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ABSTRACT 

The purpose of this study was to develop analytical and numerical solutions to be used in the 

design of thick walled high pressure vessels for optimal location of a cross bore. In addition, 

the effects of internally applied combined thermo-mechanical loading on Stress Concentration 

Factor (SCF) on these vessels, was also evaluated.  

 

 An analytical solution, to predict principal stresses on radial circular cross bore, was 

developed. The developed analytical solution was verified using finite element analysis 

methods. An optimisation process, using finite element analysis, was further done to determine 

the optimal combination of the major cross bore geometry that affect stress concentration. The 

cross bore geometries that were studied included the size, shape, location, obliquity and 

thickness ratio. The geometrically optimised cross bore was then subjected to combined 

thermo-mechanical loading to determine the resulting stress concentration effects.  

 

 A total of 169 finite element part models were created and analysed. Seven thick walled 

cylinders having either circular or elliptical shaped cross bore positioned at radial, offset or and 

inclined were investigated.  

 

The analytical solution developed correctly predicted all the radial stresses at the intersection 

of the cross bore and main bore. However, out of 35 studied models, this analytical solution 

predicted the magnitude of hoop stresses in 9 models and that of axial stresses in 15 models 

correctly. The lowest SCF given by the radial circular cross bore was 2.84. Whereas, the SCF 
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due to offsetting of the same cross bore size reduced to 2.31. Radial elliptical shaped cross bore 

gave the overall lowest SCF at 1.73. In contrast, offsetting of the same elliptical shaped cross 

bore resulted in tremendous increase in SCF magnitude exceeding 1.971. Additionally, the 

magnitudes of SCF were observed to increase whenever the circular offset cross bores were 

inclined along the RZ axis of the cylinder.  

 

The hoop stress due to internally applied combined thermo-mechanical loading increased 

gradually with  increase in temperature until it reached a maximum value after which it began 

to fall sharply. In contrast, the corresponding SCF reduced gradually with increase in 

temperature until it reached a uniform steady state. After which, any further increase in 

temperature had insignificant change in stress concentration factor. The optimal SCF 

magnitude due to combined thermo-mechanical loading was 1.43. This SCF magnitude was 

slightly lower than that due to the pressure load acting alone.  
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CHAPTER ONE: INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

High pressure vessels are air tight containers (Nabhani et al., 2012), mostly cylindrical, conical, 

ellipsoidal or spherically shaped (Hyder and Asif, 2008), that are used to store large amounts 

of energy (Kihiu and Masu, 1995). They are termed as thick walled when their ratio of thickness 

and internal radius exceeds 1 20⁄  (Nabhani et al., 2012). The basic pressure vessel design takes 

into account the vessel failure modes, induced stresses, selection of materials, the surrounding 

environment and stress concentration (Hyder and Asif, 2008). Pressure vessels are used for 

various applications in thermal and nuclear power plants, process and chemical industry, space, 

ocean depth and fluid supply in industries, etc. (Kharat and Kulkarni, 2013; Jeyakumar and 

Christopher, 2013). 

 

Pressure vessels are usually loaded with working fluid at high pressures and temperatures 

commonly referred to as thermo-mechanical loading (Nayebi and Sadrabadi, 2013). This 

loading induces dynamic and thermal stresses on the cylinder wall due to the variation in 

pressure and temperature, respectively (Choi et al., 2012). However, due to the discontinuities 

in the cylinder, the stress distribution along the cylinder wall is not uniform. These 

discontinuities which include geometric, loads and metallurgical factors, etc., create regions of 

high stresses that are referred to as stress concentrations. The stress concentrations, due to 

dynamic and thermal stresses, are calculated using dimensionless factors called the Dynamic 

Stress Concentration Factor (DSCF) and the Thermal Stress Concentration Factor (TSCF), 

respectively (Babu et al., 2010). High values of these stress concentration factors are some of 

the sources of pressure vessel failures (Nabhani et al., 2012) or reduced operating life (Choi et 
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al., 2012). Failures of pressure vessels are usually catastrophic and may lead to loss of life, 

damage of property or pose a health hazard (Masu, 1997; Kharat and Kulkarni, 2013). 

However, these catastrophic failures can be avoided when the design and manufacture of 

pressure vessels is done in accordance with standard pressure vessel design codes (Kihiu and 

Masu, 1995). Nevertheless, these codes only give sets of wall thickness and their corresponding 

hoop stresses that are below the allowable working stresses without any detailed stress analysis 

(Kihiu et al., 2004). This practice has led to the use of high safety factors in pressure vessel 

design ranging from 2 to 20 (Masu, 1997). This phenomenon results in uneconomical use of 

material which translates into high manufacturing cost of pressure vessels. Other processes 

such as autofrettage (a metal fabrication technique in which a pressure vessel is subjected to enormous 

pressure, causing internal portions of the part to yield plastically, resulting in internal compressive 

residual stresses once the pressure is released) and shakedown (Li et al, 2010) are also performed 

at the manufacturing stage of pressure vessels to increase their strength (Kihiu et al., 2004). 

However, it is likely that a more detailed stress analysis will obviate the need for autofrettage, 

with the accompanying reduction in the manufacturing cost.  

 

In practice, holes or openings are drilled in the wall of plain pressure vessels (Masu, 1998). A 

single hole in one side of the vessel is known as a side hole. Whereas two transverse holes in 

both sides of the vessel are known as cross holes or cross bores (Peters, 2003; Makulsawatudom 

et al., 2004).  Cross bores are referred to as radial when they are drilled at the centre axis of the 

vessel. On the other hand, cross bores are referred to as offset when drilled at any other chord 

away from the vessel centre axis (Makulsawatudom et al., 2004). Cross bores are of different 

sizes and shapes. The size ranges from small drain nozzles to large handhole and manholes 

such as tee junctions (Kharat and Kulkarni, 2013). The most common cross bore shapes are 

circular and elliptical in shape (Nagpal et al., 2012). These cross bores give provision for fitting 
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relief and safety valves, bursting discs, gas inlets, flow circuit meters, temperature and internal 

pressure measurement, inspection covers, lubrication, etc. (Kihiu and Masu, 1995). As a result, 

cross bores are inevitable in pressure vessels design (Kihiu and Masu, 1995). 

 

These openings in the pressure vessels introduce geometric discontinuities that alter the 

uniform stress distribution in the cylinder walls (Kharat and Kulkarni, 2013). The geometric 

discontinuities act as stress raisers, thus creating regions of high stress concentration especially 

near the openings (Masu and Craggs, 1992). Due to these high stress regions, the elemental 

stress equations in thick walled vessels cease to apply (Kharat and Kulkarni, 2013). 

 

The stress concentration in cross bored high pressure vessels is dependent on the cross bore 

geometry. The major parameters of the cross bore geometry include the cross bore size, shape, 

location, obliquity angle and the thickness ratio. However, the optimal combination of these 

cross bore geometries that give minimum stress concentration factors have not been fully 

established.  

 

Therefore, this study developed optimal solutions for a cross bore in thick walled high pressure 

vessels using analytical and numerical methods in respect of radial circular cross bores. 

Furthermore, it established an optimal geometry of the cross bore that gives a minimum stress 

concentration factor.  In addition, the study evaluated the effects of combined thermo-

mechanical loading on stress concentration in high pressure vessels with cross bores. 
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1.2 Purpose of the study 

The purpose of this study was to develop analytical and numerical solutions to be used in the  

design of thick walled high pressure vessels for optimal location of a cross bore. In addition, 

the effects of combined thermo-mechanical loading on SCF on these vessels was also 

evaluated. 

1.3 The significance of study 

High pressure vessels are some of the essential accessories in industry. They are used for 

storage, industrial processing and generation of power under high pressures and temperatures 

(Kihiu and Masu, 1995). Research studies on stresses in high pressure vessels with a view of 

optimising SCF may provide the much needed information that is required in the design of 

pressure vessels. This may lead to safer working environments, improved availability of 

equipment, economic use of materials, lower operating costs and reduction in losses due to 

catastrophic or disruptive failures (Kihiu et al., 2004). 

1.4 Problem statement 

The majority of industrial processes use various types of high pressure vessels such as boilers, 

air receivers, heat exchangers, tanks, towers, condensers, reactors, etc., in their operation. 

Failure of high pressure vessels do occur, being the source of approximately 24.4% of the total 

industrial accidents in industrial processes (Nabhani et al., 2012). These failures have resulted 

in loss of human life, damage of property, environmental pollution and in some instances led 

to emergency evacuation of residents living in the surrounding areas (Nabhani et al., 2012). 

Failure of these vessels are caused by induced stresses in the walls of cylinders resulting from 

varying operating pressures and temperatures. The induced stresses lead to formation of stress 
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related failures in the material such as fatigue, creep, embrittlement and stress corrosion 

cracking (Nabhani et al., 2012).  

 

To prevent pressure-vessel failures, pressure vessel designers have started to use pressure 

vessel design codes (Kharat and Kulkarni, 2013). In order to reduce industrial process accidents 

and hence the loss of human life, damage of property as well as possible environmental 

pollution, high pressure vessel design should be appropriately done. This can be achieved if a 

thorough understanding of the stress concentration situations in the pressure vessels can be 

obtained and optimised. Hence, the need for the present study. 

1.5 Objectives 

The main objective of this study was to determine the optimal location of a cross bore in thick 

walled high pressure vessels. In addition, the effects of thermo-mechanical loading on stress 

concentration factors in high pressure vessels with cross bore were also studied.  

 

The research work entailed the development of optimal solutions of cross bores in thick walled 

high pressure vessels using analytical and numerical methods in respect of radial circular cross 

bores. Furthermore, establishing an optimal geometry of a cross bore in thick walled high 

pressure vessels that gives minimum stress concentration factor.  In addition, the study 

evaluated the effects of combined thermo-mechanical loading on stress concentration in high 

pressure vessels with cross bores. 

 

  



6 
 

CHAPTER TWO: LITERATURE REVIEW 

2.1 LITERATURE SURVEY  

Stress Concentrations Factor (SCF), also referred to as the Effective Stress Factor (ESF) 

(Moffat et al., 1991), is determined using the relationship given in Equation (2.1) as detailed 

by Masu and Craggs (1992) and Kharat and Kulkari (2013); 

SCF =
Maximum hoop stress at cross bore

Hoop stress at bore of cylinder without cross bore
                                                  (2.1) 

 

According to Cole et al. (1976), high values of SCF act as points of weakness leading to 

reduction in the vessel strength as well as its fatigue life. This consequently may reduce the 

pressure carrying capacity of the pressure vessel by up to 60 % (Masu, 1989) when compared 

to a plain vessel without cross bores. These findings justify the need for pressure vessel 

designers to ensure minimum SCF due to cross bore. For instance, in the design and 

manufacture of components such as shafts, valves seats, forging, etc., blending geometry 

technology has been extensively used to reduce the SCF (Masu and Craggs, 1992).  

 

Research studies with a view to reducing SCF across the cross bore have been carried out. The 

following is a general overview of the studies conducted on stress analysis. Mackerle (1996) 

comprehensively reviewed 632 published journal articles between 1976 and 1996 on “linear 

and nonlinear, static and dynamic, stress and deflection analyses”, but only 9% of the published 

articles were on stress analysis. Mackerle (1999; 2002; 2005) repeated the same study and 

published three more articles covering the periods from 1996 to 1998, 1998 to 2001 and 2001 
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to 2004. In each period mentioned earlier, the number of articles reviewed on the same study 

was given as 173, 140 and 128, respectively. However, the studies on stress analysis were 

found to be 15%, 11% and 6%, respectively.  

 

More recently, Kharat and Kulkarni (2013) reviewed 41 published journal articles on stress 

concentration. Of these, only 27% were on SCF around cross bore openings. 76% of the articles 

reviewed in this study were on thick walled pressure vessels. Interestingly, the study 

recommended the need for more research in stress concentration on thin walled cylinders. This 

recommendation contradicted another study conducted by Diamantoudis and Kermanidis 

(2005) which concluded that most industrial applications use thick walled high pressure 

vessels. They argued that, the use of pressure vessel design codes during the manufacture of 

high pressure vessels advocates for large safety factors, hence the increase in material 

thickness. In this regard, most of the industrial applications use thick walled cylinders, hence 

more research ought to be done on them. 

 

The total stress concentration induced in the cylinder wall is due to SCF, TSCF and the DSCF. 

The SCF depends on the choice of the pressure vessels geometric design parameters. These 

design parameters include cross bore position, shape, size, angle of inclination and thickness 

ratio. Numerous studies on the effects of geometric design parameters on SCF in high pressure 

vessels have been conducted. Nevertheless, there has been less investigation on optimisation 

of the geometric design parameters (Kharat and Kulkarni, 2013). Studies on optimisation of 

the TSCF and the DSCF in the high pressure vessels have not been adequately covered, despite 

this being a common phenomenon in the industry (Kihiu, 2002). Therefore, this literature 

review focuses on the effects of geometric design parameters and thermo-mechanical loading 
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on stress concentration in high pressure vessels, with a view to investigate the optimum 

conditions.  

2.2  MEASUREMENT OF STRESS DISTRIBUTION 

Several techniques namely, experimental, analytical and numerical (also known as 

computational), are used to conduct the analysis of stress distribution in high pressure vessels. 

Experimental techniques use various methods such as photo-elasticity, grid, brittle coating, 

moiré, strain gauge measurements, among others to obtain experimental solutions. In 

experimental techniques, prototype specimens are mainly used for experimental testing. 

However, the use of prototype specimens instead of models, together with equipment and 

labour costs make the experimental techniques more expensive than the other methods (Masu, 

1994).  

 

Theories of elasticity, elastoplastic or plasticity are used in analytical methods (Zhang et al., 

2012) to analyse stresses of certain simple geometrical shapes. The accuracy of the arising 

solutions depends on the assumptions of the theory and the boundary conditions used. The 

solutions obtained from these methods are referred to as exact or analytical or closed form 

solutions (Nagpal et al., 2012). These closed form solutions are obtained using various 

mathematical methods (Dharmin et al., 2012) such as complex function theory (Conformal 

mapping, Boundary collocation, Laurent series expansion, Complex variable approach, etc.) 

and integral transforms (Fourier, Laplace, Mellin, Hanckel, Eigen function expansion, etc.). 

Lately, computer software packages such as Matlab and Maple are used to solve the generated 

simultaneous equations by the analytical methods. 
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Lastly, numerical methods use packages such as Finite Element Analysis (FEA), Finite 

Difference, Finite Volume, Boundary Integral Element (BIE) and Mesh Free methods for stress 

analysis (Masu, 1989: Nagpal et al., 2012). The solutions obtained by these numerical methods 

are referred to as approximate numerical solutions. Each of these methods is suitable for 

various applications. For instance, Mesh Free method is used to determine stress distribution 

in elements with discontinuous or moving boundaries. Whereas, the BIE method is used to 

determine the stress distribution at the surface of the element (Nagpal et al., 2012). 

 

Some of the FEA commercially based software packages commonly used in stress analysis are 

ANSYS, COSMOL, DYNA, ABAQUS, PAFEC 75, ADINA, NASTRAN and LUSAS 

(Nagpal et al., 2012). Other common applications for these FEA software packages are 

tabulated in Table 1. The choice of a particular software package depends on the availability, 

the type of stress analysis to be performed, the element to be analysed and the required depth 

of accuracy, among other factors (Nagpal et al., 2012). However, some of the software 

packages’ applications are common, as indicated in Table 1. 

 

FEA numerical method has been more extensively used for stress analysis in the last decade 

than both experimental and analytical methods (Kharat and Kulkarni, 2013). This is due to its 

ability to perform simulation and give highly accurate results (Zhang et al., 2012) that are 

comparable with those from its competitors (experimental and analytical methods). The results 

given by FEA are independent of the presence of any geometric parameters. The FEA method 

is also more convenient, faster, cheaper and easy to use (Kharat and Kulkarni, 2013). The speed 

and convenience of use with results of acceptable level of accuracy makes numerical methods 

more  
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Table 1. Applications of some of the common FEA software packages used in stress analysis  

    (Nagpal et al., 2012; Fagan, 1992). 

S/No. Name of the 

software 

General area of preferred 

applications 

Capabilities 

1. ANSYS Structural, electrical, civil and 

mechanical engineering. 

Stress analysis, heat transfer, fluid 

flow and electro-magnetic. 

2. COSMOL Nuclear, electrical, civil and 

electrical engineering. 

Stress analysis, electromagnetic, 

heat transfer and fluid flow. 

3. DYNA Automobile, aerospace, civil and 

biomedical engineering. 

Impact, vibration, stress analysis 

and fluid flow. 

4. ABAQUS Aerospace, automotive, 

electrical, hydraulic, mechanical, 

structural and biomedical 

engineering. 

Stress analysis, buckling, 

vibration, impacts, heat transfer, 

fluid flow and electromagnetic.  

5. PAFEC 75 Structural, automotive and 

mechanical engineering. 

Stress analysis, impact, vibration 

and buckling.  

6. ADINA Electrical, mechanical and 

structural engineering. 

Structural, heat transfer, fluids 

flow and electromagnetic.  

7. NASTRAN Automotive, mechanical and 

structural engineering. 

Vibration, impact and stress 

analysis. 

8. LUSAS Aerospace, civil, mechanical and 

structural engineering. 

Stress analysis, fluid flow, 

buckling and vibration. 
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preferable when compared to those obtained from experimental and analytical methods (Zhang 

et al, 2012). However, the accuracy of numerical solutions depends on correct usage of the type 

of element, mesh density, accurate modelling of the domain, material, loading and boundary 

conditions (Qadir and Redekop, 2009). Besides, in symmetrical structures, the FEA analysis is 

performed using only a quarter or an eighth of the entire cross section (Masu, 1991). This 

technique reduces both the computer memory required and the run time by up to 75% (Kihiu 

and Masu, 1995). 

 

One of the aims of this study was to develop an analytical solution for determining stress 

concentration factors in thick walled pressure vessels with a cross bore. The verification of the 

analytical solution to be developed was to be done by numerical modelling using FEA Abaqus 

software.  

2.3 STRESS CONCENTRATION ANALYTICAL ANALYSES 

Various solutions for SCFs have been developed for flat plates with holes, as well as in high 

pressure vessels having radial, offset and inclined cross bores. 

 

2.3.1 Solutions for SCFs in flat plates with holes 

Solutions for SCFs of flat plates with holes under tension as shown in Figure 1, have been 

developed and are widely used in engineering and machine design. Nagpal et al. (2011) cited 

Kirsch’s analytical solutions for radial 𝜎𝑟𝑟 , hoop 𝜎𝜃𝜃 , and shear 𝜏𝑟𝜃 stresses for large thin flat 

plates with a small circular hole at the centre, under uniaxial tension applied at the far field as; 
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 

 

Figure 1. Flat thin plate with a central small circular holes under tension (Dharmin et al., 2012) 

 

σrr =
σ

2
(1 −

a2

r2
) +

σ

2
(1 −

a2

r2
) (1 −

3a2

r2
) cos 2θ     (2.2) 

𝜎𝜃𝜃 =
𝜎

2
(1 +

𝑎2

𝑟2
) −

𝜎

2
(1 +

3𝑎4

𝑟4
) cos 2𝜃      (2.3) 

τrθ = −
σ

2
(1 −

a2

r2
) −

σ

2
(1 +

3a2

r2
) sin 2θ      (2.4) 

Where 

𝜎  is the far field uniaxial tension 

𝜃 is the subtended angle measured clockwise from X –axis 

a is the radius of the circular hole  

Equations 2.2 to 2.4 are analytical equations for an infinitely small hole in a plate also referred 

to as the Kirsch’s solutions. At an angle of 900 and at the radius of the hole, the SCF is 3. 

However, in the derivation of these equations 2.2 – 2.4, the ratio of the hole radius, a, and the 

plate width, b, was neglected (
a

b
 ~ 0). Despite the assumption, these equations were found to 

give sufficiently accurate results when the ratio of  
𝑎

𝑏
<

1

10
  (Ford and Alexander, 1977). 
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The solution for SCF for a flat plate with the same features as those discussed in the preceding 

paragraph was presented by Hyder and Asif (2008) using two equations. For  
d

w
≤ 0.65  the 

solution was given as;  

SCF = 3.0039 − 3.753
d

w
+ 7.9735(

d

w
)
2
− 9.2659(

d

w
)
3
+  1.8145 (

d

w
)
4
+  2.9684 (

d

w
)
5
    (2.5) 

While, for 
d

w
> 0.65 as; 

SCF = 2.0 + (1 −
d

w
)
3

                                                                                                               (2.6) 

Where 

d is the hole diameter 

w is the width of the plate 

However, the SCF solution curves generated by the two equations had a discontinuity at the 

point where the ratio of  
d

w
= 0.65.  

 

Nagpal et al., (2012) reported that further studies by various researchers based on existing 

experimental and analytical data for flat plates with holes, led to the development of a single 

equation for calculating the solution of SCF. This eliminated the discontinuity posed by 

equations 2.5 and 2.6, earlier discussed. The solution of SCF for a flat plate with a circular 

cross bore was given as; 

SCF = 3.0 − 3.13 (
2r

w
) +  3.66 (

2r

w
)
2

− 1.53 (
2r

w
)
3

     (2.7) 
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Where 

2r is the hole diameter 

w is the width of the plate 

 

It can be seen from equations 2.5, 2.6 and 2.7 that, the SCF is a function of the hole diameter 

and the width of the plate. 

 

Snowberger (2008) gave the solution for SCF of a flat plate with an elliptical hole as; 

SCF = C1 + C2 (
2a

w
) +  C3 (

2a

w
)
2

+  C4 (
2a

w
)
3

      (2.8) 

Where 

𝐶1 = 1.0 + 2 (
𝑎

𝑏
) 

𝐶2 =  −0.351 − 0.021√(
𝑎

𝑏
) − 2.483 (

𝑎

𝑏
) 

𝐶3 = 3.621 − 5.183√(
𝑎

𝑏
) +  4.494 (

𝑎

𝑏
) 

𝐶4 =  −2.27 + 5.204 √(
𝑎

𝑏
) −  4.011 (

𝑎

𝑏
) 

a is the major axis of the ellipse 

b is the minor axis of the ellipse 
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w is the plate width 

In addition, this study by Snowberger (2008) proved the validity of equation 2.8 from the 

known exact analytical solution of a circle, as the elliptical bore approached a circular shape.  

 

Reviewed literature by Nagpal et al. (2012) indicated that the SCF in flat plates was affected 

by plate length, thickness, hole size, geometric dimensions of the discontinuities and the elastic 

constants. In another study by Makulsawatudom et al., (2004), on a simple finite plate with 

hole under uniaxial loading, it was established that the SCF increases with increasing hole size. 

The study attributed this occurrence to the effects of through-thickness. However, there was no 

available information on an optimal solution for a flat plate with a hole. 

 

2.3.2 Methods of reducing SCF in flat plates with holes 

Small holes in both sides of the main hole commonly referred to as auxiliary holes, have been 

introduced in the design of flat plates with holes to reduce SCFs as shown in Figure 2. These 

auxiliary holes cause stress redistribution around the vicinity of the main hole. These hole 

arrangements create regions of smooth flow stress trajectories which in turn lead to reduced 

SCF.  

Heywood (1952) studied various methods for the reduction of SCFs. The study reported a 

reduction of 16% in SCFs after the introduction of a single auxiliary hole in the main hole axis. 

Erickson and Riley (1978) carried out another study on minimisation of SCFs around circular 

holes. The optimum centre distance between the hole and the auxiliary hole was found to be  
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Figure 2. Flat plate with main and auxiliary circular holes (Erickson and Riley, 1978). 

 

14.4 mm when the main hole and auxiliary holes’ diameters were 42.9 mm and 11.1 mm, 

respectively. They reported a reduction of SCF ranging from 13 to 21%. 

Another similar study by Sanyal and Yadav (2006) developed formulae for calculating the 

optimum size of the auxiliary hole, and the centre distance between the hole and the auxiliary 

hole as shown in Figure 3.  
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Figure 3. Location of main and auxiliary holes (Sanyal and Yadav, 2006) 

 

The Sanyal and Yadav formulae for optimum conditions are presented as; 

𝑎2 = 0.85𝑎1          (2.9) 

Where 

𝑎1 is the main hole radius 
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𝑎2 is the auxiliary hole radius 

 and 

𝛿 = √3𝑎1 + 𝑎2         (2.10) 

Where 

𝛿 is the optimum centre distance 

 

The study reported that the use of the Sanyal and Yadav formulae, the SCF was reduced by 

17%. However, a disparity of the results given by the two studies discussed earlier occurred 

when the optimum values of the auxiliary hole given by Erickson’s and Riley’s study were 

tested on Sanyal and Yadav formulae.  

