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Abstract

Ore, from a mining operation, goes through a process that separates the valuable minerals
from the gangue (waste material). This process usually involves crushing, milling,
separation and extraction where the gangue is usually discarded in tailings piles. Current
physical methods used for crushing of rocks in the mineral processing industry result in
erratic breakages that do not efficiently liberate the economically valuable minerals.
Research studies have found that the rock comminution and mineral liberation can be
enhanced through various electrical treatment techniques, including pulsed power,
ultrasound and microwave. These electrical treatment techniques each have their own
advantages and disadvantages which are discussed in this dissertation. However, this
research proposes a new technique in an attempt to improve the rock comminution

process.

The main purpose of this research is to evaluate the effect that RF power exerts on rock
samples, with particular focus on textural changes. Four valuable scientific
contributions to the fields of metallurgical and electrical engineering were made in this
regard. Firstly, a new technique for the treatment of rock samples using RF heating is
substantiated. The effect of RF power on textural changes of the rocks is evident in their
surface temperature rise, where the RF heating of dolerite (JSA) and marble (JSB, JS1
and JS2) resulted in surface temperatures of approximately 100 °C within two minutes of

treatment.

A particle screening analysis of particles obtained form a swing-pot mill of both the
untreated (not exposed to RF power) and treated (exposed to RF power) rock samples
were performed to ascertain if the treated samples’ size had changed. Two samples (JSA
and JSD) revealed a notable change in their particle size distribution. The fact that the
percentage of larger sized particles increased (from 38 um to 90 pm as seen in Chapter 6)

suggests that the rock was strengthened rather than weakened.



Secondly, an innovative coupling technique (using a parallel-plate capacitor with
dimensions of 28 x 47 mm) to connect rock samples to high powered RF electronic
equipment is described. The feasibility of this technique is confirmed by repeated
correlated measurements taken on a vector voltmeter and network analyser. Low SWR
readings obtained from an inline RF Wattmeter in a practical setup also proves the

viability of the matching network used in the coupling technique.

Thirdly, an original coupling coefficient (81.58 x 10™) for the parallel-plate capacitor is
presented. This value may be used in similar sized capacitors to determine the specific
heat capacity of dielectric materials. However, the value of the coupling coefficient was
only verified for seven (relatively dark in surface colour) out of the ten rock samples.
Therefore, this coupling coefficient may hold true for all dark coloured rock samples, as
it represents the coupling of energy between the parallel-plate capacitor and the rock

sample.

Finally, this research defines the mathematical models for 10 rock samples for the VHF
range of frequencies (30 — 300 MHz), providing unique phase angle to resonance
equations for each sample. These equations can be used with each specific rock to
determine the resonating frequency where the maximum current flows and the minimum

resistance is present.

Evaluating the effects of RF power treatment on rocks has brought to light that mineral
grain boundaries within specified rock samples are not significantly weakened by RF
treatment. This was firstly confirmed by the similar electrical properties of the untreated
and treated samples, where consistent values for the resonating frequency were obtained
from the network analyser. Secondly, the SEM analysis of the untreated and treated rock
samples revealed no significant changes in the form of fractures or breakages along the
mineral grain boundaries. Photomicrographs of the thin sections of all ten rock samples
were used in this analysis. The particle size distribution of both samples further revealed
no weakening or softening of the rock, as the percentage of smaller sized particles did not

increase in the treated samples. It may therefore be stated that treating rock samples with

vi



RF power within the VHF range will not significantly improve rock comminution and

mineral liberation.
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Chapter 1 Introduction

1.1 Background

“You find remedy in the thorniest tree”. This Arabic proverb well illustrates that
scientific solutions to well defined engineering problems are often hard to find, resulting
in much frustration and anguish. This has also proved true in the mineral processing
industry were numerous exigent scientific endeavours have sought to improve rock
comminution. Comminution may be divided into two steps; the reduction of large
materials to a size suitable for grinding (termed crushing) and the reduction of crushed
material into powder (termed grinding). Comminution efficiency is currently low and is
based on the absolute ratio of energy required to generate new surface area relative to the
total mechanical energy input (Tromans 2008). Current comminution techniques need to

be enhanced if a higher efficiency is to be realized.

Mineral liberation efficiency subsequently relates to the amount of energy required to
release a certain percentage of valuable minerals from the gangue through rock
comminution methods. The major source of this energy generation is fossil fuels, coal,
natural gas and oil, which are still expected to meet about 84% of energy demand in 2030
(Shafiee and Topal 2009). However, concerns continue to be raised regarding the burning
of fossil fuels as a contributor to rising atmospheric concentrations of carbon dioxide
(CO2) which contributes to global warming (Wolde-Rufael 2010). Subsequently, the
importance of coal in energy generation and as a possible source of global warming
necessitates the use of alternative methods to reduce the amount of energy used by
mining industries while at the same time recovering the same (or higher) percentage of
valuable minerals. This thorny dilemma continues to frustrate researchers around the

globe within the fields of Metallurgical, Mechanical and Electrical Engineering.

Current research studies have found that the mineral liberation process can be enhanced
through the use of pulsed power, ultrasound pre-treatment and microwave pre-treatment

of run of mine ore (Haque 1999; Gaete-Garretdn et al. 2000; Andres et al. 2001; Wilson



et al. 2006; Jones et al. 2007, Wang and Forssberg 2007). Ore, from the mining
operation, goes through a process that separates the valuable minerals from the gangue
(waste material). This process usually involves crushing, milling, separation and
extraction where the gangue is usually discarded in tailings piles (Perkins 1998:159).
These electrical methods used to enhance the mineral liberation process, each have their
own advantages and disadvantages which are discussed in this dissertation. However, this
research proposes a technique which may have positive implications for rock

comminution and mineral liberation.

1.2 Research activities

The international mining industry needs to enhance its mineral liberation process and
reduce its enormous amount of power consumption (increase power efficiency) (Wang
and Forssberg 2007). An example of a mineral processing line is demonstrated in

Figure 1.1.

200 - 800 mun 10 - 100 mun 100 pm
Big stone goes into the bin

NC, & = m

Vibrating Feeder Jaw Crusher Ball Mill Class:fm

wipo - il - -9

Rotary Dryer Flotation Machine Mixing Tank Magnetic Separator

Figure 1.1: Mineral processing line (Heman Chuangxin Building-material

Equipment Co 2009)

In this example, a vibrating feeder serves the purpose of making coarse separations of

mining ores (200 — 800 mm in diameter) and providing a consistent, even supply of rock



material to the jaw crusher. The jaw crusher breaks this material down to a particle size
of approximately 10 — 100 mm. The next stage, the ball mill, is used for grinding various
ore and other materials down to particle sizes of around 100 pm. The stages which follow
(classifier to rotary dryer) are used to separate the valuable minerals from the gangue. It
is estimated that in a mining-intensive country the minerals processing industry accounts
for approximately 18% of the national energy consumption. This process is currently
inherently inefficient, with less than 3% of the energy input directly involved in rock
breakage and liberation (Moran 2009). Industry, therefore, aims to achieve a higher

throughput of valuable minerals and increased power efficiency.

1.3 Problem statement

Current physical methods used for crushing of rocks in the mineral processing industry
result in erratic breakages that do not efficiently liberate the economically valuable

minerals.

1.4  Purpose and aims

The purpose of this research is to evaluate the effect that radio-frequency (RF) power
exerts on rock samples with particular focus on textural changes. This evaluation aims to
determine if RF power weakens mineral grain boundaries, subsequently leading to
improved rock comminution and mineral liberation. This may result in significant
reductions of energy consumption of current comminution and mineral liberation

equipment,

The primary aim of this research is to design and develop a suitable innovative coupling
device to connect relevant electronic equipment (test instruments and amplifiers) to
various rock samples. This will contribute to new knowledge regarding the electrical
properties of rocks and provide an improved understanding of RF treatment of dielectric

materials.,



A secondary aim is to ensure maximum power transfer between a RF amplifier and the
rock sample at a specified frequency of operation. Rock samples exposed to RF power at

this frequency will be referred to as treated samples.

Finally, this research aims to strengthen interdisciplinary research between electrical and
metallurgical engineers, which is one of the objectives of the Competitive Support for

Unrated Researchers Programme offered by the National Research Foundation (NRF).

1.5 Outline of the thesis and the research methodology

The following methodology is followed in this research. First, a detailed description of
the physical and electrical properties of minerals and specified rocks are presented
(Chapter 2). This theoretical study is based on authoritative literature in the field of
Mineralogy.

Second, a theoretical study of different electrical methods used in enhancing the mineral
liberation process is discussed (Chapter 3). Disadvantages of these techniques are
reviewed. A new electrical technique using RF power in the treatment of rock samples is
then introduced. The principle and significance of dielectric heating of materials is

further explained.

Third, Chapter 4 introduces two notable coupling methods, with primary focus directed to
the parallel-plate capacitor. The practical setup used to ascertain the electrical properties
of dielectric samples is presented. This setup involves the use of a vector voltmeter and
network analyser. Construction of the parallel-plate capacitor and novel wooden jig also
forms part of this chapter. Initial network analyser results are evaluated. Mathematical

modelling of the frequency to phase angle curve for each rock samples is considered.

Fourth, the design and implementation of a suitable matching network to connect the
parallel-plate capacitor to specific RF equipment is given (Chapter 5). This includes a

comparison of the mathematical, simulation and practical results of the matching



network. This chapter further presents an examination of the coupling coefficient of the

parallel-plate capacitor using the specific heat capacity of each rock sample.

Finally, Chapter 6 introduces the analysis and evaluation of the untreated rock samples,
which include dolerite, marble, granite, sandstone and mudstone. This includes the
physical properties of the sample (photomicrographs, SEM analysis and grain
distribution) together with the particle screening analysis and colour of the powered rocks
(samples ground to less than 250 um). The analysis and evaluation of the treated samples
regarding power consumption, surface temperature fluctuations, colour changes and
particle screening analysis of the powered rocks (samples ground to less than 250 pm) are
also expounded. The power consumption comparison involves measuring the amount of

energy consumed in the crushing and milling of specified treated and untreated samples.

Chapter 7 closes with succinct conclusions and apposite recommendations.

1.6 Delimitations

The design and development of a high power RF amplifier does not form part of this
research. The design and construction of the power supply unit (PSU) for use in
conjunction with the RF amplifier will also not be considered. A further delimitation will
be the evaluation and analysis of stray capacitances in the vicinity of the coupling device,
as variable capacitors will be used for fine-tuning. This research will further be limited to
the Very-High frequency range (VHF) due to the availability of relatively inexpensive
($350) commercially available VHF amplifiers.

1.7  Definition of important terms as used in this research
Dielectric material: A non-conductive, insulating material in which an

electrical field can be sustained with a minimum amount

of power dissipation.



Maximum power transfer:

Parallel-plate capacitor:

Radio-frequency power:

Resonating frequency:

Rock comminution:

Treated samples:

Untreated samples:

The maximum amount of available power which is

transferred from a RF amplifier to a rock sample.

A coupling device using two copper conducting plates

sandwiching a dielectric material.

Radio-frequency (RF) power, as used in this research,
refers to the product of an alternating voltage and current

generated in the VHF range between 30 and 300 MHz.

A resonating frequency results when the capacitive and
inductive reactances in a circuit are equal, thereby
cancelling each other and leaving only the resistive
component in a series based circuit. At this point,
maximum alternating current flows through the series

circuit,

The crushing and grinding of rocks down to powder

form.

Rock samples of specific size which have been exposed

to a known amount of RF power at a given frequency.

Rock samples of specific size which have not been

exposed to RF power.

1.8  Importance of the research

This research makes the following novel scientific contributions to the fields of

metallurgical and electrical engineering:

¢ Introduces a electrical technique using RF power in the treatment of rock samples;



e Describes a innovative coupling technique to connect rock samples to high
powered RF electronic equipment;
¢ Defines the mathematical models for 10 rock samples for the VHF range; and

e Presents an original coupling coefficient for the parallel-plate capacitor.

1.9 Summary

The background to the possible use of RF power in assisting with rock comminution has
been discussed. The mining industry aims to achieve a higher throughput of valuable
minerals and increased power efficiency by means of various techniques including pre-
treatment of run-of-mine ore. The methodology and overview of the dissertation has been
reviewed as well as the delimitations of the project. Definitions of important terms were
presented together with the importance of the research which highlighted significant
contributions to the scientific community. The following chapter will consider the

physical properties of minerals and the process of rock comminution.



Chapter 2 Minerals, rocks and comminution

2.1 Introduction

This chapter aims to provide a broad introduction into the description and classification
of minerals and rocks and their physical properties, followed by a more detailed
description and characterization of the rock samples used in the experimental
investigations in this research. These physical properties are initially used in identifying
the mineral composition of the rock samples used in this research. Secondly, they are
used to indicate significant textural changes between the treated and untreated rock
sample results presented in Chapter 6. The principles of rock comminution and mineral
liberation are also introduced, as the objective of this research is to develop an

alternative, non-conventional method to aid the comminution process.
2.2 Mineral definition and classification

A mineral is defined as a naturally occurring solid chemical compound of more or less
fixed chemical composition (Skinner and Porter 1992:44; Wenk and Bulakh 2004:3,
255). Classification of minerals is based mainly in terms of chemical composition
according to the anionic component of the molecular formula (Dana 1963:389). Some of
the chemical groupings are further subdivided according to the atomic structures of the
minerals (Trefil and Hazen 2007:162). Table 2.1 lists the major chemical groups of

minerals.

The silicate minerals are by far the most abundant because of the prevalence of the
elements of silicon and oxygen in the Earth’s crust (Table 2.2) and mantle as well as the
stable chemical affiliation of these elements (Dana 1963:389; Read 1984:348; Skinner
and Porter 1992:57; Walther 2005:155; Thompson and Turk 2007:237). However, the
other groups of minerals, although less abundant, are of major economic importance

because some of them contain useful metals (e.g. iron in the oxide mineral haematite



(Fe;03)) and others have useful properties (e.g. the hardness of diamond finds use as an

abrasive material).

Table 2.1: Chemical classification of minerals following the system of Dana

(1963:222)

Mineral Class Defining Anion Example
Carbonates (COs)” CaCO,, calcite
Sulphates (SOy)” BaSO,, barite
Phosphates (PO4)™ CasFPO,, apatite
Oxides o~ Fe,0,, hematite
Hydroxides OH" Mg(OH),, brucite
Halides ILF,CI CaF,, fluorite
Sulphides N PbS, galena
Native elements None Gold, graphite

Table 2.2: Average composition of the earth's crust (Skinner and Porter 1992:57;

Klein 2002:40)

Element Mass %
Oxygen 46.60
Silicon 27.72
Aluminium 8.13
Iron 5.00
Calcium 3.63
Sodium 2.83
Magnesium 2.09
Potassium 1.84
Titanium 0.44
Hydrogen 0.14
Phosphorous 0.12
Total 98.77

The physical properties of minerals are listed in Table 2.3, along with short definitions
for each property. Many of these properties are used in the identification of minerals in

hand specimen and under microscopes.



Table 2.3: A list of some physical properties of minerals and their explanations
(Chernicoff and Fox 1997:30-33; Amethyst Galleries 2000; McGeary et al
2001:230-236; Klein 2002:17,32,201; Thompson and Turk 2007:29-31; Trefil and

Hazen 2007:A24)
Physical AR
Y Definition
property
Cleavage Cleavage is defined as the tendency of some minerals to break along certain crystallographic

planes.

Colour

Colour is the most obvious property of a mineral, but can be unreliable for identification
purposes due to the colour-altering effect of small amounts of chemical impurities and
imperfections in the crystal structure.

Common form

The general outward appearance of the mineral. This depends on the atomic structure, chemical
composition, cleavage panes and conditions of growth/origin of the mineral. Many minerals
have more than one characteristic common form,

A crystal form consists of a group of crystal faces, all of which have the same relation to the

Crystal form elements of symmetry and display the same chemical and physical properties. The crystal form
is the external manifestation of the internal atomic structure of the mineral,

Density The density of a material is usually given in units of grams/cubic centimetre and refers to the
quantity of matter per unit volume,

Electrical .

. Measured in terms of a mineral’s ability to conduct or resist the flow of electrons.
properties
Fracture Fracture may be defined as the manner in which minerals break, other than along planes of

cleavage.

Fluorescence

Fluorescence may be defined as the emission of visible light by a substance, such as a mineral,
while it is exposed to ultraviolet light and absorbs radiation from it.

Hardness is defined as the degree of resistance of a given mineral to scratching, indicating the

Hardness strength of the bonds that hold the mineral’s atoms together.
Lustre Lustre describes the manner in which a mineral’s surface reflects light and may be classified as
either a metallic, glassy or earthy.
. Magnetism deri f led magneti ment that results from their
Magnetism agn ives from a.property of electrons called magnetic mo
spinning and orbiting motions.
Phosphoresce i issi isi ight by a substance, such as a mineral, that has
Phosphorescence sphorescence occurs with emission of visible light by a substan

been exposed to ultraviolet light and absorbs radiation from it.

Refractive index

The index of refraction is defined as the ratio of the velocity of light in a vacuum to the velocity
of light in a crystal, glass, liquid or other medium.

Specific gravity The specific gravity of a mineral is the ratio of its mass to that of an equal volume of water.

Streak may be defined as the colour of a fine powder of a mineral, usually obtained by rubbing
Streak X :

the material on an unglazed porcelain streak plate.
T . Tenacity may be defined as the resistance that a mineral offers to breaking, crushing, bending, or

enacity s A : ;
tearing — in short its cohesiveness.
Transparency describes a mineral that is capable of transmitting light and through which an
; . st iy e Wby

Transparency object may be seen. A mineral is said to be translucent when it is capable of transmitting lig

diffusely, not showing a sharp outline of an object seen through it. A mineral that does not
transmit light at all is called opaque.
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The physical properties that have the most influence on the comminution process (i.e.
size reduction by way of crushing and grinding) are hardness, tenacity, fracture, cleavage
and common form. Further automated mineral beneficiation, which essentially involves
the separation of specific desired minerals from a crushed/milled mixture of minerals,
usually exploits properties such as differences in densities, magnetic susceptibility,
electrical conductivity, surface reactivity, refractive index, and fluorescence (Wills

1992).

Since this research is focused on the effects of RF power on rocks and minerals with a
view to facilitating the comminution process, the electrical properties of minerals will be
discussed briefly. Other properties that will be discussed in detail are those that may also
affect the efficiency of comminution, such as hardness, cleavage, fracture, common form

and tenacity.

2.2.1 Electrical properties of rocks

There are numerous uses for knowledge of the electrical properties of rocks. These
include, among others:
e borehole radar technology development (Rutschlin et al. 2006);
e crustal, lunar and planetary soundings (Dyal and Parkin 1973; Hutton 1976;
Nover 2005); and
e mineral exploration methods that exploit induced polarization, resistivity and
electromagnetism (Collet and Katsube 1973; Daniels and Dyck 1984; Philips
1984).

Resistivity surveying involves the investigation of variations of electrical resistance or
conductivity by causing an electrical current to flow through the ground, using wires
connected to it (Philips 1984). These techniques exploit the differences of various
electrical properties of rocks and minerals. The main uses of resistivity surveying are for
mapping the presence of rocks of differing porosities, particularly in connection with

hydrogeology for detecting aquifers and contamination, and for mineral prospecting, but
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other uses include investigating salinity and other types of pollution, archaeological
surveying and detecting hot rocks. The amounts of positive and negative charges within a
material are usually equal, resulting in electrical neutrality. When an imbalance occurs,
the material becomes charged and its electrical properties become apparent. It is not so
much the imbalance, but rather the flow of charge through rocks which is of primary
concern. The amount of charge flowing through the rock is often referred to as an electric
current caused by the application of a potential difference across the rock that is termed
voltage. A relationship exists between the electrical current and voltage that is referred to
as resistance (Musset & Khan 2000:181-182). This relationship is further discussed in
Chapter 3. Many electromagnetic methods of surveying are used for the same purposes as
resistivity methods because both methods respond to variations in the resistivity or
conductivity of the subsurface. The main distinction between the two methods is that in
the electromagnetic method the induced current usually flows in the subsurface without

the use of electrodes.

