144 147 154 

K 19.5 20.8 20.3 20.4 20.2 21.1 20.6 20.8 20.8 21.2 21.5 20.5 20.5 21.2 20.8 20.6 19.5 18.2 19.9 19.7 

Ca 683 872 709 856 658 763 683 751 674 789 685 763 656 749 622 719 621 687 627 753 

Al < 0.15 

 

< 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 

Mg 183 168 187 168 178 147 180 145 180 150 186 147 182 136 182 130 173 152 176 156 

Be <0.001 <0.001 <0.00     

1 
<0.0

01 

0.0018 <0.001 0.0012 <0.001 0.0000

8 

<0.001 0.0012 <0.001 0.0013 <0.001 0.002

0 

<0.001 0.001

2 

<0.001 0.001

3 

<0.001 
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4.2 Application of NN 

According to Toma et al. (2004), to design NN, the important aspects must be determined: (1) 

selection of the backpropagation (BP) training algorithm, (2) data distribution, (3) selection of 

the NN structure, and (4) selection of the initial weight. 

4.2.1 Selection of the BP Training Algorithm 

Ten BP training algorithms were compared, as illustrated in Table 5, to select the best suited 

BP training algorithm. The NNTool was used where the laboratory results of the samples were 

imported into the tool. In all the BP training algorithms, a three-layer NN with a tangent 

sigmoid transfer function (tansig) at the hidden layer and a linear transfer function (purelin) at 

the output layer were used. The chosen training algorithm was the Levenberg-Marquardt back-

propagation (trainlm) because it had the smallest MSE of 0.00041, meaning the error of this 

algorithm was very low. The MSE is elaborated in Equation (18). The line of best fit for the 

data set used in this experiment, also known as BLE, was described by Equation (19). The BLE 

that was chosen after training and testing was y = x + 1.4. It gave a clear straight line with the 

values for training, validation, and test RMS at 0.99908.  

Table 5: Comparison of 10 BP algorithms 

BP Algorithms Function MSE 

 

BLE 

1. Batch gradient descent. 

2. Batch gradient descent with momentum. 

3. BFGS quasi-Newton back-propagation. 

4. Fletcher-Reeves conjugate gradient back-

propagation. 

5. Levenberg-Marquardt back-propagation. 

6. One step secant back-propagation. 

7. Polak-Ribiere conjugate gradient back-

propagation. 

traingd 

traingdm 

trainbfg 

traincgf 

 

trainlm 

trainoss 

 

0.54628 

0.60734 

0.07108 

0.15623 

 

0.00041 

0.17672 

 

y = 0.94x - 11 

y = 0.94x -11 

y = x + 4.5 

y = x + 2.4 

 

y = x + 1.4 

y = x -1.9 
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8. Powell-Beale conjugate gradient back-

propagation. 

9. Scaled conjugate gradient back-propagation. 

10. Variable learning rate back-propagation. 

traincgp 

 

traincgb 

trainscg 

 

traingdx 

0.12782 

 

0.15873 

0.13185 

 

0.64620 

y = x + 2.5 

 

y = 0.99x + 0.86 

y = x -1.3 

 

y = x + 0.78 

 

4.2.2 Data Distribution 

The NN model was based on the selected BP algorithm, Levenberg-Marquardt back-

propagation (trainlm), for the experimental data. This was applied to train the NN. During 

training, the output matrix was computed by a forward pass (feed-forward backpropagation 

NN) in which the input matrix was propagated forward through the network to compute the 

output value of each unit. The output matrix was then compared with the desired matrix which 

results in an error signal for each output unit.  To minimise the error, appropriate adjustments 

were made for each of the weights of the network. The training was stopped after iterations for 

the LMA where the differences between training errors and validation errors were starting to 

increase. 

Eight iterations of training were performed with different weights being adjusted. Figures 8 to 

17 illustrate the training, validation, and test MSE for the LMA after the eight adjustment and 

the difference in error was found to increase for all ten algorithms.  

1. The Batch gradient descent (traingd) algorithm resulted in an RMS of 0.99085 during 

training, 0.99916 during validation, 0.99934 during testing and a summary of all the 

stages resulted in an RMS of 0.99315. The training parameters for this algorithm were 

the following:  
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Show window: true 

Show command line: false 

Show: 25 

Epoch: 1000 

Time: Inf 

Goal: 0 

Min_grad: 1e-05 

Max_fail: 6 

Ir: 0.01 

Show window: true 

 

 

                Figure 8: Training, validation, and test MSE for the LMA for the Batch gradient descent (traingd) algorithm 

2. The Batch gradient descent with momentum (traingdm) algorithm resulted in an RMS 

of 0.99085 during training, 0.99976 during validation, 0.99934 during testing and a 

summary of all the stages resulted in an RMS of 0.99315. The training parameters for 

this algorithm were the following:  
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Show window: true 

Show command line: false 

Show: 25 

Epoch: 1000 

Time: Inf 

Goal: 0 

Min_grad: 1e-05 

Max_fail: 6 

Ir: 0.01 

mc: 0.9  

 

Figure 9: Training, validation, and test MSE for the LMA for the Batch gradient descent with momentum (traingdm) algorithm 

3. The BFGS quasi-Newton back-propagation (trainbfg) algorithm resulted in an RMS of 

0.99898 during training, 0.99998 during validation, 0.99875 during testing and a 
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summary of all the stages resulted in an RMS of 0.99906. The training parameters for 

this algorithm were the following:  

 

Show window: true 

searchFcn: ‘srchbac’ bmax: 26 

Show command line: false scale_tol: 20 batch_frag: 0 

Show: 25 alpha: 0.001   

Epoch: 1000 beta: 0.1  

Time: Inf delta: 0.01  

Goal: 0 

gama: 0.1  

Min_grad: 1e-06 low_lim: 0.1  

Max_fail: 6 up_lim: 0.5  

Ir: 0.01 max_step: 100  

mc: 0.9  

min_step: 1e-06  

 

 

Figure 10: Training, validation, and test MSE for the BFGS quasi-Newton back-propagation  (trainbfg)  LMA for the  

algorithm  
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4. The Fletcher-Reeves conjugate gradient back-propagation (traincgf) algorithm resulted 

in an RMS of 0.9989 during training, 0.99998 during validation, 0.99926 during testing 

and a summary of all the stages resulted in an RMS of 0.99908. The training parameters 

for this algorithm were the following: 

Show window: true searchFcn:‘srchbac’ max_step: 100 

Show command line: false scale_tol: 20 min_step: 1e-10 

Show: 25 alpha: 0.001  bmax: 26 

 

Epoch: 1000 beta: 0.1 batch_frag: 0 

 