 

Further literature reviewed by Nagpal et al. (2012) on flat plates with holes, revealed that 

introducing 2 or 3 co-axial circular auxiliary holes in the cross bore axis, also termed as defence 

hole system method, reduce SCFs by 7.5 to 11 %. The authors also reported that SCFs can be 

reduced by using composite material rings or laminate plates around the cross bore as a form 

of material reinforcement. The presence of material rings and laminates alter the stress 

distribution around the cross bore vicinity. Moreover, the study also revealed that gradual 

increase of the Young’s modulus of elasticity away from the cross bore centre had a reducing 

effect on SCFs. The review concluded that the reduction of SCFs mainly depended on the size 

and location of the auxiliary hole. However, the study did not consider the effects of various 

auxiliary hole shapes in stress reduction citing initial design constraints as well as thickness 

ratios and angles of inclination. 
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2.4 SOLUTIONS FOR SCF IN CYLINDERS WITH CROSS BORES 

Various solutions have been developed to calculate SCF in high pressure vessels with small 

and large cross bores. According to Steele et al. (1986) a cross bore is termed as small when 

the ratio of the cross bore to main bore diameter is ≤ 0.5. However, when the same bore ratio 

ranges from ≥ 0.5 to ≤ 1 the cross bore is termed as large. 

 

Earliest researchers developed solutions by considering a cylinder with a cross bore as a flat 

plate with a small elliptical hole at the centre, under tension. The circumference and the height 

of the cylinder are considered as the plate width and height, respectively. Timoshenko (1940) 

cited SCF as; 

SCF = 1 +
2a

b
                                                                                                                           (2.11) 

Where 

a is the ellipse semi-major axis (m) 

b is the ellipse semi-minor axis (m) 

In this approach it was assumed that the width of the plate is large compared to semi-major 

axis, a. In the case of a circular hole (where a = b), the SCF was found to be 3. However, the 

results arising from further experimental and theoretical analysis conducted by Faupel and 

Harris (1957) on equation 2.11, failed to support this analysis. 
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Fessler and Lewin (1956) studied stress distribution in a tee junction of thick pipes. They 

assumed cylindrical thin plate sheets as infinite flat plates each with a circular hole under the 

action of internal pressure and two perpendicular tensions. These perpendicular tensions are 

the corresponding hoop and axial stresses that could have acted on the pipe as if the tee junction 

did not exist. They presented an analytical solution for SCF of closed end pipes as; 

SCF =
4R2

2+R1
2

R2
2+R1

2           (2.12) 

Where 

𝑅1 is the inside radius of the pipe 

𝑅2  is the outside radius of the pipe 

 

 Faupel and Harris (1957) derived the same equation as Fessler and Lewin’s by considering an 

elliptical hole in an infinite elastic plate subjected to tensile loading. For a circularly shaped 

cross bore, a SCF equal to 2.5 was obtained; a decrease of 16.7% from that of equation 2.11. 

The reduction was due to the effects of longitudinal stresses generated by the closed ends of 

the cylinder. However, the derivation of equation 2.12 did not take into account the shear and 

compressive stresses which occur within the cross bore vicinity.  

 

The results obtained using equation 2.12 gave an error that was 32% greater than experimental 

results, performed by photo elastic methods. The photo elastic experiment was performed on a 

cross bored cylinder with diameter ratios of 3, and the ratio of the cylinder bore to the cross 

bore as 2. This meant that the size of the cylinder used for the test was too large for equation 
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2.12 to be applicable (Cheng, 1978). O’Hara (1968) conducted another similar study using the 

method of photo elasticity. The study considered two cross bored cylinders having diameter 

ratios of 1.75 and the ratio of main bore to cross bore diameter as 10 and 20. They reported 

SCFs of 2.95 and 2.75, respectively, which were 14% less that those given by equation 2.11. 

 

Further study of equation 2.12 was carried out by Comlekci et al., (2007). They investigated 

the elastic stress concentration using FEA on radial cross holes in pressurised thick cylinders 

with cylinder diameter ratio ranging from 1.4 to 2.5. They concluded that equation 2.12 gave 

results with an accuracy of up to 99 % for only small holes. These small holes had the ratio of 

main cylinder bore to that of the cross bore diameter  ≤  100. 

 

Various solutions for determining the SCF in large cross bores have also been developed. 

Faupel and Harris (1957) presented a solution for the SCF of large circular cross bores using 

experimental data from Peterson Stress Intensification Factors Charts. The intensifications 

factors ∝ and 𝛾 are used to calculate SCF as shown in equation 2.13. The values of 

intensification factors for various side hole ratios as compiled by Faupel and Harris (1957) are 

tabulated in Table 2. 

 

The solution of SCF proposed by Faupel and Harris (1957), using intensification factors, is 

presented as; 

SCF =
h

zh



 
          (2.13)  
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Table 2 : Peterson stress intensification factors (Faupel and Harris, 1957) 

Side Hole Ratio  (
Cylinder bore radius

Cross bore radius
) 𝛼 𝛾 

10 3 -0.92 

9 3 -0.90 

8 3 -0.88 

7 2.96 -0.86 

6 2.95 -0.84 

5 2.92 -0.81 

4 2.88 -0.77 

3 2.82 -0.70 

2 2.71 -0.58 

1 2.57 -0.33 

Where 

𝜎ℎ is the hoop stress at the surface of the cross bore   

𝜎𝑧 is the longitudinal stress at the surface of the cross bore       

 α and 𝛾 is the intensification factors. 
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However, there was no information given on intensification factors for other cross bore profiles 

such as elliptical. 

 

Gerdeen (1972) presented lengthy analytical solutions for calculating SCFs for large cross 

bores, which were referred to as side holes. The coordinates and dimensions used for the SCF 

analysis are shown in Figure 4.  





 

Figure 4. Coordinates and dimensions of the cylinder with a cross bore (Gerdeen, 1972). 

 

A simplified technique to be followed for calculating the SCF using Gerdeen’s method is 

summarised hereunder; 

 

i. Determination of hoop stress for a cylinder without a hole using Lame’s theory. 

ii. Determination of the total surface stresses at the cylinder bore necessary to keep internal 

pressure constant. The surface stresses at the cross bore are the sum of radial 𝜎𝑅𝑅 and 

shear stresses 𝜏𝑅𝛷  and 𝜏𝑅𝑌 in the transverse plane  required to keep the internal stresses 

constant as in a cylinder without cross bore. The two components of shear stresses were 

calculated in polar coordinates at the Y axis and at a subtended angle 𝜃 from the Y axis 
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iii. Determination of hoop stress, 𝜎𝛷𝛷  at the intersection. This was obtained by subtracting 

the results of (ii) from (i). 

iv. Determination of the internal pressure, P in the cylinder. 

 

The maximum hoop stress at the cross bore intersection is obtained by summing the results of 

(i), (iii) and (iv). The SCF at the intersection is then calculated using equation 2.1. 

 

However, this study did not take into consideration the stresses in the longitudinal plane. 

Despite Gerdeen’s method giving an approximate solution, it considered the effects of shear 

stress which had been previously neglected by other researchers. 

 

 In another study by Xie and Lu, (1985) it was reported that most solutions developed using 

theoretical methods were limited to thin walled cylinders with the ratio of cross bore to main 

bore ≤ 
1

3
 . This limitation was associated with difficulties in mathematical analysis. A review 

by Moffat et al., (1999), compiled SCFs for 36 different geometric sizes at the pipe branch 

junction under internal pressure loading carried out by different studies.  The stress analysis in 

these studies were performed using experimental and numerical (FEA) methods. The SCFs and 

their respective geometric dimensions are summarised in Tables 3 and 4.  
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Table 3: SCFs at the pipe branch junction performed by experimental method (Moffat et al., 1999) 

S/No. 𝑑
𝐷⁄  𝐷

𝑇⁄  𝑡
𝑇⁄  SCF 

1 0.20 8.00 0.20 3.25 

2 0.22 15.80 0.43 3.20 

3 0.24 19.50 0.54 2.80 

4 0.25 16.50 0.57 3.40 

5 0.29 12.90 0.49 4.60 

6 0.31 17.90 0.40 3.40 

7 0.55 21.00 1.82 2.70 

8 0.55 57.60 0.91 4.90 

9 0.62 9.98 0.62 4.75 

10 0.62 15.08 1.00 3.70 

11 0.64 19.00 0.69 5.00 

12 0.66 18.87 0.64 4.53 

13 0.69 156.00 0.63 8.00 

14 0.76 10.30 1.50 3.50 

15 1.00 19.00 1.00 5.40 

16 1.00 24.70 1.00 4.18 
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Table 4: SCFs at the pipe branch junction performed by FEA method (Moffat et al., 1999) 

S/No. 𝑑
𝐷⁄  𝐷

𝑇⁄  𝑡
𝑇⁄  SCF 

1 0.09 36.06 1.13 2.55 

2 0.12 49.00 0.84 2.52 

3 0.16 10.30 0.22 3.14 

4 0.20 8.00 0.20 3.25 

5 0.22 9.00 0.30 3.01 

6 0.22 16.65 0.45 3.20 

7 0.39 10.84 0.41 3.87 

8 0.46 5.50 1.00 2.44 

9 0.50 2.33 0.50 3.62 

10 0.50 3.50 0.50 3.63 

11 0.50 7.67 0.50 4.17 

12 0.50 11.00 0.50 4.23 

13 0.62 9.98 0.62 4.24 

14 0.62 15.08 1.00 3.60 

15 0.64 7.00 0.70 4.10 

16 0.70 16.00 0.75 4.67 

17 0.80 20.00 1.00 4.08 

18 0.91 7.00 0.96 4.35 

19 1.00 4.70 1.00 2.80 

20 1.00 17.94 1.00 4.03 

 



27 
 

Where 

d is the branch pipe diameter 

D is the run pipe diameter 

t is the branch pipe thickness 

T is the run pipe thickness 

 

Most of the SCF analysis reviewed in tables 3 and 4 were performed on thick walled cylinders 

with large openings. Actually, the experimental work was done using full scale models. 

Generally, the data presented in these two tables were found to be consistent and has been used 

in other previous studies (Qadir and Redekop, 2009) as a reference. The term “reference 

standard” will be used to refer to the data in tables 3 and 4.  

 

Lind (1967) studied stress concentration in pressurised pipe connection branches and 

developed two solutions for calculating SCFs using area replacement mathematical techniques. 

The solution for SCF was taken to be the maximum value obtained from these two equations 

as shown by equation 2.14. 
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𝑆𝐶𝐹 = Max

{
 
 
 
 

 
 
 
 [1+1.77 (

d
D
)√
D
T
+(

d
D
)
2
√
s
S
][1+ 

T
D⁄

√s S⁄
]

1 +
(
d
D)
2

s
S
√
s
S

…………(2.14 a)

[1.67√s S⁄  .  √
D
T⁄   +0.565 (

d
D
)][1+ 

(T D⁄ )
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]
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(d D⁄ )

s
S⁄

……. (2.14 𝑏)

     (2.14) 

    

Where 

𝑠 = 𝑑
2𝑡⁄  

𝑆 =  𝐷 2𝑇⁄  

t is the nozzle thickness 

d is the nozzle mean diameter 

D is the vessel main diameter  

T is the vessel thickness 

Qadir and Redekop (2009) studied SCFs at the nozzle intersection in a pressurised vessel using 

the FEA. They compared the results obtained by Lind’s equation at the intersection with those 

from the reference standard given by Moffat et al. (1999). The study reported that the results 

given by Lind’s equation had a standard deviation of 1.77 from the reference standard and 

classified them as being conservative. 
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Money (1968) developed two other solutions for SCF analysis using linear regression analysis 

based on several experimental data on tee joints, performed using the method of photo 

elasticity. The solutions of SCF developed by Money are presented here as; 

 

SCF = 2.5 [(
r

t
)
2T

R
]
0.2042

   for  0 <

 
   𝑟

𝑅
⁄ ≤ 0.7    (2.15) 

 

SCF = 2.5 [(
r

t
)
2T

R
]
0.24145

  for 0.7 ≤ 𝑟
𝑅⁄ ≤ 1.0    (2.16) 

Where 

r is the vessel mean radius 

R is the nozzle mean radius 

t is the nozzle thickness 

T is the vessel thickness 

 

The two equations are seen to be dependent on the ratio of cross bore and cylinder bore 

diameters. However, the solutions present two separate curves with a discontinuity when the 

ratio of (𝑟 𝑅⁄ ) = 0.7. Hence there was no definite solution when the ratio of (𝑟 𝑅⁄ ) = 0.7. 
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Qadir and Redekop (2009) and Moffat et al., (1991) further studied the two Money’s equations 

and reported a standard deviation of 0.811 from the reference standard. They termed the results 

obtained from the two equations as accurate.  

 

Decock (1975) developed another solution for SCFs based on experimental data conducted on 

a pipe branch using strain gauges and the method of photo elasticity. The solution for SCF was 

given as;  

SCF =
[2 +2

d

D
√(

d

D
×
t

T
) +1.25

d

D
√
D

T
]

[1+ 
t

T
√(

d

D
×
t

T
)]

                                                                             (2.17) 

Where 

t is the nozzle thickness 

d is the nozzle mean diameter 

D is the vessel main diameter  

T is the vessel thickness 

 

The Decock equation was further studied by Moffat et al., (1991) who reported that the 

equation gave accurate results when the ratio of cylinder diameter and thickness was equal to 

20. However, they reported erroneous results when the ratio was above or below 20. 

Consequently, Qadir and Redekop (2009) reported a standard deviation of 1.482 from the 
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reference standard and recommended the use of Decock’s equation in determining SCFs at the 

crotch corner of a tee joint. They termed the results given by the equation as being conservative.  

 

Xie and Lu (1985) developed a three term polynomial solution for predicting SCFs in 

cylindrical pressure vessels with nozzles using the least squares method. The three term 

polynomial solution was fitted using experimental data. The solution for SCFs is given as 

SCF = 2.87 + [1.38 − 0.72 (
t

T
)
0.5

] (
D

T
)
0.43

(
d

D
)
0.9

− (
t

T
)
0.5

    (2.18) 

Where 

D is the mean diameter of vessel 

D is the mean diameter of nozzle 

T is the wall thickness of vessel 

t is the wall thickness of nozzle 

The accuracy of the Xie and Lu’s solution was validated using Money’s, Decock’s and Lind’s 

solutions at the tee pipe junction. The study reported that Xie and Lu’s equation had the best 

accuracy of 87%, in comparison to Decock’s (83.2%), Lind’s (72.3%) and Money’s (70.7%). 

Further, the authors recommended the use of the Xie and Lu’s solution in the determination of 

SCFs for both small and large openings. 

 

Moffat et al. (1999) derived a lengthy polynomial function using several geometric parameters 

to determine the SCF on a tee junction using 3D FEA. Their solution is presented here as; 
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          (2.19) 

 

Where 

t is the nozzle thickness 

d is the nozzle mean diameter 

D is the vessel main diameter  

T is the vessel thickness 

P = 1.2 

The constants a1 to a16 were obtained from the 3D FEA and given as 2.5, 2.715, 8.125, -6.877, 

-0.5, -1.193, -5.416, 5.2, 0.0, 0.078, -0.195, 0.11, 0.0, -0.043, 0.152 and -0.097. 

Later, Qadir and Redekop (2009) studied the Moffat et al. equation and reported a standard 

deviation of 0.903 from the reference standard. They termed the results given by the equation 

as being accurate. 

 

Gurumurthy et al., (2001) following a similar procedure as Moffat et al. (1991), developed a 

simplified solution for SCF at the nozzle shell junction based on shell theory using FEA. The 

solution for SCFs obtained was given as; 
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SCF = 1.75(T t⁄ )
0.4
(d D⁄ )

−0.08
(λ)0.6      (2.20) 

Where 

λ = d (DT)0.5⁄   (Pipe factor) 

t is the nozzle thickness 

d is the nozzle mean diameter 

D is the vessel main diameter  

T is the vessel thickness 

 

The authors compared the solution of this equation with those of Money (1967), Decock (1975) 

and Moffat et al. (1999) and reported some discrepancies in the SCF values obtained. However, 

despite the discrepancies, the authors recommended the use of Gurumurthy’s equation for 

stress intensity approximation. In the same study, conducted by Qadir and Redekop (2009), 

they reported that solutions obtained from the Gurumurthy’s equation had a standard deviation 

of 1.721 from the reference standard. They termed the results as being more conservative, with 

greater fluctuations than those from other methods discussed earlier. 

 

From the preceding paragraphs, it is evident that reliable and correct results are given by 

equations 2.15, 2.16 and 2.19 which had an approximate standard deviation of 0.9 from the 

reference standard. Despite solution validation of equation 18, the reviewed literature did not 

show any extensive application on other studies. The solutions for SCFs at the tee junction 
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depend on geometric parameters such as the ratio of diameter, thickness, and other physical 

characteristics at the junction such as sharp corners, chamfers and blades. Interestingly, there 

is no universally accepted solution for determining SCFs at the tee junction.  

 

Of all the solutions for SCFs in circular cross bore cylinders reviewed here, none gave optimal 

location of the cross bore. Besides, equations 2.11 and 2.12 being derived analytically, the 

authors did not take into consideration the analysis of hoop, radial and shear stresses arising 

from the cross bore cross section when viewed from the longitudinal plane. 

 

2.5 FACTORS AFFECTING STRESS CONCENTRATION FACTORS IN 

HIGH PRESSURE VESSELS 

Hyder and Asif (2008) reported that SCFs depended on the material physical property, nature 

of loading, the stress distribution pattern and the type of discontinuity such as holes, fillets, 

grooves and notches.  However, the effects of Poison’s ratio and Young’s modulus of elasticity 

on SCFs have not been fully investigated (Nagpal et al., 2012). 

 

Some of the geometric design parameters that affect SCFs in high pressure vessels are the cross 

bore size, shape, location, obliquity and thickness ratio. The following is a brief discussion of 

these design parameters. 
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2.5.1 Cross bore size 

Gerdeen (1972) studied the relationship between SCFs and different ratios of cross bore to 

main cylinder bore size in thick cylinders having thickness ratios of 1.5, 2, 3, 4 and 6. The 

results showed an increase in SCFs as the ratio of cross bore to main cylinder bore increases. 

These findings compared well to other findings by Masu (1997) and Makulsawatudom et al., 

(2004).  Masu (1997) studied the effects of cross bore size on stress distribution in thick walled 

cylinders with a thickness ratio of 2. The study reported that for a particular thickness ratio, the 

SCF increases with increasing cross bore size.   

 

Further extrapolation of the results presented by Gerdeen’s equation revealed that the minimum 

SCF occurred when the ratio of cross bore to cylinder bore size was equal to 1. The Gerdeens’ 

findings were also contradicted by another similar study conducted by Comlekci et al. (2007). 

Comlekci et al. (2007) studied thick cylinders with thickness ratio of 1.4, 1.5, 1.6, 1.75, 2.0, 

2.25 and 2.50, and cross bore to cylinder bore size ratios ranging from 0 to 0.25. They reported 

the minimum SCF to occur between the size ratio of 0.1 and 0.2. 

 

Hyder and Asif (2008) conducted another similar study using the Von Mises theory on thick 

cylinders with a thickness ratio of 2.0. They reported optimal cross bore sizes of 8 mm and 10 

mm for cylinders with internal diameter of 200 mm, and 300 mm, respectively. This meant 

that, the optimal size ratio occurred when the cross bore to cylinder bore ratios were at 0.03 

and 0.04.  
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2.5.2 Cross bore shape 

Nagpal et al. (2012) identified the common shapes of cross bores used in high pressure vessels 

as circular and elliptical. Kihiu and Masu (1995) studied the effect of chamfers on the 

distribution of stress in cross bored thick walled cylinders under internal pressure. They 

reported that incorporating chamfers, blend or radius entry on cross bore, cause stress 

redistribution that lead to a reduction in SCF. A SCF reduction of up to 34.2% was noted at the 

main bore due to the introduction of chamfers in comparison with plain cross bores. A further 

reduction in SCF can be achieved by either varying the chamfer angle or the length or 

combinations thereof. However, the study concluded that the percentage reduction in SCF due 

to the introduction of chamfers depended on cylinder thickness, cross bore radius, chamfer 

length and angle. For instance, the optimal SCF for a cylinder ratio of 2, was found to be 2.17 

at the cross bore radius of 1 mm and chamfer angle of 500.  Masu (1989) studied the effect of 

varying chamfer depths on stress distribution. The study concluded that stress magnitude 

decreases with decreasing chamber depth.  

 

Kihiu (2002) carried out another study on stress characterisation in cross bored thick walled 

cylinders. The study investigated the effects of introduction of chamfers and radiused entry in 

plain cross bores. The study reported that the radiused entry had lower SCF than chamfers. 

This was in line with an earlier study conducted by Masu (1989) on the effects of varying 

blending radii on stress distribution. The study concluded that stress distribution along blended 

radiused cross bore was almost the same as that of plain cross bore, particularly when the blend 

radius size is small. 
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As reported by Kihiu and Masu (1995), the stress redistribution in the vicinity of the cross bore 

due to the introduction of chamfers and blends, also gives rise to other points of peak stresses 

along the chamfer, especially at the crotch corner. The values of the peak stresses occurred at 

12.5 mm from the cross bore and were 140 % greater than those at the cross bore intersection. 

These high peak stresses are some of the causes of reduced fatigue life in high pressure vessels 

(Comlekci et al., 2007). These findings are in line with another latter study done by 

Makulsawatudom et al. (2004).  

 

Makulsawatudom et al. (2004) studied peak stress due to the introduction of blend radius and 

chamfers for radial circular and elliptical cross bores. The study compared their results with 

those obtained from a plain cross bore. They reported that introduction of chamfers generated 

high peak stresses for both circular and elliptical cross bores, with plain cross bores having the 

lowest peak stresses.  

 

Generally, for all the three cases studied (Masu, (1989); Kihiu and Masu, (1995) and 

Makulsawatudom et al., (2004)) the peak stresses for elliptical radial cross bore were lower 

than those of circular cross bore. Moreover, the three studies established that carefully polished 

chamfers at the intersection of the main cylinder and the cross bore also reduces SCF further. 

The polished chamfers at the intersection are usually carried out using spark erosion techniques 

(Masu, 1989). 

 

Cole et al. (1976) and Makulswatudom et al. (2004) reported that SCFs can be reduced by 

making elliptically shaped cross bores positioned along the cylinder radial line instead of round 
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shaped cross bores. The two studies also reported that SCFs are reduced when round shaped 

cross bores are offset by an appropriate distance from the cylinder radial lines. According to 

Cole (1976) offsetting the position of the cross bore from the radial line also improves the 

fatigue life of the cylinder by up to 170%.  

 

Makulswatudom et al. (2004) pointed out that there was a relatively small difference of up to 

5% in the values of SCFs obtained, when elliptically shaped cross bores were drilled in the 

offset position from the radial line instead of circular ones. They recommended the use of 

circularly shaped holes at the offset position instead of elliptical ones, due to their low 

manufacturing cost.  

 

Carvalho (2005) studied the effects of U-shaped notches on SCFs in internally pressurised 

cylinders using FEA. The study concluded that, regardless of the size, notches alter the stress 

distribution curves in the whole cross section, creating high regions of stress concentration. In 

this regard the study recommended that the introduction of notches in any pressure vessel 

should be avoided. 

2.5.3 Cross bore location  

Masu (1998) studied the effects of offsetting circular cross bores in thick walled cylinders. SCF 

reductions of 17 % and 42% were reported, when the cross bore was offset by 6 mm and 11.2 

mm, respectively, from the radial line. Makulsawatudom et al. (2004) studied two small 

circular and elliptical openings having cross bore to main bore ratios of 0.01 and 0.05. The 

study investigated the effects of SCFs when the openings were located at the centre of the 

cylinder axis and in an optimally offset position. The minimum SCF occurred with a cross bore 
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ratio of 0.05 when the elliptical plain cross bore was positioned radially. Further comparison 

between authors on SCFs at the vessel intersection with cylinder thickness ratio of 2 is shown 

in table 5. 

 

Hyder and Asif (2008) also studied stress concentration along the height of the cross bored 

cylinder under internal pressure. Stress concentration was investigated at five different 

segments along the cylinder height from the top. The location of these segments were at 1 16⁄ , 

1
8⁄ , 2 8,⁄  3 8⁄  and 4 8⁄  (centre of the cylinder). The optimum and maximum SCFs occurred at 

1
8⁄  and 4 8⁄ , respectively. 