Upper crustal rocks exhibit pores and fractures that may be partially or totally filled with
fluid electrolytes (Nover 2005). Electrical charge transported within these rocks is an
electrolytic process controlled by the geometry of the pore system. One objective of
laboratory experiments is to measure the physical properties of minerals and rocks under
simulated conditions ranging from the Earth’s surface down through the mantle to even
the core. This requires the use of High-Pressure High-Temperature devices that are
designed to allow measurements within certain pressure and temperature ranges.
Electrical properties are generally measured as frequency dependent complex
impedances. Physical and chemical parameters that may constrain the transport of
electrical charges thus are accessible when frequency dependent complex electrical
conductivity measurements are performed instead of fixed frequency measurements. This
technique allows an interpretation of electrical data in terms of charge carrier transport

models and thus makes conductivity data much more reliable.

The use of any radar technology underground is completely dependent on knowledge of

how the electromagnetic wave will be altered by the rock through which it propagates
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(Rutschlin et al. 2006). In particular, a propagating signal loses energy as it travels, and
will be partially reflected from interfaces between materials with differing properties. The
range of detection of such a contrast in rock types is determined by the energy lost during
transit and thus the loss tangent of the material, while an accurate calculation of the
distance to a target is made possible by knowledge of the signal’s propagation velocity,
which is directly related to the rock’s relative permittivity. Accurate knowledge of the
frequency characteristics of attenuation and signal velocity is critical for interpretation of
radar data, and even potentially for the design of the radar components themselves. If the
attenuation changes with frequency, the dominant frequency of a propagating pulse will
change with distance, as will the pulse shape, envelope and phase velocity. All
measurement techniques have in common the desire to relate some measurable quantity
to a complex dielectric constant. A variety of techniques, both destructive and
nondestructive, have been developed to determine the permittivity and loss tangent of
dielectric materials (Ku et al. 1999; Chen et al. 2003; Butkewitsch and Scheinbeim
2006; Kandala and Nelson 2007).

2.2.2 Hardness

Hardness is defined as the degree of resistance of a given mineral to scratching,
indicating the strength of the bonds that hold the mineral’s atoms together (Skinner and
Porter 1992:55; Chernicoff and Fox 1997:G-3; Klein 2002:31; Thompson and Turk
2007:29). The hardness of a mineral (five shown in Table 2.4) is tested by scratching the
unknown mineral with a series of minerals or substances with known hardness and is one

of the most useful diagnostic properties of minerals (Tarbuck and Lutgens 1999:41).

Table 2.4: Mohs hardness scale (Klein 2002:32)

Mineral Hardness Common objects
Gypsum 2 Human finger nail
Calcite 3 Copper penny
Feldspar 6 Steel blade
Quartz 7 Streak plate
Diamond 10 Wedding ring
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The Mohs hardness scale assigns relative hardnesses to several common and a few rare
minerals (Chernicoff and Fox 1997:31-32). Table 2.4 illustrates selected values from the

Mohs hardness scale.

2.2.3 Cleavage

Certain minerals fracture with an uneven surface when broken while others split or cleave
along distinctive crystallographic planes. Cleavages occur when some crystals break in
one or more smooth plane surfaces whose orientation is determined by the regular atomic
structure of the crystal (Klein 2002:29; Wenk and Bulakh 2004:269). Cleavage is thus
the ability of a mineral to break, when struck, along preferred directions (Skinner and
Porter 1992:52; McGeary et al. 2001:233). Figure 2.1 illustrates seven possible types of
mineral cleavage which are:

e A —One direction of cleavage;

e B - Two directions of cleavage at 90°

e C—Two directions of cleavage not at 90°%

e D - Three directions of cleavage at 90°;

e E —Three directions of cleavage not at 90°

e F —Four directions of cleavage; and

e G - Six directions of cleavage.

Cleavage is tested by striking or hammering a mineral, and is classified by the number of
surfaces it produces and the angles between adjacent surfaces (Chernicoff and Fox
1997:G-4). A mineral tends to break along certain planes because the bonding between
atoms is weaker there. For example, quartz has equally strong bonds in all directions and
would thus have no cleavage whereas micas are easily split apart into sheets due to the
fact the bonding between adjacent atomic sheets is weak. Cleavage is one of the most
useful diagnostic tools because it is identical for a given mineral from one sample to
another. It is especially useful for identifying minerals when they appear as small grains

in rocks (McGeary et al. 2001:233).
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Figure 2.1: Seven possible types of mineral cleavage (Wenk and Bulakh 2004:217)

2.2.4 Fracture

Some minerals have poorly defined cleavages while others may not even show any at all.
When broken, these minerals cause fractures in that they break on generally irregularly
oriented, curved surfaces decided more by stress distribution in the crystal at the time of
rupture than by the atomic structure of the mineral (Klein 2002:30; Wenk and Bulakh
2004:270). Fracture is thus the way a substance breaks when not controlled by cleavage
and is the most common type of fracture for minerals (McGeary et al. 2001:235;
Thompson and Turk 2007:29). Fracture may appear as a jagged, irregular or rough
surface or as a curved, shell-shaped (conchoidal) surface (Chernicoff and Fox 1997:33).

Minerals may further be identified by their common form.

2.2.5 Common form

The term form is often used to indicate general outward appearance (Klein 2002:201). In
crystallography, external shape is denoted by the word habit, whereas the term form is
used in a special and restricted sense. Thus a form consists of a group of crystal faces, all

of which have the same relation to the elements of symmetry and display the same
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chemical and physical properties. The term common form is used synonymously to the
term habit and refers to the external shape in which a mineral commonly occurs.

Figure 2.2 illustrates selected photomicrographs of six mineral textures.

Figure 2.2: Photomicrographs showing some examples of mineral textures: (a)
Granular texture; (b) euhedral crystals; (c) Angedral grains; (d) banding; (e)
Botryoidal texture; (f) flaky (Ixer and Duller 1998)
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Some minerals are commonly found as well-developed crystals, but others only occur in
fine-grained masses. The terms used to describe the form of a mineral are (Klein

2002:20, 171):
e Crystallised or euhedral (well developed crystals);

e C(rystalline (intergrown crystals);

e Microcrystalline (microscopic crystals);

e Cryptocrystalline (sub-microscopic crystals); and

e Irregular or anhedral (no evidence of the crystal structure).

In addition some of the following descriptive terms are used for mineral aggregates
(Klein 2002:23):

e Acicular (needle like);
e Bladed (resembles flattened blades);
e Botriodal (similar to a bunch of grapes);

¢ Dendritic (tree like),
~ o Lamellar (like leaves in a book);
e Opolitic (resembling the roe of fish);
e Reniform (kidney shaped); and
o Stellate (star shaped).

2.2.6 Tenacity

Tenacity is a mineral’s physical reaction to stress such as crushing, bending, breaking, or

tearing (Klein 2002:32). Certain minerals react differently to each type of stress. Since

tenacity is composed of several reactions to various stresses, it is possible for a mineral to
have more than one form of tenacity. The different forms of tenacity are:

e Brittle - If a mineral is hammered and the result is a powder or small crumbs, it is

considered brittle. Brittle minerals leave a fine powder if scratched, which is the

way to test a mineral to see if it is brittle. Majority of all minerals are brittle.

Minerals that are not brittle may be referred to as non-brittle minerals.
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e Sectile - Sectile minerals can be separated with a knife into thin slices, much like
wax (e.g. gold).

e Malleable - If a mineral can be flattened out into thin sheets by pounding it with a
hammer, it is malleable. All true metals are malleable (e.g. gold).

e Ductile - A mineral that can be stretched into a wire is ductile. All true metals are
ductile.

e Flexible but inelastic - Any minerals that can be bent, but remains in the new
position after it is bent are flexible but inelastic. If the term flexible is singularly
used, it implies flexible but inelastic (e.g. chlorite).

e Flexible and elastic - When flexible and elastic minerals are bent, they spring back
to their original position. All fibrous minerals and some acicular and flaky minerals

belong in this category (e.g. mica).

2.3 Rocks and ores

Rocks are composed of minerals (Chernicoff and Fox 1997:11). A rock composed of
only one mineral is called monomineralic (Best and Christiansen 2001:27). Ores are
essentially rocks that contain one or more type of mineral coveted for its metal content or
its physical properties for industrial use (Wills 1992:6). The coveted minerals in the ores
are called ore minerals (if they contain useful metals) or industrial minerals (if they have
useful physical properties). Woollacot and Eric (1994) classify mined material into three
categories:

e Mined material consisting of useful rock or soil, where the rock/soil has value in its
natural form, e.g. as aggregate or filler material.

e Mined material containing industrial minerals, where the value lies in one or more
minerals within the rock that must be liberated and separated from the rock, e.g.
diamond in kimberlite, crysotile in greenstones, wollastonite in skarn, etc.

e Mined material containing value-bearing minerals, where the value lies in
constituents of one or more minerals within the rock (ore) and the constituent
(metal) needs to be extracted from the mineral after the latter has been liberated and

separated from the rock (ore), e.g. extraction of copper from copper-bearing
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minerals such as chalcopyrite (CuFeS;) and bornite (CusFeS;) occurring as

minerals in copper ore.

Ores, therefore, contain coveted minerals (called ore minerals) as well as unwanted

minerals (called gangue minerals) (Wills 1992:12).

Rocks are broadly classified into three groups based on their mode of formation. These
are:

e Igneous rocks: formed by the solidification/crystallization of molten silicate
(mainly) material called magma or lava (Chernicoff and Fox 1997:11; Walther
2005:255). These rocks consist of tightly interlocked crystals. The size of the
crystals range from <0.06 mm as in the case of those crystallized from lava at the
surface of the earth, through to £10 mm as in the case of those crystallized from
slow cooling magma deep in the earth’s crust. In addition, there are very coarse-
grained igneous rocks (pegmatites) which crystallized from magma containing high
proportions of volatile material.

e Sedimentary rocks: formed by the solidification of loose material on the earth’s
surface (Skinner and Porter 1992:211; Chernicoff and Fox 1997:11). The loose
material accumulates through the processes weathering, erosion and
deposition/sedimentation. The solidification takes place by a process called
lithification/diagenesis which involves the compaction, cementation and
recrystallisation of sediments that are deeply buried (£3 km). Sedimentary rocks are
also formed by the lithification of chemical precipitates that accumulate as layers of
microcrystals on lake floors or subterranean cavities (Kehew 1995:87; Thompson
and Turk 2007:247; Carlson et al. 2008:427).

e Metamorphic rocks: formed by the exposure of rocks to high temperature and/or
pressures during magmatic and/or tectonic events (Chernicoff and Fox 1997:11).
Heat from nearby magmatic intrusions and pressure induced by mountain-building
and other tectonic processes causes reactions and recrystallisation of minerals

resulting in new sets of minerals within metamorphosed rocks. The process of
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recrystallisation occurs in the solid state, or in extreme cases, in a partially molten

state.

The relationship that exists between rocks is termed “the rock cycle” and is depicted in

Figure 2.3 (Chernicoff and Fox 1997:11; McGeary et al. 2001:238).

Cooling
(or crystallization) Melt
elting

Figure 2.3: The rock cycle (Chernicoff and Fox 1997:12)

The three rock groups are characterised by important differences in the types of minerals
and their textural relationships. These differences are manifest in the physical properties
of the rocks, such as strength and elasticity ratios, that affect their behaviour during
comminution. Consequently, the physical properties of minerals are not the only
controlling factors on the effectiveness of comminution, but more importantly, the
mineral assemblage and texture of the rock, which is the reason why five different rock
types have been selected for trial in this research as described in more detail below. The
same is true for different types of ores where the textures ultimately determine the grain-

size to which an ore needs to be milled before liberation is properly effected.
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2.3.1 Characteristics of granite and dolerite

Granite and dolerite are examples of igneous rocks. Granites have quartz contents of
around 20 - 60%, are medium to coarse-grained and are relatively light in colour
(Dietrich and Skinner 1979:113). They are composed predominately of feldspar and
quartz and are the most abundant intrusive rock type found in the continents today.

Table 2.5 highlights selected characteristics of granite and dolerite.

Table 2.5: Selected characteristics of granite and dolerite

Characteristic Granite Dolerite
Rock type Igneous (plutonic) Igneous (hypabysal)
Texture Coarse grained and rough Medium grained and smooth
Principal minerals Feldspar and Quartz Plagioclase and Pyroxene
Principal mineral Feldspar: 6 Plagioclase: 6
hardness Quartz: 7 Pyroxene: 6
Principal mineral Two cleavages: Feldspar Two good cleavages at 90° for
breakage Concoidal fracture: Quartz both pyroxene and feldspar
Specific gravity 2.40-2.70 3.00-3.05
Resistivity (Q2.m) 5000 -5 000 000 20-200
Colour Mostly light coloured Dark bluish, weathers to brown
Porosity 0.5-1.5% 0.1 —0.5%

2.3.2 Characteristics of sandstone and mudstone

Sandstones and mudstones are types of sedimentary rocks. Table 2.6 outlines selected
characteristics of sandstone and mudstone. Sandstones in particular consist of mineral
grains, deposited in parallel layers, which have subsequently been cemented together.

Sandstones are mostly white, light grey, buff, reddish or yellowish brown in colour.
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Quartz is the predominant mineral found in most sandstones being chemically stable and
physically durable under most weathering and transporting processes (Evans 1972:18;
Dietrich and Skinner 1979:193-195).

Table 2.6: Selected characteristics of sandstone and mudstone

Characteristic Sandstone Mudstone
Rock type Sedimentary Sedimentary
Texture Medium grained and rough Fine grained and very smooth
Principal mineral Quartz Clays and quartz
Princi -
rincipal mineral 7 3
hardness
Princi -
rincipal mineral Fracture Fracture
breakage
Specific gravity 2.00 - 2.60 2.71
Resistivity (Q.m) 8-4000 8-4000
Colour White, light grey, buff, reddish or Grey, greenish, bluish, reddish,
yellowish brown brownish or blotchy combination
Porosity 5.0 -25.0% 30.0%

Sedimentary rocks formed by the deposition of mineral grains are classified on the basis
of grain-size. Mudstones have grain-sizes of < 0.002 mm and are composed mainly of
clay material. Siltstones have grain-sizes ranging from 0.002 mm to 0.0625 mm and are
composed mainly of quartz and clay. Sandstones have grain-sizes ranging from
0.0625 mm to 2 mm and generally comprise quartz with or without feldspar and other
mineral fragments. In addition, sandstones may also have interstitial finer-grained
material such as clay or cementing material which can vary in amount as a percentage of
the total rock (< 5 - 25 %) (McGeary et al. 2001:339-341). Clay converted into a solid
rock can become either a mudstone which shows no tendency to split into layers but has

lost its plasticity, or a shale which splits readily along its bedding planes (Evans
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1972:25). The most common colours found in mudstones are grey, greenish, bluish,
reddish, or some blotchy combination of two or more of these colours. Most mudstones
exhibit blocky breakage and feel gritty because they contain higher percentages of
irregularly shaped fragments than shales do (Dietrich and Skinner 1979:200-202).

2.3.3 Characteristics of marble

Marble is an example of a metamorphic rock consisting primarily of calcite and/or

dolomite. Table 2.7 presents selected characteristics of marble.

Table 2.7: Selected characteristics of marble

Characteristic Marble
Rock type Metamorphic
Texture Coarse grained
Principal minerals Calcite and dolomite
Principal mineral hardness 3
Principal mineral breakage Three good cleavages at 75°/105°
Specific gravity 2.6 —2.86
Resistivity (Q.m) 100 — 250 000 000
Colour White, grey, black, buff, yellowish, chocolate, pink,
mahogany-red, bluish, lavender or greenish
Porosity 0.5-2.0%

Marble may be snow white, grey, black, buff, yellowish, chocolate, pink, mahogany-red,
bluish, lavender or greenish in colour. The grains within marble tend to be of a rather
uniform size (Dietrich and Skinner 1979:253). Marble forms by the metamorphism of
limestone, during which recrystallisation of calcite occurs (Evans 1972:49). Completely
recrystallised limestone can result in a rock with interlocking calcite crystals and the

obliteration of the stratification and other textural characteristics of the parent limestone.
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Impure parent limestone produces marble that contains other minerals in addition to
calcite, with the most common being quartz, anorthite, serpentine, tremolite, diopside,
and forsterite. The minerals present depend on the nature of the impurities and the grade

of metamorphism.
The rocks shown in Table 2.8 were selected for this research from among the three main
rock types discussed above. They were labelled with the text JS (representing James

Swart) followed by either an alphabetical or numerical label.

Table 2.8: Rock samples chosen for this research

Sample code Rock family Rock type
JSA Igneous Dolerite
JSB Metamorphic Marble
JSC Igneous Granite
JSD Sedimentary Sandstone
JSE Sedimentary Mudstone
JS1 Metamorphic Marble
JS2 Metamorphic Marble
JS3 Metamorphic Marble
JS4 Igneous Granite
JS5 Metamorphic Marble

24 Rock comminution and mineral liberation

As described above, an ore is a rock that consists of valuable ore minerals and useless
gangue minerals. The aim of mineral beneficiation is to separate the ore minerals from
the gangue minerals to produce an as pure as possible concentrate of ore minerals and a
discard product called tailings comprising the gangue material with as little as possible of
unrecovered ore minerals. The process is undertaken in steps where the run of mine ore

first undergoes comminution followed by separation/concentration.
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The aim of comminution is to liberate the ore minerals from the gangue by breaking the

rock up into smaller particles until there are loose particles of ore mineral (Yarar and

Dogan 1987:3; Wills 1992:13). This is to facilitate separation of the ore mineral from

the gangue. The latter is done by exploiting the differences in physical properties of the

ore and gangue minerals, and the most common processes include (Wills 1992:7-13):

Gravity separation - This method exploits the density differences between
minerals, and their response to gravity and resistance to motion in a fluid such as
water. Typical apparatus includes jigs, Humphries spirals, Reichert cones, sluices,
and shaking tables.

Dense medium separation - Also exploits density differences. Here minerals are
introduced to a dense liquid or suspension in which some minerals will float and
others sink, thus effecting separation. A wide variety of separation vessels are
employed in industry including some that incorporate a centrifugal aspect to
expedite the process.

Froth flotation - Exploits difference in the surface properties of different types of
minerals. Here minerals are exposed to a solution which renders some of the
minerals hydrophobic and other hydrophilic. Air is bubbled through the solution
in which the minerals are suspended, resulting in separation because the
hydrophilic ones settle to the bottom of the solution whereas the hydrophobic
minerals can be skimmed off with the soapy froth at the surface.

Magnetic separation - This process exploits the differences in magnetic
susceptibility of minerals through the use of strong magnetic forces that can be
adjusted to separate minerals of differing susceptibility.

Electrostatic/high tension separation - Here the differences in electrical
conductivity of minerals are exploited. Charge builds up in non-conductive
minerals causing them to stick to charged surfaces, whereas conductive particles

do not stick to such surfaces.

Before any of the above separation process can be effective, proper liberation of the ore

minerals is essential. Incomplete liberation means that particles will comprise both ore

and gangue material and their response to any of the separation techniques will be
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equivocal (see Figure 2.4). The degree of liberation can be described using the following
terms:
e A completely liberated particle is one that consists of only one type of mineral,
either ore mineral or gangue mineral.
e A middling is a particle that consists of two or more different types of minerals,
i.e. it is incompletely liberated.
e Middlings can be further classified into attached mineral (binary, ternary, etc) or
enclosed minerals.
e The degree of liberation can also described in terms of what is called particle
grade. For example, a liberated particle comprising 100% ore mineral will have a

particle grade of 100%, whereas a middling particle consisting of 25% ore

mineral and 75% gangue mineral will have a particle grade of 25%.

