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ABSTRACT 

Simultaneous Localization and Mapping (SLAM) is a significant problem that has been extensively 

researched in robotics. Its contribution to autonomous robot navigation has attracted researchers 

towards focusing on this area. In the past, various techniques have been proposed to address SLAM 

problem with remarkable achievements but there are several factors having the capability to degrade 

the effectiveness of SLAM technique. These factors include environmental noises (light intensity and 

shadow), dynamic environment, kidnap robot and computational cost. These problems create 

inconsistency that can lead to erroneous results in implementation. In the attempt of addressing these 

problems, a novel SLAM technique Known as DIK-SLAM was proposed. 

The DIK-SLAM is a SLAM technique upgraded with filtering algorithms and several re-modifications 

of Monte-Carlo algorithm to increase its robustness while taking into consideration the computational 

complexity. The morphological technique and Normalized Differences Index (NDI) are filters 

introduced to the novel technique to overcome shadow. The dark channel model and specular-to-diffuse 

are filters introduced to overcome light intensity. These filters are operating in parallel since the 

computational cost is a concern. The re-modified Monte-Carlo algorithm based on initial localization 

and grid map technique was introduced to overcome the issue of kidnap problem and dynamic 

environment respectively.  

In this study, publicly available dataset (TUM-RGBD) and a privately generated dataset from of a 

university in South Africa were employed for evaluation of the filtering algorithms. Experiments were 

carried out using Matlab simulation and were evaluated using quantitative and qualitative methods. 

Experimental results obtained showed an improved performance of DIK-SLAM when compared with 

the original Monte Carlo algorithm and another available SLAM technique in literature. The DIK-

SLAM algorithm discussed in this study has the potential of improving autonomous robot navigation, 

path planning, and exploration while it reduces robot accident rates and human injuries. 

Keywords: Autonomous robot, Trajectory, Navigation, Filtering Algorithm, Kidnap problem, 

Dynamic Environment, Simultaneous Localization and Mapping. 
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CHAPTER ONE 

1 INTRODUCTION 

Autonomous navigation plays an important role that assists robot movement from one point to 

another without being controlled by anyone and can be achieved by using Simultaneous 

Localization and Mapping (SLAM) (Montemerlo et al., 2002). These characteristics have 

attracted researchers and over the years had been extended from a structured environment to 

other challenging environments such as unstructured terrain and sub-sea terrain with 

tremendous success (Skrzypczy et al., 2009). Given any known environment, the detailed 

information will assist in proper planning of future navigation. In an unknown environment, 

present position estimation is a requirement for building map for an environment. This map 

will assist in navigation and this represents the general concept of SLAM (Skrzypczy et al., 

2009). The problem becomes how to use SLAM to estimate robot position and map for an 

environment. In SLAM domain, data collected from sensors (camera, laser, sonic and radar) 

are used to estimate robot position and for map building. This approach tends to be successful 

because pose estimate of the robot is correlated with feature estimate of the environment 

(Skrzypczy et al., 2009). In literature, there have been many ways of solving the problem of 

mapping but the approach can be roughly categorised into features-based and grid-based 

approaches (Wurm et al., 2003). These techniques have proven to be productive, but the 

selection is mostly influenced by the nature of the environment. In a large outdoor environment 

with the predefined object, the feature-based technique is often advised to be used. In clustered 

and dense surroundings, the grid-based approach offers better performance (Wurm et al., 

2003). These two techniques have contributed to SLAM success but they also have their 

limitations. The grid-based technique suffers from high computational cost and also require 

huge memory during processing of data but are capable of handling arbitrary objects. The 
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feature-based technique suffers less computational cost but relies heavily on predefined 

objects. This means some object must be present and must be known, in the absence of these 

features, the system will fail without recovery (Wurm et al., 2003). Unfortunately, problems 

associated with SLAM do not  have these limitations only but also have others that still need 

to be discussed. In resolving this issue, general reviews were conducted on various SLAM 

techniques proposed by past researchers to identify these problems, and this is the reason for 

why this review study was carried out in chapters two and three. This review covers various 

SLAM algorithms, their methodology, limitations and advantages. The review results 

suggested that the computational cost, dynamic environment, illumination variation and kidnap 

robot are persisting problems limiting the full acceptance of SLAM in the society. This study 

was conducted on how to address these problems and a novel SLAM technique known as DIK-

SLAM was presented. The DIK-SLAM is equipped with multiple algorithms taking into 

consideration the computational cost as related to the processing speed. Successful 

implementation has contributed towards improving SLAM research and its acceptance in the 

industry will improve productivity and safety. This thesis is organized as follows: chapter 2 

and 3 discuss the literature review conducted for this research, chapter 4 discusses the 

methodology. Chapter 5 discusses the experiments carried out and the results obtained while 

the summary of the study, contribution, conclusion and future work was discussed in chapter 

6 

1.1 Problem statement 

The Simultaneous Localization and Mapping is an important technique as far as autonomous 

guidance is concerned. Its contribution to successful navigation supports its popularity in the 

research community. Thus, various SLAM techniques have been proposed with significant 

breakthroughs, but they are still vulnerable to some problems. Environmental noises (shadow 

and light intensity) are one of the problems that many researchers complained about. The effect 
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of environment noises makes the analysis of image content difficult to accomplish (Thamrin et 

al., 2012, Agunbiade et al., 2014). This drawback made some researchers to propose the use of 

sensors like laser range, sonic and sonar for implementing their SLAM technique (Choi and 

Maurer, 2016, Byron and Geoffrey, 2013). Thus, environmental noise can also cause kidnapped 

robot which happens when the robot is not aware of its new position. This arises when a robot 

moves without noticing its odometry measurement, and the effect can lead to systems failure 

without recovery (Guyonneau et al., 2012). In the presented research, we minimized the effect 

of these environmental noises by using filters. Dynamic landmarks (features) were also 

mentioned as a problem by many researchers in their SLAM technique (Fuentes-Pacheco J, 

2015, Clipp et al., 2009) due to their capability to cause biased measurement. The effect leads 

to map inconsistency and corruption since object position changes due to its dynamic abilities. 

In our effort to propose a better SLAM technique, all problems were addressed by introducing 

multiple algorithms for the re-modification purpose taking note of the computational cost. In 

system enhancement that involves introducing new features, the computation cost is increased. 

The effect slows down the motion of our system due to a decrease in image processing speed 

(Hesh and Trawny, 2005). Thus, giving the DIK-SLAM algorithm presented in this study, this 

problem was minimized by using concurrent operation at the filtering stage. A low 

computational cost SLAM algorithm based on particle filter was employed to further resolve 

the effect of response time. However, successful implementation of the DIK-SLAM technique 

supports better performance than other SLAM techniques proposed in the literature.   

1.2 Research questions  

Given an Autonomous robot navigating in an environment based on SLAM technique, there is 

a high possibility of encountering any of the following problems : environmental noises, kidnap 

problems, computational cost and dynamic environment. The main research question is: How 

can a novel SLAM technique capable of withstanding the environmental noise in dynamic 
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environment and kidnapping state be developed? In resolving this question, the following sub-

questions need to be answered. 

 What has been done in the literature to improve on SLAM techniques for autonomous 

robot navigation? 

 How can  an improved SLAM technique in comparison with those identified in 

literature be proposed? 

 How can environmental noise and kidnap robot be addressed in a dynamic 

environment? 

  How can the speed of image processing be increased in the proposed SLAM technique? 

 What evaluation schemes can be used to evaluate the performance of the proposed 

SLAM technique? 

1.3 Research objectives 

The autonomous robot plays an important role that cannot be ignored globally. Based on the 

main question stated above, the research goal is therefore to improve in real-time the DIK-

SLAM technique for perfect navigation of autonomous robots in environmental noises, kidnap 

problem and dynamic environment scenarios.  This could be achieved by executing the 

following Research Objectives. 

 To study and compare SLAM techniques. 

 To propose a modified Monte-Carlo algorithm capable of addressing the problem of 

kidnap robot, environmental noises in a dynamic environment. 

 To design a concurrency technique for improving the image processing speed.  

 To measure the effectiveness of the proposed SLAM technique. 
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1.4 Research contributions 

The research contribution to knowledge is as follows: 

 Development of a novel SLAM technique known as DIK-SLAM for autonomous 

robot 

 Minimizing the effect of environmental noises, dynamic environment and kidnap 

robot to improve navigations for a robot in their environment.  

 Improving the processing speed for the DIK-SLAM techniques 

 Advancing robotic research and if deployed in companies and industries using robots 

for their daily activities, it will increase manufacturing productivities and profit with 

minimum casualty 

1.5 Deliverables  

The research deliverables are as follows: 

 A novel SLAM technique (DIK-SLAM). 

 Published academic papers 

 Writing and submission of D.Tech thesis 

1.6 Thesis outline 

This thesis is structured as follows: Chapter One presents an overview of the entire work. It 

entails the topic, problem statement, research questions, objectives and contributions of our 

research. Chapter Two and Three present the literature reviews of related studies .Chapter Four 

introduces the Methodology of the proposed DIK-SLAM algorithm and the pseudo-codes used 

in our research. In Chapter Five, presents and discusses various experimental results on the 

performance of the system. Chapter Six presents a summary of the study, research 

contributions, research conclusions and future work.  
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CHAPTER TWO 

2 SENSOR, FILTERING, CONCURRENCY AND SLAM ALGORITHM 

In an attempt to develop an efficient and effective SLAM technique, sensors are used to acquire  

the representation of data and sample that play a significant character in object classification 

but might not be efficient in the presence of environmental noises. 

 Environmental noises have the ability to degrade the image, making interpretation to be 

impossible (Agunbiade et al., 2013) and to address this issue, filters can be employed to reduce 

the presence of noise and improve the quality of the image. This increases the computational 

cost with an effect of a decrease in processing speed and can be minimised by using 

concurrency technique (Agunbiade et al., 2013). Meanwhile, SLAM algorithm has the ability 

to assist in navigation, by means of constructing a map and localizing itself using the same map 

(Lang et al., 2010). In this chapter, sensors as related to SLAM, filtering algorithms, 

concurrency technique, dynamic and kidnapping SLAM will be discussed. The discussion 

covered their advantages, challenges and issues. This chapter has assisted in making an 

accurate decision of whether to develop or modify or chose an algorithm that will assist the 

SLAM technique attain its best performance.  