The SCF at 1 16⁄  was considerably high due to the effects of the closed ends of the cylinder 

(Saint Venant’s principle). According to this study, for optimum conditions, the cross bore 

should be positioned away from the cylinder centre and its closed ends. 
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Table 5:  SCF      values at the vessel intersection (Masu, 1998; Makulsawatudom et al., 2004)

  

              SCF at the main cylinder bore cross-bore intersection with cylinder thickness ratio of 2 

 Circular radial 

cross bore 

Elliptical radial cross 

bore 

Circular optimally offset 

(0.112b) cross bore 

Elliptical optimally 

offset (0.112b)  cross 

bore  

Cross bore shape Plain Chamfer Plain Chamfer Plain Chamfer Plain Chamfer 

Cole et al. (1976)      - - 1.80 - 1.80 (1.4 -1.5 

near the outlet 

plane) 

- - - 

Masu (1998) 2.30 - 1.52 - 1.33 - - - 

Makulsawatudom et 

al., (2004). 

Hole size ratio 

 
𝑅𝐶

𝑏
= 0.01 

3.04 3.7 3.0 2.25 3.00 3.55 2.10 2.5 

Makulsawatudom et 

al., (2004) 

Hole size ratio 

 
𝑅𝐶

𝑏
= 0.05 

2.89 3.4 2.00 2.25 2.80 3.3 2.3 2.6 
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Where 

RC is the cross bore radius 

b is the outer diameter of the cylinder 

 2.5.4 Cross bore obliquity  

As reported by Little and Bagci (1965), small inclined cross bores in the transverse plane 

generate positions of major and minor axes on the main bore of the cylinder. Whenever, the 

major axis is perpendicular to the Z direction (see Figure 4), the maximum SCF occurs at both 

ends of the major and minor axes. The same study by Little and Bagci (1965), also reported 

that small, inclined cross bore in the longitudinal plane have their major axis parallel to the Z 

direction. Therefore, maximum SCF occurs only at the ends of the major axis, and was given 

by; 

SCF =
4CR2

2+R1
2

R2
2+R1

2          (2.21) 

Cheng (1978) gave the analytical solution of SCF for closed end cylinder at the ends of the 

major axis as; 

SCF =
2(C−1)R2

2+R1
2

R2
2+R1

2          (2.22) 

While at the end of minor axis as; 

SCF =
(
4R2

2

C
⁄ )+R1

2

R2
2+R1

2          (2.23) 

Where 
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C is the ratio of major and minor axis of the ellipse (Ellipticity) 

R1 is the cylinder inside radius 

R2 is the cylinder outside radius 

Comparing the two equations, it was evident that the SCF at the major axis is higher than that 

of the minor axis.  

The symbol notations remain the same as those in equations 2.21 and 2.22. 

 

Adenya and Kihiu (2010) studied stress concentration factors in high pressure vessel with 

elliptical cross bores. They reported a reducing effect on SCF, when an elliptical shaped cross 

bore whose major axis was perpendicular to the cylinder axis, was rotated clockwise with 

respect to the longitudinal plane by 900. At this position, the minimum SCF was found to be < 

2 (a decrease of up to 33% compared to that given by a circular cross bore in equation 2.11). 

The study concluded that, the maximum SCFs occurred when the major axis of elliptical cross 

bore lay in the longitudinal plane. Whereas, the minimum SCFs occurred when the major axis 

of elliptical cross bore lay in transverse plane. 

 

2.5.5 Thickness ratio 

Masu (1991) studied SCFs at the intersection of the cylinder bore and plain circular cross bore, 

on cylinders with thickness ratios of 1.4 and 2.0. The specimens tested had ratios of cylinder 

length to outside diameter ≥ 2 and cylinder bore radius to cross bore radius ≥ 7.5. The study 

reported that SCFs decreased with decreasing thickness ratio. Further, tabulation of some of 
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the SCF results obtained at the intersection of cross bore and main cylinder bore using various 

techniques with different thickness ratios (K) are shown in Table 6. 

 

The data in Table 6 revealed that, the highest and the lowest SCFs values occurred in the 

cylinder with a thickness ratio of 3. The highest SCF of 3.78 was obtained by Chaban and 

Burns (1986) using 3D FEA while the lowest SCF of 2.51 was reported by Faupel & Harris 

(1957) using experimental methods, at K=3.0. 

 

Kihiu (2002) studied cross bored thick walled cylinder under internal pressure posessing 

thickness ratios ranging from 1.75 to 3. The study reported a constant SCF of 2.753 over the 

thickness ratio when the cross bore to main bore radius ratio was at 0.2. However, when the 

ratio of cross bore to main bore was < 0.2, the SCF increased with increasing thickness ratio, 

whereas when the ratio was > 0.2 the SCF decreased with increasing thickness ratio. In another 

study, Kihiu et al. (2003) developed a 3D FEA computer program to determine the SCF and 

geometric constants in thick walled cylinders with a plain cross bore subjected to internal 

pressure. The study reported that when the thickness ratio was < 1.75 the geometric constant 

was 0.11 and the SCF was 2.67, whereas, when the thickness ratio was > 1.75 the geometric 

constant was 0.2 and the SCF was 2.734.   
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Table 6: Comparison of SCF of radial circular cross bore at the vessel intersection (Masu, 1991; Makulsawatudom et al., 2004) 

K Gerdeen  

(1972) 

(Photo 

elasticity) 

Fessler  

& Lewin 

(1956) 

(Analytical) 

Faupel & 

 Harris (1957) 

(Strain gauge  

&  

Photoelasticity 

2D & 3D) 

Peterson 

(1974) 

(Strain 

 gauge ) 

Tan  

& Fenner 

 (1980) 

(Boundary 

Integral 

Element 

(BIE)) 

Abdul-

mihsein  

&  

Fenner 

(1983) 

(BIE) 

Masu 

(1991) 

(3D 

FEA) 

Chaaban 

& 

Burns 

(1986) 

(3D 

FEA) 

Makulsawatudom 

et al., (2004) 

(3D FEA) 

      Hole size ratio 

𝑅𝐶
𝑏
= 0.01 

Makulsawatudom et 

al., (2004) 

(3D FEA) 

Hole size ratio 

𝑅𝐶
𝑏
= 0.05 

1.4 - 2.99 - - - - 2.84 - - - 

1.5 3.19 3.08 - - - - - 3.40 2.82 2.73 

1.75 - 3.26 - - - - - - 2.93 2.83 

2.0 3.32 3.4 3.02 3.44 2.98 2.97 - 3.0 3.03 3.58 3.04 2.89 

2.25 - 3.51 2.53 - - - - - 3.13 2.91 

2.5 - 3.59 2.54 - - - - 3.69 3.20 2.94 

3 - 3.70 2.51 - - - - 3.78 - - 
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Later, Kihiu et al. (2007) studied universal SCF in chamfered cross bored cylinders with 

thickness ratios between 2.25 and 3 under internal pressure. The study reported that SCFs 

increased with decrease of thickness ratio, contradicting the earlier findings by Masu (1991). 

The study also reported that thick walled cylinders were more suitable for chamfering than thin 

walled cylinders.  

From the preceding paragraphs, it is evident that the three studies conducted by Kihiu et al.  

led to the development of a quick design tool for cross bored thick walled cylinders based on 

the thickness ratio.  

 

2.6 THERMAL STRESSES 

Thermal stresses occur whenever a part of any solid body is prevented from attaining the size 

and shape that it could freely attain due to change of temperature. Thermal stresses are 

classified under localised stresses such as fatigue, since they cause minimal distortion on the 

overall shape of the body (Radu et al., 2008). Harvey (1985) cited thermal stress distribution 

 𝜎 of a bar restricted to expand freely upon temperature change as; 

σ = Eα∆t          (2.24) 

Where 

E is the Young’s modulus of elasticity 

𝛼 is the coefficient of thermal expansion 

∆𝑡 is the change in temperature 
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Thus, thermal stress is a function of the material property (Young’s modulus of elasticity and 

Coefficient of thermal expansion), together with change in temperature across the thickness of 

the bar. 

Rapid increase of the working fluid temperature in the pressure vessel induces thermal and 

dynamic stresses on the walls of cylinders. Thermal stress is induced in the wall of the pressure 

vessel, whenever there is any temperature gradient or non- uniform temperature distribution 

across the wall (Choudhury et al., 2014). Large thermal stresses may cause susceptible 

component failure, reduce their operating life (Choi et al., 2012) or limit their operational 

flexibility. The temperature gradient in the pressure vessel is usually oscillating and, therefore, 

the need for accurate thermal stress analysis. 

 

The thermal stress distribution in thick pressure vessels made of a single material layer is 

determined by (Timoshenko and Goodier, 1951) as; 

Hoop stress σθ =
αE

(1−ν)

1

r2
 [
r2+ri

2

r0
2−ri

2 ∫ Trdr
ro

ri
− ∫ rdr

r

ri
]                 (2.25) 

 

Radial stress σr =
αE

(1−ν)

1

r2
[
r2−ri

2

r0
2−ri

2 ∫ Trdr
ro

ri
− ∫ Trdr

r

ri
]   (2.26) 

 

Longitudinal stress σZ =
Eα

1−ν
[

2

r0
2−ri

2 ∫ Trdr
r0

ri
− T]   (2.27) 

Where 
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α is the coefficient of thermal expansion  

E is the Young’s modulus of elasticity  

ν is the Poisson’s ratio 

r is the radius 

𝑟𝑖 is the inside radius 

𝑟𝑜 is the outside radius 

T is the temperature change 

From these three stress equations, it can be seen that thermal stress is a function of the material 

properties (Poisson’s ratio, Young’s Modulus of elasticity and coefficient of thermal 

expansions), the cylinder size and the temperature gradient across the wall of the cylinder.  

 

Majority of thermal stress analyses in pressure vessels have been investigated under steady 

state conditions using Von-Mises theory to determine thermal stress (Gonyea, 1973). Kandil et 

al. (1994) studied the effect of thermal stresses on thick walled cylinders and reported that the 

maximum thermal stress occurred at the inside surface of the cylinder. The peak of the thermal 

stress occurred at the beginning of the operating temperature. The study recommended gradual 

preheating of the cylinder wall up to the operating temperature, since it reduces thermal stress 

by 50 – 60%, for a short period of time, when the normalising heating time was equal to 1.0. 

Moreover, the study also reported that long term heating, that is, when the normalising heating 

time was ≥ 3.0, had insignificant effects on reduction of thermal effective stress. The study 



48 
 

concluded that the time required for a thick walled cylinder to attain steady state operating 

conditions depended on the time of heating and the diameter ratio.  

 

Segall (2003) derived a lengthy analytical polynomial equation expressing temperature as a 

function of radius and time for an arbitrary internal thermal boundary in a hollow cylinder. The 

study recommended the use of Segall’s polynomial equation in the design and manufacturing 

processes of pressure vessels. In addition, the authors recommended the use of Segall’s 

polynomial equation as a calibration tool in FEA modelling. However, it was noted that for the 

equation to give accurate results, the input data was limited to a particular sequence.  

 

Marie (2004) developed another solution for determining hoop, radial and axial thermal 

stresses in high pressure vessels due to temperature variation. Marie’s solution took into 

consideration the effects of the inner surface layer of the cylinder. However, the solution 

ignored other thermal parameters such as material conduction, thermal diffusivities and the 

coefficient of heat exchange. Despite these assumptions, the study recommended the use of 

Marie’s equations in solving thermal shock and fatigue problems in pressure vessels and piping 

elements.  

 

Radu et al., (2008) derived another analytical solution for determining radial, hoop and axial 

elastic thermal stresses in the wall of a long hollow cylinder under sinusoidal transient thermal 

loading. The equations were developed using finite Hankel transform and their subsequent 

solutions solved by MATLAB software package. The Radu’s equation was found to be 

independent of any temperature field and more so applicable to both steady and transient 
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conditions. However, to obtain a stable response using Radu’s equations, the authors 

recommended the use of at least a total of 100 transcendental roots having radial steps in order 

of thousands. 

 

2.7 THERMO-MECHANICAL LOADING 

Pressure vessels operate at extreme conditions such as high temperature, pressure and corrosive 

environment. Therefore, it is difficult to have one single material satisfy all the requirements. 

To overcome this problem, multi-layered composites materials and more recently Functionally 

Graded Materials (FGMs) are being used in the design of high pressure vessels. Multi-layered 

composites consist of different layers of material with the inner layer being of higher 

performance alloy than the outer layer (Choudhhury et al., 2014). FGMs consists of two or 

more different materials having their material volume fraction varying smoothly along the 

desired directions. The most common examples of FGMs materials being the combination of 

Ceramics and Metals (Choudhhury et al., 2014). 

 

Choudhhury et al., (2014) researched on the rate of the heat flow across the wall of a multi-

layered pressure vessel consisting of Titanium and Steel layers under thermo-mechanical 

loading. The study considered two different experimental setups with the aim of investigating 

the effects of centrifugal and centripetal thermal flux in the cylinder wall. The latter being 

where the temperature at the inner surface of the cylinder is higher than the outside ambient 

temperature. Whereas, the former was vice versa. It was found that the rate of centripetal flux 

was higher than centrifugal flux. Okrajni and Twardawa (2014) performed heat transfer 

modelling of a super heater in a steam power plant, operating under thermo-mechanical loading 
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using FEA. The study established that the use of time dependent heat transfer coefficients in 

heat transfer problems eliminates disparities in temperature measurements. 

 

Zhang et al., (2012) derived analytical solutions for determining hoop 𝜎𝜃, radial 𝜎𝑟 and axial 𝜎𝑧 

stresses in a multi-layered composite pressure vessel under thermo-mechanical loading. The 

analysis took into consideration the effects of the closed ends of the cylinder. The three Zhang’s 

equations are presented here as follows; 

σθ =
E

(1+μ)(1−2μ)
[(1 − µ)εθ + µ(εr + εz)] −

EαT

1−2μ
     (2.28) 

 

σr =
E

(1+μ)(1−2μ)
[(1 − µ)εr + µ(εθ + εz)] −

EαT

1−2μ
    (2.29) 

 

σz =
E

(1+μ)(1−2μ)
[(1 − µ)εz + µ(εθ + εr)] −

EαT

1−2μ
     (2.30) 

Where 

E is the Young’s modulus of elasticity 

µ is the Poisson’s ratio 

𝜀𝜃 is the hoop strain 

𝜀𝑟 is the radial strain 

𝜀𝑧 is the axial strain 
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Α is the coefficient of thermal expansion 

T is the temperature change 

The stresses due to thermo-mechanical loading were shown to depend on the vessel size and 

length, the variation of pressure and temperature and the material properties of the cylinder 

wall.  Moreover, the authors validated the three equations using 3D FEA on a six-layered 

composite pressure vessel. Geometric and materials’ properties considered for each composite 

layer in this FEA modelling include wall thickness, Young’s modulus of elasticity, Poisson’s 

ratio, thermal conductivity, coefficient of thermal expansion, density and specific heat. The 

study reported good correlations between the analytical and the 3D FEA solution. In addition, 

the authors recommended the use of these equations in the design of multi-layered 

pressure vessels to be subjected to thermal and mechanical loading. 

 

Chaudhry et al., (2014) studied the behaviour of hoop stress across the wall of multi-layered 

pressure vessels during normal start-up and shutdown condition subjected under thermo-

mechanical loading. They reported that at the inner surface of the pressure vessel wall, the hoop 

stress was found to be compressive during normal start-up and tensile during normal shutdown. 

However, the study did not investigate the effects of hoop stress in pressure vessels during 

emergency shutdown, under thermo-mechanical loading conditions. Emergency shutdown 

occurs when pressure is suddenly cut off. 
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2.8 Summary 

From the literature reviewed, it is evident that there is no universally known and accepted 

method for determining optimum stress concentration factors in thick walled pressure vessels, 

considering the effects of the various geometric design parameters identified. In fact, the 

existing solutions addressed the optimum conditions based on each design parameter 

separately, despite most of the parameters being closely interrelated. Other authors compared 

magnitudes of stress concentrations without taking into consideration the size of the cross bore. 

In addition, studies carried out so far have failed to determine the optimal conditions in high 

pressure vessels with a cross bore under the combination of static, thermal and dynamic 

stresses, arising from the geometric configuration, working fluids, at high pressures and 

temperature, despite this being a common phenomenon in the industry. Moreover, the 

analytical solutions reviewed here did not take into consideration the analysis of hoop, radial 

and shear stresses arising from the cross bore when the cross section is viewed from the 

longitudinal plane. 

Thus, this study developed optimal solutions for a cross bore in thick walled high pressure 

vessels using analytical and numerical methods in respect of radial circular cross bore. Besides, 

an optimal geometry of the cross bore that give minimum stress concentration factor in regards 

to, the cross bore size, location, shape, obliquity and thickness ratio was established.  In 

addition, the study evaluated the effects of combined thermo-mechanical loading on stress 

concentration in high pressure vessels with cross bores. 
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CHAPTER THREE: RESEARCH METHODOLOGY 

3.1 OVERVIEW OF THE STUDY 

This study covers two broad sections. The first section dealt with the development of an 

analytical solution of elastic stresses along a radial circular cross bore in a thick walled cylinder. 

In addition, this section contains the validation of the developed analytical solution using finite 

element analysis. 

Whereas, the second part of the study dealt with numerical optimisation of the cross bore 

geometry using finite element analysis. The optimisation process was based on selected 

geometric design parameters of the cross bore which have a major effect on stress 

concentration. These cross bore geometric parameters include the cross bore size, shape, 

location, obliquity angle and the thickness ratio. In addition, the effects of varying fluid 

temperature on stress concentration in a geometrically optimised cross bore were studied.  

In this study, a total of 169 finite element analysis part models were created and analysed for 

various numerical investigations. 

3.2  STRESS CONCENTRATION IN A RADIAL CIRCULAR CROSS BORE 

ALONG TRANSVERSE XY PLANE 

3.2.1 Introduction 

This section deals with the determination of the elastic stress concentration in a radial circular 

cross bore along transverse XY plane in a thick walled pressure vessel subjected to internal 

pressure. The solutions for stress concentration were obtained using analytical and the 

numerical methods. The analytical solutions were derived from first principles using elastic 

stress equations, whereas, the numerical solutions were obtained using a three dimensional 
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finite element modelling. For these analyses, Abaqus Version 6.16 computer software was 

used.  

The solutions obtained from these two methods were compared for the purposes of 

authentication. In addition, these solutions were also compared with other solutions presented 

in the reviewed literature to establish any correlation thereof. 

 

3.2.2 Study cases 

Seven cylinders with various wall thickness ratios and cross bore sizes were studied. The wall 

thickness ratio of the cylinders (K) was selected to coincide with those discussed in the 

reviewed literature by Masu (1991); Makulsawatudom et al., (2004) and Nihous et al., 2008. 

These included K values of 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. In all of the analyses carried 

out, the main bore diameter of the cylinder was taken as 0.05 m.  A total of five different cross 

bores, comprising of both small and large cross bores were investigated. The cross bore size 

ratios (cross bore to main bore ratio) of 0.1, 0.3 and 0.5 were classified as small cross bores 

(Steele et al., 1986). Whereas, the cross bore size ratios of 0.7 and 1.0 (pipe junction) were 

categorised as large cross bores. The results were analysed along the cross bore transverse edge 

where 𝜃 =
𝜋

2
. Generally, the stresses along the cross bore transverse edge are presumed to be 

maximum (Ford and Alexander, 1977).  
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3.2.3  Analytical derivation of elastic stresses along a radial circular cross bore in a thick 

walled cylinder. 

3.2.3.1  Introduction 

This section of the study dealt with the analytical derivation of hoop, radial, axial and shear 

elastic stresses together with the stress concentration factor along a radial circular cross bore 

in a thick walled cylinder with closed ends. Figure 5 illustrates the main bore and the cross 

bore configuration including the associated stresses.  The global coordinates of the 

configuration are indicated by the direction of the principal stresses in the main cylinder. 

Whereas, the local coordinates are indicated by the direction of stresses in the cross bore. 

The derivation took into account four states of stresses acting in a closed cylinder when both 

the main bore and the cross bore are subjected to internal pressure. These various states of the 

stresses are listed below;  

1. Stresses in an internally pressurized thick walled cylinder without a cross bore.  

2. Stresses induced by the introduction of pressurized radial circular cross bore.  

3. Stresses induced by the uniform axial tensile stresses due the closed end caps on the 

main cylinder bore due to internal pressure. 

4. Stresses due to the internal pressure at the cross bore. 
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Figure 5: Main bore – cross bore configuration 

 

Where; 

𝑝𝑖 is the internal pressure. 

𝜎𝜃1is the hoop stress generated by the pressurised main bore. 

𝜎𝑟1is the radial stress generated by the pressurised main bore. 
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𝑑𝜃 is the angle subtended by the small element. 

𝜃 is the angle between the vertical axis and the small element. 

Each of these four states of stresses contribute independently to the total stress being 

experienced in the vessel. As a result, the stresses were analysed independently and their results 

superimposed together, in reference to their global plane of action. The four states of stresses 

are discussed briefly in the sections that follow. 

3.2.3.2 Stresses in a thick walled cylinder without a cross bore (Step 1)  

In this step, the stresses that exist in a thick walled cylinder without a cross bore were 

calculated. From Lame’s theory, the hoop 𝜎𝜃1and radial 𝜎𝑟1stresses in a thick walled cylinder 

without a cross bore subjected to an internal pressure 𝑝𝑖 are given by;  

𝜎𝜃1 ;
2R

B
A  and 𝜎𝑟1 ;

2R

B
A  respectively. 

Applying the boundary conditions to obtain the constants A and B. The expression of radial 

stress was used to calculate the constants, since its magnitude at the inner and outside surface 

are known. Thus, at the inside surface of the main bore, r = Ri, the corresponding radial stress 

σr1 = −pi. Whereas, at the outside surface of the cylinder, r = R0, the radial stress 𝜎𝑟1 = 0, 

hence,  

 

σθ1 

























2

0

2
1

1 R

R

K

pi
 , and        (3.1)   

σr1 

























2

0

2
1

1 R

R

K

pi
         (3.2) 
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Where 

K is the cylinder thickness ratio 

R is the arbitrary radius measured from the main bore centre 

The axial stress 𝜎𝑧 also referred to as longitudinal stress of the cylinder depends on the end fixing 

conditions. The end fixing conditions are dependent on whether the cylinder is open ended or closed.  

In an open ended cylinder, there is no axial stress generated. However, in a closed ended cylinder, a 

uniform axial stress across the thickness is generated, which is given by the following expression; 

σz =
pi

K2−1
                                                                                                                           (3.3) 

3.2.3.3  Stresses induced by the introduction of radial cross bore (Step 2)  

 The configuration showing the introduction of a radial cross bore in the thick walled cylinder 

is illustrated in Figure 4. The stresses induced by the cross bore were calculated by assuming 

the cross bore as an open ended cylinder. In addition, it was assumed that, the curvature of the 

cylinder had no effect on the stress concentration. The internal radius of the cross bore was 

denoted as ri. Whereas, the external radius which was defined as the horizontal distance 

between the transverse plane of the cross bore and the outside surface of the main cylinder was 

denoted as b, as shown in Figure 6. Along the outside surface of the cylinder, the external 

radius b is given by R0 sin θ.  
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    Figure 6 : Cross bore configuration 

 

Where 

𝑅𝑖 is the internal radius of the main bore. 

𝑅𝑂 is the external radius of the main bore. 

𝑟𝑖 is the cross bore radius. 
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R is the radius at any point along the wall thickness.   

 The corresponding hoop, 𝜎𝜃2 and the radial, 𝜎𝑟2 stresses were obtained by assuming the 

Lame’s theory along the pressurised cross bore, as shown in the proceeding expressions; 

𝜎𝜃2 ;
2r

D
C  and 𝜎𝑟2 ;

2r

D
C    

 Similarly, to obtain the constants C and D, the following boundary conditions were applied. 

At the inside surface of the cross bore irr  , the corresponding radial stress 𝜎𝑟2 = −𝑝𝑖. 