Figure 2.4: Photomicrograph of a concentrated lead-zinc ore, consisting of
particles/fragments of the minerals galena and sphalerite - the degree of liberation
in this sample is very variable with few liberated particles, but mostly middlings.
The few liberated particles may only appear so in this particular section since the
third dimension is not observable, and hence the term apparently liberated is used

(Ixer and Duller 1998)
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Comminution is essentially the size reduction of the fragments of rock/ore (Wills
1992:110). Comminution is effected by compression, impact and abrasion, through
crushing or grinding/milling. The process usually involves several steps each comprising
a small reduction ratio of three to six. Fracture of the particles results from tensile forces
arising perpendicular to the direction of compression on the particles. For a fracture to
occur, the tensile force has to exceed the inter-atomic bond strengths within the rock
material/minerals. Stress is not evenly distributed within a rock fragment because of the
irregular shapes of the grains and the variety of minerals present. The presence of
fractures, cracks, flaws and pores in the material has a profound effect. Stress is
concentrated at the tips of cracks and if they have the correct orientation relative to the
stress field will propagate and lengthen under a given amount of stress once they have
reached a critical length (Inglis 1913). The energy released in relieving the stress through
fracture has to exceed the surface energy generated by the creation of new surfaces by the
fracture (Griffith 1921). Other constraints on the fracturing of materials include:

e The resilience or elastic properties of the materials that determine the amount of
energy the material can store under stress and release again after the stress has
been removed without fracturing.

e The toughness or ductility of the materials that determines to what extent the
material can deform without fracturing.

e The presence of water or other fluid that can reduce the surface energy generated

through fracturing.

In addition to the fractures formed perpendicular to the compressive stress directions,
compressive failure occurs at the point of loading where the crusher is in contact with the
rock fragment, producing very fine-grained material. The latter can be avoided by the use
of impact crushing where rapid overloading of the particles results in tensile fracturing
alone. Very fine-grained material is also produced by abrasion/attrition between particles
within the crushing vessel. This can be avoided by reducing the feed rate of material into

the crushing vessel.
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The energy consumed by the comminution process is, however, not easily correlated to
the amount size reduction effected because of the many factors affecting comminution, as
discussed above, and the fact that the crushing/milling machines themselves and the heat
generated in the process consume more than 75% of the input energy (Wills 1992:112;
Somasundaran and Shroti 1995:49). All the theories of comminution assume that the
material is brittle, so that no energy is absorbed in process such as elongation or
contraction which is not finally utilized in breakage. Since the probability for particle
breakage within a comminution vessel diminishes with particle size, a three tier approach
to the prediction of energy consumption during comminution exists (Wills 1992:112-
113):

e For particle sizes in the range of one cm, energy consumption (£) can be

calculated using Kick’s Theory:

S

p
= J 2.1
Log? ol

Log

Where
J = feed particles size in mm

p = product particle size in mm

e For particle sizes between 5 — 0.01 mm, energy consumption can be calculated

using Bond’s Theory:

1 1

N

E=10xW, x( J (2.2)

Where
W; = work index which is a constant for each type of material and reflects its

grindability or resistance to grinding
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e For particles in the range of 10 — 1000 um, energy consumption can be calculated

using Rittinger’s Theory:

E=kx(4——1y I (2.3)
D2 Dl

Where
k = coupling coefficient
D, = initial particle size in pm

D; = final particle size in pm

The grindability of an ore is a measure of the ease with which it can be comminuted and
is a function of many factors including the elasticity, ductility, porosity, hardness and
consistency of the material. The grindability or work index of a material is determined by
the Bond standard grindability test described by Deister (1987). Levin (1989) described a
grindability test for fine materials, Smith and Lee (1968) a batch-type grindability test
method, and Berry and Bruce (1966) a comparative method for determining grindability

of ores.

The successful liberation of valuable minerals from the waste gangue minerals at the
coarsest possible particle size results in a considerable reduction of cost and energy.
Complete liberation is seldom achieved in practice (Wills 1992:26; King 2001:45).
Moreover, the adhesion between mineral and gangue particles is usually very strong
resulting in a low degree of liberation. There are three main factors that affect the surface
area of the interlocking bond forces at mineral grain contacts. These three factors are
porosity, grain size, and grain shape which also contribute significantly to a rock’s
tenacity. Grain size and shape relates to the rocks texture while porosity indicates the
percentage of the total volume of rock or sediment that consists of pore spaces (Tarbuck
and Lutgens 1999:270). In most rocks the higher the surface area of mineral grain to
grain contact the harder the rock becomes, for example (Solenhofen 2003):

e Decreasing porosity in rocks increases the surface area of grain contacts;
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e Decreasing the size of mineral grains in the rock increases surface area of grain

contacts; and

e The surface area of equant or irregular grains is greater than that of angular

grains.

Therefore, the texture of a particular ore will have a profound effect on the ease of

liberation. This is intuitively apparent in the textures depicted in Figure 2.5.

Figure 2.5: The photomicrograph on the left depicts euhedral chromite crystals in a
silicate matix (darker areas) while on the right a finely intergrown texture of
various copper minerals along with galena, sphalerite and silicate gangue is shown.
It is intuitively clear that it will be easier to liberate the chromite grains from the ore
depicted in the left hand photomicrograph than liberating the various ore minerals

in that on the right (Ixer and Duller 1998)

There are diminishing returns on progressive energy consumption in comminution
because the probability of particle breakage diminishes with particle size (see Figure 2.6).
The implication is that achieving liberation in fine-grained ores with interlocking and
inter-grown minerals is much more expensive. New approaches to increasing the degree
of liberation involve directing the breaking stresses at the mineral crustal boundaries, so
that the rock can be broken without breaking the mineral grains (Wills 1992:26). One of

the objectives of this research is to investigate whether the use of RF power can increase
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the grindability of the material so as to reduce energy consumption, thereby promoting

grain boundary fracturing to increase the degree of liberation at larger particle sizes.
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Figure 2.6: Hypothetical graph illustrating the diminishing returns on energy

consumption in terms of degree of liberation

25 Summary

Chapter 2 gave an account of the classification of minerals as well as their physical and
electrical properties. The three major rock types were introduced along with a brief
description of the rock samples to be used in this research. Important factors relating to
mineral liberation and rock comminution were also presented. The main characteristics of
rocks such as structure, texture and mineral composition and their implications on
comminution and liberation were also reviewed. These characteristics were used to
determine significant textural changes between the treated and untreated rock samples, as

described in Chapter 6.
Chapter 3 presents an overview of various electrical treatment techniques used in rock

comminution, as well as the rationale behind a proposed new electrical treatment

involving RF power.
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Chapter 3 Electrical treatment techniques

3.1

This chapter presents an overview of the theory of four techniques currently used in the
electrical treatment of various materials, specimens and liquids. The rationale for using

RF power in dielectric heating of rock materials is then established and a new electrical

Introduction

treatment technique for rocks at VHF frequencies is proposed.

3.2

Electrical treatment techniques refer to the use of electrical energy in specific ways to

achieve desired changes in certain solid and liquid materials. Four specific electrical

Current electrical treatment techniques

techniques currently employed include:

3.2.1

Microwave pre-treatment;
Ultrasound pre-treatment;
High voltage electrical pulses; and

Radio-frequency power.

Microwave pre-treatment

Numerous studies have shown that microwave pre-treatment is beneficial for:

Drying of raisins (Kostaropoulos and Saravacos 1995);

Accelerating enzymatic hydrolysis of chitin (Roy et al. 2003);

Improved grindability and gold liberation (Amankwah et al. 2005);
Improving the moisture diffusion coefficient of wood (Li et al. 2005);
Enhancement of phosphorus release from dairy manure (Pan et al. 2006);
Strength reduction in ore samples (Jones et al. 2007);

Enhancing enzymatic digestibility of switchgrass (Hu and Wen 2008);
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e A higher extractive yield of vegetable oil from Chilean hazelnuts (Uquiche et al.
2008); and

e The liberation of copper carbonatite ore after milling (Scott et al. 2008).

Microwave pre-treatment is found in many other applications where microwaves induce
transient motions of free or bound charges, such as electrons or ions or charge complexes
such as permanent dipoles. The resistance to these motions causes losses, which result in

attenuation of the electric field and increased dissipation of energy in the material
(Amankwah et al. 2005).

The most important early work on microwave pre-treatment was that of Chen et al.
(1984), who investigated the reaction of 40 minerals to microwave exposure in a
waveguide applicator which allowed the mineral samples to be inserted in an area of
known high electric field strength. This study showed that microwave heating is

dependent on the composition of the minerals.

Walkiewicz et al. (1988) later published data on microwave heating of a number of
minerals and speculated on the potential reduction in grinding energy required for

minerals with stress fractures induced by microwave heating.

Kingman et al. (2004) published an article stating that for the first time microwave-
assisted comminution may have the potential to become economically viable. This
conclusion was based on significant reductions in strength, coupled with major

improvements in liberation of valuable minerals.

The microwave heating system is made up of four basic components: power supply,
magnetron, cavity for the heating of the target material and waveguide for transporting
microwaves from the generator to the cavity as depicted in Figure 3.1. Commonly, an
industrial size microwave heating system is set to a frequency of 915 MHz with a
magnetron as high as 75 kW power and an average working life of 6000 hours (Smith
1993).
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Figure 3.1: An industrial microwave heating system (Amankwah et al. 2005)

Microwave heating is a sophisticated electroheat technology requiring specialist

knowledge and expensive equipment if meaningful results are to be obtained (Bradshaw

et al. 1998). Included in this is the precision involved in the design and construction of

the magnetron and cavity.

3.2.2 Ultrasound pre-treatment

The use of ultrasound pre-treatment has been applied to:

Accelerate the anaerobic digestion of sewage sludge (Tiehm et al. 1997);

Comminution (Gaete-Garretén et al. 2000);

Titanium tanning of leather (Peng et al. 2007);

Ammonia steeped switchgrass for enzymatic hydrolysis (Montalbo-Lomboy et al.

2007);

Two-Minute skin anesthesia (Spierings et al. 2008); and

Cassava chip slurry to enhance sugar release for subsequent ethanol production
(Nitayavardhana et al. 2008).
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The feasibility of the application of ultrasound energy to the grinding process as a viable
avenue of study was stated at a meeting of the International Comminution Research
Association in Warsaw, 1993 (Gaete-Garreton et al. 2000). One of the most significant
reasons for this proposition originated in the accepted fact that inside any material there
are a number of inherent cracks and ultrasonic energy has the capacity to produce crack
propagation from within the particle to its outer surface, in spite of the very low energy
producing an efficient fracture. An ultrasonic grinding machine can be designed in the
form of a roller mill constructed over a specially designed ultrasonic transducer, as is

shown schematically in Figure 3.2 (Gaete-Garreton et al. 2003).
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Figure 3.2: Schematic view of the ultrasound-assisted roller mill (Gaete-Garreton et
al. 2003)

Girtner (1953) was probably the first researcher to have attempted using ultrasonic waves
in the fragmentation of particles, obtaining poor results. Leach and Rubin (1988) studied
the fragmentation of resonant rocks samples fixed to the tip of an ultrasonic transducer,

observing a preferred fracture at the nodes. Yerkovic et al. (1993) made grinding tests

35



comparing standard copper ore with ultrasonic pre-treated samples in a ball mill. The pre-

treated ore exhibited a 32% higher grinding rate.

An active roll, which is itself an ultrasonic transducer, is located in front of a passive roll.
The vibration in extensional mode combines compression and shear action of the active
roll on the mill feed. A funnel feeds the material in the gap by gravity which are then
nipped by the rolls. A spring system furnishes the stress applied to the ore and the stress
level can be varied by adjusting the spring tension. The rotation of the roll is produced by
a variable speed electric motor. The ground ore is collected under the rolls in an iron

receiver fed by gravity.

It is evident from the above description of the ultrasound mill that many different parts
have to work together in the application of an ultrasonic field in the stressing zone of the

material. This setup proves to be very precise and time consuming.

3.2.3 High voltage pulsed power

High voltage pulsed power has been applied to:
e Enhance coal comminution and beneficiation (Touryan and Benze 1991);
e Mineral liberation (Andres et al. 2001);
e Metal peening (Zhang and Yao 2002);
e Rock fragmentation (Hammon et al. 2000; Cho et al. 2006);
e Recover ferrous and non-ferrous metals from slag waste (Wilson et al. 2006); and

e Convective drying of raisins (Dev et al. 2008).

The history of high voltage pulsed power can be traced back to 1752 when Benjamin
Franklin discovered that lightning was a discharge of static electricity (Staszewski 2010).
It was reported that he raised a kite (with a key attached to his end of the string) which
was tied to a post with a silk thread. As time passed, Franklin noticed the loose fibers on

the string stretching out; he then brought his hand close to the key and a spark jumped the
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gap. This electrical discharge across a gap would prove significant in the research of high

voltage pulsed power techniques.

In 1924 Erwin Marx described an apparatus, which produced high voltage pulses, and
became known as the Marx-Generator (Fontana 2004). It is a clever technique for
generating high-voltage short-duration waveforms by charging a number of capacitors in
parallel, then quickly discharging them in series. While originally based upon the use of
air-dielectric spark gaps to provide the switching mechanism, solid-state variants utilizing
avalanche diodes or other solid-state switching devices have been used to generate
nanosecond duration pulses having amplitudes exceeding several thousand volts of direct

current (Baker and Johnson 1993).

There has been intense interest for the last several decades in the use of high-voltage
pulse technology for rocks disintegration (Cho et al. 2006). The methods of electric pulse
disintegration are mainly electrohydraulics and internal breakdown inside bulk solid
dielectrics (Budenstein 1980; Owada et al. 2003). The first method refers to the
generation of an intense shock wave in water from the passage of electrical current
through water and the crushing and subsequent constituent separation by the impact of
that shock wave on the sample. The second method refers to the passage of electrical
current through the rock and the separation of the mineral contents from the rock matrix
by preferential current flow along the mineral/rock boundary interface. Rock
disintegration using the second method consumes substantially less energy than that
using the first method and enhanced effect of liberation of mineral constituents of rock
aggregates. The schematic of a test chamber using high voltage pulsed power in shown in

Figure 3.3.

A major limiting factor to spark-gap switches used in high voltage pulsed power
applications was their short lifetime (Winands et al. 2005). Other shortcomings with
spark gaps are related to their limited pulse repetition rate, strong electrode erosion,

insulator degradation, high arc inductance, limited hold-off voltage, and costly triggering.
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Figure 3.3: Schematic of a test chamber using high voltage pulses (Wilson et al.
2006)

3.2.4 Radio-frequency power

The application of electrical energy in the RF heating of various materials has been

successfully employed in the following:

¢ Electrical heating along with radio frequency (RF) heating was used in the 1970s

for the recovery of bitumen from tar sand deposits (Kawala and Atamanczuk

1998);

e RF treatments can potentially provide an effective and rapid quarantine security

protocol against codling moth larvae in walnuts as an alternative to methyl

bromide fumigation (Wang et al. 2001);

e RF heating was successfully used to increase the temperature of human blood

without incurring cell destruction (Pienaar 2002);

e Treating fruit in immersion water of selected salt concentration and RF power

may be used to develop an effective alternative quarantine method for fruit

(Ikediala et al. 2002);
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e RF power in conjunction with conventional hot water treatment can be used to
develop feasible heat treatments to combat éodling moths in apples (Wang et al.
2006);

e RF-based dielectric heating was used in the alkali pre-treatment of switchgrass to
enhance its enzymatic digestibility (Hu et al. 2008); and

e Dielectric heating of soil using radio waves (RW) can be applied to support
various remediation techniques, namely biodegradation and soil vapor extraction,

under in situ or ex situ conditions (Roland et al. 2008).

Dielectrics have two important properties (Oespchuck 1984; Jones et al. 2002):
e They have very few free charge carriers. When an external electrical field is
applied there is very little charge carried through the material matrix.

e The molecules or atoms comprising the dielectric exhibit a dipole movement.

The principle of dielectric heating basically involves the absorption of energy by dipoles
(Chee et al. 2005). A dipole is essentially two equal and opposite charges separated by a
finite distance. An example of this is the stereochemistry of covalent bonds in a water
molecule, giving the water molecule a dipole movement. Water is the typical case of a
non-symmetric molecule. Dipoles may be a natural feature of the dielectric or they may
be induced (Kelly and Rowson 1995). Distortion of the electron cloud around non-polar
molecules or atoms through the presence of an external electric field can induce a
temporary dipole movement. This movement generates friction inside the dielectric and
the power is dissipated subsequently as heat. The interaction of dielectric materials with
electromagnetic radiation in a given frequency band results in energy absorbance (Wang
et al. 2001; Jones et al. 2002). The power coupled into a sample is nearly constant when
the electric field intensity and dielectric loss factor do not vary at a given frequency. The
heat generated per unit volume (P in W / m?) in a dielectric material when exposed to RF

power can be expressed as (Nelson 1996):

P=556x10"x fxE’x¢ W/m’ (3.1)
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Where
J =frequency of radiation in Hertz (Hz)
E =the electric field intensity in Voltage per meter (V/m)

e = the permittivity of the material

Moreover, the amount of heat (Q) required to change the temperature of a given material
is proportional to the mass of the material and to the temperature change as given by

Giancoli (2005:387):

O=CxmxAT J (3.2)

Where
AT = temperature change in Degrees Celsius (°C)
m = the sample mass in kilogram (kg)
C =is the specific heat capacity of the sample in Joules per kilogram per degrees

Celsius (J/kg/°C)

Subsequently, temperature rise within the sample due to absorbed electromagnetic energy
is really a function of the heating time. The temperature increase can be estimated by
assuming that the electric field is uniform and the dielectric properties are relatively
constant. The temperature increase (A7 in °C) of the sample during RF heating can

furthermore be expressed as (Halverson et al. 1996):

kxP

Cxm

AT = x At °C (3.3)

Where
k = coupling coefficient
P = input power (W)
Ar = RF heating time in seconds (s)
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The practical setup used to achieve the transfer of RF power to a dielectric sample is
shown below in Figure 3.4. RF system consisted of a transformer, rectifier, oscillator, an
inductance-capacitance pair commonly referred to as the ‘tank circuit’, and the work
circuit (Wang et al. 2001). The transformer raises the voltage to 9 kV and the rectifier
provides a direct current which is then converted by the oscillator into RF power at 27
MHz. This frequency is determined by the values of the inductance and capacitor in the
tank circuit. The parallel-plate electrodes, with sample in-between, acted as the capacitor
in the work circuit. The gap of the electrode plates can be changed to adjust RF power

coupled to the sample between the two plates.

Variable Inductance
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Figure 3.4: Practical setup used in the dielectric heating of a material (Wang et al.

2001)

Three (microwave, ultrasound and high voltage pulsed power) of the four electrical
treatment techniques noted above have been successful in weakening the mineral grain
boundaries of rocks, thereby enhancing mineral liberation within the rock comminution
process. This is accomplished by the generation of stress within the material which gives
rise to fractures and breakages. The weakening of mineral grain boundaries may yet be

achieved by using RF power.
3.3  New proposed electrical treatment of rocks: RF power
Emanating from the above scientific literature on the use of electrical energy in various

treatment techniques and in the dielectric heating of materials, the following hypotheses

are made:
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e The successful transfer of RF power to specific rocks through dielectric heating
may exhibit positive effects on the textural characteristics of these samples; and
e These textural changes may further contribute to enhancing the rock comminution

process, thereby increasing the percentage of valuable liberated minerals.