2.1 Sensors and SLAM 

Simultaneous Localization and Mapping (SLAM) is an important problem that has been 

broadly researched in robotics. Its support towards the autonomous robot movement has 

involved scientists in concentrating on this area (Zunino and Christensen, 2001, Fuentes-

Pacheco J, 2015). In the past, various techniques for addressing simultaneous localization and 

mapping has been proposed with remarkable achievements. Research had been conducted 

based on several types of sensors because of their advantage over another. Sensor selection can 
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be a result of the type of technique a researcher is proposing to solve the problem of 

SLAM (Steckel and Peremans, 2013). In (Eliazar and Parr, 2003), they proposed to address 

the SLAM problem in an environment without pre-determined landmarks using laser 

sensors.  The Particle filter algorithm was deployed in their system and had produced a highly 

detailed map for an office environment. Laser sensors as expensive could produce a wrong 

measurement when encountering shiny or black objects that do not reflect light, and this could 

affect robot localization in an environment (Agunbiade et al., 2014). In (Zunino and 

Christensen, 2001) they proposed the use of the EKF filter algorithm to process the information 

obtained by the sonar sensors attached to the robot. The sonar sensor was proposed because of 

its low cost and low computational complexity for retrieving information from the 

environment. In the work of  (Steckel and Peremans, 2013), they condemn the use of sonar 

sensors because of their inability to provide fine-grained information from the sound. Instead, 

they proposed bio-sonar. This was employed due to high intelligent interaction capability 

towards a complex environment and its ability to extract more information from the echoes 

than sonar. BatSLAM algorithm was proposed to analyse the information acquired by the bio-

sonar (Steckel and Peremans, 2013), but from their experiment. The limitation occurs if it 

encounters a larger complex environment because echoes arriving from different directions are 

delayed. Trying to analyse them produced an invalid cue which makes the system fail to 

navigate correctly (Hiryu et al., 2010). In the work of (Irie et al., 2012.), they proposed a vision-

based SLAM, because the camera was able to acquire more information from the environment 

than other sensors. These acquried informations could assist to improve robot 

navigation (Zehang et al., 2006). Thus, being aware of the issues of environmental noise with 

a vision-based system, they tend to address the issue of shadow. They proposed the use of two-

dimensional occupancy grid maps produced from 3-D point clouds obtained by a stereo 

camera. They also introduced an extracted salient line segments from the ground into the grid 
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map. On the grid map, robot pose estimation was attained by employing particle filters. In this 

technique, the grid maps were not affected by shadow and lighting conditions, but under severe 

illumination conditions. It is impossible to extract the salient line segment which resulted to a 

failed SLAM technique. However, the issue of illumination variance supports the reason why 

some researchers still prefer the use of active sensors to acquire data from the 

environment (Thamrin et al., 2012). Furthermore, the work of (Castellanos et al., 

2001) propose the use of multiple sensors for a reliable and accurate measurement of the 

environment. The idea is for a sensor to take an advantage over the weakness of another. The 

major limitation is high computational complexity when combining too much data from 

multiple sensors. Hence, irrespective of the sensor employed, they all still have their 

limitations. However, sensors are not the only contributor to SLAM failure, the algorithms 

employed to address the SLAM problem also have their limitations and are discussed 

extensively in  Section 2.2  

2.2 SLAM algorithm 

Simultaneous Localization and Mapping (SLAM) is a technique that allows a mobile robot to 

build a map for an unknown environment and simultaneously use the same map to find its 

location, given a mobile robot navigating through an unknown environment, taking observation 

of landmarks by using sensors attached to the robot at an instance time K (Dissanayake et al., 

2011).. They are used to extract some state variables defined as follows. 

KX  represents state vector describing robot orientation and location. 

KU  represents control vector, applied at the time 1k  to drive the robot to a state 
KX  at a 

time K  
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IM  represents vector describing the location of the thi  landmark whose true location is 

assumed time-invariant 

  IZ  represents observation retrieve from the robot of the location of the thi  landmark at a 

time K   

Thus, in multiple observations at any time, these quantities are defined as follows  

KIX :
=  KXX ,.......,1

  represent the history of vehicle locations 

 KK UUUU ,......,, 21:0   =  KK UU  ,1:0   represent the history of all control inputs 

nM :1
 = 

nMMM ,....... , 21
 represent set of all landmarks 

KZ :1
 =  KZZZ ,....,, 21

 represent set of all landmarks 

Given these state variables, they can be used to address the problem of SLAM most especially 

in static environment. The observation and corresponding particle relating to the trajectory 

(orientation and location) can be used to generate the map for the environment. However, it 

must be enhanced to resolve the issue of a dynamic environment and kidnap robot to achieve 

the study’s desirable result.  

2.2.1 Dynamic SLAM 

SLAM is a technique that was initially implemented for the static environment (Zhang et al., 

2011), but there is an environment that is dynamic in nature due to the presence of moving 

objects. This situation becomes a problem for previous SLAM.  In an attempt to address 

dynamic landmarks, the work of (Oh et al., 2015) proposed an idea of  defining dynamic 

landmarks as an environment that has landmarks location changing, as a result of external 

forces acting on it. Thus, the change does not affect the information of a robot or other static 
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landmarks. Therefore they proposed an assumption that the dynamic landmarks are 

independent of static landmarks. In implementing their assumption, they started by proposing 

the Simultaneous Localization and Mapping problem in a probabilistic form as illustrated in 2-

1 

 1:0:1:1:1  , KKnK UZMX *                                                                                                               2-1                                                                          

In an environment that is not only static, the landmarks is re-defined as expressed in equation 

2-2 

nM :1
=  d

n

S

n dS
MM :1:1  ,                                                                                                                        2-2    

where 
S

nM :1  represents numbers static landmarks while 
d

nM :1  represents numbers of dynamic 

landmarks. Based on the assumption, the two landmarks are separated and 2-1 is divided into 

two parts. An illustration is given below in equation 2-3 and final calculation resulted in 

equation 2-4 

 1:0:1:1:1  , KKnK UZMX * 

 1:0:1:1:1  , KKnK UZMX   1:0:1:1:1:1 ,,, KK

S

nK

d

n UZMXM
Sd

                                                       2-3 

 1:0:1:1:1  , KKnK UZMX    KK

d

n ZXM
d :1:1:1 ,                                                                        2-4 

The equations 2-3 and 2-4 support that Simultaneous Localization and Mapping can deal with 

static and dynamic landmarks separately and independently. It also supports that dynamic 

landmarks are independent of each other. Then equation 2-4 is factorized which resulted in 

equation 2-5 
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 1:0:1:1:1  , KKnK UZMX 


dM

i 1

  KK

d

n ZXM
d :1:1:1 ,                                                                            2-5 

The left part of the equation 2-5 is equal to the equation given in 2-1, which represents the 

original Simultaneous Localization and Mapping problem represented in a probabilistic form 

to solve static landmarks only (Oh et al., 2015). However, adding the part of the dynamic 

features clarify that it is possible to address the problem of Simultaneous Localization and 

Mapping in a dynamic environment. Thus, this technique will not be adopted because the 

Extended Kalman Filter (EKF) has a limitation of High computational cost, which the study is 

taking into consideration (Chen and Lum, 2014). Alternatively, a low computational cost 

SLAM technique such as a particle-based algorithm will be preferred to EKF.      

2.2.2 Kidnap SLAM 

The kidnaping problem occurs when the robot moves from one position to another without 

having any information about its new position (Guyonneau et al., 2012). This can happen as a 

result of failing sensors or increasing in measurement noise (Negenborn et al., 2003). The effect 

of this limitation leads to a robot inability to estimate its pose. Therefore, violating the principle 

of addressing the problem of SLAM, because pose estimation is a requirement for map building 

and can lead to robot failure without recovery (Guyonneau et al., 2012). Supposing an 

autonomous robot navigating in an unknown environment with an on-board sensor-based 

SLAM technique, and the system characteristic of discrete- time dynamic is the equation given 

in 2-6 

    
    








              

 ,  )1(

Kxgky

kukxFkx

g

                                                                                                        2-6                                                  
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The autonomous robot position         kkxkkx  , ,x  21  is defined by its location 

    kxkx 21  ,  and its orientation  k  in the environment represented as  at the discrete-time 

k  the function f  signifies the robot dynamic and the vector  ku  represents the control vector 

at a time k . The vector       kykyky n,........,  1  signifies a set of vector measurements. Note 

that  ky  is dependent on   kx  and  . The environment ( ) where the movement of the 

robot takes place is estimated by a grid map. The grid map represented as G is made up of 

mxn    cells  ji  ,  and at each cell  ji  ,  is related  1 ,0   , jig . The expression is given in 

equation 2-7   











                                                         else 1

                                                         , of

subspace free a  toscorrespond cell  theif  0

  , jig

                                                           2-7

 

where G  represents the discrete version of  . Thus, when a robot is kidnapped in an 

environment, algorithms selected to solve this problem must be able to carry out these 

objectives: the ability to perform pose estimation, detect kidnap problem and global 

localization (Guyonneau et al., 2012). However, in the literature, the initializing localization 

technique has been positive to kidnap robot (Se et al., 2001). In this technique, an extensive 

search of the current observation over the reference map in the database (pre-mapped 

environment) will be carried out to find the robot position in relation to this map. This will 

assist the robot to start up again at the last stop position. However, there is a situation where 

this technique can experience failure. For instance, if the current observation has changed as a 

result of dynamic characteristic, the selected reference map might not perfectly match the 

current observation and could lead to SLAM failure without recovery. Given these reasons, 

this technique will not be adopted. A different approach towards addressing the problem of 

kidnapping robot will be proposed in this research.  
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2.3 Filtering algorithms 

Noises are unwanted information that adulterate an image. Their existence in the image come 

from numerous sources. The image acquisition phase which is the first stage in the SLAM 

technique is the primary source of how noises appear in digital images.However, there are 

numerous other ways that images are exposed to noises, depending on how they are created. In 

vision SLAM technique, environmental noises contaminating images are captured by a digital 

camera and lead to system inability to understand the image properly. This limitation can be 

minimised by using a filtering algorithm to reduce the concentration of the noise and this will 

better improve the image content interpretation. In the literature, various filtering algorithms 

for noise reduction have been proposed, but it is important to select, improve, or create the best 

filtering algorithm to be used for the SLAM technique. Section 2.2.1-2.2.3 explains some of 

the filtering algorithms found in literature. 

2.3.1 Bilateral filters 

This bilateral filter smoothens images without affecting edges. These filters function based on 

a non-linear combination of neighboring image values. In this technique of filtering, every 

pixel is replaced by an average weight of its close pixel. The weight  pw  assigned, is based on 

using intensity difference and spatial closeness. Gaussian distribution can be employed to play 

a significant role for the weight estimation and the result thereafter is a filtered image. The 

bilateral filtering is expressed in equation 2-8 (Singh and Goyal, 2014).   

           



ix

isiri

p

filtered xxgxIxIfxI
w

xI
1

 ,                                                       2-8                              

where 
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       



ix

isirp xxgxIxIfw ,  

I  represents original input image with noise, x  denotes current pixel coordinate to be filtered, 

rf  signifies range kernel for smoothing differences in intensity, sg  represents spatial kernel 

and the smoothing differences in the coordinate. The sg  and 
rf  can be a Gaussian function.  

The algorithm result is impressive and has a wide application different from filtering e.g. 

tracking and navigation, the major limitation is that input noises still exist after filtering because 

photometry (intensity) makes neighboring pixel weight very small compared to the pixel of the 

impulse noise with large weight (Huang and Fuh, 2006). 