Time: Inf delta: 0.01  

Goal: 0 gama: 0.1  

Min_grad: 1e-10 low_lim: 0.1  

Max_fail: 6 up_lim: 0.5  

 

 

Figure 11: Training, validation, and test MSE for the LMA for the Fletcher-Reeves conjugate gradient back-propagation 

(traincgf) algorithm 
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5. The One step secant back-propagation (trainoss) algorithm resulted in an RMS of 

0.99814 during training, 0.99416 during validation, 0.99989 during testing and a 

summary of all the stages resulted in an RMS of 0.9978. The training parameters for 

this algorithm were the following:  

Show window: true searchFcn: ‘srchbac’ max_step: 100 

Show command line: false scale_tol: 20 min_step:1e-06 

 

Show: 25 alpha: 0.001  bmax: 26 

Epoch: 1000 beta: 0.1  

Time: Inf delta: 0.01  

Goal: 0 gama: 0.1  

Min_grad: 1e-10 low_lim: 0.1  

Max_fail: 6 up_lim: 0.5  

 

 

Figure 12: Training, validation, and test MSE for the LMA for the One step secant back-propagation (trainoss) algorithm 
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6. The Polak-Ribiere conjugate gradient back-propagation (traincgp) algorithm resulted 

in an RMS of 0.99897 during training, 0.99998 during validation, 0.99929 during 

testing and a summary of all the stages resulted in an RMS of 0.9913. The training 

parameters for this algorithm were the following: 

Show window: true searchFcn: ‘srchbac’ max_step: 100 

Show command line: false scale_tol: 20 min_step:1e-06 

 

Show: 25 alpha: 0.001  bmax: 26 

Epoch: 1000 beta: 0.1  

Time: Inf delta: 0.01  

Goal: 0 gama: 0.1  

Min_grad: 1e-10 low_lim: 0.1  

Max_fail: 6 up_lim: 0.5  

 

 

Figure 13: Training, validation, and test MSE for the LMA for the Polak-Ribiere conjugate gradient back-propagation 

(traincgp) algorithm 
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7. The Powell-Beale conjugate gradient back-propagation (traincgb) algorithm resulted 

in an RMS of 0.99944 during training, 0.99995 during validation, 0.999955 during 

testing and a summary of all the stages resulted in an RMS of 0.9994. The training 

parameters for this algorithm were the following:  

Show window: true searchFcn: ‘srchbac’ max_step: 100 

Show command line: false scale_tol: 20 min_step:1e-06 

 

Show: 25 alpha: 0.001  bmax: 26 

Epoch: 1000 beta: 0.1  

Time: Inf delta: 0.01  

Goal: 0 gama: 0.1  

Min_grad: 1e-10 low_lim: 0.1  

Max_fail: 6 up_lim: 0.5  

 

 

Figure 14: Training, validation, and test MSE for the LMA for the Powell-Beale conjugate gradient back-propagation 

(traincgb) algorithm 
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8. The Scaled conjugate gradient back-propagation (trainscg) algorithm resulted in an 

RMS of 0.99978 during training, 0.99994 during validation, 0.99996 during testing and 

a summary of all the stages resulted in an RMS of 0.99982. The training parameters for 

this algorithm were the following: 

Show window: true sigma: 5e-05 

Show command line: false lambda: 5e-07 

Show: 25  

Epoch: 1000  

Time: Inf  

Goal: 0  

Min_grad: 1e-10  

Max_fail: 6  

  

 

 

Figure 15: Training, validation, and test MSE for the LMA for the Scaled conjugate gradient back-propagation (trainscg) 

algorithm 
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9. The Variable learning rate back-propagation (traingdx) algorithm resulted in an RMS 

of 0.99894 during training, 0.99995 during validation, 0.99968 during testing and a 

summary of all the stages resulted in an RMS of 0.9992. The training parameters for 

this algorithm were the following:  

Show window: true Ir: 0.01 

Show command line: false Ir_inc: 0.05  

Show: 25  Ir_dec: 0.7 

Epoch: 1000 max_perf_inc: 0.04 

Time: Inf mc: 0.9 

Goal: 0  

Min_grad: 1e-10  

Max_fail: 6  

 

 

 

 

Figure 16: Training, validation, and test MSE for the LMA for the Variable learning rate back-propagation  (traingdx) 

algorithm 
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10. The Levenberg-Marquardt back-propagation (trainlm) algorithm resulted in an RMS 

value of 0.99993 during training, 0.99998 during validation, 0.9993 during testing and 

a summary of all the stages resulted in an RMS of 0.99984. This means that the output 

predicted by the network is nearly an exact fit with the output from the laboratory 

analysis and this is shown by the MSE of 0.00041. This algorithm was found to be the 

one that resulted in the optimum structure because it had the smallest MSE value and 

the BLE showed better fit than the other algorithms. This means that the ideal algorithm 

to use in training the NNTool for the prediction of heavy metals in mine water was the 

Levenberg-Marquardt back-propagation. The results of the output predicted by the 

network will be of great closeness to the output from the laboratory analysis by an MSE 

value of 0.00041. The training parameters for this algorithm were the following: 

  

 

 

Figure 17: Training, validation, and test MSE for the LMA for the Levenberg-Marquardt back-propagation (trainlm) algorithm 

Show window: true mu: 0.001 

Show command line: false mu_dec: 0.1 

Show: 25 mu_inc: 10 

Epoch: 1000 mu_max: 10000000000 

Time: Inf  

Goal: 0  

Min_grad: 1e-10  

Max_fail: 6  
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4.2.3 Selection of NN Structure 

For the best performance of the NN structure to be determined, it was necessary for the optimal 

network architecture to be defined. The number of hidden layers and the number of neurons in 

it were determined based on the minimum value of MSE of the training and prediction set. The 

minimum value of MSE was 0.00041 using the Leven Levenberg-Marquardt back-propagation 

(trainlm). Figure 18, shows the optimal structure directly from the MATLAB NNtool found 

with one hidden layer and five neurons. 

 

Figure 18: Optimal NN structure from MATLAB NNtool 

The network was found to be fully connected. This means that there was a connection of every 

neuron in each layer to every neuron in the next layer. The NN structure was named, based on 

the number of neurons in each layer. Figure 19, shows the optimum NN structure in detail when 

the Levenberg-Marquardt back-propagation (trainlm) is applied on a three-layer NN with a 

tangent sigmoid transfer function (tansig) at the hidden layer and a linear transfer function 

(purelin) at the output layer. There is only one hidden layer that consists of five neurons. 