Whereas, at the outside surface of the vessel, r = R0 sin θ, the corresponding radial 

stress 𝜎𝑟2 = 0. From which, the constants were obtained as; 

222

0

2

sin i

ii

rR

rP
C





, and  

222

0

22

0

2

sin

sin

i

ii

rR

RrP
D







, therefore, 

𝜎𝜃2 

























2

0

222

0

2 sin
1

sin r

R

rR

rP

i

ii 


       (3.4)   

𝜎𝑟2 

























2

0

222

0

2 sin
1

sin r

R

rR

rP

i

ii 


      (3.5) 

But from the cross bore configuration shown in Figure 4, it can be seen that, at any arbitrary 

radius along the wall thickness  r = R sin θ . Thus, substituting for r = R sin θ in equations 3.4 

and 3.5, the above equations became, 
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𝜎𝜃2 







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
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0
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
        (3.6)   

𝜎𝑟2 

























2

0

222

0

2

1
sin R

R

rR

rp

i

ii


        (3.7)  

By letting  
iR

R
K 0  and  

i

i

r

R
m     

Therefore, from these two expressions,  ri can be written as 
Km

R
ri

0  

Substituting the expression of ir  in equations 3.6 and 3.7 and solving; 

𝜎𝜃2 

















2

2

0

244

22

1
1sin R

R

mk

pmk i


           (3.8) 

𝜎𝑟2 

















2

2

0

244

22

1
1sin R

R

mk

pmk i


        (3.9) 

 

3.2.3.4 Stresses induced by the axial tensile stress due to the closed ends on the main 

bore cylinder (Step 3). 

Axial tensile stress is generated uniformly across the thickness of the cylinder due to the closed 

ends. Figure 7 shows the configuration of the axial tensile stress in a cross bore thick walled 

cylinder. The local coordinates are indicated by the direction of stress as shown in Figure 7.  
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The solution for this configuration was aided by considering an imaginary cylinder of radius 

𝑅𝑖, which is represented by the dotted ring as shown in Figure 7. Assuming an elastic system, 

the total radial stress around the cross bore was found to be composed of two parts (Faupel and 

Harris, 1957; Gerdeen, 1972; Hearn, 1999). 
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Figure 7: Configuration of the axial tensile stress in a cross bore vessel 

 

The first part entailed stress due to the internal pressure which was considered as a constant 

radial stress. While, the second part comprised of sinusoidal stress variation, signifying the 

variation of radial stress across the wall thickness. This form of stress variation represented the 

required surface stresses at the cross bore, to give the same internal stresses that are present in 

a similar cylinder without a cross bore (Gerdeen, 1972). Thus, the second part was considered 

as consisting of a varying radial stress. As a result, the two parts were solved independently as 

shown in the following section, Step 3a and 3b. 
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3.2.3.4.1 Stresses induced by a constant radial stress at the cross bore (Step 3a) 

 

The stresses induced by a constant radial stress at the cross bore were calculated by considering 

the region between the two circular rings, of radii 𝑟𝑖 and 𝑅𝑖, as illustrated in Figure 7.  Ignoring 

the effects of the curvature in the main cylinder, the stresses within the two rings correspond 

to those existing in a thick walled cylinder (Ford and Alexander, 1977). Thus, the Lame’s 

equations was applied within the two rings, formed by radii 𝑟𝑖 and 𝑅𝑖.  The corresponding hoop 

𝜎𝜃3𝑎and radial 𝜎𝑟3𝑎  stresses were obtained using the following expressions; 

𝜎𝜃3𝑎 2r

B
A  ,  and  𝜎𝑟3𝑎 2r

B
A   

 To solve for the constants A and B, the following boundary conditions were applied on the 

radial stress. At the inner surface of the cross bore ,irr   the corresponding radial stress  𝜎𝑟3𝑎

ip . Whereas, on the outer ring, iRr   (which also coincides with the inner surface of the 

main bore), the corresponding radial stress 𝜎𝑟3𝑎 = 𝜎𝑧. Hence, the contributions to the hoop 

and radial stresses are shown by equations 3.10 and 3.11.  
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Since 𝜎𝜃3𝑎  and 𝜎𝑟3𝑎  are principal stresses, there is no shearing stress in the cylinder. 

Therefore, the maximum shear stress 𝜏𝑟𝜃𝑚𝑎𝑥  at any point along the cross bore was calculated 

by use of Tresca’s theory; 

 

𝜏𝑟𝜃𝑚𝑎𝑥 =
𝜎𝜃3𝑎 −𝜎𝑟3𝑎

2
 

Hence, 

𝜏𝑟𝜃𝑚𝑎𝑥 =
𝑅𝑖
2

𝑟2
(
𝑚2

𝑚2−1
) (𝜎𝑧+𝑝𝑖)       (3.12) 

3.2.3.4.2 Stress induced by the varying radial stress (Step 3b)  

 

The stress distribution induced by the sinusoidal stress variation was solved using the theory 

of elasticity and stress functions methods (Gerdeen, 1972; Faupel and Fisher, 1981). The trend 

of the radial and shear stress variation that simulates the stress behaviour present in a similar 

cylinder without a cross bore was established in the form of polar coordinates (Hearn (1999). 

At the outer ring, 𝑟 = 𝑅𝑖, which also coincides with the surface of the cylinder bore, the radial 

stress 𝜎𝑟3𝑏   is   
1

2
𝜎𝑧 cos 2𝜃 . Whereas, the corresponding shear stress 𝜏𝑟𝜃3𝑏at the same 

position is −𝜎𝑧 sin 2𝜃. Several authors (Timoshenko and Goodier (1951); Geerden (1972); 

Ford and Alexander (1977); Faupel and Fisher (1981) and Hearn (1999)) have classified the 

stress function formed under these condition as an axisymmetric biharmonic order. Because 

the harmonic order denoted the solution as n is equal to 2. This trend, therefore, satisfied the 

use of the following biharmonic stress function equation 𝜑 
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 𝜑 = (𝐶𝑟2 +𝐷 𝑟2 + 𝐸𝑟4 + 𝐹⁄ ) cos 2𝜃.       (3.13) 

The three corresponding stress components generated from this biharmonic stress function, as 

cited by the authors mentioned in the preceding paragraph were calculated as follows; 

  

𝜎𝑟3𝑏 = −(2𝐶 +
6𝐸

𝑟4
 +  

4𝐹

𝑟2
) cos 2𝜃      (3.14) 

𝜎𝜃3𝑏 = (2𝐶 + 12𝐷𝑟
2 +

6𝐸

𝑟4
) cos 2𝜃      (3.15) 

𝜏𝑟𝜃3𝑏 = (2𝐶 + 6𝐷𝑟2 −
6𝐸

𝑟4
−
2𝐹

𝑟2
) sin 2𝜃     (3.16) 

The four constants C, D, E and F, were evaluated by considering the following boundary 

conditions obtained using radial and shear stresses. 

 

a) With reference to Figure 7, at the surface of the cross bore,  𝑟 = 𝑟𝑖, the corresponding radial 

stress  𝜎𝑟3𝑏 = −𝑝
𝑖
. Specifically, the radial stress on the cross bore surface is equal to the 

gauge pressure and acts in the opposite direction. Substituting these boundary conditions 

into equation 3.14,  

            −𝑝𝑖 = −(2𝐶 +
6𝐸

𝑟𝑖
4 +

4𝐹

𝑟𝑖
2) cos 2𝜃  

Which can be re-written as 

            𝑝𝑖 sec 2𝜃 = 2𝐶 +
6𝐸

𝑟𝑖
4 +

4𝐹

𝑟𝑖
2       (3.17) 
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b) With reference to Figure 6, the magnitude of both the radial and the shear stress at the outer 

surface of the cylinder when the radius 𝑟 = 𝑏, is zero. Thus, the expressions for radial and 

shear stress can be formulated.  Using equation 3.14, the following radial stress equation 

was formulated;  

0 = −(2𝐶 +
6𝐸

𝑏4
+
4𝐹

𝑏2
) cos 2𝜃        

As seen from the preceding expression, the product of the two terms in the right hand side is 

equal to zero. However, the magnitude of  cos 2𝜃 varies along the outer surface of the cylinder. 

Thus, its magnitude is not equal to zero at all points along the surface. Therefore, the first term 

is equal to zero. Hence, 

0 = −(2𝐶 +
6𝐸

𝑏4
+
4𝐹

𝑏2
)       (3.18) 

Using the same analogy as discussed in the preceding paragraph, the expression for the shear 

stress was formulated using equation 3.16 as follows;  

0 = (2𝐶 + 6𝐷𝑏2 −
6𝐸

𝑏4
−
2𝐹

𝑏2
) sin 2𝜃       

Similarly, the magnitude of  sin 2𝜃 varies along the outer surface of the cylinder. Therefore, 

the term sin 2𝜃 ≠ 0 at all the points on the cylinder surface. Hence,  

                  0 = (2𝐶 + 6𝐷𝑏2 −
6𝐸

𝑏4
−
2𝐹

𝑏2
)     (3.19) 

c) With reference to Figure 7, at the outer ring, the radius  𝑟 = 𝑅𝑖, (which also coincides with 

the inner surface of the cylinder bore), the corresponding shear stress 𝜏𝑟𝜃3𝑏 = −𝜎𝑧 sin 2𝜃. 

Substituting these boundary conditions into equation 3.16; 

 

−𝜎𝑧 =  2𝐶 + 6𝐷𝑅𝑖
2 −

6𝐸

𝑅𝑖
4 −

2𝐹

𝑅𝑖
2      (3.20) 
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The four equations formed from the boundary conditions are sufficient to solve for the 

unknown constants C, D, E and F. They are presented inform of a matrix as shown in equation 

3.21 hereafter;  

[
 
 
 
 
 
 2 0

6

𝑟𝑖
4

4

𝑟𝑖
2

−2 0 −
6

𝑏4
−

4

𝑏2

2 6𝑏2 −
6

𝑏4
−

2

𝑏2

2 6𝑅𝑖
2 −

6

𝑅𝑖
4 −

2

𝑅𝑖
2]
 
 
 
 
 
 

[

𝐶
𝐷
𝐸
𝐹

] = [

𝑃𝑖 sec 2𝜃
0
0
−𝜎𝑧

]   (3.21) 

 

The constants from this matrix expression were solved using Cramer’s rule with the aid of 

computer mathematical software, Mathcad Version 15. The iterations of the solutions of the 

constants are as follows; 
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  (3.22) 
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   (3.24)  
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               (3.25)  
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3.2.3.5  Stresses due to the internal pressure at the cross bore (Step 4) 

Stress distribution due to the internal pressure at the cross bore was considered to be acting 

inside a thick walled cylinder with an infinite external radius, since the cylinder wall is “joined 

on itself” (Fessler and Lewin, 1956; Geerden , 1972; Ford and Alexander, 1977). Applying the 

Lame equation on the configuration shown in Figure 6 and assuming an infinite external radius 

that is  𝑏 → ∞ 

𝜎𝜃4 =
𝑝𝑖

(1−
𝑟𝑖
2

𝑏2
)

(1 +
𝑟𝑖
2

𝑏2
) → 𝑝𝑖, and         (3.26) 

𝜎𝑟4 = −
𝑝𝑖

(1−
𝑟𝑖
2

𝑏2
)

(1 −
𝑟𝑖
2

𝑏2
) → −𝑝𝑖       (3.27) 

3.2.3.6  Superposition of stresses at the cross bore surface 

The direction of stress components produced by the four cases considered in the preceding 

sections was established before superimposing the results. It was noted that the hoop stress 

component produced by the main cylinder and that which was induced by the cross bore acted 

in the same direction. However, the radial stress component induced by the cross bore was 

found to act in the axial direction of the main cylinder. However, there was no axial component 

produced by cross bore, i.e., in the radial direction of the main cylinder, as it was considered 

an open ended cylinder.   
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The summation of the stress distribution along the cross bore was done with reference to the direction of the global coordinates of the three 

principal stresses, as shown in Figure 3. They are briefly discussed below; 

 

3.2.3.6.1  Stress component in the hoop direction of the main cylinder  

 

The total hoop stress 𝜎𝜃𝑇𝑜𝑡𝑎𝑙 along the cross bore, which can also be taken as the maximum principal stress, was obtained by the summation of the 

corresponding hoop equations, in all the four cases considered, 

𝜎𝜃𝑇𝑜𝑡𝑎𝑙 = 𝜎𝜃1 + 𝜎𝜃2 + 𝜎𝜃3𝑎 + 𝜎𝜃3𝑏 + 𝜎𝜃4 
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3.2.3.6.2  Stress component in radial direction of the main cylinder 

 

The radial stress, 𝜎𝑟𝑇𝑜𝑡𝑎𝑙 , at the inside surface of the cross bore as well as that at the main bore was found to be equal and opposite to the internal 

pressure (gauge pressure) 

 𝜎𝑟𝑇𝑜𝑡𝑎𝑙 = 𝜎𝑟 = −𝑝𝑖               (3.29) 

3.2.3.6.3 Stress component in axial direction of the main cylinder 

The total stress distribution for this component was obtained by adding all the stresses acting in the axial direction. However, it was noted that the 

axial stress generated by the main cylinder at the cross bore surface was zero, as it was being relieved by the cross bore. Hence; 

𝜎𝑧𝑇𝑜𝑡𝑎𝑙 = 𝜎𝑟2 + 𝜎𝑟3𝑎 + 𝜎𝜃3𝑏 
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The maximum shear stress in the cylinder as well as the shear stress, 𝜏𝑟𝜃𝑚𝑎𝑥  , in the 𝑟𝜃 direction, can also be calculated using equations 3.12 and 

3.16, as discussed in the preceding sections. 
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3.2.3.7  Determination of the stress concentration factor 

The stress concentration factor (SCF) was defined as the ratio of localised critical stresses in a cross bore cylinder to the corresponding stresses in 

a similar cylinder without a bore (Ford and Alexander, 1977). The definition exemplifies the intensity of stress concentration at each particular 

point of interest. SCFs can be determined for various stress criteria such as maximum tensile stress (hoop) , Von Mises or Tresca. The choice to 

use a particular criterion depends on the working conditions of the vessel. 

The hoop stress concentration factor 𝑆𝐶𝐹𝐻𝑜𝑜𝑝 is given by the following expression;  

𝑆𝐶𝐹𝐻𝑜𝑜𝑝 =
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The SCFs for Von Mises and Tresca’s theories can also be calculated analytically using their respective formulae based on the same definition as 

in equation 3.31. Their corresponding SCFs expressions are shown hereunder; 

SCFVonmises =
(σθT−σZT)

2
+(σZT−σrT)

2
+(σrT−σθT)

2

(σθ1−σZ1)
2
+(σZ1−σr1)

2
+(σr1−σθ1)

2          (3.32) 

 

SCFTresca =
σθT−σrT

σθ1−σr1
             (3.33) 

These Von Mises and Tresca’s stress concentration factors enable comparison between working stresses in cylinders with different sizes subjected 

to varying loading magnitudes. 
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3.2.4 Three dimensional finite element analysis of radial circular cross bore  

Finite element analyses were performed on the high pressure vessels with the same dimensions as 

those studied analytically in section 3.2.2, for the purpose of verifying the results. The cross bored 

high pressure vessel was analysed using a commercial software program called Abaqus version 

6.16. The Abaqus software was chosen for this study due to its availability as well as the capability 

to perform axisymmetric modelling in pressure vessels. Owing to the symmetrical configuration of 

the pressure vessel, only an eighth of the structure was analysed. In this modelling section, a total 

of 35 different part models were created and analysed.  

3.2.4.1  Modelling using Abaqus software 

 The following standard procedure used in Abaqus modelling software was followed; 

3.2.4.1.1  Creation of a model 

 

A three dimensional deformable solid body was created by sketching an eighth profile of the 

pressure vessel face. The face of the pressure vessel was then extruded to form the depth of the 

cylinder. The depth of the cylinder was equal to three times the cylinder’s external diameter. As 

stated by the Saint-Venant’s principle, the depth of cylinder should be 2.5 times longer than the 

outside diameter. This restricts the effects of the closed ends’ closures of the cylinder vessels from 

being transmitted to the other far end of the cylinder.  

The cross bore was then created at the other far end of the cylinder. The cross bore was created 

using a cut-extrude tool at the radial position of the vessel. One of the model profiles created at this 

stage is shown in Figure 8; 
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Figure 8: Part profile for K= 2 having cross bore-main bore ratio of 0.1 

 

3.2.4.1.2  Creation of material definition 

 

For this stress analysis problem, a linear elastic model with material properties as indicated in Table 

7 was assumed throughout in the modelling process. The material properties chosen for this 

simulation were similar to those commonly used in the technical literature of high pressure vessels 

(Chaudhry et al., 2014; Choudhury et al., 2014). 

 

Table 7: Material properties for the static analysis (Chaudhry et al., (2014)) 

Parameter Value 

Young’s Modulus of Elasticity 190 GPa 

Poisson’s ratio 0.29 

Density 7800 Kg m3⁄  
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3.2.4.1.3 Assigning of section properties and model assembly 

 

The section properties of the model were defined as being solid and assigned to the entire profile 

previously created in Figure 8. This action was then followed by creation of a single assembly. A 

single assembly usually contains all the geometry in the finite element model. This procedure 

allowed the creation of a part instance that is independent of the mesh. The model was then oriented 

in line with the global Cartesian co-ordinates axes that is X, Y and Z axes. 

 3.2.4.1.4 Analysis configuration 

 

The analysis to be used for this simulation was configured by creating a static pressure step. It is 

worthwhile to mention that the application of different types of loads and boundary conditions 

depend on the total number of analysis steps created. Moreover, the creation of a set out point, which 

defines the history output, was done. The set out point was positioned at the intersection of the main 

bore and the cross bore and this was followed by the selection of stress, as the required field output 

request.  

3.2.4.1.5 Application of boundary conditions 

 

To prevent any rigid movement of the model, symmetry conditions were applied at the cut section 

of the cylinder. The symmetry conditions were applied at cut regions in X, Y and Z axes. The careful 

application of these boundary conditions ensured that no errors occurred due to the Poisson’s effect. 

According to Adams and Askenazi (1999) the Poisson’s effect occurs due to incorrect positioning 

of boundary conditions. The incorrect boundary conditions restrict the material deformation causing 
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a couple strain, hence the occurrence of the Poisson’s effect. Note that, the Poisson’s effect error is 

given as 5% (Adams and Askenazi, 1999). 

3.2.4.1.6 Applying the load 

 

The pressure vessel was loaded with an internal pressure at both the main bore and the cross bore.  

The internal pressure was taken as 1Pa, being the most common pressure used in pressure vessels 

(Gerdeen, 1972). In addition, a uniform axial stress, calculated by using equation 3.3 for each 

thickness ratio, was applied at the far end of the vessels. This axial stress simulated the end effects 

generated by the closed end closures in the pressure vessels. The axial stress calculated for each 

thickness ratio is tabulated in Table 8, respectively; 

 

Table 8: Axial Stresses 

K 1.4 1.5 1.75 2.0 2.25 2.5 3.0 

σz (MN m2)⁄  1.04166 0.80 0.485 0.333 0.246 0.190 0.111 

 

3.2.4.1.7 Meshing the model 

 

The local mesh refinement of the model was done using a combination of both the H-element and 

the P-element techniques. The H-element refinement technique was achieved through two stages. 

In the first stage, the model was divided into small geometrical sections. In the second stage, the 

mesh around the cross bore region was biased by increasing the number of elements, commonly 

referred to as mesh density. In fact, the size of element chosen for this study ranged from 0.003 m 
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to 0.004 m.  This high mesh density around the cross bore region increased the capture of the 

localised stress concentration. This approach gives results with a high level of accuracy without 

significantly increasing the computer run time.  

Alternatively, the P-refinement technique approach which depends on the degree of polynomial was 

achieved by use of the second order differential equations with reduced integration. 

The mesh verification was carried out to establish the element quality and identify any distorted 

elements. The degree of element distortion depends on the capability of the software and its 

tolerances, element shape and size, among other factors. The guidelines used to determine the nature 

of distortions and inform the user on warnings and errors occurring due to the shape and size of the 

element, are tabulated in Table 9. 

Table 9: Guidelines for element distortion  

Characteristics Parameter Element failure criteria 

Shape Quad-face corner angle < 100 and > 1600 

Aspect ratio > 10 

Size Geometric deviation factor                         > 0.2 m 

Shorter edge                        > 0.01 m 

Longer edge        > 1 m 

  

Generally, element distortion leads to erroneous results. Thus, to eliminate the occurrence of 

element distortion, the percentage tolerance for both the element warnings and errors were kept at 

zero. In addition, the choice of element used for this modelling, was made carefully so as not to 



82 
 

introduce element distortions. According to Abaqus 6.16 software documentation guidelines, only 

second order hexahedral and tetrahedral elements are recommended for stress concentration 

problems. The elements used were 20-noded second order, C3D20R hexahedral (brick) 

isoparametric in cylinders with the following cross bore to main bore ratios; 0.1, 0.3, 0.5, and 0.7. 

Hexahedral elements usually give results with a high degree of accuracy (Fagan, 1992) compared 

to other elements.  

 

On the other hand, second order C3D10 tetrahedral elements with 10 nodes were used for pipe 

junction models. Tetrahedral elements are less sensitive to the initial shape of the element, therefore, 

their vulnerability to distortion is low. A meshed profile of the model part is shown in Figure 9. 

 

 

Figure 9: Meshed profile for K = 2 having cross bore- main bore ratio of 0.1 

 

  



83 
 

3.2.4.1.8 Creation and submission of the job for analysis 

 

At this stage, the job for each model was created and submitted for analysis. Usually, Abaqus 

software computes stresses directly at the interior locations of the element known as Gauss points. 

The calculated stresses at the Gauss points are then extrapolated to the nodes on the element 

boundary. Thus, different stresses are calculated at each adjacent element. The stress at each node 

is given by the average stress between the two adjacent elements. Principally, the accuracy of the 

results depends on the quality of the mesh and its density. In this study, the degree of the accuracy 

of the results as well as the mesh convergence, were confirmed by comparing the obtained FEA 

results, with their corresponding analytical results in areas far away from the cross bore. It was 

assumed that the effects of the cross bore are limited only to the area surrounding it, usually about 

2.5 cross bore diameters.  

3.2.4.1.9 Viewing the results 

 

The results of this modelling were presented in the form of filled contour plots. These contour plots 

show the variation of stress along the surface of the model. The stress pattern given by these contour 

plots usually give a general overview of stress distribution. This stress distribution can also be 

compared with the expected results for convergence.  An example of a stress contour plot showing 

the position and magnitude of maximum stress of one of the part models created in Figure 8 is shown 

in Figure 10. 
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Figure 10: Contour plot of the part model for K=2 with cross bore-main bore ratio of 0.1 

 

The nodes along the transverse edge of the cross bore edge were probed for different types of stress. 

In this modelling section, only the maximum-, mid- and minimum principal stresses were 

investigated. The results were presented per unit pressure for ease of the comparisons, since the 

analysis was performed under elastic conditions. 
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3.3  OPTIMISATION OF THE CROSS BORE 

3.3.1  Introduction 

Most of the fatigue failures that occur in high pressure vessels are mainly due to the high magnitude 

of the hoop stress concentration factor (Masu, 1997), among other factors. It is, therefore, necessary 

to design for an optimal minimum hoop stress concentration in order to reduce the occurrence of 

fatigue failures. Stress concentrations in cross bored high pressure vessels depend on the geometric 

design of the cross bore (Kharat and Kulkarni, 2013). The major geometric parameters in the design 

of the cross bore are size ratio (cross bore to main bore ratio), location, shape, obliquity angle and 

thickness ratio. The combination of these geometric design parameters determines the magnitude of 

the stress concentration. Therefore, one of the aims of this study was to establish an optimal 

combination of the major geometric design parameters that gives the minimum hoop stress 

concentration factor. 

 

Optimisation design procedure of the cross bore was undertaken to establish the optimal 

combination of the major geometric parameters. The analysis was performed using a finite element 

analysis computer software, called Abaqus version 6.16.  Optimisation of each geometric design 

parameter was performed independently. This mode of analysis is referred to as one factor at a time.  

 

At each optimisation stage, the model solution with minimum hoop stress concentration was 

selected for the next geometric optimisation analysis. The order used for the geometric optimisation 

for each thickness ratio was as follows;  

1. Selection of the radial circular cross bore size which gives minimum SCF. The cross bore size 

with minimum SCF is hereafter referred to as optimum sized circular cross bore. 
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2. Offsetting of the optimum sized circular cross bore to establish an offset position which gives 

minimum SCF. The offset position with minimum SCF is hereafter referred to as optimum offset 

position. 

3. Determining the optimal elliptical cross bore diameter ratio.   

4. Offsetting of the optimum sized elliptical  cross bore to establish  an offset position which gives 

minimum SCF 

5. Inclination of the optimum sized circular hole at the optimum offset position to determine an 

oblique angle that gives minimum SCF. 

 

The optimisation design procedure discussed in the preceding paragraphs established a 

geometrically optimised cross bore. The geometrically optimised cross bore had the minimum SCF 

after considering the major geometric design parameters. The geometrically optimised cross bore 

was then subjected to varying fluid temperature to determine its effects on the thermo-mechanical 

stress concentration.  