2.3.2 Wiener filters 

Wiener filtering algorithm functions on dark channel technique presented in the study of (Zou 

et al., 2013). It is a common technique to minimise image noise. Wiener filtering algorithm is  

linear and shifts invariant filter that has a limitation not suitable for images with edges but can 

be improved by using the combination of a different method like median filter (Krajsek and 

Mester, 2004). In this combination technique, edges are preserved because an image restoration 

problem is converted to an optimization problem. Using the combination technique has a 

limitation of high computational cost because of transformation and re-transformation in the 

procedure of implementing this technique. Giving a moving camera with excessive moderate 

shutter speed, the pixel will be an amalgam of intensity from the point in line with the camera 

movement as represented in equation 2-9   

     vuHvuFvuG , ,,                                                                                                          2-9 

where F  represents the fourier transform version of a given image and H  represents the 

blurring function. 
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If G  and H  are known, F can be estimated. F  represents the image that has been recovered 

from noise. The best method to solve the problem of estimating F  is wiener filter according 

to equation 2-10.     

   
 

     vuKvuHvuH

vuG
vuHvuF

,,  .,

,
.,,

2

2


                                                                   2-10 

where K  represents constant selected to improve the estimate. 

The algorithm is a widely used technique because of the capability to remove the white area of 

noise in images and it is easily implemented (Singh and Goyal, 2014). 

2.3.3 Median filters  

Median filters a popular de-noising and smoothing algorithm. Given a set of variables in 

random as expressed in equation 2-11. 

 NYYY ,,........., 21                                                                                                              2-11 

The statistic orders expressed in 2-12 are random variables well defined by arranging the values 

of iY  in increasing order. 

     NYYY  .......21                                                                                                           2-12 

The median value    using the above equation is presented in equation 2-13.  

 














      2  

12  
  

2

1

           

kNfor

kNfor

YY

Y

median
mk

m

                                                                            2-13 

where 1 km  represents the median rank 
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The median is a good estimator for the location parameter of distribution and has found various 

applications in filtering and smoothing especially for data corrupted by impulsive noise. Given 

a gray-scale input image with intensity value jiY , , the 2-D median filter is expressed in equation 

2-14   

 
 

sjri
wsr

ij Ymedianx 


 ,
,

                                                                                                          2-14 

where w  represents window size mm   where filtering is applied, sr,  signifies corrupted 

pixel in w  that needs to be restored (Kirchner and Fridrich, 2010).    

This is one of the most common filters but limitation arose when random intensity noise exists 

in the image, it is less effective and computationally intensive (Aboudaya et al., 2006). Apart 

from the above-mentioned filters, many more exist like mean shift filters, contrast limited 

adaptive histogram. We adopted some filtering algorithms different from the ones discussed 

above, because from the work of the previous researchers, these adopted algorithms attained a 

reliable result.   

2.4 Concurrency technique  

This is a form of operation where many computations are carried out simultaneously, based on 

the principle that, bigger data can be divided into smaller data and be solved concurrently 

(Parker et al., 2001). These techniques were introduced to overcome the limitations of the serial 

algorithm. Concurrency operation is used for high-performance computing for many years and 

has been dominating the area of computer architecture especially in multi-processors. 

Concurrency (Parallel) operation are much difficult to implement than the sequential algorithm, 

more especially the communication and synchronization between various sub-tasks are the 

main issue to achieve a good concurrency operation. Various types of concurrency operations 

exist but the two commonly used are Parallel Pipelined (PP) and Binary Swapping (BS) (Chin 

et al., 2001). These two are discussed in sections 2.4.1 and 2.4.2 respectively. In this study, it 
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is important to develop, or to create, or to select the best concurrency operation to reduce high 

computational cost in the proposed SLAM algorithm. 

2.4.1 Binary swapping 

Recently, this method became a commonly used technique than others because it allows more 

simultaneous operations in image composition phase with all the processors busy throughout 

the communication procedure, but the limitation is that the technique can only be implemented 

when processors are in a power of two (Lin et al., 2003). In communication and 

synchronization, the Binary Swapping technique is a divide and conquer algorithm.  At first, 

the input image is divided across processors for every communication step. Processor divides 

its partial image into two halves. 2 processors are paired for an exchange for half of their partial 

image, afterward, it is the composition operation. After  K  communication step, each 

processor held a portion of the final image. The final image will be generated by using the 

gathering directive to retrieve the portions of partial images from processors holding it (Lin et 

al., 2003).    

2.4.2 Parallel pipelined algorithm 

Parallel Pipelined is a common algorithm because it supports arbitrary processor and was 

designed for the mesh network. In the communication and synchronization using P rP cP , 

two stages are involved after the division of the input image across numbers of processors. 

Row processors  rP  are arranged in a ring topology and each processor divides its partial 

image into 
rP  blocks. Each processor sends a block to the next processor and receives from its 

previous processor. Processors composite the received block by using over operation. In the 

second stage, similar to the first operation, column processors  cP  are arranged in a ring 

topology and each divides its block into cP  sub-block for a send and receive operation between 
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the next and previous processors respectively. After  K  communication step, the final image 

can be generated by gathering the sub-blocks from each processor, but the limitation is that 

some processors are idle and the image composition overhead is high (Lin et al., 2003).  Several 

techniques for concurrency operation exist but the adopted technique (Rotating Tilling) was 

employed because of its ability to overcome the limitation of Binary Swapping and Parallel 

Pipelined algorithm.     

2.5 Chapter summary 

In order to develop a reliable SLAM technique, an extensive review was conducted on the 

components that can assist to address the problem of SLAM. This chapter discussed the study 

conducted for the sensor, filtering, concurrency and SLAM techniques in detail and has assisted 

in selecting the algorithm for developing the proposed SLAM technique  
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CHAPTER THREE 

3 REVIEWS ON SLAM TECHNIQUES  

SLAM is an important study drawing the attention of scholars because of its support towards 

Autonomous Navigation (Se et al., 2001). Autonomous Navigation controls robot movement 

without human supervision. This becomes a key achievement towards self-exploratory 

expeditions. Towards achieving proper navigation, numerous SLAM techniques have been 

proposed over the last 30 years with a remarkable result attained (Lang et al., 2010, Jia et al., 

2016. ., Jean-Arcady and David, 2003). This Chapter reviews various SLAM techniques, their 

advantages  and limitations. It also discusses the challenges, open issues and research direction 

for future SLAM.  

3.1 Foundational SLAM Technique 

In SLAM technique, sensors play an important role in acquiring data from the environment 

(Zehang et al., 2006), but the localization and mapping techniques are not limited to this 

operation. There are procedures that still need to be implemented and the analysis of the data 

captured by the sensor assists in mapping building and localization. This can be attained by 

using SLAM algorithm (Chen, 2013). In literature, several foundational SLAM algorithms 

have been proposed with an outstanding result, but they are all confronted with various 

challenges and issues (Hadji et al., 2014). In this sub-section, some of these algorithms were 

discussed together with their limitations and advantages 

3.1.1 Extended Kalman Filter 

It is important to mention the Kalman Filter because it is the foundation for EKF and some 

algorithms like Extended Information Filter (EIF), non-linear least-square, etc. (Hadji et al., 
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2014). Researchers over the years have employed Kalman Filter as an algorithm to estimate 

dynamic linear systems with Gaussian noise (Chen, 2013). Kalman Filter represents a state 

vector  t  as illustrated  in equation 3-1. 

 Ntt lllS ..,..........,, 21                                                                                                       3-1 

It is formulated by estimating the landmark )(l where N represents numbers of map landmarks, 

the current pose  tS . However, the issue of non-linearity in the robot model is the limitation 

of the Kalman Filter algorithm and trying to address this issue led to the Extended Kalman 

filter (Hadji et al., 2014). 

Extended Kalman Filter (EKF) is an upgraded version of a Kalman filter that can address 

the non-linear model (Chen, 2013). The linearization of the non-linear model can be solved by 

many methods but in EKF, a technique called first-order Taylor expansion is employed to 

address this issue. At each time (t), it linearizes the measurement and motion model using the 

current state to estimate for a new update (Chen, 2013). The filter procedure is attained with 

two steps given in sections 3.1.1.1 and 3.1.1.2. 

3.1.1.1 The time update stage 

At this stage, the filter computes the covariance matrix 


t  and the predicated state


t  at the 

time (t). Expressions is given in equations 3-2 and 3-3. 

 ttt uf ,1



                                                                                                                        3-2 

 




1t

T

u

T

ttt GGAA                                                                                                  3-3 
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where tA  signifies the Jacobian of the motion model f  as related to the robot pose  that is 

evaluated at the robot control t , u  signifies the covariance matrix related to this stage and 

G  represent a projection matrix. 

3.1.1.2 The measurement update stage 

This stage plays a significant role to address the problem of data association  c  and generates 

the newly updated measurement for t  and  t using the current state of the previous stage. 

They are computed by estimating first, the Kalman gains as given in equations 3-4 – 3-6. 

1















  Z

T

ttt

T

ttt CCCK                                                                                             3-4 





















chzK ttttt ,                                                                                                     3-5 

 


 tt ttCKI                                                                                                                3-6  

Where I represents identity matrix, tK  represents the Kalman gain, tC  represents the Jacobian 

of the measurement model h  in relation to every detected landmark estimated at 


  and the 

pose of the robot, 
z signifies the covariance matrix as related to this stage and tz represent the 

sensor measurement (Chen, 2013). 

The two steps listed above are unique to EKF and can be used to instantiate the online SLAM 

given a condition of the Gaussian model. The EKF is a popular algorithm because of the ability 

to overcome the problem of the Kalman filter, but the computational cost of the algorithm is 

high (Dissanayake et al., 2011). 



22 

 

3.1.2 Recursive Unscented Kalman Filter (RUKF) 

RUKF is a common algorithm used by the previous researcher to address SLAM problem (Lee 

et al., 2006, Zanetti, 2012). Its operational functions are similar to that of EKF and KF (Lee et 

al., 2006). However, EKF and KF suffer limitations and improvements towards these 

algorithms lead to RUKF and EIF (Hadji et al., 2014). In RUKF, the SLAM posterior 

probability distribution function was simplified by the assumption that robot position and 

landmark/features location are independent between a state, which reduces the dimensionality 

and allows computational complexity of RUKF to be reduced. It is also robust towards non-

linearity model than EKF (Lee et al., 2006). Given a SLAM technique that is RUKF based, 

various functional steps with an independent estimation of robot pose and landmark/features 

are provided below. 

Step 1: The joint Gaussian distribution is estimated for updating recursively the robot position. 

Step 2: The marginal probability of the robot position is obtained from step 1 

Step 3: step 1 and 2 is repeated for   iteration for obtaining the posterior probability 

distribution of the robot pose 

Step 4: the joint Gaussian distribution is estimated for updating the observed landmark/feature 

Step 5: The marginal Gaussian probability distribution of the observed landmark/feature will 

be obtained from step 4 

Step 6:  step 4 and 5 are repeated until all observed landmark/ features are updated individually 

using expression 3-7   

                                                 3-7        t

tt

C

tt

ttCtii dxuZmPuZZxPmxzP
II

  111 ,,,,
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where i  represents the normalizing constant, iz  represents observation measurement, tu

signifies multiple robot control, tx  denotes robot pose at the time t , tZ  signifies multiple 

simultaneous observation at the time t  and 
ICm represents observe landmark location. 