 

 

 

 

Zn 

Fe 

Mn 

Si 

Ni 

pH 

so4 

TDS 

Input Layer 

Output Layer Hidden Layer 

Figure 19: Detailed optimal NN structure using the trainlm BP algorithm 
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4.2.4 Selection of Initial Weight 

According to literature, an important problem encountered when training a NN is the 

determination of the appropriate initial values for the connection weights. These weights are 

modified during utilisation to satisfy a criterion of performance. A NN basically adds up the 

signal that comes from its inputs and multiplies them with the correspondent weights. If the 

result goes beyond the threshold, the neuron can fire and transmit a signal at the output using 

a transfer function (Vlad, 2004). 

The effective weight initiation is associated with performance characteristics such as the time 

needed to successfully train the network and the generalisation ability of the trained network 

(Adam et al., 2014). The wrong choice of initial weights can lead to an increase in the training 

time or can even cause the non-convergence of the training algorithm. To decide on the initial 

weight for NN training, the Garson equation (Equation 22) was used (Aber et al., 2009).  

 

     Equation 22 

In equation (22), W is the connection weight. The superscripts ‘I’ ‘h’ and ‘o’ refer to input, 

hidden and output layers, respectively and subscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and 

output neurons, respectively. 

The initial weights to layer 1 from input 1 using the Levenberg-Marquardt back-propagation 

algorithm was: [1.2251; -1.5666; -1.3327; 1.4726; -0.80382; 1.7078; -1.5087; 0.18962; 1.8491; 

1.6045; 1.7758; -0.056764; 0.55684; 1.9558; 1.2663]. These weights resulted in the decision 

to make the Levenberg-Marquardt back-propagation (trainlm) algorithm the optimum one 

because it resulted in the MSE of 0.00041. The combination of this algorithm and weights gave 

the smallest MSE after testing ten algorithms, meaning the error of this algorithm was very 

low. These weights also made the training time short and resulted in the BLE after training and 

testing to be y = x + 1.4. It gave a clear straight line with the values for training, validation, and 

test RMS at 0.99908. 
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Chapter Summary  

In this chapter, it was illustrated how AMD properties were identified in the samples taken 

from Sibanye Western Basin Treatment Plant. The properties found correspond to the 

definition of AMD in the literature. Neutralisation using Ca(OH)2 proved to be successful in 

precipitating heavy metals, especially those identified to be problematic, as well as light metals.  

The designing of NN for its application focused on four important aspects that had to be 

determined. Firstly, the selection of the backpropagation (BP) training algorithm, where the 

optimum algorithm was found to be the Levenberg-Marquardt back-propagation (trainlm). 

Secondly, data distribution, where the optimum algorithm was applied to train the NN. During 

training, the output matrix was computed by a forward pass (feed-forward backpropagation 

NN) in which the input matrix was propagated forward through the network to compute the 

output value of each unit. The output matrix was then compared with the desired matrix.  

Thirdly, the selection of the NN structure, where a three-layer NN with a tangent sigmoid 

transfer function (tansig) at the hidden layer and a linear transfer function (purelin) at the output 

layer were applied. There was only one hidden layer that consisted of five neurons. Lastly, the 

selection of the initial weight where Adam et al. (2014) highlighted that the effective weight 

initiation is associated with performance characteristics such as the time needed to successfully 

train the network and the generalisation ability of the trained network.  

 

 

 

 

 

 

 

 



 

 

 

61 

 

Chapter 5: Conclusions and Recommendations 

5.1 Conclusions 

The application of NN techniques to predict the heavy metals in AMD from South African 

mines has been presented. Identification of AMD and heavy metals in AMD was done. AMD 

is characterised by low pH, high heavy metal content, and high salinity and samples showed 

these characteristics. The heavy metals that were identified and found in high concentrations 

in the AMD samples from Sibanye Western Basin AMD Treatment Plant were Zn, Fe, Mn, Si 

and Ni.  

The input, output and hidden layers of the NN structure (application of NN) was done, the 

appropriate algorithm to train the NN was found, and the NN results (outputs) were compared 

with the measured concentrations of heavy metals (targets). The BP model had three layers 

which included the input layer (pH, SO4
2−, and TDS), the hidden layer (five neurons) with a 

tangent sigmoid transfer function (tansig) and the output layer (Cu, Fe, Mn and Zn) with a 

linear transfer function (purelin). 

The predictions for heavy metals (Zn, Fe, Mn, Si and Ni) using the NN method focusing on a 

BP forward pass (feed-forward backpropagation NN) with ten different algorithms were 

presented and compared with the measured data. The mean square error (MSE) value was 

calculated for ten algorithms and compared to identify the one that is most appropriate for the 

prediction process and the model by having the lowest value. It was determined that the 

Levenberg-Marquardt back-propagation (trainlm) algorithm resulted in the best fitting during 

training because it resulted in an MSE value of 0.00041, meaning the error was very low when 

this algorithm was used. The input data for the NN model were selected based on the physical 

and chemical characteristics that have greater impact on AMD. These characteristics appear 

mostly in water that contains heavy metals and they are considered to have the most 

dependence on heavy metals.  

5.2 Recommendations  

It has been shown that the BP forward pass (feed-forward backpropagation NN) using the 

Levenberg-Marquardt back-propagation (trainlm) algorithm can successfully train the NN to 

predict heavy metals in AMD. It is recommended that the study be extended to use more input 

parameters. An increase in parameters should lead to an increase in the accuracy of the study. 
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The site of the AMD sampling was identified based on the concept that every mining area that 

releases AMD must send it to a plant to be treated to the compliance standards of releasing the 

water. The plant receives the acid water from different mines with ores that contain different 

mineralogical and chemical properties around the western area. It is therefore recommended 

that continuation of the study should focus on one mine with ore that has similar mineralogy 

and chemical properties for the NN model to be more accurate.  
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Appendix A 

S E T P O I N T 
LABORATORIES 

 

 

Water Analysis Report 

 
Sample name 

 RawAMD 

Sample 1 

RawAMD 

Sample 2 

Neutrilized 

AMD 

Sample 1 

Neutrilized 

AMO 

Sample 2 

 

Sample date 2019/11/26 2019/11/26 2019/11/26 2019/11/26  

Sample container description 
Plastic 

Container 

Plastic 

Container 

Plastic 

Container 

Plastic 

Container 

 

Submission date 2019/12/02 2019/12/02 2019/12/02 2019/12/02  

Sample type Water Water Water Water  

Set Point ID 
WAT/20/061 

6-0001 

WAT/20/061 

6-0002 

WAT/20/061 

6-0003 

\VAT/20/051 

6-0004 

 