As far as could be established, no current literature exists substantiating these
hypothesise. A novel electrical treatment technique of rock samples involving RF power

is subsequently presented.

A high power RF amplifier may be connected to a rock sample (acting as a dielectric
material) by means of a suitable coupling device. RF power is transferred from the
amplifier to the rock sample at the resonating frequency. Confirmation of power transfer
may be determined through the following results:
e Temperature increase on the surface of the rock sample and subsequently its
specific heat capacity;
e Surface colour change of the sample;
e Screening of particles from pre-treated and non-treated sample;
e Scanning electron microscope (SEM) analysis of pre-treated and non-treated
samples; and

e Power consumption analysis of pre-treated and non-treated samples in a ball mill.

The practical setup of this experiment is shown in Figure 3.5. A commercial RF
transceiver (ICOM IC-V8000) may be used in conjunction with two RF amplifiers
(MIRAGE PAC30-130B) to generate the power required at the resonating frequency.
However, the output impedance of the RF amplifiers is 50 Q while the input impedance
of the rock samples may vary dramatically from a few hundred Ohm to a few thousand
Ohm (Chapter 4 presents a more detailed description of these impedances). This
necessitates the design and use of a matching network which will be presented in
Chapter 5. The results (in terms of the five listed above) of this new proposed electrical

technique are presented in Chapter 6.
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The rock sample acts as a dielectric material within a coupling device, as shown in
Figure 3.5. Suitable coupling devices along with RF electrical properties associated with

dielectric materials are presented in Chapter 4.
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Figure 3.5: Practical setup of the experiment (Swart et al. 2009b)

34  Summary

Four treatment techniques (microwave pre-treatment, ultrasound pre-treatment, high
voltage electrical pulses and RF power) currently used to achieve certain goals with
regard to specified materials, specimens or liquids have been discussed. Rationale for
using RF power in the dielectric heating of materials was presented. The practical setup
of the equipment used in the transfer of RF power to a dielectric material was given.
Chapter 4 will present various RF electrical properties associated with dielectric
materials. It will also introduce two coupling techniques which have been substantiated

by scientific literature in this field of dielectric heating.
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Chapter 4 Electrical measurements of dielectric materials

and subsequent findings

4.1 Introduction

This chapter presents various RF electrical properties associated with dielectric materials.
Two RF methods currently used in connecting dielectric materials to electrical test
equipment are reviewed together with the advantages and disadvantages of each method.
The construction of a unique coupling device based on one of these proven scientific
methods is described along with the practical setup to determine the RF electrical
properties of ten different rock samples. As this research was limited to the VHF range,
only readings between 30 and 300 MHz were recorded. These electrical properties were
then used in the mathematical modelling of the phase angle to frequency equations for all
ten rock samples. Resonance, resistivity and conductivity graphs are included as

examples for the JSA sample, which may also be sketched for the other rock samples.
4.2  RF electrical properties associated with dielectric materials

The RF electrical properties of a dielectric material can be obtained by measuring its
impedance (magnitude (]Z|) and phase angle ()) at various frequencies. Impedance may
be represented as a complex quantity which is graphically shown on a vector plane
illustrated in Figure 4.1. The well known unit of impedance is Ohm (€2) and may be
expressed in rectangular form as Z =R+ jX or in polar form asZ =|Z|4:9. These
impedance values are then used in conjunction with specified equations to obtain the
following RF electrical characteristics of dielectric samples:

¢ R =Resistance measured in Ohm (Q2);

e X =Reactance measured in Ohm (£2);

e (C = Capacitance measured in Farad (F);

L = Inductance measured in Henry (H);

e p = Resistivity measured in Ohm meters ((2m); and
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e ¢ = Conductivity in Siemens per meter (S/m).

The +jX value in Figure 4.1 indicates an inductive reactance while the —jX value indicates
a capacitive reactance. The R value indicates a pure resistor. The following equations
indicate that the frequency of operation (f) influences the value of reactance. For

capacitive reactance the following equation is used:

1

Xe=——""—
2xmax fxC

Q 4.1)

For inductive reactance the following equation is used:

Xl=2xmx fxL Q (4.2)

Imaginary axis

X 1Z| (R, X)

s
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- X
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Figure 4.1: Impedance consists of a real and imaginary part

Beasley and Miller (2008:36) define resonance as a circuit condition whereby the
inductive and capacitive reactance have been balanced; X7 and Xc tend to cancel each
other leaving only the resistive component with maximum current flowing through the
series circuit (see Figure 4.2). At this point a dielectric material acts purely as a resistive

component, facilitating the maximum absorption of electrical energy. Increasing or
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decreasing the resonating frequency will introduce a reactive component which will
modify the impedance of the circuit and subsequently negatively affect energy transfer.

The following resonance equation results:

1
=——— - Hz 4.3
Je 2xmaxALxC -3
Xl = +90j R=10Q Xe = -90j
Y — ||
o R1 J I
L1 C1

(0%
N
vec-10v I=1A

Figure 4.2: Series resonant circuit indicating a maximum current flow for X/ = Xc¢

Electrical resistivity is a measure indicating how strongly a material opposes the flow of
electric current while electrical conductivity is just the reciprocal. Equations for

resistivity and conductivity are:

o= R}‘A om (4.4)
1

o=— S/m (4.5)
Yol

Where

A = the cross sectional area of the material in square meters (m?)
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I = the thickness of the material specimen in meters (m)
4.3  Relative permittivity of materials

This research uses the characteristics of relative dielectric permittivity of materials to
obtain maximum RF power transfer. The relative dielectric permittivity, or dielectric

constant, (¢,) of a material is generally described as a complex quantity by (Kasap
2006:605):

g =¢' —je" (4.6)

r

Where

¢', =relative dielectric permittivity relating to the real part of the material

", = relative dielectric permittivity relating to the imaginary part of the material

The real part (¢',) represents the relative permittivity which is used in calculating the
capacitance, while the imaginary part (¢”,) represents the energy lost in the dielectric
medium as the dipoles are oriented against random collisions one way and then the other
way and so on by the field (Kasap 2006:607). The power dissipated in the dielectric
medium is related to the imaginary part (¢',) and peaks when w = 1/t. The rate of energy
storage by the field is determined by w whereas the rate of energy transfer to molecular
collisions is determined by 1/1. When @ = 1/1, the two processes, energy storage by the
field and energy transfer to random collisions, are then occurring at the same rate, and
hence energy is being transferred to heat most efficiently. The relative magnitude of ¢, is

defined with respect to &', through the loss tangent as:

tan§ = < 4.7)

The energy per unit time dissipated as dielectric loss in the medium is defined as (Kasap
2006:607):
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/4

vol

=oxE xg, x¢g' xtand (4.8)

Where
W =losses per unit volume in Watts per square meter (W/m?)
o = angular frequency (s™)
E =electric field in Voltage per meter (V/m)

g, = permittivity of free space (F/m)

It is frequently convenient to normalize the permittivity of a material by the permittivity

of free space as shown by the following equation (Giacoletto 1977):

_&(w)

(@) == (4.9)

o

The above equations indicate that the relative dielectric permittivity of a material is
closely associated to the frequency of operation, which is one of the electrical properties

that can be measured by sophisticated RF measuring instruments.

44  RF measurement coupling techniques

Two RF measurement coupling techniques currently exist for determining the RF
electrical properties of dielectric materials. They are the:
e Cylindrical capacitor with coaxial electrodes and

e Parallel-plate capacitor (PPC) with disk electrodes.

These coupling techniques may furthermore be used with two different measuring
instruments, namely a network analyser or a vector voltmeter. The practical setup for
both measuring instruments is presented next. However, the network analyser was used

as the primary measuring instrument in this research due to its advanced functionality.
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4.4.1 Cylindrical capacitor with coaxial electrodes

Numerous articles list the usefulness of the cylindrical capacitor in measuring electrical
impedances (Levitskaya and Sternberg 2000; Bagdassarov and Slutskii 2003; Azimi and
Golnabi 2009). Figure 4.3 illustrates a detailed cylindrical capacitor with coaxial
electrodes. A cylindrical capacitor consists of a three-part coaxial capacitance sensor in
which the middle one acts as the main sensing probe (Azimi and Golnabi 2009). The
outer conductor is considered to be a guard ring in order to reduce stray capacitance and
error measurements. Aluminium material is often used for manufacturing the capacitor

tube electrodes (Rutschlin et al. 2006).

The cylindrical capacitor extends the frequency limit of measurements to 1 GHz for
materials with a dielectric permittivity of less than 25 (Levitskaya and Sternberg 2000).
However, cutting a sample of marble (dielectric permittivity of 8) into a cylindrical form
with exact diameter spacing proves cumbersome and difficult in the absence of a core-

drill. For this reason the PPC was reviewed as a possible coupling device.

je—23 mm—s]
I 12 mm |
. Main electrode lead
1 T Plexiglas cap
3em § %—- Outer electrode
—L § \-— Guard ring electrode
Q § Plexiglas ring
N N
N
TR \
dem N X Muin inner cleotrode
12cm § §
LN BN
% N Plexiels disk
T % N Guard ring electrode
3em % _%— Pliling gep
N
_L S Mzin electrode lead
lem Plexiglass base
= F | H Ground electrode lead
|« 3cm »

Figure 4.3: Cylindrical capacitor with coaxial electrodes (Azimi and Golnabi 2009)
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4.4.2 The parallel-plate capacitor with disk electrodes

A PPC with disk electrodes is formed when a dielectric material or sample is sandwiched
between two conducting plates (see Figure 4.4). These conducting plates (made from
copper due to its good conductivity (Lu et al. 2004; Zaghloul 2008)) are connected to
relevant test equipment via standard RF connectors and coaxial cables. Previous research
has shown that the PPC technique is feasible up to frequencies around 100 MHz (Bussey
1979; Levitskaya and Sternberg 2000; Park et al. 2005). This technique has seemingly
been found to be incompatible for measurements above 100 MHz due to the following
reasons (Levitskaya and Sternberg 2000):

e connections may be a cause of mismatch;

e components become efficient transmitting antennas;

e cnergy is lost due to radiation;

e difficult to account for stray inductance and capacitance; and

e components become distributed rather than lumped parameters.

Length = 60 mm Parallel copper plates

o,
w

v

Back copper plated
board = 2 mm thick

Dielectric material
=4 mm thick

\F ront copper plated
board = 2 mm thick l

27 mm 33 mm Dielectric material

e

Figure 4.4: PPC showing the rock sample as the dielectric material
Levitskaya and Sternberg (2000) presented the following equation which provides an

estimate of the limiting thickness dimensions for the sample to be measured with the PPC

technique:
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A

thickness < 0.038 x

mm (4.10)

Where
A =wavelength of the specified frequency in millimetres (mm)

¢’, =relative dielectric permittivity

This equation suggests that high frequency measurements are easier on material samples
with a low dielectric permittivity. Using a relative dielectric permittivity of 8 (Beleznai
2009) for a marble rock sample and a maximum frequency of 950 MHz yields a

maximum sample thickness of:

thickness < 0.038x 315.789
J8
thickness < 4.24 mm

Cutting a sample of rock to a thickness of 4 mm is relatively easy and was done using a
rock cutting disk (see Annexure 11). The rock sample acting as the dielectric material

may be termed the device under test (DUT).

Hence, the PPC was chosen as the desired coupling device due to the following

advantages:

relatively easy to cut a rock sample into a rectangular shape;

proliferation of copper plates to act as the disk electrodes;

e custom made jigs to hold the copper plates in place; and

wide spread use of common connecters to couple the test equipment.

4.5  Constructing the parallel-plate capacitor

The PPC was constructed from single sided printed circuit board (PCB) material

(thickness of 2 mm) with copper as the conducting material. The first PPC was built in
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2005 and featured a rectangular holder with a BNC connector. This first prototype is

shown in Figure 4.5.

The disadvantage of this first prototype was the constant soldering of the PCB when a
new rock sample was to be inserted as the dielectric material. For this reason a new
clamping jig was designed incorporating a novel wooden frame using a spring and 6 mm
dowel. Wood adds no significant stray capacitance to the PPC, as it is a good electrical
insulator (Winandy 1994). The spring presses the dielectric material sandwiched
between two copper plates against a wooden frame. The conducting copper plates are
connected to a BNC connector which facilitates connection to the RF test equipment.

This second prototype of the coupling device incorporating a PPC is shown in Figure 4.6.

Figure 4.5: First prototype of the PPC with a BNC connector

However, the second prototype also had problems in that the singular spring did not exert
sufficient pressure to keep the rock sample in the PPC. An additional BNC to N-Type
adapter was further needed as the RF test equipment was fitted with only an N-Type
female connector. These problems were resolved in a third prototype which featured an
additional spring, wooden dowel and an N-Type female connector. The various parts
comprising the novel wooden jig and PPC are depicted in Figure 4.7. In this prototype,
the springs attached to the dowels are inserted into two six mm holes which are drilled

horizontally between the outer side of the wooden clamp and the cut-out section. The
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small rectangular PCB with two self tapping screws ensures that the springs are held in

position for optimal tension.

Figure 4.6: Second prototype of the PPC and novel wooden jig
LT LT ————

Figure 4.7: Third prototype of the novel wooden jig and PPC

Four different sized PPCs were constructed (see Annexure 12 for photographs) out of 2
mm thick plates coated with copper for the purpose of determining whether the
resonating frequency of the sample is influenced by the rock’s dimensions. The four sizes

(length and width) of the front copper coated plate were:
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e 87 x 47 mm referred to as PPC-1;
e 59 x 47 mm termed PPC-2;

e 28 x 47 mm labelled PPC-3; and
e 18 x 33 mm called PPC-4.

The size of the back plate was always 27 mm longer in length (see Figure 4.4) to
accommodate the N-Type female connector. These PPCs were then used with
corresponding rock sample sizes in two practical setups to determine the electrical

properties of the dielectric materials.

4.6 RF measurements of dielectric materials

The electrical properties (impedance and phase angle) of the dielectric material (various
rock samples in this research) were determined by using standard RF measuring
equipment (vector voltmeter and network analyser) connected to the PPC by means of a

coaxial cable. The description of the method used to obtain these measurements follows.

4.6.1 The practical setup of the experiment using the vector voltmeter

The vector voltmeter (HP 8505A used in this research) was used as the primary
measuring device in the practical setup. However, the setup also required a power splitter
and an external RF signal generator (SMYO01) that could generate a range of required
frequencies at a constant output level. Figure 4.8 presents the practical setup of the
experiment using the vector voltmeter, RF signal generator and power splitter. The
second port of the power splitter was connected to the DUT. The vector voltmeter
measured the reaction or response of the DUT to the different frequencies generated by

the RF signal generator, expressing the reaction as a magnitude (|Z|) and a phase angle

©).

The vector voltmeter, with an input impedance of 50 Q, was initially calibrated with a

pure 50 Q resistance to obtain a standard reference for all successive measurements. A
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100 MHz 0 dBm output signal was generated by the RF signal generator (output
impedance of 50 Q). The output signal applied to the 50 Q power splitter provided a
stable reference signal at the A-input of the vector voltmeter. A pure 50 Q resistance was
then inserted as the DUT, coupled to the B-input of the vector voltmeter. The measuring
instrument compared the two signals (A-input and B-input), providing a corresponding
impedance and phase angle measurement. The calibration measurement was 50 Q at 0°.
A short circuit was then applied as the DUT with a corresponding calibration

measurement of 0 €2 at 0° (Agilent Technologies 2003).

Hewlet Packard HP 8508 A
Vector Voltmeter
A-input 100 kHz - 1040 GHz
B - input
Rhode and Schwarz SMY01 Power Splitter
RF Signal Generator Accessory Kit:
9 kHz - 1040 GHz HP 11570A

DUT

Figure 4.8: Practical setup of the experiment (Swart et al. 2009¢)

Successive measurements at different radio-frequencies were taken once the equipment
had been calibrated. The output frequency of the RF signal generator was initially set to
50 MHz, with a corresponding impedance and phase measurement being measured by the
vector voltmeter. The output frequency of the RF signal generator was changed in
50 MHz steps from 50 MHz up to 950 MHz, with corresponding magnitude and phase
measurements being recorded. These measurements where then tabulated and inserted
into other equations (equations 4.1 through 4.5) to obtain the resistance, reactance,
resistivity and conductivity of the rock samples at each specified frequency change (e.g.

see Figure 4.9 for a graphical result of the resistance to frequency curve).
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Figure 4.9: Resistance measurements for five different rock samples (57 x 41 x

18 mm) (Swart et al. 2005)

Initial measurements revealed three average resonating points for the different rock
samples, at approximately 160, 320 and 600 MHz when using PPC-2 (59 x 47 mm). This
method was then applied to measure the resonating frequencies of four different sized
marble samples (JSB), two of which were painted with tin (tin powder mixed with an
activator which the manufacturer may not disclose), using a small paint brush. This was
done in an attempt to enhance the coupling between the rock’s surface and the copper
conducting plates. Tin exhibits excellent corrosion resistance and metal-like electrical
conductivity (Yang and Northwood 2007), while having a low resistivity and interfacial
thermal stability (Ding et al. 1988). It is not as expensive as silver or gold which do have
better conductivities. Electrical measurements were obtained (shown in Figure 4.10) from
four samples, two with a width of 18 mm and two with a width of 4 mm. The reason for
using two different thicknesses was to illustrate the importance of the equation given by
Levitskaya and Sternberg (2000), which indicates that the thickness of the sample should
not exceed 4 mm for a frequency of 950 MHz. The following four marble samples were
housed in the corresponding PPC with rectangular electrodes:

. sample (57 x 41 x 18 mm housed in PPC-2) with non-coated tin indicated by a

square (0) in Figure 4.10;

56



sample (57 x 41 x 18 mm housed in PPC-2) with coated tin denoted by a
diamond (0) in Figure 4.10;

sample (35 x 19 x 4 mm housed in PPC-4) with non-coated tin denoted by a
circle (0) in Figure 4.10; and

sample (35 x 19 x 4 mm housed in PPC-4) with coated tin shown by a triangle
(A) in Figure 4.10.
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Figure 4.10: Reactance to frequency curve of four different sized marble samples
(JSB)

It is noteworthy that the four curves follow the same pattern, with almost the exact same
values between 50 and 300 MHz. The significant observable difference between the four
samples from 300 MHz onward may well be related to the sample size, which should not
exceed 4.24 mm in terms of the equation given by Levitskaya and Sternberg (2000). The
results also reveal that the rock sample can be either a little smaller than the PPC (57 x 41
mm in 59 x 47 mm) or a little bigger than the PPC (35 x 19 mm in 33 x 18 mm) for
frequencies below 300 MHz. The results of the tin-coated samples further reveal no
significant differences below 300 MHz to the non-coated ones which suggest that tin
does not really enhance the coupling between the copper conducting plates and the

marble rock at frequencies lower than 300 MHz. The dielectric material (of no more than
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4 mm in thickness) was subsequently used with no tin coating in subsequent

measurements below 300 MHz (being the end of the VHF range).

This measurement procedure proved to be rather cumbersome and time consuming, since
at each step the frequency had to be manually set on the RF signal generator, with
corresponding measurements recorded. However, this procedure well illustrates the
measurement process, where a magnitude (|Z]) and phase angle (8) at different
frequencies are obtained for a specific dielectric material. Similar measurements may be

easier to obtain from a network analyser.

4.6.2 The practical setup of the experiment using a network analyser

The network analyser (HP 8752C used in this research) has the advantage of having an
internal RF signal generator for measuring purposes and no power splitter or calibration
resistances are required. The PPC may be connected directly to the reflection port on the
network analyser via a 50 Q coaxial cable with N-type connectors. This setup is shown in

Figure 4.11.