The optimisation design procedure adopted in this study is briefly described as follows: 

 

3.3.2  Size of the cross bore 

With reference to section 3.1, a three dimensional finite element analysis was performed on 

cylinders with seven different thickness ratios of 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0, 

respectively. Throughout the analysis the diameter of the main bore was taken as 0.05 m. On each 

of these thickness ratios, five different circular radial cross bores, having cross bore to main bore 

ratios of 0.1, 0.3, 0.5, 0.7 and 1.0 were investigated.  
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The results from 35 part models analysed, revealed that the lowest stress concentration factors 

occurred on the smallest cross bore with a cross bore to main bore ratio of 0.1. Therefore, the cross 

bore with size ratio of 0.1 was selected as the optimised circular cross bore size. Therefore, only the 

optimised circular cross bore was considered for further geometric optimisation analysis. 

 

3.3.3  Location of the cross bore 

In this section, the modelling procedure of the circular and elliptical shaped cross bores is briefly 

described: 

3.3.3.1 Optimal offset of a circular shaped cross bore 

The optimum location was obtained by offsetting optimum sized cross bore with a cross bore to 

main bore ratio of 0.1, at four different positions along the longitudinal X axis of the cylinder. 

Throughout this study, the main bore radius was taken as 25 mm. The four offset distances which 

were investigated were 6.0, 12.0, 17.125 and 22.5 mm. The offset distance was measured from the 

central axis of the main cylinder to the transverse axis of the cross bore. 

 

 The chosen offset distances at 12.0 mm and 22.5 mm were relatively similar to those suggested in 

the technical literature by Cole et al. (1976) and Masu (1998).  Whereas, the 6.0 mm and 17.125 

mm offset distances were chosen arbitrarily at the mid location to investigate the stress behaviour 

at those points.  
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In this modelling section, a total of 28 part models were created and analysed. A similar modelling 

procedure to the one detailed in section 3.2.4.1 was performed, with slight differences in part 

creation and meshing steps only. In the part creation step, the cross bore was formed by using cut 

revolve tool, while applying full boundary constraints on the cross bore. One of the part models 

created in this section is shown in Figure 11. 

 

Figure 11: Part model for K = 3.0 having a cross bore-main bore ratio 0.1, offset at 17.125 mm. 

 

Similarly, the meshing of the model was done by dividing the part model into small regions. Second 

order tetrahedral elements having 10 sided nodes were used for meshing. The meshing was biased 

around the cross bore region. The corresponding meshed profile of the part model shown in Figure 

11 is shown in Figure 12. 
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Figure 12: Meshed model for K = 3.0 having cross bore-main bore ratio of 0.1, offset at 17.125 mm 

 

3.3.3.2  Optimal diameter ratio of an elliptical cross bore 

The major diameter of the elliptically shaped cross bore was chosen to coincide with the diameter 

of the optimum sized circular cross bore as cited in reviewed literature by Masu (1997) study. 

Preliminary investigations were then carried out to establish the optimal diameter ratio. A cylinder 

with thickness ratio of 2.0 was arbitrarily chosen. Cross bores with major to minor diameter ratios 

of 1.33, 2.0, 2.5 and 5.0 were investigated. The magnitudes of hoop stress concentration factor 

obtained in this preliminary investigation are tabulated in Table 10.   

Table 10: Maximum hoop stress for various cross bore diameter ratios for K = 2.0 

Major to minor diameter ratio 1.33 2.0 2.5 5.0 

 Stress concentration factor 2.30 1.89 2.14 2.48 

 

The diameter size ratio of 2.0 gave the lowest SCF at 1.89. Therefore, this size ratio was selected as 

the optimal diameter size ratio in elliptically shaped cross bores. This finding was in agreement with 

other previous studies done by Harvey (1985) and Makulsawatudom et al., (2004). Harvey (1985) 
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had studied similar elliptical cross bores in thin walled cylinders. The study had reported an optimal 

SCF of 1.50 when the elliptical diameter ratio was 2.  

3.3.3.3  Optimal offset of an optimal elliptical cross bore 

The optimised elliptically shaped cross bore was modelled at the same offset position with those of 

the circularly shaped cross bore discussed earlier. Similar to the circularly shaped cross bores, the 

offset positions studied were 0, 6.0, 12.0, 17.125 and 22.5 mm. This approach enabled effective 

comparison of output stresses from both the elliptical and circular cross bore models. The cross bore 

was positioned such that the minor diameter of the cross bore was parallel with the axial direction 

of the cylinder, since this cross bore arrangement gives the lowest stress concentration, as suggested 

by previous studies done by Faupel and Fisher, (1981) and Makulsawatudom et al., (2004). 

 

A total of 35 different part models were created and analysed in this section. The same Abaqus 

modelling procedure described in section 3.2.4.1 was followed. One of the created part profiles, 

together with its corresponding mesh, is shown in Figure 13. The mesh was created using tetrahedral 

elements. 

  

Figure 13: Part profile together with its corresponding mesh for K= 2.5 having elliptical cross bore 

       offset at 17.125 mm. 
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3.3.4 Oblique angle of a cross bore 

 The modelling results obtained by offsetting both the circular and elliptically shaped cross bores in 

the previous sections, revealed that the lowest hoop stress concentration occurred at the circular 

cross bore, offset at 22.5 mm. Thus, the offset position of 22.5 mm was chosen as the optimised 

offset position. 

 

At this optimised offset position, the optimised circular cross bore was inclined at 6 different angles. 

The inclination angles studied were 150, 300, 450, 600, 750 and 900. The first four inclination angles, 

were chosen to coincide with those investigated by Cheng (1978) and Nihous et al (2008)   on 

radially positioned cross bores for comparison. The inclined circular cross bores were created using 

the cut revolve tool technique. The axis of the cross bore axis was fully constrained at each angle of 

inclination.  

 

The Abaqus modelling procedure described in section 3.2.4.1 was adopted. In this modelling section 

of oblique cross bores, a total of 42 part models were created and analysed. One of the created part 

profiles, together with its corresponding tetrahedral element mesh, is shown in Figure 12. 
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Figure 14: A view at the inside surface of the main bore cylinder of the chosen part profile together 

       with its corresponding mesh, for a circular cross bore  having cross bore-main bore ratio  

        of 0.1, inclined at 450 from an offset position of 22.5 mm.  

 

3.4 COMBINED THERMO-MECHANICAL STRESS ANALYSIS 

Combined thermo-mechanical stresses on the geometrically optimised cross bore for each vessel 

thickness was determined using thermo-couple analysis. The internal fluid pressure and temperature 

was taken as   1MN/m2 and 300 oC, respectively, as recommended in technical literature by Zhang 

et al., (2012), Chaudhry et al., (2014) and Choudhury et al., (2014) . The ambient temperature was 

taken as 20 oC. The properties of the material used are listed in Table 11. 

Table 11: Material property for the thermal analysis (Chaudhry et al., (2014)) 

Parameter Value 

Thermal conductivity 17 W/m K 

Thermal expansion coefficient 11E-6 mm/mm/o C 

Specific heat 0.48 KJ/kg K 
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A linear transient condition was assumed throughout the modelling to simulate the starting-up 

conditions. The stresses due to thermo-mechanical loading were recorded at 17 different nodal 

temperatures ranging from 20 oC to 300 oC for each thickness ratio. A total of 14 different part 

models were created and analysed in this section.  

The results generated by these research methods are presented and discussed in Chapter Four. 
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CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1    INTRODUCTION 

In this Chapter, the results obtained by the methods described in the preceding Chapter are presented 

in the form of graphs and tables. These results and their implications are further discussed in relation 

to the existing literature. 

4.2 CORRELATION OF ANALYTICAL AND NUMERICAL SOLUTIONS IN 

RADIAL CIRCULAR CROSS BORE 

The results obtained by the analytical solution developed in Chapter 3 were compared with their 

corresponding ones generated by finite element modelling.  The numerical solution was selected as 

the reference method, since it had been authenticated. This reference method selection aided the 

calculation of error percentages between the two methods. Hence, the solution validation was 

computed based on the percentage error. In most practical engineering applications, a percentage 

error less than 5% is regarded to be within the acceptable error margin (Ford and Alexander, 1977). 

Thus, this standard practice was adopted in this study to determine the degree of correlation between 

the two methods.  

  The analytical and numerical results presented in this section are those of hoop, radial and axial 

stresses along the transverse edge AA of the radial cross bore as shown in Figure 15. 

 

Figure 15: Configuration of the radial cross bore 
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The analytical results for hoop, radial and axial stresses were computed using equations 3.28, 3.29 

and 3.30, respectively. Since all the analyses were performed under elastic conditions, the results 

were presented per unit pressure for ease of comparison.  

4.2.1  Hoop stress component in the direction of the main cylinder  

The results generated from the hoop stress along the transverse edge of the radial cross bore for all 

the pressure vessels studied in section 3.2.2 are presented under the following subheadings; 

4.2.1.1  Cross bore to main bore ratio of 0.1 

In this section, results of a high pressure vessel with main bore to cross bore size ratio of 0.1 are 

presented in figures 16 - 22; for thickness ratios, K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0: 

 

Figure 16: K = 1.4 CB = 0.1           Figure 17: K = 1.5 CB = 0.1                                     
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Figure 18 : K = 1.75 CB = 0.1       Figure 19 : K = 2.0 CB = 0.1 

 

Figure 20: K = 2.25 CB = 0.1    Figure 21: K = 2.5 CB = 0.1 
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       Figure 22 : K = 3.0 CB = 0.1 

Figures 16 - 22: Hoop stress distribution per unit pressure for various thickness ratios along a radial 

   circular Cross Bore (CB), having cross bore to main bore size ratio of 0.1. 

From Figures 16 to 22, it can be seen that the analytical method predicted lower stress values in 

comparison to those obtained by FEA. Notable disparity of the results given by analytical and 

numerical methods were seen in Figures 16 and 18. However, as the thickness ratio is increased, the 

solution given by the two methods began to converge, as illustrated by Figures 20 to 22.  

With the exception of thickness ratios 1.4, 1.5 and 1.75, the magnitude of hoop stress was highest 

at the intersection between the cross bore and the main bore. However, the hoop stress reduced 

gradually along the cross bore depth. For K=1.4, 1.5 and 1.75, the maximum hoop stress occurred 

slightly away from the intersection at approximately 1.25 mm. Respectively, these peaks were 

slightly higher by a margin of 2.13%, 1.63% and 3.96%, in comparison to those present at the 

intersection. This occurrence was attributed to redistribution of stress due to change in state of stress 

from plane stress to plane strain. Similar occurrence had previously been noted by Masu (1989) 

study.  

A structure is termed to be under plane stress conditions whenever the magnitude of one of the three 

principal stress is small in comparison to the other two stresses (Spyrakos, 1996). Usually, the 
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magnitude of the small principal stress is approximated as zero. On the other hand, a structure is 

said to be under plane strain conditions whenever the strain developed along one of the principal 

axes is zero (Spyrakos, 1996). This phenomenon occurs as a result of one of the three sections of 

the structure being large in comparison to the other two sections. 

The maximum value of hoop stress occurred in the pressure vessels with the smallest thickness ratio 

of K = 1.4. The peak values of the hoop stresses per unit pressure were at 6.783 and 8.460 for 

analytical and FEA methods, respectively. Whereas, the smallest magnitude of the hoop stress 

occurred in the cylinder with the highest thickness ratio, K = 3.0. This trend implied that the 

magnitude of hoop stress reduces with increase in the thickness ratio. Usually, as the thickness ratio 

increase the structural stiffness of the cylinder also increase, leading to lower hoop stresses and vice 

versa. 

Comparing the results obtained through the analytical and FEA methods at the cross bore 

intersection, the lowest error was at 3.4% for K = 2.5. While the errors calculated from K = 2.25 

and 3.0 were 4.1% and 6.4%, respectively. The other thickness ratios studied had errors above 9%.  

A similar study conducted by Comleki et al. (2007) using FEA on thick cylinders having the same 

thickness ratio gave results that compared favourably to those obtained by the numerical solution, 

as tabulated in Table 12.  

The margin of error was computed by comparing the two FEA solutions and taking the results from 

the present study as the reference. The errors for K = 1.4, 1.5, 1.75 and 2.0 were found to be 2.6%, 

2.6%, 4.4% and 3.7%, respectively. Interestingly, only the errors given by K = 2.25 and 2.5 were 

slightly higher at 9.6% and 10.1%. A condition attributed to the degree of mesh refinement during  

Table 12: Hoop stress per unit pressure at the intersection of cross bore size ratio of 0.1 
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K 1.4 1.5 1.75 2.0 2.25 2.5 

Comleki et al. (2007) (FEA) 8.50 7.31 5.77 5.05 4.64 4.39 

Present study (FEA) 8.29 7.12 5.52 4.87 4.23 3.96 

 

modelling. Usually, the Abaqus commercial software used in this study has better capability in 

control of element meshing than ANSYS software used in the Comleki et al. (2007) study. The good 

results correlation between the two studies further authenticated the modelling procedures adopted 

in this study.  

Geerden (1972) performed analytical studies on pressure vessels with a cross bore size ratio of 0.1, 

having thickness ratios of K=1.5, 2 and 3. The Geerden study predicted much higher hoop stresses 

at the cross bore intersection than those from the analytical and numerical results presented in this 

study. Errors exceeding 16% were noted. Probably, this was due to the inclusion of shear stresses 

in Geerden’s solution during the computation of the hoop stress. 

4.2.1.2  Cross bore to main bore ratio of 0.3 

Results of a high pressure vessel with main bore to cross bore size ratio of 0.3 are presented in 

figures 23 - 29 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 
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  Figure 23: K = 1.4 CB = 0.3                     Figure 24: K = 1.5 CB = 0.3 

 

 

 Figure 25: K = 1.75 CB = 0.3                  Figure 26: K = 2.0 CB = 0.3 
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     Figure 27: K = 2.25 CB = 0.3        Figure 28: K = 2.5 CB = 0.3 

 

Figure 29: K = 3.0 CB = 0.3 

Figures 23- 29: Hoop stress distribution per unit pressure for various thickness ratios along a radial  

    circular cross bore, having cross bore to main bore size ratio of 0.3. 
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unit pressure at the intersection was found to be 7.405 and 11.34, for analytical and FEA, 

respectively. Resulting to an increase of 9.17% and 36.9% when compared with similar stresses 

obtained in pressure vessels with a cross bore size ratio of 0.1 presented earlier in section 4.2.1.1. 

The structural stiffness of the cylinder reduce with the increase of the cross bore size leading to 

higher hoop stresses.  

The disparities in hoop stress distribution predicted by the analytical and FEA were more 

pronounced in K = 1.4, 1.5 and 1.75 as shown in Figures 22 to 25. However, as the thickness ratio 

increased, the hoop stress distribution curves generated by both the analytical and numerical 

methods tended to converge.  

Comparing the results given by the two methods, the minimal error was at 1.15% for K = 3.0, while, 

the thickness ratios of K = 2.0, 2.25 and 2.5 gave errors of 1.97%, 4.37% and 8.62%, respectively. 

The margin of error presented by other thickness ratios exceeded 15%. It was noted that the margin 

of error increased tremendously with reduction in thickness ratio. 

Geerden (1972) carried out similar studies on pressure vessels with a radial cross bore size ratio of 

0.3. The results by Geerden (1972) at the cross bore intersection are compared in Table 13 with 

corresponding ones obtained in the present study. 

Errors of 20.3%, 12.7% and 7.35%, for K = 1.5, 2.0 and 3.0 respectively were obtained upon 

comparison with the analytical solution presented in this study. Correspondingly, errors calculated 

upon comparison with FEA data were 12%, 3% and 8.58% for K = 1.5, 2.0 and 3.0, respectively. 

Thus, only the FEA results for K = 2 were within the acceptable margin of error. 
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Table 13 : Hoop stress per unit pressure at the intersection of cross bore size ratio of 0.3 

K 1.5 2.0 3.0 

Geerden, 1972 (Analytical) 7.98 5.43 4.16 

Present study (Analytical) 6.63 4.81 3.88 

Present study (FEA) 9.07 5.27 3.83 

 

4.2.1.3 Cross bore to main bore ratio of 0.5 

Results of a high pressure vessel with main bore to cross bore size ratio of 0.5 are presented in 

figures 30 - 36 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

         Figure 30: K =1.4 CB = 0.5              Figure 31: K = 1.5 CB = 0.5 
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     Figure 32: K = 1.75 CB = 0.5            Figure 33: K = 2.0 CB = 0.5 

 

     Figure 34: K = 2.25 CB = 0.5   Figure 35: K = 2.5 CB = 0.5 

 

Figure 36: K = 3.0 CB = 0.5 

Figures 30 -36: Hoop stress distribution per unit pressure for various thickness ratios along a radial 

  circular cross bore, having  cross bore to main bore size ratio of 0.5. 
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Notable variation in stress distribution between the two methods were seen in K = 1.4 and 1.5, as 

illustrated in Figures 30 and 31. However, as the thickness ratio increased, a significant reduction 

in the disparities were noted. The stress distribution predicted by the FEA was higher than that of 

the analytical method at the cross bore intersection. Nevertheless, FEA predicted lower hoop 

stresses than the analytical method towards the outer surface of the cylinder. 

The hoop stress at the cross bore intersection was a maximum in the cylinder with thickness ratio K 

= 1.4. In the same thickness ratio, a comparison between cross bore size ratio of 0.3 and that of 0.5 

at the cross bore intersection, as shown in figures 23 and 30, indicated a rise in hoop stress by 22.5% 

for analytical and 35.5% for FEA analyses. This trend signified that the hoop stress increases with 

increase in the cross bore size. This observation further confirms that the structural stiffness of the 

cylinder reduces with increase in the cross bore size leading to high magnitude of hoop stresses. 

Comparing the results from the two methods presented in this study, acceptable margin of error of 

3.3% and 5% were only obtained for the thickness ratios 2.0 and 2.25, respectively. The error margin 

given by other thickness ratios studied exceeded 11%. 

Several studies (Fessler and Lewin (1956); Faupel and Harris (1957) and Gerdeen (1972) have been 

done on cross bores, with a main bore to cross bore ratio of 0.5 in thick walled pressure vessels 

using both experimental and analytical methods. The comparison of results at the cross bore 

intersection from these studies with those of the present study are tabulated in Table 14. 

Faupel and Harris (1957) performed both analytical and experimental analyses on pressure vessels 

with K = 1.5. They reported maximum hoop stresses per unit pressure of 7.54 and 6.11 for analytical 

and FEA analyses, respectively. Gerdeen (1972) carried out an analytical study on the same cross 

bore size and reported a hoop stress value of 7.02 at the intersection. 
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The findings of these two previous studies indicated slightly lower hoop stresses than those 

presented in this work. The closest prediction was at 7% error when calculated using the analytical 

results developed in the present study. 

Table 14:  Hoop stress per unit pressure at the intersection of cross bore size ratio of 0.5 

K 1.5 2.0 2.5 3.0 

Fessler and Lewin (1956) Analytical - - - 3.53 

Fessler and Lewin (1956) Experimental - - - 3.5 

Faupel and Harris (1957) Analytical 7.54 4.78 3.94 - 

Faupel and Harris (1957) Experimental 6.11 4.37 3.73 - 

Gerdeen (1972) Analytical 7.02 4.67 - - 

Present study Analytical 8.11 5.91 5.14 4.77 

Present study FEA 11.95 6.11 4.65 4.02 

 

On cylinders with K = 2, Faupel and Harris (1957) gave hoop stresses per unit pressure at the 

intersection as 4.784 and 4.367 for analytical and experimental methods, respectively, while the 

analytical method by Geerden (1972) gave a hoop stress value at the cross bore intersection as 4.667. 

These two analytical solutions from previous studies compared favourably with those given by the 

analytical method in this study 
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In contrast, the results presented by Harris and Faupel for K = 2.5 gave lower hoop stresses of 3.936 

and 3.729 for analytical and experimental methods. The minimum error obtained upon comparison 

with FEA data exceeded 19%.  

 Fessler and Lewin (1956) predicted hoop stress at the intersection using both analytical and 

experimental method for K = 3.0. The study gave the hoop stress per unit pressure at the intersection 

as 3.525 and 3.5 for both analytical and experimental methods, respectively. Interestingly, a similar 

analytical study by Geerden (1972) predicted the magnitude of hoop stress as 3.5625. However, 

when these results were compared with those of the present study, errors exceeding 12.8% were 

noted.  

Another study by Ford and Alexander (1977) gave a stress expression for determining hoop stresses 

in thick walled cylinders with small cross bore as 
4K2+1

K2−1
pi, without stating the cross bore size. As 

defined by Steele et al., (1986), a small cross bore has a main bore to cross bore size ratio ≤0.5. 

Therefore, the results given by the preceding expression were compared with those presented in this 

study for small cross bores.  
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Figure 37: Comparison between hoop stress generated by Ford and Alexander (1977) and that  

                    obtained in this study 

 

As illustrated in Figure 37, the analytical results at the intersection presented by this study for cross 

bore size ratio of 0.5 were found to be in good agreement with those given by Ford and Alexander’s 

(1977) expression. Tabulation of these results is shown in Table 15. 

Table 15 : Hoop stress per unit pressure computed using Ford and Alexander’s expression and 

                  equation 3.28 for a cross bore size ratio of 0.5 

K 1.4 1.5 1.75 2.0 2.25 2.5 3.0 

Ford and Alexander’s (1977) expression 9.21 8 6.42 5.67 5.23 4.95 4.63 

Present study (Analytical equation 3.28) 9.07 8.11 6.67 5.91 5.44 5.14 4.77 

 

The percentage errors between these two methods computed based on the present study for K = 1.4, 

1.5, 1.75, 2.0, 2.25, 2.5 and 3.0 was 1.5, 1.34, 3.7, 4.04, 3.89, 3.6 and 3.02, percent respectively. 
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The error was observed to increase slightly with increase in thickness ratio. This occurrence was 

attributed to different assumptions made during the development of these solutions. For instance, 

the study by Ford and Alexander (1977) assumed a biaxial stress field in their analysis. Whereas, 

the present study assumed a triaxial field stress. Nevertheless, it was established that the hoop stress 

expression by Ford and Alexander (1977) predicts correctly the stresses at the intersection of a cross 

bore with size ratio of 0.5. 

4.2.1.4 Cross bore to main bore ratio of 0.7 

Results of high pressure vessels with a main bore to cross bore size ratio of 0.7 are presented in 

figures 38 - 44 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

 

 Figure 38 : K = 1.4 CB =0.7                          Figure 39: K = 1.5 CB = 0.7 

0.025 0.03 0.035
0

5

10

15

20

Radius along the cross bore r (m)

H
o

o
p

 s
tr

e
s
s
 p

e
r 

u
n

it
 p

re
s
s
u

re

 

 

Analytical 

FEA 

0.025 0.028 0.03 0.032 0.034 0.036 0.0375
2

4

6

8

10

12

14

16

Radius along the cross bore r (m)

H
o

o
p

 s
tr

e
s
s
 p

e
r 

u
n

it
 p

re
s
s
u

re

 

 

Analytical 

FEA 



110 
 

 

     Figure 40: K = 1.75 CB = 0.7   Figure 41: K = 2.0 CB = 0.7 

 

  Figure 42: K = 2.25 CB = 0.7   Figure 43: K = 2.5 CB = 0.7 

 

    Figure 44: K = 3.0 = 0.7  

Figures 38 - 44: Hoop stress distribution per unit pressure for various thickness ratios along a radial  

     circular cross bore, having cross bore to main bore size ratio of 0.7. 
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Similar stress distribution patterns to those discussed in the preceding section were observed in this 

section. A comparison between cross bore size ratio of 0.5 and 0.7, as illustrated in figures 30 -36 

and 38 -44, revealed that the magnitude of the hoop stress at the intersection, arising from the former 

cross bore, were higher than the corresponding ones given by the latter cross bore. This signified 

that the hoop stress at the intersection, increases with the increase of the cross bore size. This 

observation further confirmed that, the structural stiffness of the cylinder depends on the cross bore 

size. 

The results of hoop stresses given by the two approaches only converged when K = 1.75 and 2.0 as 

illustrated in Figures 40 and 41, indicating a stress transition point. Other thickness ratios had 

notably high disparities at the intersection ranging from 19% to 86% for K = 1.5 and 3.0, 

respectively. Nonetheless, the rate of disparity in hoop stress distribution reduced towards the outer 

surface of the cylinder. In fact, for cylinders with K = 2.25, 2.5 and 3.0 the inconsistency in stress 

distribution ceased beyond the radial distance of 0.045 m from the intersection. 