Visual inspection N/A N/A N/A N/A 
 

Method no Determinand Unit  

Chemical Properties and Parameters 

M469 Chloride mg/L 58.4 58.5 59.8 59.3  

M461 Conductivity mS/m@2s•c 362 364 331 327  

M475 Fluoride mg/L 0.80 0.90 <0 .10 <0.10  

M465 Nitrate Nitrogen mg/LN <0.10 <0.10 0.27 0.37  

M466 Nitrite Nitrogen mg/LN <0.10 <0.10 <0.10 <0.10  

M460 pH - 4 .17 4 .17 7 .90 8.26  

M476 Sulphate mg/L 1627 1634 1510 1520  

M463 Total Alkalinity mg/LCaCO3 <10.0 <10.0 25.8 20.2  

M473 Total Dissolved Solids mg/L@1so•c 2357 2370 2153 2127  

M474 Silver(Ag) µg/L <0.50 <0.50 <0.50 <0.50  

M474 Aluminium (Al) mg/L <0.15 <0.15 <0.15 <0.15  

M474 Arsenic (As) µg/L 2.64 2.46 2.61 2.31  

M474 Barium (Ba) µg/L 11.4 10.7 1.89 1.99  

M474 Beryllium (Be) µg/L <0.10 <0.10 <0.10 <0.10  

# Bismuth (Bl) mg/L <0.10 <0.10 <0.10 <0.10  

M474 Calcium (Ca) mg/L 683 709 872 856  

M474 Cadmium (Cd) µg/L 0.19 0.17 <0.10 <0.10  

M474 Cobalt(Co) µg/L 402 397 69.4 61.6  

M474 Chromium (Cr) µg/L <3.00 <3.00 <3 .00 <3.00  

M474 Copper(Cu) µg/L 7.26 6.42 11.4 11.0  

M474 Iron (Fe) mg/L 289 289 <0.10 <0.10  

M474 Potassium (Kl mg/L 19.5 20.3 20.8 20.4  

# Lithium (Li) mg/L 0.12 0.12 0.12 0.12  

M474 Magnesium (Mg) mg/L 183 187 168 168  

M474 Manganese (Mn) µg/L 45000 46500 53.3 50.2  

M474 Molybdenum (Mo) µg/L <1.00 <1.00 <1.00 <1.00  

M474 Sodium (Na) mg/L 170 175 180 175  

# Niobium (Nb) mg/L <0.02 <0.02 <0 .02 <0.02  

M474 Nickel (Ni) µg/L 521 490 27.2 20.3  

M474 Lead (Pb) µg/L <1.00 <1.00 <1.00 <1.00  
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# Sulphur(S) mg/L 1243 1225 1093 1128  

M474 Antimony (Sb) µg/L <0.50 <0.50 0.54 0.52  

M474 Selenium (Se) µg/L 2.71 2.63 2.90 2.61  

M474 Silicon (Si) mg/L 8.56 8.58 0.37 0.38  

M474 Tin (Sn) µg/L <0.20 <0.20 <0.20 <0.20  

M474 Strontium (Sr) µg/L 346 347 271 274  

# Tantalum (Ta) mg/L 0.02 <0.02 <0.02 <0.02  

# Titanium (Ti) mg/L <0 .04 <0.04 <0.04 <0.04  

M474 Vanadium (V) µg/L 1.11 1.12 1.29 1.46  

M474 Zinc (Zn) mg/L 0.33 0.36 0.07 0.08  

# Zirconium (Zr) mg/L 0.01 O.Ql <0.01 <0.01  
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Sample name 
 RAWAMDl RAWAMD2 TREATEDAMD 

1 

TREATEDAMD 

2 

RAWAMDl RAWAMD2 TREATEDAMD 

1 

TREATEDAMD 

2 

RAWAMDl RAWAMD2 TREATEDAMD 

1 

Sample date 2020/03/13 2020/03/13 2020/03/13 2020/03/13 2020/03/16 2020/03/16 2020/03/16 2020/03/16 2020/03/18 2020/03/18 2020/03/18 

Sample container description 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 2L Plastic Bottle 

Submission date 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 

Sample type Water Water Water Water Water Water Water Water Water Water Water 

Set Point ID 
WAT/21/0075- 

0001 

WAT/21/0075- 

0002 

WAT/21/0075- 

0003 

WAT/21/0075- 

0004 

WAT/21/0075- 

0005 

WAT/21/0075- 

0006 

WAT/21/0075- 

0007 

WAT/21/0075- 

0008 

WAT/21/0075- 

0009 

WAT/21/0075- 

0010 

WAT/21/0075- 

0011 

Visual inspection N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 
Method no 

 

Determinand 

 
Unit 

 

Chemical Properties and Parameters 

M469 Chloride mg/L 52.3 52.7 53.0 53.8 53.0 52.5 53.3 54.1 52.1 52.0 53.7 

M461 Conductivity mS/m@25'C 487 489 371 374 487 485 385 388 478 472 365 

M475 Fluoride mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M465 Nitrate Nitrogen mg/LN <0.10 0.16 <0.10 0.11 0.25 0.16 0.29 0.11 0.16 0.16 0.10 

M466 Nitrite Nitrogen mg/LN <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M460 pH . 2.66 2.64 8.69 8.81 2.64 2.65 8.34 BAS 2.66 2.62 9.00 

M476 Sulphate mg/L 1547 1565 1430 1437 1562 1556 1465 1482 1550 1544 1436 

M463 Total Alkalinity mg/LCaCO3 <10.0 <10.0 25.8 25.2 <10.0 <10.0 24.6 24.8 <10 .0 <10.0 24.8 

M473 Total Dissolved Solids mg/L@180'C 3110 3130 2377 2397 3110 3103 2463 2480 3057 3027 2337 

M474 Silver (Ag) µg/L <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 

M474 Aluminium (Al) mg/L <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 

M474 Arsenic (As) µg/L 4.30 3.40 4.66 4.81 3.34 4.29 4.32 6.01 3.16 3.60 4.18 

M474 Barium (Ba) µg/L 15.8 11.8 2.65 2.75 11.2 12.9 2.32 3.39 13.1 15.6 3.26 

M474 Beryllium (Be) µg/L 0.18 0.12 <0.10 <0.10 0.08 0.12 <0.10 <0.10 0.13 0.20 <0.10 

M474 Bismuth (Bi) mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M474 Calcium (Ca) mg/L 658 683 763 751 674 685 789 763 656 622 749 

M474 Cadmium (Cd) µg/L 0.22 0.18 <0.10 <0.10 0.20 0.25 <0.10 <0.10 0.25 0.30 <0.10 

M474 Cobalt (Co) µg/L 442 367 140 136 403 414 126 170 456 527 113 

M474 Chromium (Cr) µg/L <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 
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Sample name 