08/06/2010

Figure 4.11: Practical setup of the experiment with a HP 8752C network analyser
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The integration of the swept synthesized source, test set, and receiver, results in a
network analyser that is easy to set up and use and that is ideal for service, incoming
inspection, production and final test measurements (Agilent Technologies 2003). The
integrated synthesized source provides a maximum port power level of +5 dBm with
linear, logarithmic, list, power, and constant wave sweep types. The sensitive, tuned
receivers provide 100 dB of dynamic range with two independent display channels
available. Simultaneous measurements include reflection and transmission characteristics
of the DUT on a crisp colour display. Data can be displayed in either linear or
logarithmic magnitudes, standing wave ratios, phase, group delay, polar, real, or Smith

chart formats.

The Smith chart format (see Figure 4.12) is especially useful in calculating circuit
parameters such as Voltage Standing Wave Ratio (VSWR), reflection coefficient and
return losses (Grebennikov  2005:112). This graphical measurement portrays the
magnitude and phase in polar coordinates or a real and an imaginary part in XY
coordinates (Hutchinson 2001:6.32). The horizontal axis is the pure resistance or zero
reactance line (Frenzel 2003:576), where the resonating frequency points (Xc¢ = X7) of the
DUT may be discerned. Points below the horizontal line indicates a capacitive reactance

while points above the line are indicative of an inductive reactance (Orr 1997:21-14).
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Figure 4.12: Smith chart display indicating the resonating frequency (161.566 MHz)
of a rock sample within the PPC (Swart et al. 2009b)
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The frequency range (shown on the bottom of the chart being 120 — 200 MHz) is kept
purposively small to obtain a more detailed and accurate measurement. It is chosen in
accord with the average resonating point of 160 MHz obtained from the vector voltmeter
setup. The magnitude (|Z|) and phase angle () of the DUT is shown in the top right hand
corner of the display, with the marker frequency just below it. The 0 Q and 0 H values
indicate that no reactance components are present with only a pure resistance value of

1.33 kQ at 161.566 MHz.

Two identical sized rock samples (30 x 19 x 4 mm) were inserted side by side into PPC-3

(28 x 47 mm front plate and 28 x 64 mm back plate), as shown in Figure 4.13.

N-Type connector placed //
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.
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Figure 4.13: Two rock samples (with dimensions 30 x 19 x 4 mm) inserted side by

side into PPC-3 (28 x 47 mm front plate)

This resulted in an overall dimension of 30 x 38 x 4 mm, with a | mm overlap on either
side of the PPC. This was initially done to eliminate the possibility of fringing electric
fields, which often results in the abrupt truncation of copper conducting strips at the open
circuit (Sainati 1996:26). Moreover, the fringing electric fields store energy and act like

a capacitor connected to the end of the copper strip, making the electrical line longer than
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its physical length. However, no significant resonating frequency variations were
observed when this overlap was removed (i.e. the rock sample length was cut to the exact
breadth of the PPC). This is portrayed in Table 4.1 where the maximum frequency
deviation never exceeded 2%. On the other hand, significant resistance variations were
observed for all the rock samples, with some deviating by up to 26% (JS4 sample).
However, this resistance variation was not critical because the matching network (from
Chapter 4) was designed to operate over a wide range of impedances. It may, therefore,
be stated that fringing has no real effects on the frequency of operation in this type of
PPC at frequencies within the VHF range. However, all rock samples were cut 2 mm
wider than PPC-3 (1 mm overlap on either side) to easily facilitate the contact of K-Type
thermocouples without the possibility of short circuiting the two conducting plates. The
resonating frequencies obtained from the network analyser for these rock samples were
presented at the New Generation University Conference held in Vanderbijlpark during

2009 (Swart et al. 2009a) and are shown in Table 4.1

Table 4.1: Ten untreated rock samples (30 x 38 x 4 mm) housed in PPC-3 (two sizes
being 30 x 47 mm and 28 x 47 mm) and analysed with a spectrum analyser with

respect to resonating frequencies

Untreated with 0 mm Untreated with 1 mm .
Sample Rock overlap overlap Frequency | Resistance
d variation variation
BOAL tYPe | Frequency | Resistance | Frequency | Resistance (Percentage)| (Percentage)
(MHz) (Ohm) (MHz) (Ohm)

JSA Dolerite 161.01 1101 160.14 1264 -0.5% 12.9%
JSB Marble 159.78 1135 162.58 1325 1.7% 14.3%
JSC Granite 165.11 1206 167.85 1545 1.6% 21.9%
JSD  |Sandstone 168.99 1259 170.08 1169 0.6% -1.7%
JSE | Mudstone 151.48 167 154.34 171 1.9% 2.3%
JS1 Marble 160.76 1388 162.61 1630 1.1% 14.8%
IS2 Marble 159.43 939 159.74 940 0.2% 0.1%
JS3 Marble 160.59 1761 162.30 2037 1.1% 13.5%
Js4 Granite 165.11 1340 165.14 1812 0.0% 26.0%
JSS Marble 158.17 1573 160.43 1339 1.4% -17.5%
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Repeated measurements of a rock sample (Marble called IS5 — See Table 4.1) cut to two
different sizes (corresponding to PPC-1 and PPC-3) were made to establish the reliability
of the results. These repeated measurements (obtained on the 12" and 30™ of June 2009)
are shown in Figures 4.14 — 4.17 and indeed indicate repeatability of the resonating
frequency measurements for each rock sample. Verification of the resonating frequencies
for each rock sample was realized. Significantly, three experimental results reveal that the
resonating frequency increases with decreasing sample size (from 145.576 MHz
measured with PPC-1 (90 x 38 x 4 mm) to 158.576 MHz measured with PPC-3 (30 x 38
X 4 mm)). This is advantageous as it implies that the sample size may be manipulated to
fit within the frequency range of commercially available RF amplifiers. For this reason
PPC-3 (28 x 47 mm) and its rock sample size (30 x 38 x 4 mm) was selected for
subsequent measurements because its resonating frequency (approximately 159 MHz)
falls within the range of a commercially available RF amplifier (MIRAGE PAC30-130
with a frequency range of 154 — 174 MHz and a 130 W maximum output).

CH1 RFL 1UFS 10_: 980.22 0 30563 [ 30.707nH
- 158 576 DOO MHz
]
LT -
MARKER 1 \ PR ¢
158.579My N \

START 120.000 D00 MHz STOF 200.000 DDD MHz

Figure 4.14: Smith chart result of a rock sample (JS5 with dimensions 30 x 38 x
4 mm) taken on the 12" of June 2009 in PPC-3 (28 x 47 mm)
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Figure 4.15: Smith chart result of a rock sample (JS5 with dimensions 30 x 38 x
4 mm) taken on the 30™ of June 2009 in PPC-3 (28 x 47 mm)
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Figure 4.16: Smith chart result of a rock sample (JS5 with dimensions 90 x 38 x
4 mm) taken on the 12" of June 2009 in PPC-1 (87 x 47 mm)
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Figure 4.17: Smith chart result of a rock sample (JS5 with dimensions 90 x 38 x
4 mm) taken on the 30™ of June 2009 in PPC-1 (87 x 47 mm)

In Figures 4.14 — 4.17, the marker shown on the display is on the resonance line, where
Xc tends to cancel XI. This point needs to be where the resonance line intersects the 50 Q
circle (second dotted circle from the left hand side in the middle of the display) to ensure
that the maximum amount of power is transferred to the rock sample. This was achieved
with the design and implementation of a passive matching network (presented in Chapter

5) using the Scattering coefficients obtained from the network analyser.

4.7  Practical results obtained from the network analyser

Scattering coefficient readings (termed the S-parameters and specifically S;;) were
obtained for each sample (two identical rocks with dimensions 30 x 19 x 4 mm inserted
side by side into PPC-3) using the wooden jig. In S-parameter theory an incident
component is defined as that component which would exist if the port under

consideration were conjugately matched to the normalized impedance at that port, which,
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in most cases, is 50 Q (Z,) (Abrie 1999:9). Two hundred and one samples of these S-
parameters were obtained for each rock sample for the VHF range and were then
converted into phase angles (Radians and Degrees), resistance (Ohm), resistivity (Ohm-
meter) and conductivity (Siemens per meter) (conversion equations are shown in
Annexure 23). The results for each untreated rock sample are shown in Annexures 1 — 10.
Rock sample JSA was selected for the initial trial in sketching the frequency to phase

angle graph as shown in Figure 4.18.
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Figure 4.18: Frequency to phase angle of the JSA rock sample for the VHF range

Additional graphs including (a) frequency to resistivity and (b) frequency to conductivity
curves are shown in Figure 4.19. These graphs may be reproduced for the other rock
samples by using their respective S-parameters (given in Annexures 1 — 10) with the
relevant conversion equations shown in Annexure 23. The frequency to phase angle
graph (Figure 4.18) of the JSA rock sample depicts a square waveform. This waveform
may be derived from a proven scientific equation which was used in the mathematical
modelling of the frequency to phase angle graph of the rock samples, and is presented in

the next section.
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Frequency versus resistivity
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JSA rock sample for the VHF range

Mathematical modelling of the frequency to phase angle equation for the

4.8

rock samples

A Fourier Frequency Transform (FFT) equation was used as the basis for deriving the

mathematical equation for the resonating frequency of rock sample JSA. This modified
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equation can be used to predict the phase angle of the rock sample at specified

frequencies. The original FFT equation is (Young 2004:90; Amidror and Hersch 2009):

2x A
Vs

><COS(2><7r><fo><l)—2XAxcos(2x7r><3xfoxl)... (4.11)

v(t) =

Where
A =the amplitude of the signal in Voltage (V)
Jfo =the frequency of the waveform in Hertz (Hz)

[ =time in seconds (s)

Equation 4.11 may be modified to the following:

© sin(nxz)
¢=Z[A><—ﬂz]><cos(2x7rxnxfoxt) 4.12)
n=l1 nxX—
2

Where

n = the number of samples

Equation 4.12 was adapted by changing the amplitude (4 = 172) of the waveform to
represent a +90 to -90 degrees phase shift. The frequency of the waveform was also
adjusted (f, = 0.012278) to coincide with the original waveform obtained from the
network analyser. Values for ¢ (30 — 300) were stipulated in terms of the VHF range of
frequencies and were advanced by a factor of 22.782 to coincide with the first resonating
point at 39.45 MHz. This produces the following equation which was used in

MATHCAD to obtain the phase angle calculations for a given frequency:

201 Sin(nxz)
6= [172x———2 ] cos(2x mx nx 0.012278x (f +22.782)) (4.13)
n=l nx%

Where
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S = must be the frequency of the waveform in MHz

The waveform derived from equation 4.13 is plotted in Figure 4.20, where the original
waveform (shown in a solid blue line obtained from the network analyser) is contrasted to
the predicted algorithm waveform (black dotted line obtained from the mathematical
equation in MATHCAD). Very little difference can be perceived between these two
waveforms with the maximum percentage error at the high-frequency side of the
waveform being approximately 1%. This technique was used on the other rock samples to
obtain their individual mathematical equations for resonance. These results are shown in
Annexure 13 and may be used to calculate the exact phase angle of the specified rock
sample at a given frequency. The resonating frequency of rock sample JSA was initially

used in the design of a passive matching network presented in Chapter 5.

— : S R —
Frequency versus phase angle
= = = Predicted algorithm ‘Network analyzer
100 : o R, ' . . J. .
O 60 : S T - T I
sb ' | ' I . "; i
8 40 . ‘ B L
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[a W) _80 - T : : _____ , - ! "J" ‘- : ‘ ] ‘r "1' ‘ ],
100 + I TR R S S L : i Lo
Frequency (MHz)

Figure 4.20: Frequency to phase angle waveform of the JSA rock sample obtained

from the mathematical equation and network analyser

4.9  Summary

Chapter 4 introduced the various RF electrical properties associated with dielectric

materials. The cylindrical and parallel-plate capacitor were introduced as possible
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coupling techniques which could be used to connect dielectric materials, such as rock
samples, to appropriate measuring equipment, such as the network analyser. The PPC
technique was chosen due to its simplicity and ease of connection. The vector voltmeter
and network analyser were introduced as possible test equipment in determining the
electrical properties of dielectric materials. The network analyser was chosen as the
preferred test instrument due to its ease of operation. PPC-3 (with dimensions 28 x
47 mm) was used in subsequent measurements with a network analyser to determine
various electrical properties associated with the ten specific rock samples. These
properties were then used in the mathematical modelling of the phase angle to frequency

equation for each rock sample.

The design and analysis of a matching network to ensure maximum power transfer

(MPT) between the RF amplifier and the rock sample will be presented in Chapter 5.
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Chapter S Matching network design and relevant results

5.1 Introduction

Chapter 4 introduced the PPC as the preferred technique in coupling the rock samples to
the electrical equipment. However, initial results from the network analyser revealed that

the impedance of the rock samples (considered as the load reflection coefficient -I' )

varied from 171 + jX Q to around 2037 + jX  at resonance. This impedance cannot be
directly connected to the output of a RF amplifier which has an output impedance of

50 Q (source reflection coefficient -T'y). This large mismatch will result in a high

percentage of the forward power (power coming from the source) being reflected back
(from the load) towards the transmitter and thereby damaging it (Frenzel 2001:230).
Preventing this mismatch necessitates the use of a matching network as shown in
Figure 5.1, which illustrates the S-parameters of a two-port network as well as various
impedances at different points in the system. Normalised impedances to 50 Q are also
shown and are characterized by the term NORM. The aim of this network is to make the
load resistance appear to be connected to its same value, when in fact it is connected to a

power source of 50 Q.

Power Source m Load resistance
transmission coefficient
_m e
+ -
Zs _— <
S|| = Input Szz = Oulpul
<« 1V reflection | = Matching network <1 reflection hid e Zy
coefficient coefficient i
Vs | | |
| | | |
I~ | l O* |
l I ==
I | Sz = Reverse transmission | |
| l coefficient | |
Is=50+0j Iin=50+0j Fow =663 +0j [L=663+0j
NORM: NORM: NORM: NORM:
I's;=1+0j I =1+90j Fowt =13 +0j Iy, =13+0j

Figure 5.1: Reflection coefficients of a matching configuration
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Impedance matching is often necessary in the design of RF circuitry to provide the
maximum possible transfer of power between a source and its load (Bowick et al.
2008:63). RF power amplifiers (being the source) consist of an active device, biasing
network, input and output reactive filtering and impedance matching networks. These
networks are effectively band pass filters offering the required impedance transformation.
The input circuit usually provides impedance matching to achieve low return loss and
good power transfer. The output network is usually the load network and effectively
provides a load to the active device which is chosen to obtain the required operating
conditions such as gain, efficiency and stability (Everard 2001:248). Subsequently,
maximum power transfer (MPT) is possible between the source and the load (which is the

rock sample acting as a dielectric material in PPC-3 for this research).

This chapter will first review three possible inductor capacitor (LC) matching
configurations which may be used to provide MPT between a load and its source,
followed by the design of the selected matching network by scientific method and
computer software (Multimatch). An analysis of this matching network is presented by
means of simulation (software model constructed in SIMetrix) and practical models
(physical circuit built and tested using a network analyser and practical experiment). A
unique value for the coupling coefficient with respect to the transfer of RF power to the
dielectric material inside the PPC is substantiated. Experimental results regarding surface
temperature rise of the rock samples (housed in PPC-3) treated with RF power are also

shown.

5.2  Selecting the appropriate matching network

Three main types of L-C based configurations exist, which may be used to match the
output impedance of a transmitter to the input impedance of a transmission line or
electronic circuit:

e L network

e T network; and

e Pinetwork;
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The simplest and most widely used matching circuit is the L network (Bowick et al.
2008:64). The component orientation resembles the shape of the letter L as can be seen

by the two examples shown below in Figure 5.2.

— ] }7
| S
RSource1 c2
V1 C1 RLoad \7 L2 RLoad1
) O3 U

“ad”

Figure 5.2: High pass and low pass filter based on the L network

L networks provide very little control over the figure of merit (called the Q of a
resonating circuit (Carr 2002:278)) and are, therefore, inflexible with regard to
selectivity (Frenzel 2003:129). RF transmitters are designed to operate over a narrow
range of frequencies which must be confined to the operating frequency of the matching
network. L networks tend to cover large frequency ranges and are really not suitable as
matching networks where narrow frequency ranges are required. Matching circuits
incorporating three elements (such as the Pi and T networks) are generally used to

overcome this problem.

The T network (shown in Figure 5.3) matches the load and source to a virtual resistance
that is larger than either the load or source resistance (Bowick et al. 2008:69). The T
network is the most popular matching circuit (Orr 1997:129) and is often used to match
two low-valued impedances when a high-Q arrangement is required (Bowick et al.
2008:69). However, the Pi network is very useful where the source impedance (R1) is
greater than the load impedance (R2) or visa versa (Carr 2002:290). It is necessary to set

the Q of the network (usually between 5 and 20) to a value greater than:
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R1
>, —-1
0 R2

(5.1)

L I
RSource

V1

O

1 TR

| C1

L1

RLoad

I

Figure 5.3: T network comprising two L networks

Pi networks offer greater harmonic attenuation than L networks and may be used to
match a relatively wide range of impedances (Orr 1997:14-18). The advantage of easily
fine-tuning any matching network is very desirable according to Grebennikov (2005:112)
and is accomplished through the use of variable capacitors in the shunt branches of the
network (Hickman 2007:148). The Pi network may be seen as two L networks placed
back to back to match the load and source to an invisible or virtual resistance (R) located
at the junction between the two networks (Bowick et al. 2008:68). Figure 5.4 illustrates a

Pi network incorporating three reactive elements (two parallel capacitors and one series

inductor).

‘_D—_T Y
RSource ° U '
\Al _l1_c 1 Cc2 RLoad
o T 7
" 35 -

Figure 5.4: Pi network comprising two L networks placed back to back



The Pi network was chosen for this research because it can match a large range of
impedances (made possible by the parallel variable capacitors) and because it possesses
only one series component (the inductor). It can further match larger impedances to
smaller impedances, which is necessary in this research where the RF amplifier has an

output impedance of 50 Q while the rock’s input impedance varies between 453 Q and
2226 Q.

5.3 The design of a Pi matching network

A Pi network was designed based upon two scientific methods; mathematical equations
and a computer software program called Multimatch plite from AMPSA (2009). The

results of these two designs are compared below in this section.

The parameters of the dolerite sample (JSA) were used as the trial in this design as its
resonating frequency (160.14 MHz at 1264 Q derived from the S-parameters shown in
Annexure 1 using interpolation) falls in the middle of the frequency range of the RF

source (150 — 174 MHz).

Assuming the Q of the circuit to be 10, the load resistance (Rz.qq4) 1264 Q and the source

impedance (Rsource) S0 €, the virtual resistance can be calculated as follows (Bowick et

al. 2008:70):

R:%% (5.2)
g 1264

107 +1
R=12.515 Q

The parallel output reactance (Xp2) is next calculated:
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Xp2 =% (5.3)

1264
Xp2 = 1204
Pe=0

Xp2=126.4 Q

The second series reactance (Xs2) is calculated to be:

Xs2=0xR (5.4)
Xs52=10x12.515
Xs2=125.149 O

The Q for the other L network is now defined by the ratio of Rsyuce to R using equation
5.1:

50
I= |———-1
O1=\12515

01=1.731

The parallel input reactance (Xp1) can now be calculated using equation 5.3:

Xpl — RSource
Q1

|50
P =175

Xpl=28.89 Q

Similarly Xs1 (first series reactance) may be calculated using equation 5.4:

Xsl=0lx R
Xs1=1.731x12.515
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Xs1=21.659 Q

The two L networks which are connected back to back to form the Pi network are shown

in Figure 5.5 with all the calculated parameters.