Thus, the work of (Lee et al., 2006) discovered that the computing time at the feature extraction 

and matching stage of the RUKF algorithm is still high and should be addressed in future work. 

3.1.3 Extended Information Filter 

Considering the limitation of the high computational cost of EKF, this shifted the researcher's 

attention to a more advance filter known as an Extended Information Filter (EIF). In EIF, high 

computational cost was reduced by avoiding the computation of the Gaussian posterior in terms 

of the mean   and the covariance matrix  . Instead, the filter employs the information 

form of the posterior, based on the information matrix H  and information vector b (Chen, 

2013). The parameterization is given below in equations 3-8 and 3-9  


 1H                                                                                                                                3-8 

Hb T                                                                                                                                3-9 

The EIF operational function is related to EKF, but the time update and measurement update 

stage is parallel to that of EKF. The equation 3-5 and 3-6 of the Extended Kalman Filter are 

transformed in EIF using the generated parametric value of information vector and information 

matrix (Chen, 2013). The parametric substitution for these stages is given in equations 3-10 – 

3-13. 

3.1.3.1 The Time Update stage 

  11

1 ])([ 





 T

u

T

tttt SSAIHAIH                                                                            3-10 
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t
T

tttt HufHbb










 )),(( 1

1

11                                                                                               3-11 

where I  represents identity matrix, tA  signifies the Jacobean of the motion model f  estimated 

at t , the projected matrix is signified as S . At this stage, the updated time estimated is 

managed to its best because of the mean  t  recovery and the inversion of a dense tH . 

However, constant-time updates can be attained if tH  has a sparse characteristic and t  is 

available for all landmarks and robot poses, this is attained at the next stage (Chen, 2013). 

3.1.3.2 The measurement updated stage  

T

tzttt CCHH 1


                                                                                                              3-12 
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T

ttttt CCzzbb 1

















                                                                                          3-13  

where tt zz


  represent the difference between updated and current sensor measurement, tC  

signifies the Jacobean of the measurement model estimated at t . At this stage, it requires only 

constant time summation taking into consideration that C  is sparse with non-zero values for 

the observe landmarks and pose in the measurement (Chen, 2013). Given this condition for 

every step of a matrix, non-zero values will only be associated to


tH . EIF is regarded as an 

approximation approach with an improved processing speed better than EKF because of low 

computational complexity. However, as a result of approximation, the issue of inconsistency 

arose and has not been fully resolved (Dissanayake et al., 2011).   



25 

 

3.1.4 The Original Monte-Carlo Algorithm (MCL) 

This algorithm was presented by (Thrun et al., 2001) and has been modified over the years to 

create new version and will be discussed in this section. The main prerequisite for a robot in 

an unfamiliar environment, it’s ability to autonomously navigate perfectly without been 

controlled by anyone and can be achieved by SLAM (Fuentes-Pacheco J, 2015). In Monte 

Carlo localization-based (MCL) SLAM, it is impossible for the robot to know its exact 

coordinate and direction in the given map. Thus, the robot needs to extract information from 

its environment (L et al., 2010). This extracted state is known as belief (Thrun et al., 2001). 

In Monte Carlo localization, subsequent belief is represented by a set of samples. An expression 

is given in equation 3-14 (Bukhori and Ismail, 2017). Samples are a hypothesis for state 

representation such as wall and obstacle boundaries, are orthogonal,which was proposed by 

(Jean-Arcady and David, 2003). These sets of samples are used to extract features that will 

guide the robot trajectory.  

    
Nn

n

t

n

tt wsS
,.....,1

,


                                                                                                           3-14 

where the particle 
 n

ts  signifies the hypothesis for representing the state pose at time t ,while 

 n

tw  denoting the weight of the particle indicating how likely the sample represents the state 

pose. 

The basic MCL sequential step is illustrated below fromr steps 1-3, which computes the set of 

tS  recursively from the previous set 1tS . The MCL technique processes the input of 1tS  

together with the control state tu , the sensor measurement tz  and the map M  that will be 

used to generate an output of new particle set tS  at the time t . tS  signifies the temporary 

particle used to represent the belief  tsbel . At each iteration, the temporary particle set tS  
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and the particle sets tS  are empty for newly generated ones. Thus, this recursive procedure 

continues until the robot reach is the goal and can be realized in three major steps as illustrated 

below. 

Step 1 

The equation 3-14 generates new samples 
 n

ts  based on the previous sample 
 n

ts 1 , the control 

state tu  and the map M . Afterward, is the distribution of the pair 
    n

t

n

t ss 1,   according to the 

product distribution as provided in equation 3-15 based on sampling importance resampling 

algorithm.  This distribution is known as proposal distribution. 

       n
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Step 2 

The importance weight 
 n

tw  for an individual particle 
 n

ts  is calculated. this is emphasized to 

avoid a mismatch between the desired target distribution and proposal distribution as presented 

in equation 3-16 

          n
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tt sbelmusspszp 11 ,,\\                                                                              3-16 

Thus, the weight particle set tS  represents the posterior belief  tsbel  that has not been 

distributed and it will be addressed in step 3 using the resampling technique. 

Step 3 

This stage is used for carrying out particle re-sampling processes for distributing the weight of 

a particle set tS  according to the posterior beliefs  tsbel . Given a SLAM technique that is 

particle-based, using a fixed set of the particle filter in an infinite space might not be efficient. 
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The effect may cause particles to disperse and eventually lose robot position that will lead to 

SLAM failure (Milstein, 2008). This situation makes resampling important. In literature, 

various resampling technique exists but the effective sample size is a useful metric to determine 

whether resampling is necessary (Carlone et al., 2011), an expression is given in equation 3-17 
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                                                                                                         3-17 

In this technique, particles are resampled if the prior quantity descends less than a given 

threshold that is fixed at
2

n
 for detail discussion see (Stachniss et al., 2004). The resampling 

transforms the temporary particle set tS  into a new particle tS . However, before resampling, 

the temporary particle set tS  is distributed according to the posterior belief  tsbel  and  

thereafter, the particle set is distributed according to  tsbel . These steps repeat accordingly 

until the final destination is attained by the robot. These algorithm procedures are implemented 

at low computational cost and were selected in this study because of this advantage. However, 

attention will be focused on how this algorithm can be re-modified to address the problem of a 

dynamic environment, illumination variation and kidnap problem without increasing its 

computational complexity beyond acceptance. 

3.1.5 Rao-Blackwellized particle filter 

In the work of Murphy, the Rao-Blackwellized particle filter is implemented to estimate the 

joint posterior   1:1:1:1 ,, ttt UZmSp  of a map  m  and the robot trajectory  tt SSS ,,.........1:1  . 

The estimation is carried out given the odometry measurement  111:1 ,,.........   tt UUU  and the 

observation measurement  tt ZZZ ,,.........1:1   of the robot. Using this information provided, 



28 

 

the Rao-Blackweilized particle filter used the factorization given in equation 3-18 to represent 

SLAM (Wurm et al., 2003). 

     1:1:1:1:1:11:1:1:1 ,.,,,   tttttttt UZSpZSmpUZmSp                                                                     3-18 

In the factorization procedure, the position of the robot is first estimated, then the map given 

that same position is computed. This is mandatory because the map creation relies on the 

estimated robot pose (Wurm et al., 2003). The Rao-Blackwelized particle filter offers efficient 

computational cost with improved processing speed. Its representation in equation 3-18 can be 

formulated efficiently to address SLAM since the posterior of the map  tt ZSmp :1:1 ,  will be 

estimated by employing the technique of mapping with known poses, given that  tS :1 and tZ :1  

are known (Wurm et al., 2003). In computing the posterior  1:1:1:1 , ttt UZSp  for potential 

trajectories, a particle filter may be employed because every particle corresponds to a potential 

robot trajectory and individual maps are connected with each sample. Therefore, maps will be 

created using the observation and corresponding particle relating to the trajectory. This 

procedure allows the robot to learn models of their environment and estimate successfully their 

trajectory (Wurm et al., 2003). Thus, the Rao-Blackwellizied algorithm and Monte-Carlo 

algorithm (MCL) are not the only particle-based technique. There are others like FAST-SLAM 

(Abouzahir et al., 2014), but the particle filter's effectiveness and complexity rely heavily on 

the number of particles. The increase in the number of particles might improve its effectiveness 

though at a price of high computational cost. Otherwise, the effectiveness can be minimized 

with low computational cost. However, estimating an optimal number of particles required is 

often difficult to attain (Montemerlo and Thrun, 2003). 

In the literature, the foundational SLAM algorithm is not only limited to the above-mentioned 

ones  but also on many more others such as Unscented Kalman filter (UKF) and Compressed 

Extended Kalman Filter (CEKF) (Hadji et al., 2014). These algorithms have better performance 
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over each other but they all have their drawbacks, which have contributed to the limited 

progress in SLAM research (Dissanayake et al., 2011). However, from the study conducted on 

the foundation SLAM algorithm, we noticed that these algorithms were able to solve the 

limitation encountered by each other. For instance, the issue of the non-linearity of the robot 

model in KF is solved by RUKF and EKF, but the problem of high computational complexity 

has not been agreeably resolved (Dellaert et al., 2010). This is common among these algorithms 

and often complained by these researchers (Chen, 2013, Hadji et al., 2014). However, in this 

research, the computational complexity will be taken into consideration. 

3.2 Recent SLAM Technique 

Researchers have presented recent SLAM techniques that have been proposed to overcome 

some of the challenges of the foundational SLAM algorithm, but the SLAM issue has not been 

fully addressed.  Therefore, it is important to conduct reviews on the recent SLAM technique 

to inform the researcher on the discussion of the methodologies, frameworks and the limitations 

for their proposed SLAM technique. This has assisted to disclose problems that are persisting 

to date.  

In the work of (Agha-mohammadi et al., 2015), they propose to replan at every time  k  when 

there is a probability distribution update on the state of the autonomous robot. This technique 

is referred to as Simultaneous Localization and Planning. The algorithm employed to carry out 

this task is known as Partially Observable Markov Decision Process (POMDP). This algorithm 

was proposed because of its ability to cope with uncertainties and changes. The idea employed 

in motion planning under uncertainty is to identify a policy  k  at each time  k  that generates 

a control state  kU  using the available information of the robot. Thus, there are other 

important terms that need to be defined to achieve this goal. Given a robot in an unknown 
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environment whose state is represented by kx  at the time step  k , the motion noise and control 

state at the time  k  is represented by kW  and kU respectively. The state evolution model can 

now be formulated using equation 3-19 

 kkxk WUxfx ,,1                                                                                                               3-19 

However, in any partial observable system, the sensor vector measurement at the very time k  

represented as kZ  plays an important role in providing observation measurement. The 

expression kZ  is given in equation 3-20. 

 kkk VxhZ ,                                                                                                                        3-20 

where kV  denotes sensing noise. 