 TREATED 

AMD2 

RAWAMDl RAWAMD2 TREATED 

AMDl 

TREATED 

AMD2 

RAWAMDl RAWAMD2 TREATED 

AMDl 

TREATED 

AMD2 

RAWAMDl RAWAMD2 

Sample date 2020/03/18 2020/03/20 2020/03/20 2020/03/20 2020/03/20 2020/03/23 2020/03/23 2020/03/23 2020/03/23 2020/03/25 2020/03/25 

 

Sample container description 
2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

Submission date 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 2020/07/21 

Sample type Water Water Water Water Water Water Water Water Water Water Water 

 

Set Point ID 

WAT/21/0075 

0012 

WAT/21/0075 

0013 

WAT/21/0075 

0014 

WAT/21/0075 

0015 

WAT/21/0075 

0016 

WAT/21/0075 

0017 

WAT/21/0075 

0018 

WAT/21/0075 

0019 

WAT/21/0075 

0020 

WAT/21/0075 

0021 

WAT/21/0075 

0022 

Visual inspection N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 
Method no 

 

Determinand 

 
Unit 

 

Chemical Properties and Parameters 

M469 Chloride mg/L 52.6 54.2 54.6 58.3 56.S 56.4 57.1 57 58.3 57.6 53.8 

M461 Conductivity mS/m@ZS'C 369 481 479 383 388 478 480 388 382 485 474 

M475 Fluoride mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 1.03 

M465 Nitrate Nitrogen mg/LN 0.1 <0.10 .<0.10 <0.10 0.18 <0.10 <0.10 <0.10 0.11 <0.10 0.1 

M466 Nitrite Nitrogen mg/LN <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M460 pH - 9 2.66 2.6 8.52 8.64 2.64 2.57 8.84 8.8 2.68 2.73 

M476 Sulphate mg/L 1418 1573 1558 1515 1518 1584 1602 1515 1487 1612 1573 

M463 Total Alkalinity mg/LC
aCO3 

24.8 <10.0 <10.0 25.6 24.4 <10.0 <10.0 24.8 24.8 <10.0 <10.0 

M474 Copper (Cu) µg/L 12.1 7.08 9.00 9.81 6.78 8 .15 10.4 17.3 8.15 8.88 9.72 

M474 Iron (Fe) mg/L 37.7 41.1 <0.10 <0 .10 38.8 38.3 <0 .10 <0.10 41.3 35.4 <0.10 

M474 Potassium (K) mg/L 20.2 20.6 21.1 20.8 20.8 21.5 21.2 20.5 20.5 20.8 21.2 

M474 Lithium (Lil mg/L 0.12 0.12 0.12 0.12 0.12 0.13 0.12 0.12 0.12 0.12 0.12 

M474 Magnesium (Mg) mg/L 178 180 147 145 180 186 150 147 182 182 136 

M474 Manganese (Mn) µg/L 38200 39200 27.20 13.90 39300 39400 38.3 33.2 39400 39600 15.5 

M474 Molybdenum (Mo) µg/L <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 

M474 Sodium lNa) mg/L 153 156 162 157 158 163 158 153 154 155 157 

M474 Niobium (Nb) mg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

M474 Nickel (Ni) µg/L 452 443 19.5 20.1 450 443 21.8 43.7 594 586 21.0 

M474 Lead (Pb) µg/L <1.00 <1.00 <1.00 <l.00 <l.00 <1.00 <l.00 <l.00 <l.00 <l.00 <l.00 

M474 Sulphur (SJ mg/L 965 990 879 865 983 1000 910 891 979 951 863 

M474 Antimony (Sb) µg/L <0 .50 <0.50 <0.50 <0.50 <0.50 <0.50 <0 .5 0 <0.50 <0.50 <0.50 <0.50 

M474 Selenium (Se) µg/L 2.85 <2.00 2.31 2.13 <2.00 2.68 <2.00 2.61 2.00 2.39 <2.00 

M474 Silicon (Si) mg/L 9.48 9.46 0.49 0.47 9.52 9.86 0.57 0.54 9.38 9.54 0.46 

M474 Tin (Sn) µg/L <0 .20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 

M474 Strontium (Sr) µg/L 440 359 312 320 389 394 311 426 381 432 292 

M474 Tantalum (Ta) mg/L <0.02 <0.02 <0.02 <0 .02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

M474 Titanium (Ti) mg/L <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 

M474 Vanadium (VJ µg/L 1.63 1.20 1.27 1.43 1.09 1.01 1.69 1.84 0.91 0.87 1.65 

M474 Zinc (Zn) mg/L 0.28 0.16 <0.06 <0.06 0.18 0.18 <0.06 <0.06 0.19 0.20 <0.06 

M474 Zirconium (Zr) mg/L <0.01 <0.01 <0.01 <0 .01 <0.01 <0 .01 <0.01 <0.01 <0.01 <0.01 <0 .01 
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M473 Total Dissolved Solids mg/L@
180'C 

2367 3070 3067 2457 2477 3057 3070 2490 2443 3107 3037 

M474 Silver (Ag) µg/L <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 

M474 Aluminium (Al) mg/L <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 

M474 Arsenic (As) µg/L 4.53 2.94 3.12 3.73 3.87 3.05 2.85 4.97 4.71 2.60 2.38 

M474 Barium (Ba) µg/L 3.54 12.3 13.5 2.03 2.25 13.1 13.1 4.01 4.20 10.9 11.2 

M474 Beryllium (Be) l,lg/L <0.10 0.12 0.13 <0.10 <0.10 0.13 0.12 <0.10 <0.10 0.12 0.11 

M474 Bismuth (Bi) mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M474 Calcium (Ca) mg/L 719 621 627 687 753 644 666 790 788 672 683 

M474 Cadmium (Cd) µg/L <0.10 0.24 0.27 <0.10 <0.10 0.24 0.22 <0.10 <0.10 0.17 0.15 

M474 Cobalt (Co) µg/L 121 440 456 113 113 455 443 121 117 419 366 

M474 Chromium (Cr) µg/L <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 <3.00 

M474 Copper (Cu) µg/L 11.3 6.95 8.28 9.7 10.4 7.76 6.95 16.1 15.6 5.90 6.80 

M474 Iron (Fe) mg/L <0.10 39.6 39.8 <0.10 <0.10 37.8 37.3 <0.10 <0.10 38.7 69.2 

M474 Potassium (Kl mg/L 20.6 19.S 19.9 18.2 19.7 20.1 20.3 20.7 20.4 20.3 20.3 

M474 Lithium (Li) mg/L 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

M474 Magnesium (Mg) mg/L 130 173 176 152 156 180 183 147 148 184 187 

M474 Manganese (Mn) µg/L 6.76 39700 40000 15.9 16.1 40100 39500 26.2 27.3 40000 39000 