50 21659 125,149
L L = 4I—I_.—_J-I
Source Xs1 Xs2
V1 28.89 126.4 1.264k

[, |
==

<+> Xp!1 m Xp2 Load

-

e

Figure 5.5: Mathematical design of the Pi matching network

The required input (C1) and output (C2) capacitance can subsequently be calculated

using equation 4.1 from Chapter 4 substituting Xp1 and Xp2 for Xc:

|
_ZXﬂxfxC

Co 1

2x 7% fxXc

_ 1
2x rx160.14x10°x28.89

Cl1=34.4 pF

Xc

Cl

1
2=
2x 7x160.14x10°x126.4

C2=17.86 pF
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Next, the required series inductance is calculated using equation 4.2 from Chapter 4

substituting the sum of Xs1 and Xs2 for X7:

Xl =2xmx fxL
L=__X7__
2X X fo

1= 21.659+125.149
2x 7 x160.14%x10°

L1=145 nH

The final matching circuit with all parameters is shown in Figure 5.6. These results can

now be compared to the results obtained from the Multimatch computer software

program,
50 145n
B e | — YN 7
Source ® L
Sine(0 13.5 160.14Meg 0 0) 1.264k
M\ | 3a44p _|_7.86p Load
—C1 = 3

- =

Figure 5.6: Final matching circuit based on the Pi network

The Multimatch plite impedance matching program facilitates the design of high quality
matching networks up to microstrip level (AMPSA 2009). The program requires a
number of data inputs as illustrated in Figure 5.7. A number of frequencies from 159.6 -
160.95 MHz were entered along with the source (50 ) and load impedances
(interpolated from the S-parameters shown in Annexure 1) for the JSA rock sample. The

topology of the circuit was set to a low pass filter (“L” selected in the program) with the
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first element counted from the load side being a shunt element (“P” selected in the
program). The final design from the Multimatch software package is shown in Figure 5.8
where the final Q value was calculated to be 10.07. A comparison of the mathematical

and software program results (Figures 5.6 and 5.8) yields no significant differences.

7:6:2010 16:21:48

I:Circuit:I

I MATCHING NETWORK

Title

Terminations and Required Gain
FREQUENCY SOURCE IMPEDANCE LOAD IMPEDANCE GAIN (GT)
Rs JXs RL JXL
(GHz) (§13] (§13] -
159.60001E-3 50.000 0.000 969.000 561.000 1.6000
159.94000E-3 50.000 0.000 1067 .000 374.000 1.0000
160.03999E-3 56.000 0.000 1165.000 187.000 1.0000
160.14000E-3 50.000 0.000 1264 .001 0.000 1.0000
160.24001E-3 50.000 0.000 1120.000 -191.000 1.0000
160 .34000E-3 50.000 0.000 976.000 -382.000 1.0000
160.95001E-3 56.000 0.000 832.000 -575.001 1.9000

Fitint}F2:inot][F3:peit] [Faitatci) F5:ap] [Fe:zZ29) [E8:EX1T] [Fo:Helyp)[Fid:Relp)

Figure 5.7: Input data parameters for the matching network programme

MM JLite — DTECH2 Solutions 7:6:2010 16:28:26

SOLUTION 9

MRD: 10.782 PC ?.925 ypF Ql:  10.07%11
AMS: 6.15% SL 0,144 uH Qz: 1.71576
PC  31.733 pF Q3: -0.16423

MRDuc : 17.172

31.7 pF 0.14 uH 7?.93 pF
— ALALS I -

i

FLiNxS|[F2:Prs][[B:20] F9:CF|Fo:Gr|R1tro;CuS|[F6: Psh| ENTER:NXT]| [FO:H1p| [FIQ@:HIp]

Figure 5.8: Pi network designed in the Multimatch plite software program
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5.4  Pi matching network construction

Mechanical plate trimmer capacitors (5-100 pf) were used and the inductor was
constructed from silver wire (silver solder). Silver has a lower resistivity (1.624 x 10® Q-
cm) than that of copper (1.728 x 10® Q-cm) at 20 °C and is therefore a better conductor
with less attenuation (Rouse 1962:12; Hutchinson 2001:5.2). Hence, it will not heat up
as quickly as copper will, which could weaken the soldering joints. Pozar (2005:687)
substantiates this claim by noting that the conductivity of silver (6.173 x 10" S/m at 20
°C) is higher than that of copper (5.813 x 107 S/m at 20 °C). Consequently, the inductor
will have a lower power dissipation, which increases with frequency due to skin effect.
Practically all the current will flow in a very thin layer near the conductors surface,
thereby resulting in a higher RF resistance than at direct current (DC) (Hutchinson
2001:10.12). The depth of current (y) flow is a function of frequency and is determined
from the following equation adapted from Whitaker (2002:12-2):

6.562x107°
Z =

—\/—;T—f— mm

(5.5)

Where
f =frequency in MHz

4 = permeability of the material (copper equal to 1)

Thus if the operating frequency is 160 MHz, then the skin depth in a copper conductor

will be:

_6.562x107

V1x160

7 =5.188 pm

This means that current will travel in only the top 5.188 um of the copper conductor,

thereby significantly increasing its series impedance at RF. Consider further how the
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resistance of a 1.5 mm copper wire is affected in this regard. A rough estimate of the cut-
off frequency where a non-ferrous wire will begin to show skin effect can be calculated

with the following equation adapted from Hutchinson (2001:10.12):

f= 13—4 MHz (5.6)

( )’

0.0254

Where

d =diameter of the conductor in mm

f=cut-off frequency in MHz

Therefore if the diameter of a copper conductor is 1.5 mm then:

124
S
ERS
0.0254
£=0.036 MHz

The resistance of the 1.5 mm copper wire will increase significantly above this frequency
(Hutchinson 2001:10-12). The following equation may be used to calculate the new
resistance (Rac) of a 1 m copper wire (1.5 mm diameter) at 160 MHz (Abrie 1999:102):

Rac =[x Rde  QYmm (5.7)
2%
Where
r = radius of the conductor in mm

Rdc = wire resistance at DC in £/mm

Calculation of the wire resistance per unit length (mm) at DC when considering the

resistivity of copper can be done using equation 4.4 from Chapter 3:
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_RxA4

OQm
!
R=2XP g
A
R_100><1.728><10‘8
nx0.075%

R=9.778x10"° Q/mm

Substituting Rdc with R in equation 5.7 yields the following:

0.75
2x5.188x107° x1000

Rac =0.0007068 Q/mm

ac=| 1x9.778x107

This shows that the resistance for both copper and silver is appreciatively higher at 160
MHz than it is at DC (shown in Table 5.1). However, silver still remains the ideal choice
due to its lower resistance. For this reason the inductor was constructed from a 1.5 mm
silver solder rod using the following design equation adapted from Hutchinson
(2001:6.22):

_ (Dx0.039)*x N*
(0.702% D) +(1.56x1)

uH (5.8)

Where
D =coil outer diameter in mm
[ =coil length in mm

N =number of turns

For an outer coil diameter of 7.5 mm, a coil length of 20 mm and 7.75 turns, equation 5.8

returns:
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_ (1.75%0.039)* x7.5°
(0.702x 7.5) + (1.56 % 20)

L =141 nH

Table 5.1: Resistances of 1.5 mm diameter copper and silver at DC and 160 MHz

Conductor DC resistance per meter 160 MHz resistance per meter
Copper 0.00977 Q/m 0.70685 Q/m
Silver 0.00919 Q/m 0.66431 Q/m

This result was verified with an online single-layer air-core inductor design program by

Meserve (2009). The verified results are shown in Table 5.2 and are almost identical to

the calculated result shown above. A 4.5 mm drill bit was used as the form diameter and

the coil length was marked off with a mathematical ruler. Figure 5.9 illustrates the

completed inductor.

Figure 5.9: 141 nH inductor constructed from 1.5 mm silver wire

Table 5.2: Inductor specifications obtained from an online design (Meserve 2009)

Design Details for a 0.141 uH Coil

Initial Calculations

Number of Turns 1.73
Wire Size 1.5 mm
Wire Type Insulated Wire
Form Diameter 4.5 mm
Coil Length 20.0 mm Fal
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55 Simulation model of the matching network

SIMetrix, a simulation package available from SIMetrix Technologies Ltd (2009), was

used to simulate the efficiency of the matching network. Figure 5.10 illustrates the

schematic diagram of the circuit that was used, with the “Load probe” indicating the

point of measurement. The RF amplifier is replaced with a 50 Q source while the rock

sample is represented by the resistance obtained by the network analyser for the JSA rock

sample (160.14 MHz at 1264 Q). The designed values were correlated to the closest E12

international standard for capacitors (see Table 5.3). The last column in Table 5.3

indicates the upper and lower variations of the designed values to test for MPT from the

RF amplifier to the rock sample. The simulator was set to provide a transient response

with a start time of 53 ns and a stop time of 68 ns.

50 145n Load probe
S S y, oo
Source L1
Sine(0 13.5 160.14Meg 0 0) 1.264k
C_) A\ | 33p | 82p Load :I
——c1 ¢
& I -
Figure 5.10: Simulation schematic of the matching network
Table 5.3: Component values used in the simulation package
Component Designed value Simulation value Simulation
variation
Inductor (L1) 145 nH 145 nH 125 —-165 nH
Capacitor (C1) 34.4 pF 33 pF 33 pF
Capacitor (C2) 7.86 pF 8.2 pF 6.8 —10 pF
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A 13.5 V supply was used to simulate the output voltage of the RF amplifier with a
frequency of 160.14 MHz. Three different results are shown for the inductor in Figure
5.11 while keeping the input and output capacitor values constant:

¢ The designed matching network with a 145 nH inductor (trace shown in red);

e Modified network with the inductor’s value decreased to 125 nH (green trace);

¢ Modified network with the inductor’s value increased to 165 nH (blue trace).

125 nH 145 nH

165 nH
30} ked™N =
201 :-f" ; l// )\,-X\ ,//1 -
> oty \\ // 7 4 \‘\ \\L‘\ 7, / 4 \\
; 4 ) f
g ot \\ \+. ,! ," \‘1 “.‘ i, [,:" \’\
§ -10 \\ \—4 /"—’ \ \_{ [.’" \

/ \ \
5 AWV // N\
w N YA

54 56 58 60 62 64 66 68

Time/nSecs 2nSecs/div

Figure 5.11: Inductor variation results obtained from the simulation package

Another three results are shown in Figure 5.12 representing variation in the output
capacitor’s value while keeping the input capacitor and inductor constant:

e The designed matching network with a 8.2 pF capacitor (trace shown in red);

e Modified network with output capacitor decreased to 6.8 pF (green trace);

¢ Modified network with output capacitor increased to 10 pF (blue trace).

The results of the simulation circuit reveal that the highest output voltage of 32.64 V for a
source (50 ) to load (1264 Q) connection at 160.14 MHz (time period is 6.245 ns in
Figure 5.10) occurs at the values from the scientific design process, thereby indicating
MPT. Any variation in component values represents a decline in power transfer, thereby
substantiating the design process as reliable and valid. A network analyser was

subsequently used to verify the impedance matching ability of the network.
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Figure 5.12: Output capacitor variation results from the simulation package
5.6 Verifying the matching network’s performance with a network analyser

The matching network’s performance was further analysed using the network analyser
described in Chapter 4. The JSA rock sample (two identical samples cut to 30 x 19 x

4 mm) was inserted into PPC-3 (clamped in the wooden jig) which was connected to the

matching network (see Figure 5.13).

Each trimmer capacitor has two side protruding pins which are inserted into 1.5 mm
holes drilled into the side of the wooden jig. This helped to secure the trimmer capacitors
to the jig and subsequently to the inductor and PPC. However, the trimmer capacitors
were not placed within 10 mm of the PPC so as to minimize any possible stray
capacitance. The input and output trimmer capacitors were adjusted until the resonating
frequency point of 160.14 MHz was stationary over the 50 Q centre point. This result is
shown in Figure 5.14. At this point, the impedance of the rock (1264 Q) was matched to
an impedance of 50 Q (which represents the output impedance of the RF amplifier),
resulting in MPT with minimum reflected power. The capacitors were then disconnected
and measured with a LCR meter to determine whether their values were similar to those

obtained from the scientific design process. These results are shown in Table 5.4.
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Output capacitor (C2)

Inductor (L1)

N-type connector

Novel wooden jig

Input capacitor (C1) Two rock samples (JS2) Parallel-plate capacitor

Figure 5.13: Two rock samples (each with dimensions 30 x 19 x 4 mm) inside PPC-3
(28 x 47 mm) with the matching network

Pl:Reflection Smith 1 UFS
B2 Of f

easl:Mkrl 160. 145 MHz
49.61n
155. 7mn
154, 8pH

Start 150.000 MHz Stop 180,000 MH

Figure 5.14: Rock sample (JSA) impedance matched to 50 £ as viewed on a network

analyser
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A relationship exists between the values for capacitor C2. However, no correlation could
be established for capacitor C1 or inductor L1 as stray capacitance and inductance present
in the practical model was not accounted for in the theoretical design process.
Nevertheless, the design procedure did serve its purpose in providing useful information

for the selection process of the components required in the matching network.

Table 5.4: Capacitor values measured after the matching network is tuned to 50 2

Component ( Designed values Practical model valueﬂ
(LCR meter)
Inductor (L1) 145 nH 200 nH
Capacitor (C1) 34.4 pF 23 pF
[
Capacitor (C2) 7.86 pF 15.6 pF

The use of these approximate components, of which the capacitors are adjustable, has
resulted in the impedance of the rock sample being matched to 50 €. Hence, the
objective of impedance matching to ensure MPT has been achieved as shown by the
network analyser’s results (see Figure 5.14). This result was further validated by a
practical experiment, described below, in which RF power is transferred to the rock
sample by means of a RF transceiver, amplifier and inline wattmeter (used to measure the

forward and reflected power).

5.7  Evaluating the matching network’s performance in a practical setup

The matching network’s performance was finally evaluated using two RF amplifiers
(MIRAGE PAC30-130B) driven by a commercial RF transceiver (ICOM IC-V8000).
The RF transceiver generated a 3.2 W RF signal which was amplified by the first RF
amplifier to approximately 32 W, an in turn, to approximately 113 W by the second RF
amplifier. This was necessary because the RF transceiver was not capable of providing
more than 70 W of RF power. The input to the RF amplifiers was limited to 35 W to

ensure correct operation of the driver stages. The practical setup is shown in Figure 5.15.
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ICOM MIRAGE MIRAGE Daiwa

IC-V8000 PAC30-130B 3 PAC30-130B 3 CN620A
RF Transceiver RF Amplifier RF Amplifier RF Wattmeter

Figure 5.15: Practical setup to determine the efficacy of the matching network

The output of the RF transceiver was first connected straight to the matching network
through a RF wattmeter to determine the SWR of the circuit. The reason for this is to
ensure that the SWR value remain as close as possible to one, in order to prevent an
excess of reflected power damaging the output stage of the RF amplifier. With the two
RF amplifiers bypassed, the RF transceiver was activated (keyed) to generate a 3.2 W
signal at 160.47 MHz. The trimmer capacitors were then fine tuned to obtain the lowest
SWR possible. The RF amplifiers were then switched on (thus connecting the amplifiers
directly into the circuit between the RF transceiver and the matching network). The RF
transceiver was keyed again and approximately 113 W of forward power was measured
with the wattmeter. Two different wattmeters were used to verify the reliability of the
measurements. The reflected power measured approximately 1.8 W resulting in a SWR
reading of 1.306 (see Table 5.5). The values of the capacitors were once again measured
with a LCR meter and the results are shown in Table 5.6. There is very little difference in

the capacitor values between the network analyser and practical setup verification.
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Therefore, the reliability of the matching network within the practical model was
substantiated by two independent measurements (network analyser and practical setup).
The successful transfer of RF power to the rock samples was further collaborated by a

significant rise in surface temperature, as described in the following subsection.

Table 5.5: Wattmeter readings obtained for the evaluation of the matching network

| Parameter Bird Wattmeter | Daiwa Wattmeter |
(4304A) (CN620A)

RF transceiver output power 3.2 W 33 W

First RF amplifier output power 31 W 31.8 W
Second RF amplifier output power 114 W 1145 W
Wattmeter forward power 112 W 1125 W
Wattmeter reflected power 2W 2W

SWR value 1.308 1.308

Table 5.6: Capacitor values measured after the matching network is tuned to 50 Q

on the network analyser and then treated with 112 W of RF power

hComponent | Designed values Practical model Practical model
obtained from the values after values after the
Multimatch network is tuned rock sample is
software package | with a network treated with RF
analyser power
(LCR meter) (LCR meter)
Inductor (L1) 145 nH 200 nH 200 nH
Capacitor (C1) 34.4 pF 32.3 pF 32 pF
Capacitor (C2) 7.86 pF 15.6 pF 14 pF
A
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5.8  The relationship between RF power and the surface temperature of the DUT

The JSA and JS2 rock samples were treated with 82 W of RF power at their resonating
frequency of approximately 160 MHz. The second result of 112 W (see Table 5.7) was
achieved when using an operating frequency of 156 MHz. Figures 5.16 and 5.17 show
the temperature curves over a 36 minute period for three different input frequencies (152,
156 and 160 MHz). These measurements were obtained from a LUTRON TM-2000
digital thermometer using K-type thermocouples pressed firmly against the surface of the
rock samples (see Annexure 14). Temperature readings were recorded on a personal
computer attached via the RS232 port to the digital thermometer. Temperature curves for

the other eight samples are shown in Annexures 15 —18.

JSA - Dolerite

180 +— - — PTIIL
150 +—— i .. —=]JSA -82 W-160 MHz
|

—=JSA -82 W-152 MHz

el \ T e=——JSA-112 W- 156 MHz

Temperature (Degrees Celsius)

0 ™ reerrerrorre e rr e rrr e T Tt
0 3 6 9 12 15 18 21 -34 X7 ¥ A3, 36

Time (min)

Figure 5.16: Surface temperature rise and fall of the JSA rock sample over a 36

minute period for three different frequencies and input RF powers

Both results indicate that all three frequencies yield a similar variation in temperature
over time for an input power of 82 W at 152 and 160 MHz. However, in both cases, a
higher input power (112 W at 156 MHz) results in a much quicker rise in temperature.

This suggests that the RF input power rather than the frequency of operation is crucial to
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the surface temperature rise of the rock samples. This validates equation 3.3 which places
significant emphasis on the input power as being responsible for the temperature change
within the dielectric material. Therefore, it was decided to use an operating frequency of
160 MHz at 82 W for all the rock samples, thereby simplifying the analysis and
evaluation of all the results. The data obtained from the LUTRON TM-2000 digital
thermometer was further used to determine the coupling coefficient of the PPC, thereby

validating the specific heat capacities of the various rock samples.