On this note, the data available for deriving decision at each time k  is the history of controls 

and observation as expressed in equation 3-21, the conditional probability distribution for the 

overall possible robot state is given in equation 3-22. 

   10101:0:0 ,,.........,,........,,,   kkkKk UUZZZUZ                                                         3-21 

 kkk Hxpb                                                                                                                        3-22 

The kb generated in equation 3-22 is also referred to as information state or belief that 

compressed the data k  and can be recursively computed using the last state and current 

observation as expressed in equation 3-23 

     
X

kkkkkkkk dxbUxxpxZpb ,1111                                                                             3-23 
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where   represent the normalization constant and the kU  can be generated based on the 

information state using a policy k  as expressed in equation 3-24. 

 kkk bU                                                                                                                        3-24 

the k  represent the solution of a POMDP over a continuous observation space with a 

limitation that is intractable. In addressing this issue, Feedback based Information Road Map 

(FIRM) was proposed to minimize the intractable problem to a tractable POMDP by generating 

a representative graph in the information state space. 

Given a FIRM graph with the controller, the policy g can be extracted by mapping graph 

nodes  v  to the edge  m as expressed in 3-25 

mvg :                                                                                                                          3-25 

Thus, the set of all graph planar  g  generated in an information state-space allows POMDP 

to be tractable on the FIRM graph as expressed in equation 3-26 
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 ,minarg                                                                                     3-26   

where visited n-th node is represented by nB .,   n

g

n

g BBC ,  signifies the cost function. 

Experimental performance attained is impressive, but the limitation is the inability to cope with 

the dynamic environment. In their future work, they want to propose a framework that can 

learn and model changes using prior knowledge of object motion. 

The technique proposed in the study of (Tian and Ma, 2016) to address the problem of SLAM 

is known as Double Guarantee Kidnapping Detection (DGKD). Comparing the DGKD with 

other SLAM techniques, 2 new processes were introduced to double-check and guarantee 

detection and their types. In carrying out this task, a threshold for the metric on real-time 
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conditions was determined and introduced to avoid misjudgement. This increases the system 

reliability and performance. Figure 3-1 represents the DGKD workflow. 

  

 

 

 

 

 

 

 

 

Figure 3-1: The overall workflow of the DGKD model (Tian and Ma, 2016) 

However, DGKD limitation is the inability to cope with the relatively large-scale environment 

and to increase its adaptability in a large scale environment. The probability of features position 

and robot pose was combined to DGKD to form a new technique known as Probabilistic 

Double Guarantee Kidnapping Detection (PDGKD). In PDGKD, giving a robot state  rX  

expressed in equation 3-27 and the state of the feature  mX  given in equation 3-28. 

   Trrrr yxX ,,                                                                                                               3-27 

where  rr yx ,  signifies position while 
r denotes frame orientation of the robot, 

 TT

m

T

mm XXX ,........,
21

 ,                                                                                                      3-28 

while miX  signifies the position of the feature  i in the global coordinate as expressed in 

equation 3-29. 
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i

L

i

L yx ,  denotes the position of a feature i  referred to the local coordinates frame attached to 

the robot.  

Hence, the derived state vector combines both features state  mX and robot state  rX has 

expressed in equation 3-30 to address the DGKD problem of inability to cope with large scale 

environment. 

 TT
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In PDGKD, the operations are not only limited to the above-mentioned process, there are other 

procedures like prediction and updating operation similar to that of DGKD. The difference is 

the metric employed in their systems. Experimental comparison between the two techniques 

shows that PDGKD achieves a better result than DGKD. However, the limitation of the system 

arose when kidnap robot happens over a long period of time. 

In the technique of (Tan et al., 2015), simultaneous localization and mapping without 

linearization were proposed to overcome the issue of linearization and inconsistency caused by 

approximation limiting the effectiveness of EKF-SLAM. This was achieved by combining 

Linear Time-Varying Kalman Filter (LTKF) and contraction tools on navigation problems with 

virtual measurements. Given a robot with LTV Kalman Filter SLAM using a virtual 

measurement in local coordinates, the EKF is the basis of LTVK and it would start with 

available non-linear measurement given in equation 3-31 
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where   represents the measure azimuth angle of the robot,  ba xx ,  represent the location of 

landmark and r represents range measurement between robot and landmark. Afterward, the 

estimated Jacobian is employed to linearize this measurement to a locally stable observer. The 

expression of the relation in the Cartesian coordinate is given in equation 3-32. 

        xh      and/or      rh x*                                                                           3-32 

But in 2D and 3D scenarios, the expression is given in equations 3-33 and 3-34 

  sin,cos h         and/or              cos,sin* h                                                       3-33 
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Given a linearize equation in local coordinate, the azimuth model representation for actual 

location of a landmark in 2D and 3D is expressed in equation 3-35 and 3-36 

   TT
rrxx  cos,sin,x 21                                                                                             3-35 

   TT
rrrxx  sin,coscos,sincos,x 21                                                                3-36 

where */ hh  represents state independent measurement vector,   represents the actual location 

of a landmark. 

In LTVK, measurement and observation between   and r are ignored, while feedback on 

tangential and Cartesian position errors between estimated and true landmark position  x  is 

taken into consideration. Therefore, the linear observation given above is substituted by virtual 

measurement, expression in Cartesian coordinate is given in equation 3-37 

 tvHy  x                                                                                                                        3-37 
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where y  represents observation/measurement vector which contains virtual/actual 

measurement, H represents the observation model matrix that includes state-independent 

measurement vectors and  tv  represents zero-mean white noise. If further exploited, could be 

employed to attain a globally stable observer design with no set back error caused by 

linearization operation. However, this achievement is at a price of high computational cost and 

in their future work, they plan to reduce the computational workload by using the technique 

suggested by (Mu, 2013). The technique propose the use of landmarks with more provided 

information for feature selection to assist in reducing computational workload. 

In the work of  (Jia et al., 2016) vision-based technique using a monocular camera was proposed 

to initiate SLAM. The algorithm employed in their technique is known as Parallel, Tracking 

and Mapping (PTAM). In PTAM, procedures are split into two-level task operations in parallel. 

In the tracking level, the monocular camera fixed on a mobile robot is used to capture images 

from the environment. A ground feature-based pose estimation algorithm was proposed to 

detect ground features. Thus, achieving a more accurate robot pose relies  on a weighted 

projection error-based energy function expressed in 3-38. 

    xmin
x

pp rrw                                                                                                         3-38 

where w  represents the Tukey bi-weight function for the homography-based projection error.  

 Given the accurate robot localization attained by the expression in 3-38, matched features 

triangulated were used to generate an initial map and thereafter the second level operation 

known as mapping thread began. The mapping thread queries the initialized map and assists to 

incorporate new key features derived from using the epipolar searching procedure. The new 

matched features are selected for acceptance by searching for candidate region around the 

epipolar with minimal differences of Zero-Mean Summed Squared Differences (ZMSSD). 
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Candidate region with higher differences in ZMSSD compared to the threshold will be rejected 

for re-mapping. The expression is given in equation 3-39  
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                                                                                                         3-39 

where 

  i

j

i

jij uvHr   , 

iH  represents the homography estimated by the RANSAC algorithm, 
i

jv  signifies the reference 

feature of 
i

ju , jr  represents the projection error and i  represents the threshold. 

After classification using equation 3-39, new map points generated are incooperated into the 

map points to improve the accuracy of the system. The indoor experimental performance 

carried out shows tremendous achievement towards accuracy. However, from the future work 

presented in their study, they intend to improve the performance of their technique to cope with 

mapping in various illumination scenarios.    

The work presented in the study of (Agarwal and Burgard, 2015) is a graph-based simultaneous 

localization and mapping. The concept of graph-based SLAM relies on representing the nodes 

present in the graph by each pose attained by the robot. In real-world scenarios, these nodes 

can be used to signify features extracted from images captured by camera sensors or laser point 

clouds. Nodes can also be employed to signify physical landmarks of the object like trees, cars, 

etc. Edges present in the graph are signified by a factor connecting two nodes. These factors 

represent the bearing measurement of features. Given a robot navigating in an unknown 

environment using graph-based SLAM, the first problem to address is creating a graph. This 

can be attained by identifying the nodes and the factors connecting them on the data generated 

from the sensors. This computation is known as front-end. The second problem to address is 



37 

 

the node's configuration that provides the best explanation for the factors. These steps assist to 

compute a maximum likelihood map and this computation is known as back end. Thus, the 

back end aim is to find the configuration of nodes that minimize error created by the factors 

from the front-end operation. If  Tnxxx ,........,1 represents a state vector and ix  signifies the 

pose of a node i  that can also represent a robot or landmark position. The error function   xeij

description for a single factor between i and j  represent the difference between ijZ  and 

 
ji xxZ ,



. An expression is given in equation 3-40. 

   
ijjiij ZxxZxe 



,                                                                                                                      3-40 

where  
ji xxZ ,



 signifies the expected measurement given in the current state, ijZ  represents 

the observed measurement, i and j  represents the graph nodes. The re-projection error of the 

observed landmark must be minimized for accuracy purposes. Thus, the minimization error 

can be expressed in equation 3-41 

    
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where 
1

ij
 represent information matrix related to the factors that exist between two poses ix  

and jx ,  ij signifies the covariance matrix and x  represent the optimal configuration of 

nodes with limited error induced from the factors of front end operation. 

 However, the effectiveness of the graph-based technique towards SLAM has attracted 

researchers like (Agarwal and Burgard, 2015). In their enhanced graph-based SLAM, the 

experimental result shows tremendous success towards SLAM problem. Thus, the 

computational cost is high due to an increase in computational requirement at the matrix 

factorization stage. Furthermore, their graph-based SLAM couldn’t cope with the dynamic 
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environment and in their future work, they will be improving the SLAM technique towards 

tracking the dynamic environment. 

The technique proposed in the work of (Li-Chee-Ming and Armenakis, 2016) is to address the 

problem of SLAM based on the combination of Visual Servoing Platform (ViSP) and Red, 

Green, Blue and Depth-SLAM (RGBD) techniques. The ViSP is a commonly used open-source 

tool for tracking relative pose between the camera and the model of an object (Martinet et al., 

1997). The VISP is capable of carrying out the task of extracting the features important to 

address the problem of SLAM. It entails the Moving Edge (ME) algorithm proposed by 

(Bouthemy, 1989) for feature extraction by matching the feature point in an image and 

projected model. Hence, the current pose of the camera is estimated using a non-linear 

optimization method known as virtual visual servony. However, relying on ViSP alone might 

not be sufficient because the issue arose when tracking is missing and there will be a need for 

re-initialization. This issue can occur as a result of a lack of model features in the sequence of 

the image captured by the camera, rapid camera motion can also be a contributor to loss of 

tracking. Therefore, improving the tracking becomes important and RGB-D SLAM was 

proposed concurrently to provide the ViSP with the missing tracking. The RGB-D SLAM is a 

graph-based approach similar to the one proposed in the work of (Agarwal and Burgard, 2015) 

which involves the frontend and backend operation. Figure 3-2 is a model representing the 

integration workflow between ViSP and RGB-D SLAM.  
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Figure 3-2: RGB-D SLAM /ViSP integration workflow (Li-Chee-Ming and Armenakis, 2016)  

 

The collaboration was successful and experiment performance carried out on the second floor 

of York University, Bergeron Centre for Engineering and Excellence shows tremendous 

improvement towards the recovery of lost tracking but at the expense of high computational 

cost. The experiment further revealed that the computational issue did not happen at the ViSP 

operation. Rather it happened at the RGB-D SLAM running without resetting for an extended 

period of time, due to processing simultaneously,a huge size of data. However, in the work of 

(Agarwal and Burgard, 2015), they also proposed the RGB-D graph-based SLAM technique 

and experience the issue of computational cost. In conclusion, It could be that computational 

issue is a general problem associated with RGB-D SLAM technique.  