M474 Molybdenum (Mo) µg/L <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 

M474 Sodium (Na) mg/L 151 144 147 144 154 156 158 158 159 155 152 

M474 Niobium (Nb) mg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

M474 Nickel (Ni) µg/L 24.8 558 540 19.4 22.9 552 577 39.4 41.2 544 537 

M474 Lead (Pb) µg/L <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 <1.00 

M474 Sulphur (S) mg/L 840 949 952 831 887 949 974 902 900 989 1003 

M474 Antimony (Sb) µg/L <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 

M474 Selenium (Se) µg/L 2.14 2.16 2.25 <2.00 <2.00 2.04 <2.00 2.73 2.47 <2.00 <2.00 

M474 Silicon (Si) mg/L 0.44 9.44 9.43 0.43 0.43 8.97 9.18 0.53 0.53 9.20 9.33 

M474 Tin (Sn) µg/L <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 

M474 Strontium (Sr) µg/L 317 386 396 289 295 383 384 310 303 367 323 

M474 Tantalum (Ta) mg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

M474 Titanium (Ti) mg/L <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 

M474 Vanadium (V) µg/L 1.51 0.67 0.70 1.62 1.50 0.61 0.48 1.71 1.72 0.30 0.24 

M474 Zinc (Zn) mg/L <0.06 0.23 0.22 <0.06 <0.06 0.17 0 .14 <0.06 <0.06 0.20 0.15 

M474 Zirconium (Zr) mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 

 
Sample name 

 RawAMDl 

Week3 

RawAMD 

2 Week3 

Treated 

AMDl 

Wi,i,k.3 

Treated 

AMD2 

\A/,u,k_ 3 

RawAMD 

1 Week4 

RawAMD 

2Week4 

Treated 

AMDl 

Week.4 

Treated 

AMD2 

\A/ool,4 

RawAMD 

1 Week4 

RawAMD 

2 Week4 

Treated 

AMDl 

\A/ook_4 

Sample date 2020/04/01 2020/04/01 2020/04/01 2020/04/01 2020/04/03 2020/04/03 2020/04/03 2020/04/03 2020/04/06 2020/04/06 2020/04/06 

Sample container description 2L Plastic Bottle 
2L Plastic 

Bottle 

2L Plastic 
Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 

Bottle 

2L Plastic 
Bottle 

2L Plastic 

Bottle 

Submission date 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 2020/05/04 

Sample type Water Water Water Water Water Water Water Water Water Water Water 
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Set Point ID WAT/20/0940-0001 
WAT/20/094 

0-0002 

WAT/20/094 

0-0003 

WAT/20/094 

0-0004 

WAT/20/094 

0-0005 

WAT/20/094 

0-0006 

WAT/20/094 

0-0007 

WAT/20/094 

0-0008 

WAT/20/094 

0-0009 

WAT/20/094 

0-0010 

WAT/20/094 

0-0011 

Visual inspection N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Method no Determinand Unit  

Chemical Properties and Parameters 

M469 Chloride mg/L 47.3 47.6 48.7 48.8 48.1 48.3 48.9 49.3 48.1 48.0 48.9 

M461 Conductivity mS/m@25'C 314 315 305 303 315 314 306 310 311 312 301 

M475 Fluoride mg/L 1.10 1.43 <0.10 <0.10 1.76 1.62 <0.10 <0.10 1.73 0.96 <0.10 

M465 Nitrate Nitrogen mg/LN <0.10 <0.10 <0.10 <0.10 <0 .10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M466 Nitrite Nitrogen mg/LN <0.10 <0.10 <0 .10 <0.10 <0.10 <0.10 0.10 <0.10 <0.10 <0 .10 <0 .10 

M460 pH - 4.16 4.17 8.60 8.61 4.10 4.21 8.60 8.67 4.12 4.14 8.96 

M476 Sulphate mg/L 1334 1344 1311 1318 1366 1374 1336 1332 1370 1370 1336 

M463 Total Alkalinity mg/LCaCO3 <10.0 <10.0 25.1 23.8 <10.0 <10 .0 30.6 25.6 <10.0 <10 .0 25 .6 

M473 Total Dissolved Solids mg/L@180'C 2063 2057 1983 1973 2047 2043 1990 2013 2023 2030 1963 

# Silver (Ag) mg/L <0.01 <0.01 <0.01 <0.01 <0 .01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

M474 Aluminium (Al) mg/L <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0 .15 

# Arsenic (As) mg/L 0.66 0.73 0.60 0.69 0.68 0.70 0.58 0.57 0.67 0.67 0.58 

M474 Barium (Ba) mg/L 0.01 0.Dl <0 .01 <0.01 0.01 0.01 0.00 0.00 0.Dl 0.Dl 0.01 

M474 Beryllium (Be) mg/L <0.02 <0 .0 2 <0.02 <0.02 <0 .0 2 <0.02 <0.02 <0 .0 2 <0.02 <0.02 <0.02 

# Bismuth (Bi) mg/L <0.10 <0.10 <0.10 · <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M474 Calcium (Ca) mg/L 666 673 929 890 677 683 877 886 722 743 918 

M474 Cadmium (Cd} mg/L 0,07 0.06 0.04 0.04 0.06 0.06 0.04 0.04 0.06 0.06 0.04 

M474 Cobalt (Co} mg/L 0.63 0.63 0.25 0.25 0.58 0.58 0.26 0.26 0.61 0.60 0.25 

M474 Chromium (Cr) mg/L <0 .05 <0.05 <0.05 <0 .05 <0.05 <0.05 <0.05 <0 .05 <0 .05 <0 .05 <0.05 

M474 Copper (Cu) mg/L <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 

M474 Iron (Fe} mg/L 158 156 <0.10 <0.10 180 183 <0.10 <0.10 189 189 <0.10 

M474 Potassium (K} mg/L 17.1 18.1 18.4 19.2 18.4 18.3 19.3 19.3 18.5 18.2 19.4 

# Lithium (Li} mg/L 0.11 0.12 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

M474 Magnesium (Mg) mg/L 184 183 138 141 184 187 161 160 180 182 138 

M474 Manganese (Mn) mg/L 39.6 40.1 0.04 0.04 39.3 39.4 0.03 0.03 40.4 40.5 0.02 

M474 Molybdenum (Mo) mg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

M474 Sodium (Na} mg/L 169 178 178 185 186 185 189 194 189 188 193 

It Niobium (Nb} mg/L <0 .0 2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0 .0 2 <0 .02 