~ JS2 - Marble

180 R
@ 1 JS2-82 W-160 MHz
a 160 - ‘ - -
8 140 - - - |
@ . JS2-82W-152MHz
g 120 . - e - — -
@ 1 O 0 J; _ _ _..‘ — s e -
a) JS2-112 W-156 MHz
o 80 - e
g 60 - - _ _ —— R
g 40 - - - - e | S
E _ap ———————
= 20 |
0 LT . . T e (i R N R A i Bt |
0 3 6 9 12 15 18 21 24 27 30 33 36
| Time (min)

1

Figure 5.17: Surface temperature rise and fall of the JS2 rock sample over a 36

minute period for three different frequencies and input RF powers
5.9 Determining the coupling coefficient of the PPC using specific heat capacities

The RF heating of a dielectric material is directly related to the amount of RF input
power, rather than input frequency. This is deduced from equation 3.3 introduced in

Chapter 3 and proposed by Halverson et al. (1996):

kxP
Cxm

AT = x At °C
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The amount of input power (P) can be measured by means of a RF wattmeter connected
inline between the RF amplifier and PPC (see Figure 5.15). The temperature increase
(AT) over a specific time period (Af) was obtained by means of K-Type thermocouples
pressed firmly against the surface of the specified rock samples (see Annexure 14). The
mass (m) of the rock sample was measured with a digital scale. The value of specific heat
capacity for dolerite was taken as 900 J/kg/°C (Waples and Waples 2004). Using the
data obtained for rock sample JSA and manipulating equation 3.3 yields the following

suggested value for the coupling coefficient (k), which is unique to this PPC.

szTxme (5.9)
PxAt
1(_129><900><13.31><10‘3
82x 231
k=81.58x10

This value for the coupling coefficient can now be used in the following equation to

estimate the specific heat capacity of the other rock samples (listed in Table 5.7):

c=Xl N IkerC (5.10)
AT xm

These calculations were done to establish the reliability of the coupling coefficient which
is unique to this sized PPC. The reliability and validity of these results are achieved
through repeated measurements (different input powers and mass) which are compared to
accepted values (obtained from Waples and Waples (2004)). The specific heat capacities
of the rock samples, as calculated with equation 5.10, were all within 5% of the generally
accepted values available in the literature. However, the specific heat capacities for rock
samples JS3 — JS5 were very different. A possible reason for this could be related to the

mineral composition of these rock samples, which is described in detail in Chapter 6.
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Table 5.7: Original value for the coupling coefficient (k) substantiated with data

obtained from the ten rock samples

Rock Operating | Power | Temperature Mass Time Specific heat capacity Deviation
sample frequency (W) change (kg) (s) (J/kg/°C) (%)
(MHz) (°0)
I - S
Calculated Accepted
160.00 82 129 1.33E-02 231 | 900.00 900.00 0.00%
DJSA. 156.00 112 146 1.30E-02 189 909.15 900.00 1.01%
olerite | | | i N I
152.00 82 131 1.32E-02 234 908.69 900.00 0.96%
JSB
159.00 90 84 1.20E-02 123 895.18 883.00 1.36%
Marble
JSC
Grani 160.00 82 33 1.16E-02 66 1156.36 1172.00 -1.35%
ranite
JSD
159.00 90 49 1.12E-02 60 801.29 775.00 3.28%
Sandstone
JSE
M 160.00 82 50 1.22E-02 75 820.47 860.00 -4.82%
udstone
IS 160.00 82 19 137E02 | 225 | 925.94 883.00 4.64%
Marble
160.00 82 134 1.12E-02 195 868.40 883.00 -1.68%
o 156.00 12 133 1L0SE-02 | 135 | 884.11 883.00 0.13%
Marble B - -
152.00 82 136 1.10E-02 195 871.18 883.00 -1.36%
1S3 160.00 82 35 1.39E-02 240 3304.85 883.00 73.28%
Marbie
IS4 160.00 82 41 137602 | 240 | 2868.75 117200 | 59.15%
Granite
IS5 160.00 82 39 130E-02 | 240 | 3161.79 883.00 72.07%
Marble

510 Summary

Chapter 5 has provided the theoretical design of the matching network based on scientific
literature in the field of RF communications. The Pi circuit was chosen as the preferred
matching network due to the fact that it can match a large range of impedances (made
possible by the parallel variable capacitors) and because it posses only one series

component (the inductor). The matching network was analysed and evaluated by means
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of a simulation model (in SIMetrix) and a practical model (using a network analyser and
a practical experiment). The results suggest reliability and validity of the matching
network as indicated by low SWR readings. Furthermore, maximum forward power into
the rock sample from the RF amplifiers was achieved. A unique value for the coupling
coefficient for PPC-3 was partially substantiated. Initial results of transferring RF power
to various rock samples confirmed that it is the input power rather than the frequency of

operation that is central to the dielectric heating of materials.
Chapter 6 will present the physical results (colour, screening, SEM analysis and power

consumption) of the treated and untreated samples using the wooden jig (discussed in

Chapter 4) and matching network presented in this chapter.
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Chapter 6 Evaluation of the effects of RF treatment on

the rock samples

6.1 Introduction

In this chapter the effects of RF treatment on the rock samples are described and
interpreted. The possible changes that were considered include textural, phase,
grindability, colour and temperature changes. Textural changes (changes in grain size and
inter-grain boundary relationships) were considered using polarizing optical microscopy
on polished thin sections of the rock samples. Phase changes (changes in mineral
assemblage) were determined using polarizing optical microscopy. Grindability, being
the changes in the power consumption during grinding and changes in the particle size
distribution after grinding, was determined by measuring the power consumption during
milling and by performing particle size analyses (sieve tests). Surface colour changes
were visually observed while surface temperature changes were measured. Contrasts
between the electrical properties (resonating frequency) of the untreated and treated
samples are further indicated. The results from the above considerations were interpreted

in terms of the mineralogical and chemical composition of the samples.
6.2  Comparative textural description

This section presents the petrographic description and chemical composition of the ten

rock samples.

6.2.1 Petrographic description

The petrographic description highlights the main minerals present within the ten rock
samples (shown in Table 6.1), determined by examining the polished thin sections under

an electronic microscope. Photomicrographs of the untreated and treated rock samples are

contrasted in Figures 6.1 — 6.10, where some mineral grain boundaries are indicated.
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Table 6.1: Petrographic description of the ten rock samples used in this research

=
Sample Petrographic description
Rock . ®
code type Minerals Present Texture
Plagioclase (50%), clinopyroxene The major minerals are typically
JSA Dolerite (17%), orthopyroxene (27%), quartz | subhedral, coarse-grained (2-4 mm),
(Figure 6.1) (5%), minor biotite and opaque interlocked crystals typical of a
minerals gabbro
Dolomite (50%), calcite (25%), The dolomite and calcite grains are
JSB Marble tremolite-actinolite (18%), quartz variable in grain size but finer than
(Figure 6.2) (5%), and minor clay, serpentine and the | mm long fibrous laths of
opaque minerals tremolite-actinolite
1 0, 0,
Plaglo'clase (55%), quartz (40%), This is a coarse-grained (1-5 mm)
JSC . almandine-pyrope gamet (5%), and . . .
' Granite . . . o leucocratic granite with seriate
(Figure 6.3) minor dolomite, muscovite, biotite . .
. texture and mainly anhedral grains
and clay minerals
The rock is a clast-supported
IR0 Sandstone Quartz (80%), calcite (4%), clay S?(;‘ gsrtr?rrr\lei;vg?a:r?;x;?;gn%u?':r—;gf;mens
i 4 ° i ° L o . ;
e ) (3%), and haematite (3%) grained interstitial calcite, clay and
haematite
Micron-sized sericite grains and sub
microscopic clay material as a matrix
10% haematite laths (pseudo morphs) with dispersed opaque prismatic
JSE . . o . ] ;
(Figure 6.5) Mudstone in a matrix of sericite and sub laths. Dispersed opaque prismatic
i i microscopic clay laths are composed psuedomorphic
haematite after either feldspar or
amphibole
1 0, 1 0,
JS1 Dolomlte (2_0 A)).’ calc1(t)e (50%), The carbonate minerals occur as 0.5-
(Figure 6.6) Marble tremolite-actinolite (15%), quartz 1 e el e
- ) (6%), clay (5%), and serpentine (4%) &
Calcite (85%) with rare rounded i P anhe.dra]'—to
A . rounded grains up to 2 mm in size
JS2 poikilitic garnet grains, sparse g iyt :
i Marble . . . . that are dispersed within a calcite
(Figure 6.7) magnetite veinlets and limonite 2 i .
. . . matrix made up of tiny grains (10
coating on grain margins
_jm)
r Calcite grains occurs as 0.25-0.5 mm
JS3 . 0 sized anhedral grains dispersed
(Figure 6.8) Marble Calcite (98%) within a very fine carbonate matrix
comprising 1 pm sized calcite
Anhedral quartz (25%), perthitic
1S4 . potassium feldspar (55%), myrmekite = =
(Figure 6.9) Granite (5%) and minor euhedral garnet Grain sizes range from 0.1-4 mm
(15%)
This carbonate rock comprises a
JSS matrix of 1 um sized calcite grains
(Figure Marble Calcite (90%) that is crosscut by veins of coarser-
6.10) ‘ grained (0.25 mm) polygonal calcite
grains

96




'_I_“,'.- : " v.’ -".-. ." { i % \30{3;1!1\‘ - .q -.-.‘ “‘-_‘ et

Figure 6.1: Photomicrographs of the untreated (left) and treated (right) JSA rock

sample taken under cross-polarized light
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Figure 6.2: Photomicrographs of the untreated (left) and treated (right) JSB rock

sample taken under cross-polarized light
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Figure 6.3: Photomicrographs of the untreated (left) and treated (right) JSC rock

sample taken under cross-polarized light
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Figure 6.4: Photomicrographs of the untreated (left) and treated (right) JSD rock

sample taken under plane-polarized light
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Figure 6.5: Photomicrographs of the untreated (left) and treated (right) JSE rock

sample taken under plane-polarized light
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Figure 6.6: Photomicrographs of the untreated (left) and treated (right) JS1 rock

sample taken under plane-polarized light
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Figure 6.7: Photomicrographs of the untreated (left) and treated (right) JS2 rock

sample taken under plane-polarized light
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Figure 6.8: Photomicrographs of the untreated (left) and treated (right) JS3 rock

sample taken under plane-polarized light
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Figure 6.9: Photomicrographs of the untreated (left) and treated (right) JS4 rock

sample taken under plane-polarized light
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Figure 6.10: Photomicrographs of the untreated (left) and treated (right) JS5 rock

sample taken under cross-polarized light

A comparison of the photomicrographs of the untreated and treated rock samples reveals
no significant differences in grain size, grain shape, minerals present or inter-granular
textures. No visible cracks or fractures exist along the mineral grain boundaries of the
treated rock samples. Annexure 24 gives a photograph of the ten thin sections used for

the petrographic and chemical analysis.
6.2.2 Chemical composition of the rock samples

The chemical composition of the rock samples was determined using an X-ray
fluorescence spectrometer, using a Rigaku Primini instrument. A complete wavelength

dispersive scan was done using virtual standards on all the major elements (Table 6.2).

A statistically significant correlation (Pearson) was found to exist between the presence
of specific chemical elements and changes in the surface temperature and colour of the
treated rocks samples (discussed in section 5.8 of Chapter 5). High temperatures attained
during RF treatment were associated with high modal proportions of minerals
plagioclase, dolomite and iron oxides in the samples. Visible surface colour changes
(shown in Table 6.3 and 6.4) were also associated with high modal proportions of calcite
and/or tremolite-actinolite. No correlation was found to exist between the grindability
(screen change discussed in the following section) of the rock samples and their chemical

composition.
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Table 6.2: Pearson correlation between chemical composition and textural changes

ro o & o
3 s £ | ®
< ~ g g g ~ ; = s
2 ¢ 2 % & 128 (8'F1e e 0%
£ @ < | & 2 | 2| 0 | ¥ | z | & F B g 5
ﬁ ) 3 =]

= R <
JSA | 562 | 195 | 903 | 32 | 021 | 901 | 081 | 155 | 0 | 043 | 151 0
JSB | 261 | 059 | 197 | 25 [053 | 492 | 017 | 0 | 126 | 0 107 0 1
sc| B 176 | 153 | o0 01 | 359 | 087 | 336 | o0 0 110 0 0
)SD | 893 | 161 | 16 0 0 | 254 |08 | 0 [412| o0 55 ( 0
JSE | 419 | 186 | 195 | o0 0 12 | 781 | 0 | 145 | 95 104 0 0
JS1 | 389 | 169 | 119 | 166 | 022 | 307 | 0 0 0 0 155 0 1
182 | 57 03 | 179 | o0 0 | ott [ 038 | 0o |o078| 0 158 0 1
JS3 | 446 0 0 0 0 | 949 | o 0 |06 | o0 65 1 0
1S4 | 747 | 81 | 120 | 0 025 | 467 | 94 | 0 | 159 | 0 66 0 0
85 | 44 0 0 0 0 95 0 0 |05 | o 69 1 1
019 024 038 054 022 002 -026 023 -027 002 Pearson
030 025 014 005 027 048 023 026 023 048  sig
008  -0.15 -043 024 -039 025 040 -008 020 -0.25 Pearson
041 033 010 025 013 024 012 041 028 024 sig.
062 063 019 042 028 059 046 -038 027 -029 Pearson
|00 002 030 011 021 003 008 013 022 021 sig.

*Correlation is significant at the 0.05 level (1-tailed)

6.3 Grindability differences between untreated and treated rock samples
Determination of the relative grindability of the untreated and treated samples was done
by measuring the power consumption during grinding and comparing the particle size

distribution after the grinding process. The untreated and treated samples were ground

down to powder form in a laboratory swing mill obtained from Effective Laboratory
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Supplies in South Africa (Effective Laboratory Supplies 2010). A photo of this mill,
which is powered by a 3-phase AC power supply, is shown in Annexure 19. The swing
mill pot consists of a shallow cylinder; two internal rings and a heavy disc (see Annexure
19 for a photo of these rings). The sample is placed in the space between the disc and
rings and the mill is securely clamped into a vibrating barrel. These mills are designed for
reduction of materials to extremely fine powders for preparation of samples for spectra
analysis. All samples were milled for 2 minutes with corresponding power measurements
taken of the power consumed using a HIOKI 3286-20 clamp on power meter (see
Annexure 20). A small brush was used to clean out the grounded samples (in the form of

powder or dust) from the pot, which were then weighed with a digital scale.

The powder samples were next transferred to particle screening sieves (250 um, 150 um,
90 um and 38 pum screens placed on top of each other — see Annexure 21). This screen
combination was placed in an ENDECOTTS EFL2000 shaker for 5 minutes. Rock
sample particles left behind in each screen was weighed individually. These weightings
were converted into percentages by dividing each weighting by the total mass and
cumulative mass percentages by adding successive mass percentages. The results of this
evaluation are shown in Figures 6.11 — 6.20, where the untreated samples are shown by
means of a triangle or cross. The treated samples are indicated by means of a diamond or
square. The left sketch indicates the particle size distribution to cumulative mass, while

the right hand sketch shows the frequency of occurrence for each grain size.

JSB, JSC, JSE, JS2 and JS4 show little or no variation in post-grinding particle size
distribution between the untreated and treated rock samples. However, JSA, JSD, JS1,

JS3 and JS4 reveal minor to major variations.

The treated JSA sample (dolerite) shows a significant coarser grain size distribution with
a mode value of 38 um, whereas it is 90 um for the untreated sample (discerned from the
right hand graph in Figure 6.11). Similarly, the dgy (nominal sieve size allowing 80% of
the powered sample to pass through — left hand graph in Figure 6.11) is less than 38 um

for the treated samples, but approximately 85 um for the untreated ones. This means that
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for the same amount of grinding (2 minutes) the treated samples were reduced in size to a
lesser extent than the untreated samples, suggesting reduced grindability. This may also
indicate that fewer fines (smaller particles) are generated and therefore over grinding is
reduced. A similar situation is evident for the JSD sample, which is a sandstone with
granular textures in which sand grains are cemented with matrix material such as
haematite, whereas the JSA sample has a typical igneous texture of interlocking crystals.
Yet they behaved similarly during grinding of the treated samples. The JS1 (marble)
sample shows a similar but smaller difference in the grindability between the untreated

and treated rock samples.

JSA - Dolerite JSA - Dolerite
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Figure 6.11: Particle screen results for the untreated and treated JSA sample
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Figure 6.12: Particle screen results for the untreated and treated JSB sample
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Figure 6.13: Particle screen results for the untreated and treated JSC sample
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Figure 6.14: Particle screen results for the untreated and treated JSD sample
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Figure 6.15: Particle screen results for the untreated and treated JSE sample
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Figure 6.16: Particle screen results for the untreated and treated JS1 sample
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Figure 6.17: Particle screen results for the untreated and treated JS2 sample
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Figure 6.18: Particle screen results for the untreated and treated JS3 sample
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Figure 6.19: Particle screen results for the untreated and treated JS4 sample
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Figure 6.20: Particle screen results for the untreated and treated JSS sample

The untreated JS3 and JS5 samples (marble) indicate a grain size distribution with high
percentages of fines (< 38 um), but with an otherwise almost normal distribution (see the
right hand graphs in Figures 6.18 and 6.20). The treated samples did not produce a

normal particle size distribution indicating a larger amount of fines being produced.

Polished sections of the powdered samples (see Annexure 25 for photograph) were
obtained to check for textural changes with regard to particle sizes of the untreated and
treated samples (see Figures 6.21 — 6.30). The size of the mineral grains is indicated,

revealing no significant reduction in size between the untreated and treated samples.
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Particles

Figure 6.21: Photomicrographs of the untreated (left) and treated (right) JSA

sample (polished section of the powered rock)

Figure 6.22: Photomicrographs of the untreated (left) and treated (right) JSB

sample (polished section of the powered rock)

Particles

Figure 6.23: Photomicrographs of the untreated (left) and treated (right) JSC

sample (polished section of the powered rock)
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Particles

Figure 6.24: Photomicrographs of the untreated (left) and treated (right) JSD

sample (polished section of the powered rock)

Figure 6.25: Photomicrographs of the untreated (left) and treated (right) JSE

sample (polished section of the powered rock)

Figure 6.26: Photomicrographs of the untreated (left) and treated (right) JS1 sample

(polished section of the powered rock)
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Figure 6.27: Photomicrographs of the untreated (left) and treated (right) JS2 sample

(polished section of the powered rock)

TN

Figure 6.28: Photomicrographs of the untreated (left) and treated (right) JS3 sample

(polished section of the powered rock)

Figure 6.29: Photomicrographs of the untreated (left) and treated (right) JS4 sample

(polished section of the powered rock)
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Particles

100 um‘

Figure 6.30: Photomicrographs of the untreated (left) and treated (right) JS5 sample

(polished section of the powered rock)
6.4 Visual effects of RF heating on the rock samples and PPC

The transfer of RF power to the rock samples resulted in a surface temperature rise due to
RF heating of the dielectric material. This transfer of RF power resulted in another
significant effect being observed in the surface colour of the novel jig and PPC. Figure

6.31 indicates these visual colour changes of the PPC (a) and wooden clamp (b).

Figure 6.31: Effects of RF heating on the (a) PPC and (b) wooden clamp
Table 6.3 presents visual effects of RF heating on the first five rock samples (JSA —JSE),

while Table 6.4 illustrates the next five samples (JS1 — JS5). Colour changes and

maximum temperature reached with 82 W of RF power at 160 MHz is indicated.
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Table 6.3: Surface colour changes and maximum temperatures reached for samples

JSA - JSE (untreated on the left and treated on the right)
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JSA

30x 19 x 4 mm 151 4 Yes No

Dolerite

Igneous

JSB

31 x19x4 mm 107 2 No Yes

Marble

Metamorphic

JSC

30x 19 x4 mm 110 8 No No
Granite
Igneous

JSD

30x 19 x4 mm 55 5 Yes No
Sandstone
Sedimentary
JSE

32x19x4 mm 104 6 No No

Mudstone
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Sedimentary
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Table 6.4: Surface colour changes and maximum temperatures reached for samples

JS1 - JSS (untreated on the left and treated on the right)
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JSI

29 x20 x4 mm 155 6 No Yes

Marble

Metamorphic

JS2

30x 19x4 mm 158 3 No Yes

Marble

Metamorphic

JS3 l'm

30x 21 x4 mm 65 9 | Yes | No L'-.. X

Marble

Metamorphic

JS4

30x20 x4 mm 66 6 No No

Granite

Igneous

JSS

30 x20 x 4 mm 69 T Yes Yes

Marble

Metamorphic
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6.5 Power usage of the practical setup and grinding mill

One of the aims of this research was to evaluate if the use of RF power would weaken
mineral grain boundaries, leading subsequently to a reduction in energy consumption of
current comminution equipment, such as the swing-pot mill. The electrical power
consumed in treating the individual rock samples with 82 W, 90 W and 112 W of RF

power is shown in Table 6.5. A photograph of the RF amplifiers is shown in
Annexure 22.