In the work of (Irie et al., 2012.) they proposed to address the problem of SLAM for outdoor 

navigation taking into consideration drastic illumination changes which happen in most 

environments. In this technique, the stereo camera capable of obtaining 3-D (3 dimensions) 

ranges data was employed to capture data from the environment. Afterward, a 2-D (2 

dimensions) grid map that is not much affected by illumination condition is generated. Given 
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the 2-D grid map, occupancy information and salient line segment can be extracted perfectly. 

The particle filter is employed to extract the robot pose while edge point based stereo SLAM 

was used to obtain robot ego-motion and the occupancy information simultaneously. This 

extracted information is used to address the SLAM problem. There are other important 

procedures carried out to develop their technique. The model in Figure 3-3 provides a full 

description of the proposed SLAM technique for mobile robot navigation in an outdoor 

environment.    

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

Figure 3-3: Proposed stereo SLAM technique for a mobile robot in an outdoor environment (Irie et al., 2012.) 

 

The proposed model was successfully implemented and the experimental performance shows 

their visual odometry recovering from error and performed well under various illumination 

situations. However, the technique failed under extremely adverse illumination conditions such 

as when direct sunlight covers a large part of the image. Giving such condition, limited edge 

point is extracted for detection, which resulted in a huge error in motion estimation and inability 

to recover from kidnap robot.  

In the research work of (Oh et al., 2015), they proposed to develop a Simultaneous Localization 

and Mapping (SLAM) technique, using a monocular camera and a 2-D laser scanner sensor. 

The two sensors were encouraged because of an environment with ambiguity such as long 
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corridor, SLAM algorithm working with laser scanners might not be able to estimate correctly 

the robot position. In resolving this problem, a monocular camera was introduced into their 

system to collect data from the environment. Figure 3-4 illustrates how the proposed SLAM 

technique makes use of the two sensors 

 

 

 

 

 

 

 

 

 

Figure 3-4: The proposed monocular camera and laser scanners sensors based SLAM technique (Oh et al., 2015) 

At the monocular camera stage, graph structure-based technique and hybrid method which 

allows the SLAM technique to estimate the robot pose in ambiguity environment was proposed 

to handle where the laser scanner fails. In a graph-based technique, the SLAM problem using 

a conditional probability is expressed in 3-42.  

   xzpzxp i
i
                                                                                                                 3-42 

where x  signifies the robot pose,  nz,........,zz 1 , iz signifies measurement of a sensor at thi

step while  xzp i  represents a potential function.  

Given this technique, an experimental comparison was carried out with a conventional G-

mapping approach and results revealed that their system performs better than the G-mapping 

approach. However, as mentioned in the section of their results, the algorithm proposed has a 

small computational burden because more image processing is executed when a node is added. 
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This was also supported to be true because, in the work of (Deming and Perlovsky, 2006). It 

was stated that data association from multiple sensors can cause the computational complexity 

of systems to be prohibitively high with an effect that can lead to system failure. 

The study of (Clipp et al., 2009) proposed a Simultaneous Localization and Mapping (SLAM) 

technique using a stereo camera as the source of retrieving information from the environment. 

In their technique, they took into consideration the issue of computational cost. They propose 

the use of Kanade-Lucas-Tomasi (KLT) feature tracking because of its advantage of high-

speed in processing and robustness to features that are repetitive in nature. This technique was 

combined with a wide baseline feature which further helps the system to improve its robustness 

to repetitive features and allows it to recognize previously visited areas in the environment. 

The experimental performance of the system is impressive. However, as stated in their 

conclusion, an item on the desk in front of the windows appeared blank due to the presence of 

high intensity of bright sunlight. Furthermore, the system was unable to recognize the area that 

has already been mapped due to movement of objects in the same area. This is as a result of 

low dynamic range of the system. Thus, these two problems when encountered, make their 

system fail.  In the future, they plan to address this issue by extracting features in a 3D scene 

just as it was proposed in the work of (Changchang et al., 2008). They tried to combine 3D 

geometry and sparse feature detection with the aim of using immovable features such as floor, 

wall and ceiling to re-localize itself regardless of dynamic changes happening in the 

environment. Successful implementation of this idea will allow the system to overcome the 

issue of a dynamic environment and illumination variances    

In the work of (Lin et al., 2013), they proposed a robust outdoor simultaneous localization and 

mapping (SLAM) by using a stereo camera for collection of data and EKF is employed for 

tracking and updating of a feature. The SLAM technique's main target is to cope with 

directional sunlight illumination causing shadows and irregularity in various lighting scene. 



43 

 

Two novel methods are introduced to improve the robustness of their SLAM technique. Locally 

maximal features selection technique based on Harris corners was employed to extract edges 

in inconsistence illumination scene and shadows. The second method is the 3D 

feature/landmark matching, which assists to improve the robustness of the feature/landmark 

matching. Figure 3-5 shows the overview flow of the proposed SLAM algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Flow of operation for the Proposed SLAM Technique (Lin et al., 2013) 

Given the proposed SLAM technique, experimental comparison supports the SLAM technique 

ability to select features evenly across the image and more consistent in various illumination 

scenes and shadow compared to the commonly used Threshold method. However, the proposed 
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SLAM technique suffers from high computational cost and they desire to reduce it by 

minimizing the search region using a feature match search window technique. They also want 

to introduce multi-threading algorithms to allow multiprocessing to be carried out, this 

procedure will also improve the processing speed of the SLAM technique.  

In the study of (Gao and Zhang, 2015) an RGB-D SLAM system was proposed to overcome 

SLAM Problem. An RGB-D camera sensor is a common sensor in SLAM research, because 

of the ability to provide vision and depth information about features. This information can be 

processed by Iterative Closet Point (ICP) algorithm to align features position where the spatial 

point is extracted using the correlating depth data of the sensors. Meanwhile, the depth 

measurement for feature position is often affected by noise, instead, they propose the use of 

planar features to extract reliable depth values. Given any RGB-D SLAM system, it consists 

of two Parts: the graphic end sometimes called front end, which performs the operation of 

image acquisition, processing Image, object/features extraction, loop closure detection and 

frame alignment while the second part is known as optimization end / back end which performs 

the operation of integrating new observation into global model. Figure 3-6 shows the schematic 

overview of the RGB-D SLAM system. 

 

Figure 3-6: Schematic overview of the RGB-D SLAM technique (Gao and Zhang, 2015) 
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The experimental performance of the proposed RGB-D SLAM technique produces a 

tremendous result, but there are many instances where the system fails to attain good results. 

The long corridor with a repetitive structure on the floor and wall contributed to false positive 

detection. Besides these factors, reflection from the ceiling, disturb the matching process while 

direct sunlight from the windows also contributed to the SLAM system failure.      

The study of (Yi and Wang, 2015) propose an autonomous robot path planning and localization 

technique based on potential field for generating a quality map in a static environment. The 

proposed SLAM system state relies on the robot position and the observed coordinate of 

features. These data are analyzed by the potential field algorithm, six procedures are 

implemented to achieve a detailed map for the static environment. The determining of robot 

control law, the state prediction, the environment observation, the data association, the state 

vector/covariance matrix update and the map building phase. Figure 3-7 shows the procedural 

flow of the proposed potential field SLAM  

 

 

 

 

Figure 3-7: Operational flow for potential field SLAM (Yi and Wang, 2015) 

The proposed SLAM technique was tested in an environment where features are distributed 

evenly and 7 waypoints are employed to guide the robot trajectory. The result obtained from 

the test is remarkable and this supports its capability towards addressing the SLAM problem. 

However, the proposed algorithm is only capable of functioning perfectly in a static 

environment. The future work is directed towards improving the algorithm's ability to cope in 

a dynamic environment. 
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The study of (Bowman et al., 2017) proposes a different SLAM technique compared to the 

traditional technique of SLAM that depends on geometric features like edges, lines, plane and 

points. Instead, they employed a semantic SLAM technique. Given that the state   of each 

landmark consists of its position 
3RP  as well as a class label C from a discrete set

 cC ,.....,1 . The SLAM problem is addressed by estimating the landmark state and sensor 

trajectory using 3 sources of information such as semantic object observation, inertial 

information and geometric point features. The semantic SLAM was also enhanced by the use 

of the expectation-maximization algorithm to effectively handle the semantic data association.  

This algorithm was implemented in C ++ using Georgia Tech Smoothing and Mapping 

(GTSAM) and Incremental Smoothing and Mapping (ISAM) (Dellaert, 2012) for the 

implementation of the back end optimization. The dataset used for testing is collected from 

Kitti outdoor dataset using odometry sequence 05 and 06. This dataset was selected because it 

is common and will assist in comparison with another researcher SLAM technique. 

Experimental comparison of the proposed technique as compared to Oriented fast and Rotated 

Brief (ORB) SLAM. The results obtained shows better performance because the lack of inertial 

information in ORB SLAM leads to frequent lost and many missing trajectory estimates. 

Observations support the proposed technique ability to handle repetitive structure in the 

environment than ORB SLAM. However, in their future work, they plan to extend the ability 

of their algorithm to estimate the full pose of the semantic object. They also plan to introduce 

multiple sensors, and further address the issue of the non-stationary objects in the environment.   

The work of (Saleem, 2013) proposes an effective technique towards addressing the problem 

of SLAM, using a mobile robot equipped with a single Ultrasonic Range Finder (URF). The 

data generated from the URF consist of the radial distance and corresponding angles to object, 

while the data generated from the digital compass reveal the pose of the autonomous robot. 

The data generated from the optical assembly communicated precisely the displacement of the 
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autonomous robot. Thus, the AI algorithm is used to analyse the data generated to create a 

finalized map of the environment. Figure 3-8 illustrate the flow chart of the proposed sonar 

SLAM technique  

 

 

 

 

 

 

 

Figure 3-8: The flow chart of sonar SLAM technique (Saleem, 2013) 

The proposed sonar SLAM technique was tested on three different occasion but the sonar 

SLAM attained an outstanding result. However, in the attempt to improve its accuracy, when 

increasing the resolution by decreasing stepper angle, the computational cost is high, and this 

requires a larger amount of time to generate SLAM data for processing. 