Most of the studies reviewed in the literature did not investigate cross bores with a size ratio of 0.7. 

Geerden (1972) studied cross bores with size ratios ranging from 0.125 to 0.667. However, the 

author indicated that the solutions give inaccurate results beyond size ratios of 0.667. Therefore, 

extrapolation of the results could not be done. 

4.2.1.5 Cross bore to main bore ratio of 1.0 

Results of high pressure vessels with a main bore to cross bore size ratio of 1.0 are presented in 

figures 45-51 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 
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       Figure 45: K =1.4 CB = 1.0    Figure 46: K = 1.5 CB = 1.0 

 

       Figure 47  Figure 47 : K = 1.75 CB =1.0            Figure 48: K = 2.0 CB = 1.0 

 

        Figure 49: K = 2.25 CB = 1.0        Figure 50: K = 2.5 CB = 1.0 
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    Figure 51: K = 3.0 CB = 1.0 

Figures 45-51: Hoop stress distribution per unit pressure for various thickness ratios along a radial  

   circular cross bore, having a cross bore to main bore size ratio of 1.0. 
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exceeding 15.7%. Fessler and Lewin (1956) studied a similar cross bore for K = 2 using both the 

analytical and FEA analyses. They reported magnitudes of hoop stress per unit pressure of 3.167 

and 5.034 for analytical and experimental approaches, respectively. On the other hand, the presented 

study gave stress magnitudes of 12.222 and 9.276 per unit pressure for the same cross bore size. 

These values were found to be lower than those presented in this study. Probably due to the use of 

different assumptions and associated experimental shortcomings especially during the 

determination of principal stresses. 

In general, it was observed that the total hoop stress in the cylinder increased due to the cross bore 

introduction. The total hoop stress in the cylinder is the summation of the hoop stress in the cylinder 

with a bore and the corresponding hoop stress generated by the pressurised cross bore when acting 

alone, among other factors. Thus, its high magnitude is as a result of the summation of the hoop 

stresses, because they are acting in the same direction.  

4.2.2  Radial stress component in the direction of the main cylinder 

Graphs illustrating the radial stress along the cross bore for each thickness ratio are presented as 

follows in figures 52-58 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

  

Figure 52 : Radial stress for K=1.4                  Figure 53: Radial stress for K = 1.5 
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Figure 54: Radial stress for K = 1.75                 Figure 55: Radial stress for K = 2.0 

 

Figure 56 : Radial stress for K = 2.25                     Figure 57: Radial stress for K = 2.5 
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Figure 58 : Radial stress for K = 3.0 

Figures 52 -58: Radial stress distribution per unit pressure along a circular cross bore, for various 

                          thickness ratios and cross bore sizes.  
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(1977).  
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size on K = 1.4 was considerably different. The appearance of the radial stress curve was close to a 

sinusoidal wave form but with sharp edges as shown in Figure 52. Moreover, the radial stress per 

unit pressure at the intersection was slightly lower at -1.414 for the same thickness ratio. Structural 

0.025 0.04 0.05 0.06 0.075
-1.05

-1

-0.95

-0.9

-0.85

Radius along the cross bore r (m)

R
a

d
ia

l 
s
tr

e
s
s
 p

e
r 

u
n

it
 p

re
s
s
u

re

 

 
Analytical

FEA CB 0.1

FEA CB 0.3

FEA CB 0.5

FEA CB 0.7

FEA CB 1.0



117 
 

stiffness of the cylinder is affected by the cross bore size. Large cross bores causes the structural 

stiffness of the vessel to reduce leading to higher stresses. 

 

On each thickness ratio, a similar stress distribution pattern as shown in Figures 52 to 58, was 

observed on the smallest cross bore size ratio of 0.1. At the intersection, the radial stress per unit 

pressure given by the smallest cross bore size was −1, after which it reduced sharply to a minima, 

before gradually increasing towards the outside surface of the cylinder. The magnitude of the lowest 

minima was at 0.734 in K = 2.25. Probably this occurrence might be associated with the stress 

extrapolation during the job analysis stage in Abaqus software, among other factors. The 

extrapolation process might lead to the prediction of inaccurate stresses at the surface of the cross 

bore. Further verification needs to be done to ascertain the accuracy of these results. It is, therefore, 

recommended that a software package, such as Boundary Integral Element, which is more suitable 

in analysing stresses at the surface of the elements, should be used. It is worth noting that the total 

radial stress along the cross bore is the summation of the radial stress in the main cylinder with a 

bore and the corresponding axial stress produced by the pressurised cross bore. However, since the 

cross bore is open ended, the corresponding axial stress is zero. Hence the total radial stress is equal 

to the gauge pressure. This observation agrees with the phenomenon that pressure is equal in all 

direction. 

 

4.2.3  Axial stress component in the direction of the main cylinder 

The axial stress per unit pressure along the transverse edge of the cross bore are presented under the 

following subheadings: 
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4.2.3.1  Cross bore to main bore ratio of 0.1 

In this section, results of axial stresses in a thick walled cylinder with a main bore to cross bore size 

ratio of 0.1 are presented in Figures 59-65 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

Figure 59: K = 1.4 CB = 0.1     Figure 60: K = 1.5 CB = 0.1 

 

 Figure 61: K = 1.75 CB = 0.1                   Figure 62: K = 2.0 CB = 0.1 
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                 Figure 63: K = 2.25 CB = 0.1         Figure 64: K = 2.5 CB = 0.1 

 

Figure 65: K = 3.0 CB = 0.1 

Figures 59-65: Axial stress distribution per unit pressure for various thickness ratios along a radial 

 circular cross bore, with a cross bore to main bore size ratio of 0.1. 
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the analytical method at -0.079 for K = 1.4. Only in K = 2.25, 2.5 and 3.0 were the stress predictions 

at the intersection by the two methods in good agreement as shown in Figures 63, 64 and 65.  

On the other hand, the highest tensile axial stress was given by the analytical method at K = 1.4 on 

the outside surface of the cylinder. Its magnitude was at 0.901. The stress curve given by the FEA 

data produced a concave curve with a maximum turning point as shown in Figures 59 to 65. The 

position of this turning point was noted to be skewed towards the outside surface of the cylinder. 

The maximum turning point occurred on K = 1.4 at 0.395, whereas the minimum was on K = 3.0 at 

0.0679 as illustrated by Figures 59 and 65, respectively. Except for K = 1.4 and 1.5, the axial stresses 

predicted by the FEA data at the outside surface of the cylinder was zero. Contrary to the plain 

cylinder, where axial stress is constant across the cylinder thickness, it was found to vary along the 

surface of the cross bore in all the studied cases.  

4.2.3.2  Cross bore to main bore ratio of 0.3 

Results of axial stresses in pressure vessels with a main bore to cross bore size ratio of 0.3 are 

presented in Figures 66 to 72 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

 

    Figure 66: K = 1.4 CB = 0.3         Figure 67: K = 1.5 CB = 0.3 
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      Figure 68: K = 1.75 CB =0.3                 Figure 69: K = 2.0 CB = 0.3 

 

       Figure 70: K = 2.25 CB = 0.3       Figure 71: K = 2.5 CB = 0.3 

 

  Figure 72: K = 3.0 CB = 0.3 

  Figures 66 - 72: Axial stress distribution per unit pressure for various thickness ratios along a radial  

      circular cross bore, with a cross bore to main bore size ratio of 0.3. 
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The axial stress distribution pattern observed in this section was similar to the one discussed in 

section 4.2.3.1. The disparity in stress distribution given by the two methods at the intersection was 

higher in K = 1.4 and 1.5 as shown in Figures 66 and 67. However, this disparity in stress distribution 

reduced as the thickness ratio increased as seen in Figures 71 and 72. The compressive axial stresses 

at the intersection given by the FEA ranged from -0.85 to -0.976, with the maximum stress occurring 

on K = 1.4. These stresses determined by FEA were close to those predicted by a similar study by 

Ford and Alexander (1977). The study by Ford and Alexander had predicted a constant axial stress 

along the cross bore of magnitude of -1.  

The stress distribution given by the two methods along the surface of the cross bore was in close 

agreement in K = 2.0, 2.5 and 3.0 as illustrated by Figures 70, 71 and 72. The maximum tensile 

stresses given by the FEA occurred on K = 1.75 at 0.231. Except for K = 1.5, the axial stresses at 

the outer surface of the cylinder was zero. The analytical approach gave the highest compression 

stress at the intersection as -0.878 at K = 3.0, whereas, the highest tensile stress occurred at the 

outside surface of the cylinder reaching a value of 0.1 in all the thickness ratios. 

4.2.3.3  Cross bore to main bore ratio of 0.5 

Results of axial stresses in a thick walled cylinder with a main bore to cross bore size ratio of 0.5 

are presented in figures 73 - 79 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 
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      Figure 73: K = 1.4 CB = 0.5      Figure 74: K = 1.5 CB = 0.5 

 

 

      Figure 75: K = 1.75 CB = 0.5                   Figure 76: K = 2.0 CB = 0.5 

 

 

Figure 77: K = 2.25 CB = 0.5                                Figure 78 : K = 2.5 CB = 0.5 
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Figure 79: K = 3.0 CB = 0.5 

Figures 73-79: Axial stress distribution per unit pressure for various thickness ratios along a radial 

 circular cross bore, with a cross bore to main bore size ratio of 0.5. 

As illustrated in Figures 73 to 79, the stress distribution had similar patterns as observed in the 

preceding sections 4.2.3.1 and 4.2.3.3. The FEA method gave the highest compressive axial stresses 

at the intersection. The stresses ranged between -0.963 to -0.984, being close to -1. Moreover, for 

K = 2.25, 2.5 and 3.0 the results from the analytical and FEA at the intersection were in close 

agreement. 

Furthermore, a good agreement in the prediction of stress distribution results by the two methods 

was seen in thickness ratios of K = 1.75, 2.0, 2.25, 2.5 and 3.0. As shown in Figures 75 to 79, the 

closest agreement in results between the two methods occurred only at the cross bore intersection, 

after which, there were large inconsistencies in the stress distributions given by these two methods. 

This occurrence may be as a result of some of the assumptions made during the derivation of the 

analytical solution. For instance, large cross bores may introduce varying magnitudes of bending 

and shearing stresses along curved surface of the cylinder which is contrary to the analytical 

assumptions during the development of the solution. 
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With the exception of K = 1.5, the data given by the FEA approach gave small values of tensile 

axial stresses. The highest stress value was reported at 0.0886 on K=3. From the FEA results, it was 

noted that there were no axial stresses at the outside surfaces of the cylinders in all the thickness 

ratios. In contrast, the analytical method predicted high tensile stresses at the cross bore surfaces. 

The highest analytical stress had a magnitude of 0.0375 occurring at K = 1.5. 

4.2.3.4  Cross bore to main bore ratio of 0.7 

Results of axial stresses in a thick walled cylinder for cross bore size ratio of 0.7 are presented in 

Figures 80-86 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

 

     Figure 80: K = 1.4 CB = 0.7     Figure 81: K = 1.5 CB = 0.7 
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Figure 82: K = 1.75 CB = 0.7                   Figure 83 : K = 2.0 CB = 0.7 

 

   Figure 84: K = 2.25 CB =0.7                  Figure 85 : K = 2.5 CB = 0.7 
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Figure 86: K = 3.0 CB = 0.7 

Figures 80 - 86: Axial stress distribution per unit pressure for various thickness ratios along a radial  

     circular cross bore, with a cross bore to main bore size ratio of 0.7. 

Inconsistencies in stress distributions predicted by the two methods on this cross bore size were 

more pronounced in this cross bore ratio than in the preceding three ratios. These stress distribution 

inconsistencies are shown in Figures 80 to 86. The disparity between the two methods was seen to 

increase after the centre of the cylinder thickness. From these illustrations, it was evident that there 

was no meaningful correlation between the results given by the two methods.  

The FEA approach predicted compressive axial stresses at the intersection which ranged from -

0.957 to -0.983. In contrast, the analytical method gave lower stresses ranging from -0.382 at K = 

1.4 to -0.68 at K = 2.0. 

At the outside surface of the cylinders, the analytical method gave higher values of tensile axial 

stress than FEA approach. The stresses given by the analytical method were constant at 0.96 for all 

the thickness ratios. Conversely, the FEA method predicted zero axial stress at the same point. The 

highest tensile stress given by the FEA method occurred in K = 1.4 at 0.168, whereas, the lowest 

was at K = 1.75 at 0.0143. 

0.025 0.035 0.045 0.055 0.065 0.075
-1

-0.5

0

0.5

1

Radius along the cross bore r (m)

A
x
ia

l 
s
tr

e
s
s
 p

e
r 

u
n

it
 p

re
s
s
u

re

 

 

Analytical 

FEA 



128 
 

4.2.3.5  Cross bore to main bore ratio of 1.0 

Results of axial stresses in a thick walled cylinder with cross bore size ratio of 1.0 are presented in 

figures 87 to 93 for K = 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

Figure 87: K = 1.4 CB =1.0                              Figure 88: K = 1.5 CB = 1.0 

 

        Figure 89: K = 1.75 CB =1.0                 Figure 90: K = 2.0 CB = 1.0 
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        Figure 91: K = 2.25 CB =1.0               Figure 92: K = 2.25 CB =1.0 

 

Figure 93: K = 3.0 CB = 1.0 

Figures 87 - 93: Axial stress distribution per unit pressure for various thickness ratios along a radial 

   circular cross bore with a cross bore to main bore size ratio of 1.0. 

 Disparity in axial stress distribution between the two methods was more pronounced in the middle 

of the cylinder as shown in Figures 87 to 93. However, the disparity in stress distribution was 

minimal at the cross bore intersection and at the outside surface of the cylinder.  

 

The stresses predicted by the two methods at the cross bore intersection were found to be in good 

agreement. The analytical stress at the intersection was compressive and constant at -1 for all the 
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thickness ratios, whereas, the FEA stresses ranged between -1.137 at K = 1.4 to -0.924 at K = 2.25. 

With the exception of K = 1.4 for the FEA method, the axial stresses predicted by the two approaches 

at the outside surfaces of the cylinders were zero. The FEA approach at K = 1.4 predicted an axial 

stress per unit pressure of magnitude -0.803 at the same point. Therefore, no tensile axial stresses 

occurred in this cross bore ratio as predicted by the analytical method.  

FEA method predicted a gradual change in stress distribution along the cylinder thickness, except 

for K = 1.4 where the stress varied sharply as shown in Figure 87. The tensile axial stresses resulting 

from the FEA method ranged from 0.0346 at K = 2.25 to 0.318 at K = 1.4. 

 

In conclusion, the axial stresses were found to vary along the cross bore depth in all the studied 

cases. This observation contradicted the earlier studies by Faupel and Harris (1957) and Ford and 

Alexander (1977) which had indicated that the axial stress is constant along the cross bore. Usually, 

the total axial stress along the cross bore is the summation of the axial stresses generated by the 

main cylinder with a bore and the corresponding radial stresses produced by the pressurised cross 

bore when acting alone. Thus, the sum of these stresses vary along the cross bore. In addition, the 

presence of varying magnitudes of bending moments and shearing stresses along the depth of the 

cross bore. This occurrence results to non-uniform stress field around the cross bore. 

 

4.2.4  General discussion on correlation of analytical and numerical solutions 

From the results presented in the preceding sections, it was evident that the developed analytical 

solution predicted correctly some of the principal stresses along the cross bore. In this study, the 

focus was mainly on the cross bore intersection, where stresses were high. A summary of the 

cylinder sizes and their corresponding cross bore size ratios, where the analytical hoop stresses’ 
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magnitudes were in agreement with FEA at the cross bore intersection, is shown in Table 16. 

Similarly, Table 17 shows the cylinder sizes and cross bore size ratios where the axial stresses’ 

magnitudes resulting from the two different approaches at the intersection were consistent.  

 

Table 16: Hoop stress at cross bore intersection where the analytical and FEA results were in  

       good agreement.  

Cylinder thickness ratio (K) Cross bore size ratio 

2.25 and 2.5 0.1 

2.5 and 3.0 0.3 

2.0 and 2.25 0.5 

1.75 and 2.0 0.7 

1.75 1.0 
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Table 17 : Axial stress at cross bore intersection where the analytical and FEA results were in  

       good agreement. 

Cylinder thickness ratio (K) Cross bore sizes 

2.25, 2.5 and 3.0 0.1 

2.5 and 3.0 0.3 

2.25, 2.5 and 3.0 0.5 

None 0.7 

All 1.0 

 

Out of 35 models studied, the analytical solution correctly predicted the magnitude of the hoop 

stresses in 9 models and that of axial stresses in 15 models. Further, the magnitude of the radial 

stresses along the cross bore compared favourably between the two methods in all the studied cases, 

except in the largest cross bore with size ratio of 1.0.  

In brief, for small cross bores, the total hoop stress along the cross bore in the cylinder is the sum of 

the hoop stresses in the main cylinder with a bore superimposed to the corresponding one generated 

by the pressurised cross bore when it is presumed to be acting alone. On the other hand, the total 

radial stress along the cross bore is the sum of the radial stresses in the main cylinder with a bore 

and the corresponding axial stresses produced by the pressurised cross bore. Likewise, the total axial 

stress is the summation of the axial stresses generated by the main cylinder with a bore and the 

corresponding radial stresses produced by the pressurised cross bore when acting alone.   



133 
 

A preliminary numerical study was done arbitrarily on K = 3.0 having the smallest cross bore size 

of 0.1 to determine separately the magnitude of the hoop stress generated by the main cylinder and 

that of the cross bore. For the main cylinder, the internal pressure was applied at the inside surface 

of the cylinder only. Similarly, for the cross bore, the internal pressure was applied on the cross bore 

only. The hoop stress per unit pressure due to the separate loading was found to be 3.0 and 0.88 for 

the main cylinder and cross bore, respectively. Thus, the sum of the hoop stresses per unit pressure 

in the cylinder was 3.88. Therefore, the hoop stress generated by the main cylinder alone was 77.3%, 

while that of the cross bore was 22.7%. According to Ford and Alexander (1977) this superimposing 

phenomenon is true whenever the size of the cross bore size is small, because other factors such as 

Poisson’s ratio have insignificant effects. Further comparison between maximum hoop stresses 

generated by the cross bored cylinder alone with that of a similar plain cylinder indicated an increase 

of hoop stress by 140%. 

Furthermore, the magnitude of the total radial stress per unit pressure obtained when the inside 

surfaces were loaded separately were respectively -0.9636 (compressive) and 0.0034 for the main 

cylinder and the cross bore. Likewise, for axial stress per unit pressure the corresponding values 

were 0.112 and -0.954 (compressive). 

Contrary to the assumption made in the derivation of the analytical solution, it was revealed that 

despite the magnitude of the axial stress being small it was not necessarily zero. Hence, the 

disparities in the analytical and numerical results.  

Moreover, the disparities in results resulting from the two approaches were attributed to some of the 

assumptions made during the solution development and the limitations of the Abaqus software, as 

presented in Chapter 3. For instance, in the development of the analytical solution it was assumed 

that the cylinder curvature has no effect on stress distribution. In addition, it was assumed that the 

axial stress was constant along the cross bore. This assumption of constant axial stress was contrary 
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to the axial results presented by this study. Nevertheless, the ability of the Abaqus software in 

predicting the stresses correctly at the surface was not confirmed. A numerical software suitable for 

the determination of surface stresses was recommended. 

It is worthwhile to mention that, the three principal stresses discussed in the preceding sections are 

mainly used in stress calculation in elastic failure theories. The commonly used theories in elastic 

failures are Tresca’s and Von Mises’s. These theories have many design applications such as in the 

design of pressure vessel, multi axial yield loading and in fracture mechanics (Comlecki et al., 

2007), among others. Thus, their importance can’t be over emphasized. However, since this study 

was based on fatigue failures, as presented earlier in section 3.3, only the hoop stress was more 

relevant. 

The development of an analytical solution in cross bored pressure vessels, whenever the cross bore 

is neither circular nor at radial position, involves complex mathematical expressions which are 

cumbersome and time consuming to solve. In this regards, therefore, only the FEA method was used 

in analysing stresses during the cross bore optimisation process, presented in the following section. 
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4.3 OPTIMISATION OF THE CROSS BORE 

Results generated during the optimisation process for the selected geometric parameters of the cross 

bore are presented in the following headings: 

4.3.1  Optimisation of the radial cross bore size 

In this section, the size optimisation for the radial circular cross bore was done on the five selected 

cross bore sizes. This optimisation process took into consideration the magnitude of maximum hoop 

stress in the cylinder, which results from the introduction of a circular radial cross bore. Stress 

concentration factors were then computed based on the maximum hoop stress in the cylinder and its 

corresponding location in a plain cylinder. 

4.3.1.1  Effects of cross bore size and cylinder thickness ratio on maximum hoop stress  

Figures 94 and 95 show the variation of hoop stress with cross bore size and thickness ratio, 

respectively. 

 

Figure 94:  Hoop stress vs cross bore size     Figure 95: Hoop stress vs thickness ratio 
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As shown in Figure 94, it was observed that the hoop stress increases with the increase in the cross  

bore size. This increase in the hoop stress was more pronounced in the cylinders with small thickness  

ratios, specifically K = 1.4 and 1.5. For instance, the comparison of hoop stress between the cross 

bore size ratio of 0.1 and that of 1.0 for K = 1.4 and 1.5 gave a hoop stress increase of 180.14% and 

167.64%, respectively. The structural stiffness of the cylinder is affected by both the thickness ratio 

and cross bore size. As the thickness ratio reduce, the structural stiffness reduce leading to high 

magnitudes of hoop stresses. Further reduction of the structural stiffness is observed whenever there 

is an increase in the cross bore size leading to much higher magnitudes of the hoop stresses. 

For a similar cross bore size ratio, the difference in hoop stresses for K = 2.5 and 3.0, showed a hoop 

stress increase of 60.94% and 32.95%, respectively. These observations revealed that the rise in 

hoop stress due to the size of the cross bore, reduces with increase in thickness ratio. Likewise, the 

structural stiffness of the cylinder increases with increase in thickness ratio leading to lower 

magnitudes of hoop stresses in comparison to cylinder with smaller thickness ratios. 

Figure 95 further confirmed the earlier finding that, the magnitude of hoop stress in a cross bored 

cylinder reduces as the thickness ratio increases. The increase in hoop stress due to the radial cross 

bore was highest in K = 1.4. The hoop stress increase in K = 1.4 between the cross bore size ratios 

of 0.3, 0.5, 0.7 and 1.0 in reference to 0.1 was 27.46%, 72.68%, 120.394% and 166.17%, 

respectively. In contrast, the rise in hoop stress was observed to reduce gradually with an increase 

in the thickness ratio. The lowest rise in hoop stress was reported at K=3 since at this value, the rise 

in hoop stress between cross bore size ratio of 0.1 in comparison to that of cross bore size ratios of 

0.3, 0.5 and 0.7 was below 14.34%. Only, a rise of 32.96% in hoop stress between similar cross bore 

sizes as indicated in preceding paragraph was noted. 
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 The magnitude of hoop stress in a cylinder with radial cross bore was higher in comparison to a 

similar plain cylinder without a cross bore as indicated in Figure 95. This observation was in line 

with other previous studies done by Masu (1997), Comlecki et al. (2007) and Makulsawatudom et 

al. (2004).  

Noticeably, the cross bore size ratio of 0.1 gave the lowest rise in hoop stress when compared to the 

other four cross bore sizes.  Further comparison was done between the hoop stresses generated by 

the cross bore size ratio of 0.1 and that of the plain cylinder without the cross bore. This comparison 

established the behaviour of stress variation in reference to the plain cylinder. The rise in hoop stress 

for thickness ratios 1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0 was found to be 174.67%, 178.5%, 186.34%, 

192.2%, 183.58%,186.97 and 204.4%, respectively, with the lowest and highest rise, occurring at 

K = 1.4, and 3.0 respectively. A significant drop in the hoop stresses between K = 2.0 and 2.25 was 

also observed. This stress drop implied an existence of stress transition point between the two 

thickness ratios. This is probably an indication of change of state of stress from plane stress to plane 

strain. Usually at the transition point there is stress redistribution around the cross bore that may 

lead to the stress drops and peaks.  

In general, the cross bore size ratios of 0.1 gave the lowest hoop stress, while the highest stress 

occurred in 1.0. Similar occurrence had been reported by other previous studies by Hearn (1999) 

and Nihous et al. (2008). Usually large cross bores entail excessive removal of materials in the 

cylinder, and as a result, only little material is left to bear the applied load. This excessive removal 

of material leads to an increase in hoop stress which might cause failure of the cylinder.   