Table 6.5: Power consumed by the RF equipment and grinding mill

Sample Rock RF RF equipment | Grinding mill | Total power
code sample power (> 3 minutes) (2 minutes) consumed
(in W) (power in W) | (power in W) (in W)
JSA Dolerite 112 484 935 1419
JSB Marble 90 437 920 1357
JSC Granite 82 415 950 1365
JSD Sandstone 90 437 920 1357
JSE Mudstone 82 408 950 1358
JS1 Marble 82 415 950 1365
JS2 Marble 112 484 935 1419
JS3 Marble 82 412 950 1362
IS4 Granite 82 412 950 1362
JSS Marble 82 412 950 1362

A consistent observation is that a higher RF power (112 W compared to 82 W) requires
more energy from local energy utilities, such as ESKOM. The power consumed by the
swing-pot mill for the untreated rock samples ranged from 920 — 950 W. The total power
consumed by both the RF amplifiers and swing-pot mill varies between 1358 and 1419 W
for the different rock samples. Subsequently it must be stated that no power reduction
was realized, and therefore no improved efficiency was achieved with the RF treated

samples.
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6.6

Contrasting the resonating frequencies of the untreated and treated samples

S-parameters (in the form of Cartesian Coordinates) for the treated rock samples were

also obtained from the network analyser. Equations listed in Annexure 23 were used to

calculate the resonating frequency and resistance (Table 6.6) of the untreated and treated

rock samples, which overlapped PPC-3 by 1 mm on either side (see Figure 4.13).

Table 6.6: Resonating frequencies for the untreated and treated rock samples

Untreated with 1 mm

Treated with 1 mm

S| o M s g Boer~—s
Frequency | Resistance | Frequency | Resistance | (Percentage) | (Percentage)
(MHz) (Ohm) (MHz) (Ohm)

JSA Dolerite 160.14 1264 164.37 1319 2.6% 4.2%

JSB Marble 162.58 1325 161.57 1467 -0.6% 9.7% |

JSC Granite 167.85 1545 166.57 1592 -0.8% 3.0%

JSD Sandstone 170.08 1169 169.86 1292 -0.1% 9.5%

JSE Mudstone 154.34 171 164.31 453 6.1% 62.3%
JS1 Marble 162.61 1630 162.48 1799 -0.1% 9.4%
usz Marble 159.74 940 159.82 1043 0.1% 9.9% )
JS3 Marble 162.30 2037 160.78 2226 -0.9% 8.5%
IS4 Granite 165.14 1812 164.93 1988 -0.1% 8.9%
JSS Marble 160.43 1339 159.22 1475 -0.8% 9.2%

No significant changes in resonating frequency (variation less than 1%) were observed

between most of the rock samples as shown in Table 6.6. However, the treated JSA and

JSE samples revealed a higher resonating frequency than the untreated samples, giving

rise to a 2.6% and 6.1% variation. JSA and JSE were the only two samples with

measureable amounts of T10,. Moreover, the resistance of the JSE sample increased

dramatically by 62.3%, while the resistance values of the other samples varied with less

than 10%.
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6.7 Summary

Chapter 6 presented the results of the textural, phase, grindability, colour and temperature
changes for the treated rock samples. This analysis proved useful in identifying the
chemical composition of the rocks as well as the rock type. The photomicrographs of the
thin sections obtained from the untreated and treated samples revealed no fractures or
breakages along the mineral grain boundaries. The grindability analysis of the untreated
and treated samples indicated the particle size distribution for five different screens
(250 um, 150 um, 90 um, 38 um and less than 38 um). Significant variations between the
particle size distribution of the JSA, JSD, JS3 and JS5 samples were observed. The
photomicrographs from the polished sections indicated no differences in particle size
reduction and shape between the untreated and treated samples. The amount of power
used to mill the untreated and treated rock samples was consistently the same, being

approximately 935 W.

Chapter 7 will present the conclusions and succinct recommendations.
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Chapter 7 Conclusions and recommendations

7.1 Introduction

The final chapter of this research presents the conclusions reached with regard to the
effects that RF power treatment exerts on specific rock samples. A brief review of what
has been presented will first be given. The original purpose will be reviewed together

with the various results. Recommendations for future research conclude this chapter.
T Brief review

Chapter 1 presented the background to the possible use of RF power in assisting with
rock comminution. The methodology and overview of the research were reviewed as well
as the delimitations of the project, which does not include the design and development of
a VHF amplifier. The importance of the research was highlighted with particular

emphasis on significant contributions to the scientific community.

Chapter 2 reviewed the description and classification of minerals and rocks and their
physical properties, followed by a more detailed description and characterization of ten
rock samples chosen for this research. All three rock groups are represented with the
majority of the samples being selected from the metamorphic group (five marble
samples). The principles of rock comminution and mineral liberation were introduced as
a possible objective of the research was to develop an alternative, non-conventional

method to aid the comminution process.

Chapter 3 reviewed four current treatment techniques (microwave pre-treatment,
ultrasound pre-treatment, high voltage electrical pulses and RF power) used to achieve
specific goals with regard to various materials, specimens or liquids. Disadvantages of
these treatment techniques included the use of sophisticated precision-type technology
(such as the design and construction of the magnetron and cavity) requiring specialist

knowledge and expensive equipment if meaningful results are to be obtained. Further
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disadvantages of using high voltage pulsed power included the relatively short lifetime of
the spark-gap switches. Rationale for using RF power in the dielectric heating of
materials was grounded in this review. A new electrical treatment technique for rocks
was introduced based on RF heating of materials. The practical setup of the equipment

used in the transfer of RF power to a dielectric material was covered.

Chapter 4 presented various RF electrical properties associated with dielectric materials,
reviewing two current RF methods of connecting dielectric materials to electrical test
equipment, being the cylindrical and parallel-plate capacitor (PPC). Significant
advantages associated with the PPC included its simplicity and ease of connection, and
was therefore chosen as the preferred coupling device. A PPC with dimensions 28 x
47 mm was used in subsequent measurements with a network analyser to determine the
resonating frequency of ten specific rock samples. The primary reason for using this type
of PPC (being PPC-3) was because the rock samples resonating frequency coincided with
the frequency range of commercially available VHF amplifiers. Readings between 30 and
300 MHz were recorded in the form of comprehensive S-parameters, which were
subsequently used in the mathematical modelling of the phase angle to frequency
equation for each rock sample. Resonance, resistivity and conductivity graphs were
included for the JSA sample. However initial results from the network analyser revealed
that the impedance of the rock samples at resonance varied from 171 + jX € to around
2037 + jX Q. This impedance could not be directly connected to the output of a RF
amplifier which has an output impedance of 50 Q. This large mismatch would result in a
high percentage of forward power (power coming from the source) being reflected back

(from the load) towards the transmitter and thereby damaging it.

Chapter 5 subsequently discussed impedance matching as an important requirement in
assuring MPT between the source (RF amplifier) and the load (dielectric material in the
PPC). These matching networks are effectively band pass filters offering the required
impedance transformation. A Pi type network was chosen as the preferred matching
network due to the fact that it can match a large range of impedances (made possible by

the parallel variable capacitors) and because it posses only one series component (the
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inductor). The matching network was analysed and evaluated by means of a simulation
model (in SIMetrix) and a practical model (using a network analyser and a practical
experiment). The results indicated reliability and validity of the matching network as a
low SWR reading was achieved. Subsequent maximum forward power into the rock
sample from the RF amplifiers was realized. A unique value for the coupling coefficient
of the PPC was presented based on power and temperature measurements used in
conjunction with the specific heat capacity of the individual rocks. Initial observations
relating to the temperature rise of the sample verified that input power rather than
resonating frequency is critical in the successful transfer of RF power to a dielectric

material.

Chapter 6 introduced the effects of RF treatment on the rock samples. The possible
changes that were considered included textural, phase, grindability, colour and
temperature changes. Significant variations between the particle distribution of the JSA,
JSD, JS3 and JS5 samples were observed, which indicated rock strengthening. The
amount of power used to mill the untreated and treated samples was revealed to be the

same, around 935 W.

7.3 Conclusions

One of the primary aims of this research was to design and develop a suitable coupling
device to connect relevant electronic equipment (test instruments and amplifiers) to
various rock samples. MPT to the rock sample at a specific frequency of operation was
noted to be of greatest importance. This was achieved with the use of a PPC and
matching network housed in a novel wooden jig. Inserting specific sized rock samples
into this coupling device proved simple and effective, being neither time consuming or
difficult. Similarly, tuning the capacitors to obtain a SWR close to one for each rock

sample was easily done with the use of the network analyser.

This research further highlighted that the input power rather than the resonating

frequency is critical to the successful transfer of power to rock samples within a PPC.
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The rise in temperature as well as change in particle size distribution for different input
frequencies substantiates this claim. However, there may still be other frequencies within
the UHF range which could result in more textural changes within specified rock

samples.

This research made four valuable scientific contributions to the fields of metallurgical
and electrical engineering. Firstly, it introduced a new technique for the treatment of
rock samples, being the use of RF power. The effect of RF power on the textural

changes of the rocks was presented in Chapter 6.

Using RF power in heating specific rock samples could subsequently be used in the
colouring of rock surfaces. However, only four samples (JSA, JSD, JS3 and JS4)
revealed a notable change in their particle size distribution. The fact that the percentage
of larger sized particles increased (from 38 pm to 90 um as seen in Chapter 6) suggests
that the rock was strengthened rather than weakened. A possible application could be the
prevention of over grinding during comminution, which may have benefits during

mineral processing.

Secondly, an innovative coupling technique to connect rock samples to high powered
RF electronic equipment, using a PPC with dimensions of 28 x 47 mm, was described.
The feasibility of this technique was confirmed by repeated correlated measurements
taken on a vector voltmeter and network analyser. Low SWR readings obtained from a
RF Wattmeter in a practical setup also proved the viability of the matching network used

in the coupling technique.

Thirdly, an original coupling coefficient (81.58 x 10™) for the PPC was presented. This
value may be used in similar sized capacitors to determine the specific heat capacity of
dielectric materials. However, the value of the coupling coefficient was only verified for
seven out of the ten rock samples. The value of the coupling coefficient should hold true
for all rock samples, as it represents the coupling of energy between the PPC and rock

sample. This suggests that the specific heat capacity for white marble or white granite
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should be higher (around 3200 J/kg/°C for marble and 2800 J/kg/°C for granite) than
those values for dark coloured samples. No current literature was found to substantiate

this claim.

Finally, this research defined the mathematical models for 10 rock samples for the VHF
range of frequencies (30 — 300 MHz), providing unique phase angle to resonance
equations for each sample. These equations can be used with each specific rock to
determine the resonating frequency where the maximum current flows and the minimum

resistance is present.

Current physical methods used for crushing of rocks in the mineral processing industry
result in erratic breakages that do not efficiently liberate the economically valuable
minerals. The purpose of this research was to evaluate the effect that RF power exerts on
rock samples with particular focus on textural changes. This evaluation brought to light
that mineral grain boundaries within ten specified rock samples treated with RF power
are not significantly weakened. This was firstly determined by the similar electrical
properties of the untreated and treated samples, where consistent values for resonating
frequency were obtained from the network analyser. This was clarified by the SEM
analysis of the untreated and treated samples. Photomicrographs obtained for both
samples revealed no significant changes in the form of fractures or breakages along the
mineral grain boundaries. The particle size distribution after milling of both samples
further revealed no weakening or softening of the rock, as the percentage of smaller sized
particles did not increase in the treated samples. Therefore, it may be stated that treating
rock samples with RF power within the VHF range may not significantly improve rock

comminution and mineral liberation.
74  Recommendations
This research incorporated the use of commercially available RF amplifiers in the RF

heating of a dielectric material housed within a PPC. The transfer of 82 W of RF power at

160 MHz to a specific sample size proved significant in changing the particle size
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distribution of dolerite (JSA), sandstone (JSD) and marble (JS3 and JS5) samples. The
particle size distribution of other treated rock samples may through be influenced through
use of a higher input power, around 500 W. This may be the focus of future research in

evaluating the effects of RF power on textural changes of rocks.

The effect of RF heating on the PPC was also shown to be significant, with burn marks
evident on the copper conducting plates. In two instances, 112 W of RF power was
transferred to the dielectric material housed in the PPC. However, this resulted in arcing
within the variable capacitors, and a subsequent dramatic increase in the SWR. Larger
power handling capacitors will therefore be required if the input power is to be increased
to 500 W. Thicker copper plates will further be required to handle the larger amount of
RF power.

The methods that have been developed here could be applied in determining the electrical

properties of rocks, which in turn, may find use in other geophysical applications.
Future research surrounding the effects of RF power on the textural changes of rocks is

limitless and begs the attention of dedicated researches in the field of metallurgical and

electrical engineering to “find remedies in the thorniest of trees”.
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ANNEXURE 1  Electrical parameters of the untreated JSA rock sample for the VHF range
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ANNEXURE 2  Electrical parameters of the untreated JSB rock sample for the VHF range
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ANNEXURE 3  Electrical parameters of the untreated JSC rock sample for the VHF range
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ANNEXURE 4  Electrical parameters of the untreated JSD rock sample for the VHF range
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ANNEXURE 5  Electrical parameters of the untreated JSE rock sample for the VHF range
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ANNEXURE 6  Electrical parameters of the untreated JS1 rock sample for the VHF range
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ANNEXURE 7  Electrical parameters of the untreated JS2 rock sample for the VHF range
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ANNEXURE 8  Electrical parameters of the untreated JS3 rock sample for the VHF range
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ANNEXURE 9  Electrical parameters of the untreated JS4 rock sample for the VHF range
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ANNEXURE 10 Electrical parameters of the untreated JS5 rock sample for the VHF range
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ANNEXURE 11 Photographs of the rock cutting equipment
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ANNEXURE 12 Photographs of PPC1 (87 x 47 mm), PPC2 (59 x 47 mm), PPC3 (28 x 47
mm) and PPC4 (18 x 33 mm)

47 mm
33 mm
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>
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ANNEXURE 13 Mathematical equations for resonating frequency to phase angle for the

rock samples derived from the basic square waveform

Sample Rock Resonating Phase angle equation
name sample | frequency ¢ in radians
. 201 Sin(nxz)
JSA Dolerite | 160.14 MHz | 4= [172x ———2-]xcos(2x 7 x nx0.012278x (f +22.782))
n=] —
nXx 5
201 Sin(nxz)
JSB Marble 162.58 MHz ¢= 2[172x—”2—]xcos(2><7r><n><0.01225x(f+20.471))
n=| -
nx 2
) 201 sin{nx E)
JSC Granite | 167.85MHz | 4-%" 72x—”2—]x cos(2x 7 x nx 0.01194x (f +20.695))
n=l -
nx >
201 Sin(nxz)
ISD Sandstone | 170.08 MHz | 4= 2[172><—ﬂ2—]xcos(2><7r><n>< 0.01109% ( f +22.709))
n=| —_
nXx 5
o i
201 Sln(l’l)(—)
JSE Mudstone | 153.15 MHz ¢=z[172><—”2—]><cos(2><7r><n><0.01202x(f+21.589))
n=l -
nx >
201 Sin(nxz)
JS1 Marble | 162.61 MHz | 4= [172x———2-]xcos(2x 7 x nx 0.012232x ( f +21.452))
n=1 E
nx 5
201 sin(nxz)
182 Marble | 159.74 MHz | 4=3"[172x ——2-]xcos(2x 7 x nx0.012228x (f +23.152))
n=l] 1
nx 5
201 Sm(nxz)
JS3 Marble | 16230 MHz | 4= [172x 2 Jxcos(2x 7 xnx0.012232x (f +21.652))
n=|l E
nx >
. 201 sin(nxz)
JS4 Granite | 165.14 MHz | 4=3"[172x——2 xcos(2x 7 xnx0.01202x (f +21.752))
n=| E
nx >
201 sin(nxﬁ)
IS5 Marble | 160.43MHz | =3 [172x———2-Jxcos(2x 7 x nx0.0123% (f +22.252))
n=l nxZ

2
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ANNEXURE 14 K-Type thermocouple pressed firmly against the surface of a rock sample

with the temperature meter shown below

2 22/041201

=7

L3Ny iy
3 00f id
dapnaouuay | paivsfuy

IE HALIWONWYAHL

000T-IN1

157



ANNEXURE 15 Temperature rise curves for the JSB and JSC rock samples
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ANNEXURE 16 Temperature rise curves for the JSD and JSE rock samples
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60

50 -

40

JSD - Sandstone

——JSD-90 W - 159 MHz

20

10

Olll\ BN DDA R MRS SR FENNR Smat S SES i Sl Eeet vEm coel fEme S ol o e Tk Lown s s i 3

3 6 12 15 18 21 24 27 30 33 36
Time (min)
JSE - Mudstone

= 120
=
g 100 T— A :
3 / \ ——ISE - 82 W - 160 MHz
g 80
& / (
QL
2 60
i \
2 i
g 20
Q
=

O'T‘FIITI’ T T T | A E e Sl MR oo o R e S Rem o N mees fomr 4ol pu e M i

12 15 18 21 24 27 30 33 36

Time (min)

159




ANNEXURE 17 Temperature rise curves for the JS1 and JS3 rock samples
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ANNEXURE 18 Temperature rise curves for the 1S4 and JS5 rock samples

JS4 - Granite

o 10 . T - - -

= -
E 60 . . o
3 8 . N\ JS4 -82 W-160 MHz
| § 50 O —_ —_ L — . — —

: N
gn 40 - — - o - ; _ _ _ _ ,
— " \
3 _ ~— _

< R e — -

5 20

Q.

g 10 - R P _ S e

ot

O ) — — —_
0 3 6 9 12 15 18 21 24 27 30 33 36
Time (min)
JSS - Marble

~ 80
' =3

w70 )
|3 / JS5-82 W - 160 MHz
[ % 60 & - -8

A -

L

2 40 —_— - — —

E 30 - . . S —_— o
=1 .
g 20 - — T T e T

E 0 I . S

=

0
0 3 6 9 12 15 18 21 24 27 30 33 36

Time (min)

161



ANNEXURE 19 Photograph of the swing-pot mill and shallow cylinder (two internal rings

and a heavy disc)
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ANNEXURE 20 HIOKI 3286-20 clamp-on power meter used to measure the power

consumption of the RF amplifiers and the swing-pot mill

Loy ~ =5 My WL teees
= nanar = L EET 7 00T

HIOK! 3ggs-20

CLAMP ON POWER HITESTER
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ANNEXURE 21 Particle screening sieves (250 um, 150 pm, 90 um and 38 pum) placed on

top of each other
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ANNEXURE 22 Photograph of the RF amplifiers

22/04/2010° i

165



ANNEXURE 23 Equations used to convert the Cartesian Coordinates obtained from the

Vector Network Analyzer (VNA)

1. Calculate

2. Calculate

3. Calculate

4. Calculate

Vector Network Analyser (VNA) into electrical parameters

resistance

reactance

magnitude

angle

Real part

Imaginary  part

1= r2—x2
R: -50
(-1 +%
Re =2- 2 50
(l—r)-(l—x)-H(2

Mag =R + R

Angle =atan | B

VIR

166

r=-.713
X =-.668
R =0.672 Ohm

Re =-20.221 Ohm

Mag =20.232 Ohm

Angle =-88.098-deg



ANNEXURE 24 Photograph of the ten thin sections used in the SEM analysis

Untreated on the left and treated on the right
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ANNEXURE 26 TURNITIN originality report for this thesis
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ANNEXURE 25 Photograph of the ten polished sections obtained from the grindability

analysis

Untreated on the left and treated on the right
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