The study of (Zhang et al., 2017), proposed an advance visual-inertial SLAM system with 

flexible sensor fusion and hardware known as Percept in Robotics Vision System (PIRVS). 

The hardware in PIRVS is equipped with 2 Omni-direction Complementary Metal Oxide 

Semiconductor (CMOS) image stereo Sensors capable of capturing colour image at a resolution 

of 640*480. An inertial measurement unit and a multicore processor were used for processing 

image that was captured. Thus, three major components are also involved in PIRVS algorithm. 

An image processing front-end used for extracting image features and matching. EKF-based 

visual-inertial odometry SLAM algorithm for feature tracking, creating and updating map with 

prior poses from the tracking thread. Figure 3-9 shows the PIRVS system architecture.  
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Figure 3-9: Overview of the PIRVS system architecture (Zhang et al., 2017) 

The proposed PIRVS system was evaluated and compared with the system of Key-frame Visual 

Inertial System (KVIS), Visual Inertial System (VINS) MONO using a dataset from PENN 

COSIVIO (Zhang et al., 2017) based on accuracy and processing speed. In both testings, the 

PIRVS system attained a better result than KVIS and VINUS-MONO. However, the proposed 

PIRVS system perform woefully in low lighting condition compared to KVIS and VINUS-

MONO. In future work, they plan to improve their SLAM algorithm by introducing sliding 

windows of poses to enhance their image processing phase, to cope, when facing challenging 

illumination scenes. 

The study of (Al-Mutib, 2015) proposed a SLAM technique for autonomous navigation for a 

mobile robot using an active stereo sensor for vision. Monte Carlo localization is used for 

analyzing the stereo images. Its operation is in two phases: The prediction phase where the set 

of selected particles computed from the previous iteration are applied to the motion model and 

updating phase where the observation measurement and weight of samples are taken into 
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consideration. The resampling at this phase selects particle with a higher probability of 

likelihood associated with them, to generate a new set of samples. The proposed vision 

technique is not only limited to SLAM but obstacle detection and avoidance are also 

incorporated into their system. Figure 3-10 shows the framework for stereo vision used for 

multiple purposes.  

 

Figure 3-10: Framework for stereo vision multi-purpose (Al-Mutib, 2015) 

The proposed technique was tested and the experimental result of the robot pose error 

compared to ground-truth classification is outstanding. It also proves its ability to manoeuvre 

in real-time, given an unstructured and complex environment present with dynamic objects. 

However, data association is challenging when image scene possesses the characteristic of 

illumination variation, specular reflection and the inconsistency in point cloud  because of  the 

variation in viewing angles of the stereo camera sensors. They plan to address the lighting 

variation in their future work so as to improve the performance of the technique at the data 

association phase.   
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The study of  (Tan et al., 2013) proposes a monocular SLAM technique that can robustly 

function in a dynamic environment. Their SLAM technique is different from the traditional 

Parallel Tracking and Mapping (PTAM) method because it identifies the dynamic regions from 

the static regions. This was achieved by an online framework capable of updating and 

representing a model for a dynamic environment where a change in appearance is easily 

detected and properly handled. Figure 3-11 represents the framework used for their study. In 

addition, they introduced a new prior based adaptive Random Sample Consensus (RANSAC) 

algorithm known as Prior-based Adaptive RANSAC (PARSAC) into their SLAM system. This 

assist the system in handling fast camera movement even in challenging situations like 

illumination variation  in the image scene. 

 

Figure 3-11: Overview framework of PARSAC algorithm (Tan et al., 2013) 

Given the proposed PARSAC, experimental comparism was carried out with the RANSAC 

algorithm and the result obtained shows that PARSAC algorithm has better performance than 

the RANSAC. Furthermore, it was also compared with PTAM and the result supports that 

PARSAC algorithm has the capability to cope with fast camera movement, global re-

localization and proper handling of the dynamic environment than PTAM. However, the 
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proposed PARSAC SLAM technique has some limitations, for instance, when an object is 

moving too fast eventhough it meant to cope with the dynamic environment, the SLAM 

technique is likely to produce a wrong measurement. Moreover, the computational cost as 

related to real-time over the large-scale scenes is not efficient and in future work, their target 

is to improve the system ability to work efficiently in larger space.  

The research study of (Gomez-Ojeda et al., 2017) proposed a stereo camera SLAM technique 

that relies on point features from camera for trajectory estimation and map building of an 

environment. This technique is known as Point and Line SLAM (PL-SLAM). In PL-SLAM, 

the stereo vision system combines the line segment and points features to function effectively 

over a wide variety of image scenes. This technique was proposed so that each method can 

cover up for each other’s failure particularly in image scenes where point features are not 

properly distributed or scarce, the line segment is employed for carrying out SLAM activities 

and vice versa. The PL-SLAM employs ORB algorithms for keypoint detections and key point 

matching, while the line segment detection algorithm was employed to extract the line 

segments. Given the point feature and line segment, the Kalman Filter was employed as the 

SLAM algorithm to analyse these factors to generate a detailed map for the environment. 

Figure 3-12 shows the flow of operation for the PL-SLAM technique. 
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Figure 3-12: The operational flow of PL-SLAM technique (Gomez-Ojeda et al., 2017) 

The proposed PL-SLAM was tested with various data set such as KITTI and EUROC. It was 

developed with C++. An experimental comparison was carried out with other SLAM 

techniques such as L-SLAM, P-SLAM and ORB-SLAM. The result obtained from most 

categories of testing shows that PL-SLAM outperforms other techniques. However, in their 

future work, they aim to adopt the technique proposed in SVO and PL-SVO to reduce the 

computational time at the feature tracking phase by estimating the position of the feature from 

motion estimation.  

 The research work of (Engel et al., 2015) proposes a Large Scale Direct SLAM technique 

based on stereo vision (LSD-SLAM) that relies on Kalman Filter for feature tracking and local 

mapping. This proposed technique has the ability to run in real-time on the standard central 

processing unit. The LSD-SLAM function characteristics are contrary to Sparse Interest Point 

SLAM (SIP-SLAM). The LSD-SLAM technique aligns frames of images using the photo 

consistency of high texture areas, as well as edges, corner and high contrast pixels. It 
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simultaneously calculates the pixel depth using two stereo cues: static stereo which is obtained 

through the fixed baseline stereo sensor setup and temporal multi-view stereo obtained during 

camera motion. The fixed baseline was employed to avoid scale drift error that commonly 

happened in pure monocular SLAM technique and the affine lighting correction technique was 

proposed to handle aggressive illumination variation changes between frames of images. 

Figure 3-13 illustrates the overview of the stereo large scale direct SLAM technique. 

 

Figure 3-13: The overview of LSD-SLAM technique (Engel et al., 2015) 

Given the proposed LSD-SLAM technique, the experimental performance was carried out 

using the popular KITTI benchmark dataset for stereo odometry and SLAM on autonomous 

cars. Experimental results are discussed qualitatively and quantitatively. However, in both 

experiments, the outcome obtained is impressive, but the technique failed in some certain 

conditions that they intend to solve in their future work. They plan to improve the robustness 

of their technique by taking into consideration the multi-body motion segment and estimation, 

which will assist the system to cope with the independent dynamic object and dominant motion 

in images. 
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In the work of (Khan et al., 2018), the autonomous robot developed is required to navigate in 

an unfamiliar location by building a map of its environment by means of the data collected 

from the sensors and using the map to find its location at minimum error. The sonar sensor was 

employed and the occupancy grid mapping technique was used for the analysis of data to 

generate the map.  In addition, the relative positioning approaches that assist with a location 

using a wheel encoder and inertial measurement unit based on the Kalman Filter was also 

introduced into the SLAM system. The discrete step-wise modelling was also used to guide its 

navigation. All proposed techniques are implemented on a Raspberry Pi, which represents the 

main computational block of the robot. The Raspberry Pi 3 model has a 1.2 GHz 64-bit quad-

core Advanced RISC Machine (ARM) V8 CPU with 1GB RAM. The proposed SLAM system 

was able to cope with various issues like the dynamic environment, actuator faults, 

computational cost and error in the motion model. However, the system is only limited to the 

indoor environment and an attempt to test it in an outdoor environment makes the system fail. 

Another limitation is the use of ultrasonic range sensors, which are expensive compared to 

other sensors like Lidar and camera. Lastly, the issue of kidnap robot where the robot lost 

position due to the accumulation of error also limits the performance of the SLAM technique 

proposed. In the future, all limitations are planned to be addressed in their new SLAM 

technique. 

The study of (Wang et al., 2014 ) proposed a localization technique based on particle filtering 

for an autonomous robot in high occluded conditions and dynamic environment taking moving 

people into consideration. In this technique, Proposal Distribution Function (PDF) of the 

particle is estimated using odometer but given the condition of high occlusion and intense 

dynamic environment. The PDF-based odometer might not provide accurate particle 

distribution. This limitation is minimized by proposing the Localization based Particle Filter 

with Roulette re-sampling (LPF-r) to maintain accurate robot pose in such environments. The 
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LPF-r is a framework based on Particle Filtering with Roulette re-sampling (PF-r) and the 

architectural design is given in Figure 3-14. The concept is to provide a strong localizability, 

which will reduce the influence of dynamic environment and occlusion on localization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14: Represent the architecture framework of the localization-based particle filter with roulette re-sampling 

(Wang et al., 2014 ) 

Given the proposed technique, experimental results show the necessity of considering the 

influence of prior-map during localization. It also supports the proposed algorithm capability 

to maintain accurate robot pose, even in the presence of high occluded and dynamic 

environment at an acceptable real-time. However, the kidnap problem contributes to system 

failure and occurs when the odometer error and occlusion are caused by a dynamic obstacle. 

Considering the observation from the review conducted, this study suggested that new 

researchers must focus on the high computational cost as related to processing time. This is a 

major problem mostly complained by researchers reviewed in this study. In addition, other 

problems such as illumination variance (light intensity and shadow), kidnap robot and dynamic 
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environment are persistent  as mentioned in this review by many researchers. Figure 3-15 

shows the overall impact of these SLAM problems as related to this research. 