M474 Nickel (Ni} mg/L 0.60 0.61 <0 .02 <0 .0 2 0.52 0.52 <0 .0 2 <0 .0 2 0.53 0.56 <0.02 

It Lead (Pb) mg/L 0.12 O.D7 <0 .05 0.06 0.11 0.17 0.09 <0.05 <0.05 0.05 <0.05 

It Sulphur (S} mg/L 1103 1149 1151 1159 1141 1138 1188 1193 1221 1234 1189 

It Antimony (Sb} mg/L <0 .0 2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0 .0 2 <0.02 

It Selenium (Se} mg/L 0.08 <0.02 <0.02 O.Q7 <0.02 <0.02 <0.02 <0.02 0.04 <0.02 0.12 

M474 Silicon (Si} mg/L 7.41 7.64 0.81 0.81 8.04 7.91 0.52 0.51 8.49 8.55 0.59 

It Tin (Sn) mg/L 0.08 0.10 0.12 0.06 <0.04 0.08 <0 .04 0.06 0.06 0.18 0.11 

M474 Strontium (Sr} mg/L 0.34 0.35 0.28 0.29 0.35 0.35 0.27 0.27 0.36 0.36 0.31 
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# Tantalum (Ta) mg/L <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

# Titanium (Ti) mg/L <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0 .04 <0.04 <0.04 <0.04 <0.04 

M474 Vanadium (V} mg/L <0.10 <0.10 <0 .10 <0 .10 <0 .10 <0 .10 <0 .10 <0.10 <0.10 <0.10 <0 .10 

M474 Zinc(Zn) mg/L 0.27 0.25 <0.06 <0 .06 0.22 0.20 <0 .06 <0 .06 0 .27 0 .27 <0.06 

M474 Zirconium (Zr) mg/L <0 .01 <0.01 <0.01 <0 .01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 

 

 
Sample name 

  

Treated AMD 2 

Week4 

          

Sample date 2020/04/06           

Sample container description 
 

2L Plastic Bottle 

          

Submission date 2020/05/04           

Sample type Water           

Set Point ID 
WAT/ 20/0940- 

0012 

          

Visual inspection N/A           

Method no Determinand Unit  

Chemical Prop ertie s and Parameters 

M469 Chloride mg/L 49           

M461 Conductivity mS/m@2S'C 300           

M475 Fluoride mg/L <0.10           

M465 Nitrate Nitrogen mg/LN <0.10           

M466 Nitrite Nitrogen mg/LN <0.10           

M460 pH - 8 . 99           

M476 Sulphate mg/L 1323           

M463 Total Alkalinity mg/LCaCO3 21.2           

M473 Total Dissolved Solids mg/L@180'C 1953           

# Silver (Ag) mg/L <0.01           

M474 Alum inium {Al) mg/L <0.15           

# Arsenic (As) mg/L 0.64           

M474 Barium (Ba) mg/L 0.01           

M474 Beryllium (Be) mg/L <0.02           

# Bismuth (Bi) mg/L <0.10           

M474 Calcium (ca) mg/L 912           

M474 Cadmium (Cd) mg/L 0.04           

M474 Cobalt {Co) mg/L 0.26           
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M474 Chromium {Cr) mg/L <0.05           

M474 Copper {Cu) mg/L <0.10           

M474 Iron {Fe) mg/L <0.10           

M474 Potassium {K) mg/L 18.7           

# Lithium {Li) mg/L 0.11           

M474 Magnesium (Mg) mg/L 139           

M474 Manganese (Mn) mg/L 0.02           

M474 Molybdenum (Mo) mg/L <0.02           

M474 Sodium (Na) mg/L 186           

# Niobium (Nb) mg/L <0.02           

M474 Nickel (Ni) mg/L <0.02           

# Lead (Pb) mg/L <0.05           

# Sulphur (S) mg/L 1155           

# Antimony (Sb) mg/L <0.02           

# Selenium (Se) mg/L <0.02           

M474 Sili con (Si) mg/L 0.57           

# Tin(Sn) mg/L <0.04           

M474 Strontium (Sr) mg/L 0.30           

# Tantalum (Ta) mg/L <0.02           

# Titanium (Ti) mg/L <0.04           

M474 Vanadium (V) mg/L <0.10           

M474 Zinc (Zn) mg/L <0.06           

M474 Zirconium (Zr) mg/L <0.01           
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Please Note: N/ A: Not applicable RTF : Result to follow •sub-contracted Analysis 

 

# Non SANAS Accredited methods. 

Results only relate to the samples tested and are reported on an "as 

received" basis, unless otherwise specified. This report may not be  

reproduced, except in full, without  the  written approval of  Set  Point  

Laboratories; Results are subject to uncertainty of measurement, which 

are indicated on the enclosed information sheet. 

While every effort is made to provide analysis of the  highest accuracy, the  

liability of  Set  Point  Laboratories is restricted to the cost of the analysis. 

 

#Comment: 

 

   

Nthudzeni Mabidi 

(Report Compiler) 

Thelma Horsfield 

Technical Signatory 

Moses Lelaka 

Technical Signatory 
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# Tests marked "Non SANAS Accredited method s", os well as any comments, opinions or interpretations expressed in this report ore not 

 

INFORMATION SHEET TO ANALYSIS REPORT 

 

 
Methods used, tests subcontracted and accredited ranges: 

 

 
DETERMINAND 

 

 
Method code 

 

 
Accredited 

 

 
Ave. Uncertainty 

 

 
Technique 

 

Limit of 

Detection 

 
Analytical 

range 

pH 
 

M460 / M860 
 

Yes 
 

13% Electro-metric 03 4-10 

Conductivity 
 

M461 / M861 Yes 
 

62% 
 

Electro-metric 
 

1 mS/m 
 

1-1000mS/m 

Alkalinity 
 

M463 / M863 
 

Yes 42% Titration 
10mg/L 

CaCO3 iu  -

=
WOO mg1l 

Ammonia Nitrogen M464 Yes 
1:l i % < 2 6 mg/L 

>2..4%. 
Automated 

Photometric 

U i mg,l l'it1"3- 
N 

0 1 - 776 mg1L 
NH:l-N 

Ammonia Nitrogen M864 Yes 1.8% 
Automated 

Photometric 
0 1 mg1l N°f13- 

N 

u i - 2 .0 mg1L 
NH3-N 

 

 

Nitrate Nitrogen 

 

 

M465/M865 

 

 

Yes 

 
Calcula    ted from M467 

andM466 or M867and 

MB66 

 

 

Automated 

Photometric 

 

 