4.3.1.2 Location of maximum principal stress in the cylinder 

The location of the maximum hoop stress on the cylinder generally occurred along the radial cross 

bore. The exact position for all the studied cases are tabulated in Table 18. This data is given in the   
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Table 18 : Location of maximum hoop stress in the cylinder 

Thickness Cross bore size 

ratio 

Radius R (m) Horizontal distance measured from the 

transverse axis  of the  main cylinder (m) 

1.4 0.1 0.026 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0.001 

1.5 0.1 0.02625 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0 

1.75 0.1 0.02625 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0 
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Thickness Cross bore size 

ratio 

Radius R (m) Horizontal distance measured from the 

transverse axis  of the  main cylinder (m) 

2.0 0.1 0.025 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0.001 

2.25 0.1 0.025 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0.001 

2.5 0.1 0.025 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0.001 
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Thickness Cross bore size 

ratio 

Radius R (m) Horizontal distance measured from the 

transverse axis  of the  main cylinder (m) 

3.0 0.1 0.026 0 

 0.3 0.025 0 

 0.5 0.025 0 

 0.7 0.025 0 

 1.0 0.025 0.001 

 

form of the main cylinder radius and the horizontal distance from the transverse edge of the cross 

bore. From this tabulation, the maximum hoop stress for most of the studied cases occurred in the 

transverse plane, at the intersection between the main bore and the cross bore except for the values 

of K = 1.4, 1.5 and 1.75.  The location of the maximum hoop stress for K = 1.4, 1.5 and 1.75 due to 

the cross bore size ratio of 0.1 occurred approximately 1.25 mm away from the intersection along 

the transverse plane. This occurrence was attributed to the change in state of stress from plane stress 

to plane strain usually resulting from geometry change. The change of state of stress results to stress 

redistribution around the cross bore causing stress peaks. Similar observations had earlier been 

reported by Masu (1997). 

Generally the maximum hoop stress occurred along the cross bore transverse plane for all the cross 

bore sizes ratios between 0.1 and 0.7. This occurrence signified an existence of uniform stress field 

distribution around the cross bore indicating plane stress conditions. 
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With the exception of K = 1.5 and 1.75 it was also noted that the location of maximum principal 

stress due to the largest cross bore size, 1.0, shifted slightly away from the cross bore transverse 

plane. Upon loading, large cross bores experience varying bending and shearing stresses along cross 

bore. This occurrence causes non uniform stress fields around the cross bore leading to the location 

shift of maximum principal stresses. 

4.3.1.3  Effects of cross bore size and thickness ratio on hoop stress concentration factor 

Stress Concentration Factor (SCF) is a dimensionless quantity that enables effective comparison of 

stresses between different parameters regardless of their size, shape, thickness or the applied load. 

In this work the stress concentration factor was defined as the ratio of localised critical stresses in a 

cross bore cylinder to the corresponding one in a similar cylinder without a bore. The SCFs for 

cylinders with different cross bore sizes and thickness ratios were calculated based on locations with 

the highest magnitudes of hoop stress in the cylinder. Figures 96 and 97 show the variation of stress 

concentration factor with cross bore size and thickness ratio.  

 

  Figure 96: Hoop SCF vs cross bore size    Figure 97: Hoop SCF vs thickness ratio 
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As illustrated in Figure 96, the hoop stress concentration factor was lowest at smallest cross bore 

with size ratio of 0.1. Moreover, the lowest SCF given by this cross bore size occurred in K = 2.25 

with a magnitude of 2.836, while the highest stress concentration factor predicted by the same cross 

bore size occurred at K = 3.0 with a magnitude of 3.044, being an increase of 7.33%. In contrast, 

the highest SCF in the cylinder was reported in the largest cross bore size of 1.0. In this cross bore 

size of 1.0, the highest SCF occurred at K = 1.4 with magnitude of 7.687, whereas, the lowest SCF 

was noted at K=3.0 with a magnitude of 4.047. Generally, it was observed that, the magnitude of 

SCF increased with increase in the cross bore size. As the cross bore size increase, the structural 

stiffness of the cylinder reduce. This leads to generation of high hoop stresses and consequently 

high SCFs. 

 

With the exception of the smallest cross bore size, the SCF was observed to reduce with increase in 

the thickness ratio as illustrated in Figure 97. The rise in magnitude of SCF given by the smallest 

cross bore of 0.1, in comparison to similar ones of the plain cylinder for K= 1.4, 1.5, 1.75, 2.0, 2.25, 

2.5 and 3.0 which were found to be 188.8%, 197.7%, 207.8%, 192.2%, 183.6%,186.9% and 204.4%, 

respectively. This rise in SCF profile was slightly higher than that of hoop stresses presented earlier 

in Section 4.3.1.1. The rise in stress value was attributed to the consideration of location of the 

maximum principal stress during the computation of the SCF. It is worthwhile noting that the hoop 

stress does not take into consideration the location effects. 

A summary of some of the results from the present work in comparison to the existing published 

data is indicated in Table 19.  
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Table 19 : Comparison of stress concentration factors for radial cross bores 

 Comlekci  

et al. (2007) study 

 

Present study Makulsawatudom 

et al. (2004) study 

Comlecki  

et al. (2007) 

study 

Present 

study 

K CB = 0.1 CB = 0.1 CB = 0.1 CB = 0.25 CB =0.25 

1.4 2.76 2.888        - 3.01 3.482 

1.5 2.81 2.977       - 2.95 3.361 

1.75 2.93 3.078        - 2.91 3.208 

2.0 3.03 2.922      2.89 2.92 3.090 

2.25 3.11 2.869        - 2.95 3.036 

2.5 3.18 3.044         - 2.98 3.03 
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Unlike in the other previous studies, the comparison of SCF took into consideration both the cross 

bore size and the thickness ratio. The results of the hoop SCF presented in this study were 

compatible with those published by Comlecki et al. (2007) and Makulsawatudom et al. (2004) for 

the cross bore size ratio of 0.1. Comlecki et al. (2007) published other additional data having 

different cross bore size ratios. The closest cross bore size ratio to the present study being 0.25. This 

occurrence necessitated the results of the presented study to be interpolated between the cross bore 

ratios of 0.1 and 0.3 to give SCF values for 0.25. The values were read from Figure 96. Upon 

comparison, the two results were also found to be in close agreement.  

Contrary to the solution of the circular hole in a plate, where the stress concentration factor reduces 

with increasing hole size (Nagpal et al., 2011), and a maximum SCF of 3.0, regardless of the hole 

size was found, the hoop stress as well as stress concentration factor resulting from the introduction 

of circular radial cross bores in thick cylinders was found to increase with an increase in the cross 

bore size. For instance, in the development of the solution of the circular hole in a plate, it was 

assumed that the width of the plate is large in comparison to the cross bore. Further, it was also 

assumed that the applied load was in the axial position. In addition, the plane stress theory ignores 

the effects of the shearing stress as well as the bending moment around the cross bore. Thus, it 

assumes a uniform stress distribution field around the cross bore. These assumptions might not be 

applicable in thick walled cylinders due to their curvature nature.  

Another analytical study published by Faupel and Harris (1957) gave the SCF for a circular hole in 

a closed thick cylinder as being constant at 2.5 without taking into consideration the size of the cross 

bore. This analytical solution by Faupel and Harris (1957) was also in contradiction with the findings 

of this study. In conclusion, the size of a cross bore as well as the thickness ratio plays a significant 

role in determining the hoop stress as well as the stress concentration factor. These finding are also 

extended to the fatigue behaviour of the component.  
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4.3.1.4 Shearing stresses 

4.3.1.4.1 Effects of cross bore size and thickness ratio on maximum shearing stress  

 

The magnitude of maximum shear stress depends on the difference between the hoop and radial 

stresses. Since the hoop stress depends on the thickness ratio, a direct comparison among the 

thickness ratios is not possible. The maximum shearing stress was found to be affected by both the 

cross bore size and thickness ratio as illustrated in Figures 98 and 99.  

 

    Figure 98: Maximum shear stress vs         Figure 99: Maximum shear stress vs  

           cross bore size                    thickness ratio 

The maximum shear stress increased with an increase in cross bore size. Moreover, it was also 

observed to reduce with increase in the thickness ratio. Remarkably, a similar stress pattern 

exhibited previously in graphs of hoop stress versus the cross bore size ratio, was also observed in 

shear stress curves. This occurrence was attributed to the varying magnitude of the hoop stress along 

the cross bore. Since the corresponding radial stress along the cross bore is constant. 

Generally, the highest magnitude of shear stress was observed to occur in RZ plane of the cylinder 

in the radial circular cross bores. 
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4.3.1.5 Elastic failure theories 

In this section the working stresses together with their corresponding stress concentration factors 

were computed using elastic failure theories applicable to ductile materials, namely the Tresca’s and 

the Von Mises’s Theories. The results obtained were then evaluated to establish their effects on 

cross bore size in addition to the thickness ratio.  

4.3.1.5.1 Effects of the cross bore size and cylinder thickness ratio on elastic working stress  

 

A similar stress distribution pattern exhibited in the previous section was also displayed in this 

section as shown in Figures 100 to 103.  

  

Figure 100: Tresca's stress vs cross bore size                      Figure 101: Von Mises’s stress vs cross 

bore size 
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Figure 102: Tresca’s stress vs thickness ratio               Figure 103: Von Mises’s stress vs thickness 

ratio 

 

Usually, the difference between the working stress of the Tresca’s and the Von Mises’s Theories in 

plain cylinders without cross bore is approximately 15.5%. However, after the introduction of the 

cross bore, it was seen that the difference in the magnitude resulting from the two theories reduced 

tremendously. For instance, for K=1.4, the differences in working stress magnitude between the two 

failure theories due to the introduction of cross bore size ratios of 0.1, 0.3, 0.5, 0.7 and 1.0 were 

1.13%, 0.08%, 0.06%, 0.1% and 0.92%, respectively. A similar trend was also replicated in K=3 

where the working stress differences for the same cross bore ratio sizes discussed previously were 

1.32%, 0.2%, 0.16%, 0.21% and 0.43%, respectively. This occurrence was attributed to small 

magnitudes of axial stresses along the cross bore surface. In fact, the analytical solution derived 

earlier in Chapter 3, assumed a zero magnitude of axial stress along the cross bore. This finding was 

contrary to that of plain cylinders where the axial stress is constant across the thickness and its 

magnitude is relatively high. 

Further comparison between cross bored cylinders and plain cylinders revealed higher working 

stresses in the latter as illustrated in Figures 102 and 103.  
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4.3.1.5.2 Effects of cross bore size and cylinder thickness ratio on elastic working stress 

concentration factor 

The variation of elastic working stress concentration factor with cross bore size and thickness ratio 

are illustrated in Figures 104 to 107. 

 

 

Figure 104: Tresca’s SCF vs cross bore size                Figure 105: Von Mises’s SCF vs cross bore 

size 

 

   

Figure 106: Tresca’s SCF vs thickness ratio Figure 107: Von Mises’s SCF vs thickness 

           ratio 

 

It was observed that as the cross bore size ratio increased from 0.1 to 1.0, the maximum working 

stresses predicted by the two theories increased by a factor of approximately 2.5 to 7.07, in K = 1.4. 

Likewise, within a similar range, the minimum increase in working stresses was recorded in K = 3 
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where the working stress factor predicted by the two theories increased from 2.1 to 3.1. Therefore, 

for a pressure vessel to operate under elastic stress conditions, the internal pressure would be 

reduced by a similar corresponding factor with regard to the choice of thickness ratio and the cross 

bore size. 

From the preceding sections, it is evident that the stress variation emanating from the elastic working 

stress and the maximum shear stress exhibited a close resemblance to those of hoop stress and stress 

concentration factor. This occurrence was attributed to the fact that these stress theories are 

dependent on the three principal stresses, namely hoop, radial and axial. From section 4.2, it was 

established that only the maximum principal stress (hoop) had a major effect on the overall stress 

along the cross bore depth due to its high magnitude. This is because the magnitude of the radial 

stress was found to be constant along the cross bore, while that of the axial stress was small. With 

this information, therefore, from now henceforth, the subsequent sections were more based on the 

hoop stress and the hoop stress concentration factors. 

Figures 108 and 109 show the optimal SCF curves at each cross bore size ratio and thickness ratio 

obtained from the studied radial circular cross bores.  

 

Figure 108: Optimal SCF vs cross bore size  Figure 109: Optimal SCF vs thickness ratio 
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Amongst the five cross bore sizes studied, the smallest cross bore size ratio of 0.1 gave the lowest 

magnitude of SCF of 2.836 at K=2.25. This SCF magnitude indicated a reduction of pressure 

carrying capacity by 64.7% in comparison to a similar plain cylinder without a cross bore. This 

pressure carrying capacity was slightly higher than 60% cited earlier by Masu’s (1989) study. In 

this regard, therefore, this cross bore size ratio was selected as the optimal size for a radial circular 

cross bore.  

In the succeeding sections, further cross bore optimisation is done based on this optimum cross bore 

size ratio of 0.1, to establish the corresponding optimal location and shape of this cross bore. 
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4.3.2    Optimisation of cross bore shape and location 

4.3.2.1  Introduction 

In this section, the results obtained by offsetting a circular and elliptical optimised cross bore at five 

different location along the X axis plane, as shown in Figure 110 are presented. The actual offset 

positions 𝑥̅  in the cylinders were 0, 6, 12, 17.125 and 22.5 mm. However, for the results to be 

compared directly with the existing literature, these offset position were converted to either offset 

location ratio or an included angle. As illustrated in Figure 110, the actual offset distance 𝑥̅, was 

divided by the main bore radius Ri, i.e., x̅ Ri
⁄ , to give the offset location ratio. Whilst, the included 

angle 𝜃 was calculated using the trigonometric relationship between 𝑥̅ and  Ri. 



x

 

Figure 110 : Configuration of an offset cross bore 

The data showing the conversion of these offset positions is tabulated in table 20. 
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Table 20: Conversion of offset positions 

S/No. 
Actual Offset 

distance  𝑥̅ mm 

in the cylinder 

Actual Offset 

distance  𝑥̅ m 

in the cylinder 

Offset ratio Offset angle 

𝜃0 

1 0 0 0 0 

2 6 0.006 0.24 13.8 

3 12 0.012 0.48 25.64 

4 17.125 0.017125 0.685 43.24 

5 22.5 0.0225 0.9 64.16 

 

4.3.2.2 Offsetting of Circularly shaped Cross bore 

4.3.2.2.1 Location of maximum principal stress in the cylinder 

 

The location of maximum principal stress on the cylinder due to the introduction of an offset circular 

cross bore is tabulated in Table 21. The data is presented in the form of the main cylinder radius and 

the corresponding horizontal distance measured from the transverse plane of the main cylinder. 

The radial location of the maximum hoop stress in the cylinder as shown in Table 21 occurred 

mostly at the intersection between the cross bore and the main bore. However, with exception of 

radial cross bore, the location of maximum principal stress was observed to occur slightly away 

from the cross bore transverse position in the cylinder. In most of the offset cross bores, the location 

of maximum principal stress occurred close to plane axis AA (see Figure 110). This observation 

was contrary to the notion that maximum principal stress occurs along the cross bore transverse 

position, plane BB. Thus, this occurrence implied that any reduction in offset location ratio results 

to an increase of hoop stress. This trend confirms that the stress field distribution in the vicinity of 

cross bore is not uniform whenever the cross bore is at an offset position. Hence the plane stress 

conditions cease to apply.  



153 
 

Table 21 : Location of the maximum hoop stress in the cylinder due to an offset circular cross bore 

K 
Offset  

Ratio  

Actual offset 

distance  𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder 

Position of Maximum Principle 

Stress in the Cylinder (m) 

   Plane AA Plane BB Plane CC Radius R            

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder  

1.4 0 0  0 0.0025 0.026 0 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.0111 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.0163 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.0206 

1.5 0 0  0 0.0025 0.02625 0 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.0114 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.0166 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.02061 
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K Offset  

Ratio  

Actual offset 

distance  𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder  

Position of Maximum Principle 

Stress in the Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

1.75 0 0  0 0.0025 0.02625 0 

0.24 0.006 0.0035 0.006 0.0085 0.0258 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.0111 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.01631 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.0206 

2.0 0 0  0 0.0025 0.025 0 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.0111 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.0163 

0.9 0.0225 0.02 0.0225 0.025 0.0253 0.021 
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K Offset  

Ratio  

Actual offset 

distance  𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder  

Position of Maximum Principle 

Stress in the Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

2.25 0 0  0 0.0025 0.025 0 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.0265 0.012 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.0163 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.0206 

2.5 0 0  0 0.0025 0.0025 0 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.0264 0.012 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.0163 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.02108 
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K Offset  

Ratio  

Actual 

offset 

distance  

𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder  

Position of Maximum Principle Stress 

in the Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

3.0 0 0  0 0.0025 0.025 0 

0.24 0.006 0.0035 0.006 0.0085 0.0287 0.006 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.0111 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.0163 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.0211 

 

Stress peaks occurring slightly away from the cross bore intersection were observed at various 

thickness ratios in all the offset positions. As noted previously, the location shift of the stress peak 

was also attributed to the change of state of stress from plane stress to plane strain. Existence of 

varying magnitudes of bending moments and shearing stress at each offset position due to the 

curvature of the cylinder also affect the location of the stress peak.  

The stress peaks occurring away from the intersection of the cross bore and main bore lead to high 

stress concentration factors. The magnitude of SCF is obtained by the ratio of maximum hoop stress 

in a cross bored cylinder and the corresponding one in a similar plain cylinder. It is worth noting 
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that the hoop stresses in plain thick cylinders are at a maximum at the inner surface of the bore and 

reduce gradually towards the outside surface of the cylinder. Thus, the magnitude of dividing ratio 

reduces towards the outside surface of the cylinder. Remarkably, only in K = 2.0 the stress peak 

occurred at the intersection of the cross bore and the main bore in all the offset positions. 

4.3.2.2.2 Effects of cross bore location on hoop stress concentration factor 

 

The curves showing the variation of hoop stress concentration factor with offset location and 

cylinder thickness ratios are shown in Figures 111 and 112, respectively. 

 

Figure 111: Hoop SCF vs cross bore location                Figure 112: Hoop SCF vs thickness ratio 

The magnitude of hoop stress concentration factor at the radial position (zero offset) ranged from 

2.836 to 3.078, occurring at K= 2.25 and 1.75. However, these SCF values recorded at radial 

position were generally higher than those at the 0.24 offset position except for K=3.0. The SCF at 

K=3.0 had the highest peak magnitude of 3.825. This stress peak was attributed to the position of 

the maximum hoop stress in the cylinder which occurred slightly away from the intersection at a 

radius of 0.0287 m.  
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 The hoop stress concentration magnitude at 0.48 offset position was slightly higher than that of 

0.24, for cylinders with K=1.4, 1.5, 2.25 and 2.5. However, for the other thickness ratios, the SCF 

magnitude was seen to reduce gradually.  

For all the cylinders studied, the lowest magnitudes of SCF occurred either at 0.689 or 0.9 offset 

positions. For K= 1.5, 1.75 and 2.25, the minimum SCF were recorded at 0.689 with optimal 

magnitudes of 2.392, 2.391, 2.521, respectively, whereas for K= 1.4, 2.0, 2.5 and 3.0 the minimum 

SCF occurred at the 0.9 offset position. Respectively, the optimal SCF magnitudes were 2.312, 

2.404, 2.365 and 2.535. A graph showing optimal SCF magnitudes at each thickness ratio for an 

offset circular cross bore is shown in Figure 113. 

 

Figure 113: Optimal hoop SCF vs thickness ratio     Figure 114: Optimal hoop SCF vs cross bore  

        location 
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K=2.25, 1.5, 1.75, 1.4 and 1.4. A graph showing optimal SCF magnitudes at each offset position for 

an offset circular cross bore is exemplified in Figure 114. 

Interestingly, only the SCF for K=2.0 reduced gradually for the 0 to 0.9 offset positions. This 

observation was in agreement with other previous studies by Masu (1998) and Cheng (1978).  Masu 

(1997) studied slightly smaller circular cross bore sizes, having a size ratio of only 0.064 for K=2.0. 

Even though the cross bore sizes were smaller, the data presented were generally consistent with 

the finding of this study. The SCFs presented by Masu (1997), considering the offset positions 0, 

0.24 and 0.9, were 2.30, 1.9 and 1.33 respectively. This being a reduction of 17.3% and 42.17% 

from the values at the radial position. However, low SCF reductions of 8.86 % and 17.72% were 

reported by this study at the same offset position as Masu (1998). These two studies indicated a 

downward trend in SCFs as a result of circular cross bore offsetting. Nevertheless, the variation in 

percentage reduction of the SCFs between the two studies was attributed to the dissimilar sizes of 

the cross bore sizes studied. Another study conducted by Cheng (1978) experimentally investigated 

three different circular cross bore sizes, with size ratios of 0.05, 0.1 and 0.2 at varying offset 

locations for K=1.84. The SCFs given by the cross bore size ratio of 0.05 at offset position of 0.317 

and 0.633 were 2.81 and 2.35, respectively. Likewise, the SCFs given by a cross bore size ratio of 

0.1 at offset positions 0.3 and 0.6 2.58 and 2.23, respectively. Lastly, the SCFs reported for cross 

bore size ratio of 0.2 at offset positions of 0.267 and 0.533 were 2.5 and 2.08. This data by Cheng 

(1978) confirmed a significant reduction in SCFs due to the offsetting of the cross bore.  

Another study by Makulsawatudom et al. (2004) erroneously cited the optimal offset location as 

being 0.112b, where b was termed as the outer radius of the cylinder. Unfortunately, this study by 

Makulsawatudom et al. (2004) had only been done on a single offset position. Therefore, this 

discussion did not take into consideration the results published by this author on offsetting of 

circular cross bores. 
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Further computation was done to establish the highest possible reduction of SCF that can be 

achieved by offsetting of the cross bore. The computation was based on the maximum and minimum 

SCF magnitudes obtained at each thickness ratio. Similar approaches were also done at each offset 

position. For K=1.4, 1.5 1.75, 2.0, 2.25, 2.5 and 3.0, the possible SCF reductions given by this 

optimisation process were 20.28%, 13. 973%, 16.73%, 17.72%, 11.61%, 17.57% and 33.73%, 

respectively. Likewise, for the offset locations 0, 0.24, 0.48, 0.685 and 0.9 the corresponding 

reductions were at 6.32%, 33.05%, 18.17%, 16.61% and 10.87%, respectively. 

In general, whenever a circular cross bore is drilled in an offset position, the axis of the circular 

cross bore cylinder does not intersect with that of the main bore. Thus, the resulting configuration, 

when viewed at the intersection between the cross bore and main bore, resembles a slender elliptical 

hole with major and minor diameters. The major diameter, denoted as ‘a’ which is parallel to the 

direction of hoop stress tends to increase when the offset position is moved further away from the 

transverse plane of the cylinder. Whereas, the corresponding minor diameter, denoted as ‘b’, which 

is parallel to the axial direction of the cylinder reduces. This diameter configuration where a > b 

leads to reduction in hoop stress as cited by Harvey (1985). Moreover, in section 3.3.3.2, the 

diameter ratio of 2 was proved as the optimal ratio in elliptical cross bores.  

In conclusion, the optimal location for K= 1.5, 1.75 and 2.25, was at 0.689 offset ratio, while for 

K= 1.4, 2.0, 2.5 and 3.0 was realized at 0.9 offset position. Coincidently, the overall minimum SCF 

due to the introduction of a circular offset cross bore, with size ratio 0.1, satisfied both the thickness 

ratio and the offset position conditions. This optimum location was found to be at 0.9 offset position 

for K=1.4, with a SCF magnitude of 2.312. This SCF magnitude indicated a reduction of pressure 

carrying capacity by 56.7% in comparison to a similar plain cylinder without a cross bore. This 

pressure carrying capacity was slightly lower than 60% cited earlier by Masu’s (1989) study. 
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4.3.2.3 Elliptically shaped cross bores 

4.3.2.3.1 Location of maximum principal stress in the cylinder 

 

The location of maximum principal stresses on the cylinder due to the introduction of an offset 

elliptical cross bore is tabulated in Table 22. The data are presented in the form of the main cylinder 

radius and the corresponding horizontal distance measured from the transverse plane of the cylinder. 