01mg/L NO:l- 

CiJicu1a ie a from 

M467 andl 

M466/ 

M867and 

M866 

Nitrite Nitrogen M466 / M866 Yes 118% 
Automated 

Photometric 
a 1 mg1L NuL- 

N 
0 - 2 mg1l N02 

N 

Nrtrata and Nitrate Nitrogen 
 

M467 / M867 Yes 
 

12 5% 
Aulomated 
Photometric 

01 mg1l 

NO3+NO2-N 

u.1 -10 mgtL 

NO3+NO2-N 

Ortho Phosphate M468 / M868 Yes 7 2% 
Aulamafed 

Photometric 

0- ,  mg1lo- 
P04-P 

0i-5mgtlo- 

P04-P 

Chloride 
 

M469 / M869 Yes 4 9% 
Automated 
Photomelric 3 mg/LCI 3 - 50 mg/LCI 

Fluoride 
 

M475/ M875 
 

Yes 
 

64% 
Automaled 

Photometric 

 

01mg/LF 
 

01-2mg/LF 

Sulphate 
 

M476/ M876 
 

Yes 
 

66% 
Automated 

Photometric 
3 mg/LS04 

3- 100mg/L 

SO4 

Hexavalent Chromium M471 / M871 Yes 30% 
Automated 
Photometric 

0 005mg/L 
Cr6+ 

0.005 - 0 2 
.......11 "'c6+ 

 
COD 

 
M462 / M862 

 
Yes 

 
13% 

<.;iosed teflux/co 

lourme 
tric 

 
10mg/LO2 

10-1500mg/L 

02 

Total Suspended Solids M472 / M872 Yes 
 

6 .4% Gravimetric 10mg/L TSS 
10-iSlliJmg,t 

TSS 

Total Dissolved Solids M473 / M873 Yes 1.5% Gravimelric 10mg/L TDS 
10-1'500-mgtl 

TDS 

,AJ M474 / M874 Yes 33% ICP-OES 0 15 mg/L 015-15mg/L 

Ag M474 Yes 0 32 ug/L ICP-MS 0 50 ug/L O,50 - 50 ug/L 
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As M474/ M874 Yes 37% ICP-OES 0 10 mg/L 0,10 - 15 mg/L 

As M474 Yes Q_33 ug/L ICP-MS 0 50 ug/L o.so • 50 ug/L 

B M474 / M874 Yes 44% ICP-OES o 35 mg/L 0 35-15 mg/L 

Ba M474 / M874 Yes 3 . 5 % ICP-OES 0 01 mg/L 0 01 - 15 mg/L 

Ba M474 Yes 0 30 ug/L ICP-MS 0 30 ug/L 0 30 - 100 ug/L 

Be M474/ M874 Yes 4 9% ICP-OES 0 02 mg/L 002-15mg/L 

Be M474 Yes o 37 ug/L ICP-MS 0 10 ug/L 0.10 - 50 ug/L 

Ca M474/ M874 Yes 2 7 % ICP-OES O 50 mg/L 0S0-15mg/L 

 

Cd M474 I M874 Yes 4 5% ICP-OES a 02 mg/L 002-15mg/L 

Cd M474 Yes a 36 ug/L ICP-MS a 10 ug/L 0.10 - 50 ug/L 

Co M4741 M874 Yes 30% ICP-OES 0 02 mg/L a 02-15 mg/L 

Co M474 Yes 0 36 ug/L ICP-MS a 20 ug/L a 20 - 50 ug/L 

Cr M474I M874 Yes 3 a% ICP-OES a as mg/L a 05-15 mg/L 

Cr M474 Yes a 36 ug/L ICP-MS 3 a ug/L 3 -100 ug/L 

Cu M474 I M874 Yes 31 % ICP-OES a 10 mg/L 010-15mg/L 

Cu M474 Yes a 36 ug/L ICP-MS 1 a ug/L 1 - 100 ug/L 

Fe M474IM874 Yes 32% ICP-OES a 10 mg/L 010-15mg/L 

Hg M474 Yes a 04 ug/L ICP-MS a so ug/L 050-Sug/L 

K M474 /M874 Yes 42% ICP-OES a 04 mg/L 004-15mg/L 

Mg M474 I M874 Yes 29% ICP-OES 005 mg/L a.OS- 15 mg/L 

Mn M474/ M874 Yes 38% ICP-OES a 02 mg/L 0.02 - 15 mg/L 

Mn M474 Yes a 40 ug/L ICP-MS a 25 ug/L 025- 50 ug/L 

Mo M474 I M874 Yes 32 % ICP-OES a 02 mg/L a 02-15 mg/L 

Mo M474 Yes a 36 ug/L ICP-MS 1 a ug/L 1.0 - 50 ug/L 

Na M474 / M874 Yes 77 % ICP-OES a 20 mg/L 0.20- 15 mg/L 

Ni M474 /M874 Yes 30% ICP-OES 0.02 mg/L 0.02 - 15 mg/L 

Ni M474 Yes 0 33 ugll ICP-MS 1 a ug/L 10-100ug/L 

Pb M474 / M874 Yes 30 % ICP-OES a as mg/L 005-15mg/L 

Pb M474 Yes a 37 ug/L ICP-MS 1 a ug/L 10-100ug/L 

Si M474/ M874 Yes 68 % ICP-OES a 25 mg/L 025-15mg/L 

Sb M474 Yes a 35 ug/L ICP-MS 0 50 ug/L a 50- 50 ug/L 

Se M474 Yes a 35 ug/L ICP-MS 2,0 ug/L 20-S0ug/L 

Sn M474 Yes 041 ug/L ICP-MS a 20 ug/L a 20-so ug/L 

Sr M474 IM874 Yes 56% ICP-OES a 01 mg/L 001-15mg/L 
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Sr M474 Yes a 32 ug/L ICP-MS a so ug/L a so - so ug/L 

Th M474 Yes a 35 ug/L ICP-MS a 20 ug/L 0.20 - 50 ug/L 

Tl M474 Yes a 29 ug/L ICP-MS a 10 ug/L a 10- 50 ug/L 

u M474 Yes a 30 ug/L ICP-MS a 20 ug/L a 20- so ug/L 

V M474I M874 Yes 2 9% ICP-OES a 10 mg/L 0.10 -15 mg/L 

V M474 Yes a 36 ug/L ICP-MS a 20 ug/L 0 20-50 ug/L 

Zn M474/ M874 Yes 49 % ICP-OES a 06 mg/L 0.06 • 15 mg/L 

  

Note: All other tests or elements reported are not accredited unless specified 

otherwise. Record: Analysis report information sheet, revision status: 2020-

02-28 

Compiled and approved by: T Horsfield 
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