With the exception of K= 2.25 and 3.0, the radial location of the maximum stress peaks in the 

cylinder occurred away from the cross bore intersection, signifying stress transition points. Probably 

from the plane stress to plane strain. Similar to the circular offset cross bores, the location of 

maximum principal stress in the cylinder occurred away from the cross bore transverse axis plane 

BB. In fact, the position of the maximum principal stress in the cylinder occurred close to plane CC 

(see Figure 110). This observation was in contrast to that discussed earlier in section 4.3.2.2.1 for 

circular offset cross bores. This trend implied that any increase in offset location ratio results to an 

increase of the hoop stress. 

 Moreover, the location of the maximum principal stress in the cylinder, defined in terms of radial 

and transverse positions, also signified the presence of a high stress concentration factor in the 

cylinder. Usually, in pressure vessels design, the use of reinforcement pads are recommended 

whenever the maximum hoop stress is anticipated to occur close to the outside surface of the 

cylinder in order to prevent any failure
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Table 22 : Location of the maximum hoop stress in the cylinder due to an offset elliptical cross bore 

K 
Offset  

Ratio  

Actual 

offset 

distance  

𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the transverse 

axis of the main cylinder 

Position of Maximum Principle Stress in the 

Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

1.4 0 0  0 0.0025 0.0336 0.0025 

0.24 0.006 0.0035 0.006 0.0085 0.035 0.0085 

0.48 0.012 0.0095 0.012 0.0145 0.035 0.0145 

0.685 0.017125 0.014625 0.017125 0.019625 0.035 0.019625 

0.9 0.0225 0.02 0.0225 0.025 0.035 0.025 

1.5 0 0  0 0.0025 0.0359 0.0025 

0.24 0.006 0.0035 0.006 0.0085 0.0375 0.0085 

0.48 0.012 0.0095 0.012 0.0145 0.0375 0.0145 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.019625 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.025 
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K Offset  

Ratio  

Actual 

offset 

distance  

𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder  

Position of Maximum Principle Stress 

in the Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

1.75 0 0  0 0.0025 0.0422 0.0025 

0.24 0.006 0.0035 0.006 0.0085 0.04375 0.0085 

0.48 0.012 0.0095 0.012 0.0145 0.04375 0.0145 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.014625 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.020158 

2.0 0 0  0 0.0025 0.0265 0.0024567 

0.24 0.006 0.0035 0.006 0.0085 0.0475 0.008392 

0.48 0.012 0.0095 0.012 0.0145 0.05 0.01439 

0.685 0.017125 0.014625 0.017125 0.019625 0.05 0.019625 

0.9 0.0225 0.02 0.0225 0.025 0.05 0.025 
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K Offset  

Ratio  

Actual 

offset 

distance  

𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder 

 

Position of Maximum Principle Stress 

in the Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

2.25 0 0  0 0.0025 0.025 0.000491 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.007933 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.00969 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.014625 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.02 

2.5 0 0  0 0.0025 0.025 0.000491 

0.24 0.006 0.0035 0.006 0.0085 0.052 0.0085 

0.48 0.012 0.0095 0.012 0.0145 0.0625 0.0145 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.014625 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.02 
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K Offset  

Ratio  

Actual 

offset 

distance  

𝑥̅ m 

Distance of the Cross bore  

Configuration measured from the 

transverse axis of the main cylinder  

Position of Maximum Principle Stress 

in the Cylinder 

   Plane AA Plane BB Plane CC Radius R 

(m) 

Horizontal distance 𝑥̅,   

measured from the 

transverse axis of the  

main cylinder 

3.0 0 0  0 0.0025 0.025 0.0017648 

0.24 0.006 0.0035 0.006 0.0085 0.025 0.00793 

0.48 0.012 0.0095 0.012 0.0145 0.025 0.00969 

0.685 0.017125 0.014625 0.017125 0.019625 0.025 0.01463 

0.9 0.0225 0.02 0.0225 0.025 0.025 0.02 

 

 

 4.3.2.3.2 Effects of elliptical cross bore location on hoop stress concentration factor 

 

The graphs showing the variation of hoop stress concentration factors with offset locations and 

thickness ratios are shown in Figures 115 and 116, respectively. 
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Figure 115: Hoop SCF vs cross bore location due to an elliptical cross bore 

 

Figure 116: Hoop SCF vs cylinder thickness ratio due to an elliptical cross bore 

 

With the exception of K=1.5 and 1.75, the lowest magnitudes of hoop stress concentration factor in 

a thick cylinder with elliptical cross bore occurred at the radial position, ranging from 1.733 to 

2.375.  As illustrated in Figures 115 and 116, it was generally observed that the stress concentration 

factors due to the elliptical cross bore tend to increase with increasing offset location ratio. The 

highest SCF peaks were observed at the 0.48 and 0.9 offset positions for K=2.5 and 2.0, with 

respective magnitudes of 8.457 and 7.661. These high peaks were attributed to the location of 
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maximum hoop stress being close to the outside surface of the cylinder. Conversely, the thickness 

ratio of 2.25 gave the lowest SCF magnitudes for all offset positions except at 0.48. At 0.48 offset 

position, the minimum SCF occurred at K=1.75. As tabulated in Table 22, the location of these 

lowest SCFs in the cylinder were found to occur at the intersection between the cross bore and the 

main bore. Remarkably, the overall best results occurred in K=2.25 as illustrated in Figure 116. 

Nevertheless, the overall lowest SCF occurred at K=2.5 with a magnitude of 1.733. This lowest 

SCF magnitude indicated a reduction of pressure carrying capacity by 42.3% in comparison to a 

similar plain cylinder without a cross bore. An improvement from the 60% reduction cited earlier 

by the Masu (1989) study. 

Several studies (Timoshenko (1940), Faupel and Harris (1957), Adenya and Kihiu (1995) 

Makulsawatudom et al. (2004), Harvey (1985) and Nihous et al. (2008)) on elliptically shaped 

holes, have been carried out previously. In these reviewed studies, the optimal cross bore diameter 

size ratio was 2. In addition, the minor diameter of the cross bore was placed parallel to the axial 

direction for cylinders. These two configurations had earlier been shown in Chapter 3 to give 

minimum SCF magnitudes.  

Using the expression cited by Timoshenko (1940) and Nihous et al. (2008), the minimum SCFs that 

can be obtained from an optimally sized elliptically shaped hole in a plate under uniaxial or biaxial 

loading is 2.0 and 2.5, respectively. Whereas, the corresponding maximum SCFs values are 5.0 and 

4.5. Further, another study by Harvey (1985) gave a minimum SCF of 1.5 for a thin cylinder having 

an optimum sized and correctly configured elliptical cross bore.  

Faupel and Harris’s (1957) study gave a SCF of 1.5 for a radial elliptical cross bore in a closed thick 

walled cylinder, regardless of the cross bore size. While in a similar elliptical cross bore, Adenya 

and Kihiu (2010) gave a maximum SCF of 2.0 after investigating three cylinders with thickness 

ratios 2.0, 2.25 and 2.5. These results by Adenya and Kihiu’s (2010) study compared favourably 
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with those presented in this study. For instance, in this study, the SCFs for radial elliptical cross 

bores for K=2.0, 2.25 and 2.5 were found to be 1.898, 2.05 and 1.733, respectively. Another study 

by Makulsawatudom et al. (2004) gave the SCF by a radial elliptical cross bore for K=2.0 as 2.01 

comparing well with 1.898 obtained in this study.  In general, optimum configured elliptical holes 

in plates were noted to give fairly similar SCF magnitudes to those of radial elliptical cross bores 

in thick cylinder.  

The study by Makulsawatudom et al. (2004) had investigated the effects of offsetting of elliptical 

cross bores in a single offset position. However, the offset results presented by this author were 

ignored due to the error noted during the selection of the optimal offset position. 

Generally, it was observed that the SCF increased as the cross bore location moved further away 

from the radial axis of the main cylinder. This occurrence was attributed to the cross bore shape 

which resembled an ellipse when viewed at the intersection between the cross bore and the main 

bore. In an ellipse, the major diameter denoted as ‘a’, is parallel to the axial direction of the cylinder. 

Whereas, the minor diameter denoted as ‘b’, is parallel to the direction of the hoop stress. The minor 

diameter increases with increase in offset position ratio. This cross bore configuration where 𝑎 < 𝑏 

results in high magnitudes of hoop stress in the cylinder as cited by Harvey (1985). The 

configuration is opposite to that observed in offsetting of the circular cross bore. 

Graphs showing optimal SCF magnitudes at each thickness ratio and offset position for an offset 

elliptical cross bore is exemplified in Figures 117 and 118. 
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Figure 117: Optimal hoop SCF vs thickness ratio   Figure 118: Optimal hoop SCF vs cross bore 

       location 

 

4.3.2.4 Comparison of Stress profiles between circular and elliptically shaped offset cross 

bores  

In this section, the comparison between stress profiles given by optimum circular and elliptically 

shaped cross bores at each offset position are discussed under the following sub headings; 

4.3.2.4.1 Maximum principal stress 

 

Figures 119 to 125 show the comparison of maximum principal stresses predicted by circular and 

elliptical cross bores together with a plain cylinder at each offset position for thickness ratios K=1.4, 

1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 
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Figure 119 : Offset cross bore for K=1.4                     Figure 120:  Offset cross bore for K=1.5 

 

 

Figure 121: Offset   cross bore for K=1.75                 Figure 122: Offset cross bore for 2.0 
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Figure 123: Offset cross bore for K=2.25  Figure 124: Offset cross bore for K =2.5 

 

 

Figure 125 : Offset cross bore for K =3.0 
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Generally, the variation in stress between the two shape profiles was more pronounced at the radial 

position. Table 23 shows a summary of stress variation between the two shapes at radial position, 

taking elliptical shape as the reference.  

Table 23: Comparison between hoop stresses due to radial circular and elliptical shaped cross bores 

Thickness Circular shape Elliptical shape Percentage 

difference % 

1.4 8.212 5.162 59.1 

1.5 6.658 4.438 50.02 

1.75 4.944 3.419 44.6 

2.0 4.64 2.885 60.8 

2.25 4.255 2.634 61.5 

2.5 3.944 2.393 64.8 

3.0 3.743 2.242 66.9 

                                                                                                                                                 

Overall, the stress variation at radial position ranged from 44.6% to 66.9% depending on the 

thickness ratio. The highest stress reduction was noted at K = 1.75. Nevertheless, the stress variation 

between the two shapes tended to reduce as the cross bore offset ratio increased.  

As illustrated in Figures 119 to 125, the circularly shaped cross bore gave low stresses at the 0.9 

offset position except in K = 2.25. However, only a mere 2% reduction in hoop stress would be 

gained by use of an elliptically shaped cross bore instead of a circular one at 0.9 offset position in 

K = 2.25, despite the manufacturing difficulties. 
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4.3.2.4.2 Hoop stress concentration factor 

 

Figures 126 to 132 show the comparison of stress concentration factors predicted by circular and 

elliptical cross bores together with a plain cylinder at each offset position for thickness ratios, K = 

1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0. 

 

Figure 126: Offset cross bore for K=1.4                 Figure 127: Offset cross bore for K=1.5 

 

Figure 128: Offset cross bore for K=1.75            Figure 129: Offset cross bore for K=2.0              
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Figure 130: Offset cross bore for K=2.25              Figure 131: Offset cross bore for K=2.5 

 

Figure 132 : Offset cross bore for K=3.0               
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On the other hand, the minimum overall SCF magnitude due a circularly shaped cross bore occurred 

at 0.9 offset position in K=1.4, with a magnitude 2.312. On the other hand, the highest magnitude 

occurred at 0.24 at K=3.0 with a magnitude of 3.825.  

In this regard, therefore, the optimal location of elliptical cross bores reduce SCF magnitudes by 

33% in comparison to a similar circular cross bore. However, an incorrect positioning of the same 

cross bore may lead to a rise of SCF magnitude by 121%. 
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4.3.3    Optimization of cylinder thickness ratio  

In the design of pressure vessels, various types of cylinders with varying geometric parameters are 

considered for different applications. Therefore, the need for identifying an optimal cross bore 

location for each thickness ratio, taking into account the shape, is important. The graphs showing 

the comparison between optimal SCF magnitudes predicted by circular and elliptical cross bores at 

each thickness ratio and offset positions are illustrated in Figures 133 and 134, respectively. 

 

Figure 133: Optimal SCF vs thickness ratio       Figure 134: Optimal SCF vs cross bore location 
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Table 25: Optimal offset locations 

Location 
0 0.24 0.48 0.685 0.9 

SCF 1.733 1.971 2.128 2.319 2.312 

K 2.5 2.25 3.0 1.75 1.4 

Shape Elliptical Elliptical Elliptical Elliptical Circular 

 

This optimisation process revealed that three of the cylinder sizes, namely K=1.4, 1.75 and 2.5 had 

the same optimal SCF magnitude. Thus, the same cylinder satisfied optimal design requirements 

for both the cross bore location and shape.  

For a circular cross bore, coincidence in SCF between the optimum thickness and location occurred 

in K=1.4 at the 0.9 offset position which also gave the best circular shape. Whereas for an elliptical 

shape, similar coincidence in SCF occurred respectively in K=1.75 and 2.5 at 0.685 and 0 offset 

positions. It is worthwhile noting that elliptical cross bore predicted the overall minimum stress 

concentration factor, despite being associated with high manufacturing cost or difficulties. 

 Lastly, the geometric parameter of the cross bore to be optimised in this study was the angle of 

obliquity. Due to limitations of the software, the investigation was only conducted on the circularly 

shaped cross bore. The cross bore inclination was done at 0.9 offset position. Since this location 

had been in the preceding paragraphs as the optimum location of the circular cross bore.   
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4.3.3  Optimisation of circular cross bores obliquity  

4.3.3.1  Introduction 

In this section, optimisation of the cross bore was done at seven different oblique angles 𝛼  with 

orientation of 150, 300, 450, 600, 750 and 900 as shown in Figure 135 for the studied thickness ratios 

at the 0.9 offset position. Oblique angles below 150 were found to cause severe mesh element 

distortion. Usually, distortion of elements occur when the software tolerances are exceeded leading 

to premature termination of the job analysis. It is worthwhile to note that, only sizeable oblique 

angles, which allow the considerable penetration of the cross bore to the main bore, are applicable. 



90 90 



 

Figure 135: Configuration of offset oblique cross bore 

 

4.3.3.2 Effects of cross bore obliquity and thickness ratio on the stress concentration factor 

 The effects of cross bore obliquity and thickness ratio on hoop stress concentration factor are shown 

in Figures 137 and 138.  
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Figure 136: Hoop SCF vs oblique cross bores  Figure 137: Hoop SCF vs thickness ratio 

 

It was observed in Figures 136 and 137 that as the oblique angle was reduced from 900 to 300, the 

SCF increased progressively for all the seven thickness ratios studied. For instance, for the 

mentioned oblique range, the rise in SCF was approximately four times. Furthermore, as the oblique 

angle reduced from 300 to 150 the SCF magnitude increased significantly. The highest SCF 

magnitude ranging from 27.404 to 138.16 was noted at 150 for all the thickness ratios. These 

findings were in line with earlier studies done by Nihous et al. (2008) and Cheng (1978). Nihous et 

al. (2008) had studied various radial oblique cross bores oriented at five different angles. 

Fortunately, one of the studied cross bores had a size ratio of 0.1, similar to the current study thus, 

enabling effective comparison. Further, the study by Nihous et al. (2008) had defined its oblique 

angles in the plane of (90 − 𝛼)0 as shown in Figure 135. Thus for compatibility with the present 

study, the angles in Nihous et al. (2008) were converted to the orientation adopted in this work. The 

oblique angles compared were 300, 450, 600, 750 and 900. Similar to the findings of the current study, 

Nihous et al. (2008) had also cited increased mesh element distortion whenever the obliquity angle 

was below 300.  
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Although, the work by Nihous et al. (2008) was done at the radial position, the data published was 

compared with a similar one given in this study to ascertain the effects of offsetting in an oblique 

cross bore. Figure 138 shows the comparison of results between oblique holes at radial position and 

corresponding ones at 0.9 offset position, for K=2.25 having cross bore size ratio of 0.1.  

   

Figure 138: Comparison of hoop SCF between oblique holes at radial and optimum offset location. 
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intersection between the inclined cross bore and main bore, its shape resembles that of an ellipse 

with major diameter parallel to the axial direction of the cylinder. This increase in the minor 

diameter is more pronounced whenever the obliquity angle reaches 150. The resulting configuration 

leads to high stress profiles as discussed previously in section 4.3.2.3.2. In these cases, therefore, 

any cross bore obliquity in pressure vessel design that is located in the RZ plane should be avoided. 

 

After taking into consideration all the major geometric parameters of a cross bore namely the size, 

location, shape and its obliquity, only the results presented previously in tables 24 and 25 had the 

minimum stress concentration factors. Therefore, only these geometrically optimised cross bores 

were studied further to establish the effects of SCF due to combined thermo-mechanical loading. 
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4.4     COMBINED THERMO-MECHANICAL STRESS ANALYSIS 

4.4.1       Introduction 

The combined thermo-mechanical stress analysis was performed only on the geometrically 

optimised cross bore sizes tabulated in Tables 24 and 25. The modelling was done under transient 

conditions to simulate the start up conditions of pressure vessels until steady state conditions were 

reached. Throughout the analyses, the fluid pressure was assumed to be constant at 1 MN m2⁄ . The 

resulting stresses were recorded at 17 different temperature distribution intervals, ranging from 20 

oC   to 300 oC according to the thickness ratio. 

4.4.2     Effects of the combined thermo-mechanical loading on hoop stress  

Figures 139 – 145, show the variation of hoop stresses with temperature distribution for thickness 

ratios, K =1.4, 1.5, 1.75, 2.0, 2.25, 2.5 and 3.0: 

 

Figure 139: Optimum cross bore for K=1.4               Figure 140: Optimum cross bore for K=1.5 
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Figure 141: Optimum cross bore for K=1.75                 Figure 142: Optimum cross bore for K=2.0                

 

 

Figure 143: Optimum cross bore for K=2.25                 Figure 144: Optimum cross bore for K=2.5                
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Figure 145: Optimum cross bore for K=2.5                
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Usually, thermal stress in cylinders is mainly dependent on the temperature variation between the 

inner and outer surfaces, among other factors. During the starting up of the pressure vessel, the inner 

surface is at a higher temperature, causing the inner fibres to undergo compression. On the other 

hand, at the outer surface, the temperature is low leading to stretching of the outer fibres of the 

cylinder. As the operating time increases, the difference in the temperature gradient  across the 

cylinder wall reduces and this reduction in the temperature gradient  between inner and outer 

surfaces results to a reduction of the hoop stress. Probably, at this maximum stress point, the 

operating conditions of the cylinder begin to change from transient  to steady state conditions. As 

reported in the study by Kandil et al (1994), the magnitude of the maximum stress in the cylinder 

can be reduced by upto 60 % when the cylinder walls are warm up to operating temperature before 

start-up. 

4.4.3 Effects of combined thermo-mechanical loading on stress concentration factors  

The stress concentration factor due to thermo-mechanical loading was computed based on the ratio 

of localised maximum principal stresses in a cross bore cylinder to the corresponding ones present 

in a similar plain cylinder. Figures 146 and 147 show the variation of stress concentration factors 

with temperature due to thermo-mechanical loading at the selected optimal thickness ratios and 

offset positions, respectively. 
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Figure 146: variation of stress concentration factors with temperature on optimal thickness ratios. 

 

As  illustrated in Figure 146,  as the temperature increased, the corresponding stress concentration 
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combined thermo-mechanical loading were lower than those presented in Table 24 arising from 

mechanical loading only. This occurrence was attributed to the compressive nature of thermal 

stresses during the starting-up of the vessel which acts as a relief to tensile mechanical stresses. 

As cited by Harvey (1985), it is worthwhile to note that thermal stresses do not cause failures or 

ruptures on a ductile material upon their first application irrespective of the magnitude. Failures or 

ruptures of ductile material occur due to repeated cycling loading over a period of time. 

Variation in stress concentration factors with temperature as exhibited in Figure 146 were also 

replicated in Figure 147.  

 

Figure 147: Variation of stress concentration factors with temperature at offset position 
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In conclusion, therefore, the optimal cylinder size due to combined thermo-mechanical loading was 

K=1.4 having a circularly shaped cross bore at 0.9 offset position ratio. The corresponding optimal 

magnitude of SCF generated at these conditions was 1.433. 

 

In a nutshell, this study provides a large broad database of the cross bore effects in high pressure 

vessels. The data are presented in the form of analytical solutions, principal stresses and stress 

concentration factors taking into account the cross bore geometry and the operating conditions. 
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CHAPTER FIVE:  CONCLUSIONS AND RECOMMENDATIONS 

5.1: CONCLUSIONS 

The following conclusions were drawn from the present study, 

i. The analytical solution developed correctly predicted all the radial stresses at the intersection 

of the cross bore and main bore. However, out of 35 models studied, the analytical solution 

correctly predicted the magnitude of hoop stress in 9 of these models and that of axial stresses 

in 15 models. 

ii. The maximum hoop stress increases with the increase in the cross bore size. Amongst the five 

different circular radial cross bore size ratios studied in seven cylinders, the smallest cross 

bore size ratio of 0.1, gave the lowest hoop stress while the highest stress occurred with a cross 

bore size of 1.0. 

iii. The difference in the working stress between the Von Mises’ and Tresca’s theories along a 

radial circular cross bore was insignificant. Unlike that of a plain cylinder without a cross bore 

which is constant at 15.5%. 

iv. Introduction of a radial circular cross bore increases the magnitude of the working stress. The 

maximum working stress predicted by Von Mises’ and Tresca’s theories in a cylinder with a 

radial circular cross bore increased by a stress factor ranging from 2.5 to 7.07. 

v. Amongst the five different circular radial cross bore ratios studied in seven cylinders, the 

lowest SCF occurred in the smallest cross bore size ratio of 0.1 when K=2.25 with a SCF 

magnitude of 2.836. This SCF magnitude indicated a reduction of pressure carrying capacity 

of 64.7% in comparison to a similar plain cylinder without a cross bore. 

vi.  Offsetting of circularly shaped cross bores reduced the magnitude of SCFs. Among the five 

offset position studied in seven cylinders, the minimum SCF magnitudes occurred at either 

offset location ratios of 0.685 or 0.9. However, the optimum location was found to be at 0.9 
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offset position for K=1.4, with a SCF magnitude of 2.312. This SCF magnitude indicated a 

reduction of pressure carrying capacity of 56.7% in comparison to a similar plain cylinder 

without a cross bore. 

vii. Offsetting of elliptically shaped cross bores increased the magnitude of SCFs. Overall, lowest 

SCF occurred at radial position when K=2.5 with a magnitude of 1.733. This lowest SCF 

magnitude indicated a reduction of pressure carrying capacity of 42.3% in comparison to a 

similar plain cylinder without cross bores.   

viii. Oblique circular offset cross bores along the Z axis of the cylinder increase SCFs. The SCF 

increased as the oblique angle reduced from 900 to 150. However, as the oblique angle reduced 

from 300 to 150 the SCF magnitude increased significantly. The highest SCF magnitudes 

ranging from 27.404 to 138.16 occurred at 150 for all the thickness ratios studied. 

ix. The hoop stresses due to combined thermo-mechanical loading increased gradually with  an 

increase in temperature until it reached a maximum after which it began to fall sharply.  

x. The stress concentration factor due to the combined thermo-mechanical loading reduced 

gradually with an increase in temperature until it reached a uniform steady state. After which, 

any further increase in temperature had insignificant change in the stress conentration factor.  

xi. The optimal cylinder size due to combined thermo-mechanical loading was K=1.4 having a 

circularly shaped cross bore at 0.9 offset position ratio. The corresponding magnitude of SCF 

generated was 1.433. This SCF magnitude indicated a reduction of pressure carrying capacity 

of 30.2% in comparison to a similar plain cylinder without a cross bore. 
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5.2 RECOMMENDATIONS 

The following recommendations for further work are suggested, 

i. Development of analytical solutions to predict three dimensional stresses in elliptically 

shaped cross bores in high pressure vessels using a similar analogy adopted in this study. 

ii. Use of Boundary Integral Element (BIE) software to determine the stresses at the cross bore 

surface. BIE method is highly preferred when calculating surface stresses since it gives 

results of the surface nodes only. 

iii. Use of Linear Programming (LP) methods to carry out optimisation process of the geometric 

configuration of the cross bore. Since, the major factors that affect cross bore configuration 

can be considered concurrently in LP method, contrary to one factor at a time method 

adopted in this study. 

iv. Perform three dimensional experimental work using either photo-elasticity or strain gauge 

methods to further ascertain the results present in this study which were obtained using 

numerical and analytical methods. 

v. Determination of optimal geometric configuration of a cross bore in high pressure vessels 

under autofrettage conditions and fully plastic deformation. 
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