 

 

 

 

 

 

 

 

 

 

Figure 3-15: The overall impact of the SLAM problems 

In Figure 3-15, the computational cost represented in blue chat has the highest percentage value 

of 34, implying that 34% of the reviewed papers complained about the computational cost, 

while dynamic problems, illumination variation and kidnap problem have 22% value each, 

implying that  22% of all reviewed papers complained about the dynamic, illumination 

variation and kidnap problems respectively. Therefore, the above-mentioned problems were 

considered and a DIK-SLAM technique with multiple re-modification of the algorithm was 

presented to eliminate each of these problems. However, considering the re-modification, the 

computational cost of the proposed SLAM is taken into consideration to avoid slow processing 

speed even though it will enhance the performance of the algorithm. Therefore, the system 

must be monitored for accurate trajectory in real-time, that will facilitate perfect navigation for 

autonomous robots. Successful accomplishment of the study would tremendously contribute to 

SLAM research because this would facilitate robot self-exploratory expeditions, which will 

reduce human risk in an unstable environment. 
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3.3 Challenges, Open issue and Research Direction 

The SLAM domain has experienced a lot of research and various effective methods have been 

recommended. Nonetheless, there is no general technique of handling the complex problems 

various researchers experience during the implementation of their SLAM techniques, but there 

has been improvement towards addressing some of these issues.  The example could be seen 

on the issue of illumination variance, which happens when an object is obstructing light 

generated from a source, this problem has not been fully addressed. However, to some extent 

in static environment, the effect has been minimized in the work of (Agunbiade et al., 2014, 

Makhubela et al., 2018). In a dynamic environment, the effect of illumination variation 

becomes difficult to address. This happens in the condition when  a static objects cast dynamic 

illumination, the localization becomes difficult to estimate . It is even more problematic and 

challenging to estimate localization if a dynamic object is casting a dynamic illumination (Le 

Cras et al., 2013). A different problem that has not been fully resolved is the kidnap problems, 

although it has received a lot of attention from researchers with improvement thereon. The 

kidnapping problem occurs when the robot moves from one position to another without having 

any information about its new position (Guyonneau et al., 2012) and this can happen during 

failing sensors or an increase in measurement noise (Negenborn et al., 2003). Meanwhile, when 

a robot is kidnapped in an environment, algorithms selected to solve this problem must carry 

out these objectives. The ability to perform pose estimation, detect kidnap problem and global 

localization (Guyonneau et al., 2012). However, in the literature, the initializing localization 

technique has been positive to kidnap robot (Se et al., 2001). In this technique, an extensive 

search of the current observation over the reference map (pre-mapped environment) will be 

carried out to find the robot position in relation to this map. This will assist the robot to start 

up again at the last stop position since the last position has already been mapped in the previous 

map. Thus, in a dynamic condition that the current observation has changed from the  
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previously referenced map, it becomes challenging to address because it will not locate its 

current observation from the referenced map, and re-localization becomes impossible, which 

might lead to robot lost without recovery (Se et al., 2001). However, the dynamic environment 

which contributes towards complicating other problems is also an open problem that 

researchers are still studying to date. Achievement in this research area depends on how 

dynamic the environment is, the more dynamic the environment, the more difficult and 

challenging it is to address Lastly, conducting a review in SLAM is incomplete without 

mentioning the computational cost as related to real-time. This is widely complained by 

previous researchers working on SLAM (Agarwal and Burgard, 2015, Castellanos et al., 2001, 

Oh et al., 2015). In literature, some researchers have proposed a wide range of algorithms with 

mathematic technique to attain impressive result towards computational cost (Dellaert et al., 

2010, Kaess et al., 2008, Konolige et al., 2010). These algorithms have their own advantages 

and disadvantages (Dissanayake et al., 2011). Take for instance, the Fast-SLAM commonly 

used by researchers (Montemerlo and Thrun, 2003, Qiu et al., 2012) trying to limit 

computational cost which relies heavily on particles. The accuracy of the Fast-SLAM is 

dependent on the number of particles which can also increase the computational complexity 

(Wurm et al., 2003). Some researchers proposed to improve the accuracy by introducing more 

algorithms to enhance the SLAM technique performance, but it increases the computational 

complexity (Li-Chee-Ming and Armenakis, 2016, Yinka et al., 2014). In both situations, it 

becomes a trade-off between accuracy and SLAM runtime. Therefore, researchers are to decide 

whether to reduce the accuracy of the SLAM system to decrease its computational cost or vice 

versa. In future, the greatest accomplishment would be to attain a global optimal solution that 

would address all SLAM problems. In attaining this goal, more investigation must be carried 

out for proper understanding of all problems. Given a robot in real life scenario, it should be 

able to localize and create map for environments like in-door, out-door and under water. In any 
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environment, objects are often present, some are static while others are dynamic in nature. 

Therefore, SLAM technique must be capable of modeling the environment at any object level, 

most especially in human predominant environment. Furthermore, environmental noise 

(shadow and light intensity), sensors noise, gaussian noise etc need to be eliminated to attain a 

SLAM technique with maximum accuracy, even though the review provided some isues that 

need to be resolved to present the future SLAM. However, all problems need to be 

accomplished in real-time. Therefore, the research direction for this study, given the proposed 

DIK-SLAM, will consider and address all the above-mentioned problems.  

 

3.4 Chapter summary 

This chapter focused on the techniques used by previous researchers to address the problem of 

SLAM. It emphasised on their system performance, methods, advantages and limitations so as 

to accomplish the following: 

 To understand the trend of problems affecting SLAM to date.  

 To describe how the proposed research is related to prior researches in statistics  

 To support the originality and relevance of the research problem 

 To justify the proposed methodology and demonstrate the readiness to complete the 

research.  

      

 

 

 

 



60 

 

CHAPTER FOUR 

4 METHODOLOGY 

This section presents the description of the DIK-SLAM technique used to address the problem 

of SLAM taking into consideration the processing time. In developing an effective SLAM 

technique, this chapter explains fully, the component, assumption, precaution and laws that are 

employed to develop the SLAM technique.  

The DIK-SLAM developed is implemented by using Matlab. Matlab is a fourth-generation 

programming language capable of implementing different numerical computing environments 

(Teng, 2000), and it was employed because of its ability to handle image processing and control 

(Teng, 2000). 

4.1 The DIK-SLAM Technique 

The proposed Simultaneous Localization and Mapping (SLAM) technique has five stages:  

Image acquisition stage, feature extraction stage, filtering stage, Simultaneous Localization and 

Mapping Stage and Navigation stage. In Image acquisition stage, sensors are used to collect 

data from the environment. In the Feature extraction stage, the module at this stage extracts 

features or landmarks that will be used for further processing the other stages. The Filtering 

stage detects and removes environmental noise (shadow and light intensity) while at the 

Simultaneous Localization and Mapping (SLAM) stage, the extracted landmarks are used for 

map creation. The Navigation stage only controls the movement of the robot by sending signal 

values to the actuator. Figure 4-1 shows the modified Monte-Carlo algorithm model and the 

operational flows of the proposed Simultaneous Localization and Mapping (SLAM) technique 

derived from the study of (Fernández-Madrigal and Claraco, 2013).  
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Figure 4-1: The modified Monte-Carlo algorithm model 
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4.2 Image acquisition stage  

Image acquisition stage as related to image processing, transforms visual data captured to a 

continuous electrical signal that is readable (Al-amri et al., 2010)). Digital images are generated 

from several sensors like range sensors, radar, tomography and cameras, etc. In our technique 

of converting real-life images into a manageable entity, the camera sensor was employed in 

this stage. The camera sensor was chosen because of its advantages of gathering more 

information than any other sensors that will further assist in the detection process (Wen et al., 

2008). The camera captured streams of images and sends to Simultaneous Localization and 

Mapping (SLAM) technique to process and build a map that will be used for the robot 

navigation (Luis et al., 2010). The image acquisition stage is the main source for which both 

environmental noises and dynamic landmarks appear in the image. Figure 4-2 shows the 

illustration of the image acquisition stage.   

 

 

 

  

 

Figure 4-2: Image acquisition stage of DIK-SLAM technique 

4.3 Feature extraction 

The Feature extraction phase is the second stage for our road region detection system. This is 

a function that extracts image features of different regions (road region, non-road region and 

uncertainty) using statistical technique and various filters (Yenikaya et al., 2013). Image feature 

for Simultaneous Localization and Mapping (SLAM) technique exists in various types: colour, 

 

Frames of images 
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texture and edge, etc. In MCL-based SLAM, it is impossible for the robot to know its exact 

coordinate and direction in the given map, unless the robot extracts information from its 

environment (Luis et al., 2010). This extracted state is known as belief as expressed in equation 

4-1 (Bukhori and Ismail, 2017). 

   tttt uzspsbel ,\                                                                                                              4-1 

where tz  represents the sensor measurement, tu  signifies control state while ts  represents 

the state sample at a time t . The belief distribution becomes a powerful statistical tool to 

address the problem of SLAM and it is recursively calculated from measurement and control 

data (Bukhori and Ismail, 2017).  

In Monte Carlo localization, subsequent belief is represented by a set of samples. The 

expression is given in equation 3-15 (Bukhori and Ismail, 2017). Samples are a hypothesis for 

state representation such as wall and obstacle boundaries are orthogonal and this was proposed 

by (Jean-Arcady and David, 2003). These sets of samples are used to extract features that will 

guide the robot trajectory. Several hypotheses exist  but they are not limited to the two provided 

above. However, some samples in the presence of environmental noise violate the hypothesis 

of state representation, making interpretation for the image to be impossible and these can lead 

to system failure (Agunbiade et al., 2013).  

Algorithm 1: Feature extraction phase for the proposed SLAM technique 

Input: M = frame of images from stream m,........,1  

Output: Samples of feature extracted from M . 

Step 1: Select a frame M  from stream m,........,1  images. 

Step 2: Apply equation 3-15 on M for sample extraction. 
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Step 3: Apply equation 4-1 on M.       

Step 4: Set of Extracted features from M  for every stream m,........,1  images 

In algorithm 1 frame M  signifies a block size of the image captured by the camera; these 

images contained several sets of samples appearing in various regions of the image. These 

samples could be used for image analysis that could solve the problem of SLAM. Figure 4-3 

represents the feature extraction of the road region detection system. 

 

 

 

 

 

 

 

 

Figure 4-3: Feature extraction stage of DIK-SLAM technique 

4.4 Filtering Stage 

The first modification to present DIK-SLAM is to enhance its ability to overcome 

environmental noises that could corrupt feature properties with an effect that can lead to error 

pose estimation, and in worst cases, can lead to kidnapping without recovery in the case of 

increase in measurement noise (Negenborn et al., 2003). Environmental noises have the ability 

to degrade the image, bring poor vision and corrupt the RGB  colour component valve, which 

results in poor extraction of road and non-road feature extraction. The Filtering algorithm stage 

Feature Extraction Stage 

Pre-processing Algorithm 

Corrupted features 
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is the third phase of the SLAM technique and was introduced to the system to suppress the 

effect of environmental noise affecting the feature extraction stage for better classification 

results to be achieved at SLAM phase. Two Filtering algorithms were introduced to detect and 

remove the environmental noises such as light intensity and shadow, because they are 

commonly encountered in most occasions. These filters are discussed in sections 4.4.1 and 

4.4.2. 

4.4.1  Shadow filtering algorithm 

The Shadow algorithm is capable of suppressing the effect of shadow in an image. The 

functionality operation of this algorithm is based on morphological operation and normalized 

differences index. At first, the image RGB  valve is converted to HSV  because a shadow holds 

easy identification with the maximum value of saturation  S  and the minimum Value  V , in 

HSV  colour space. Equation 4-2 – 4-4 expresses RGB   conversion to HSV  (Huang et al., 

2007). 
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RGB  is characterized as red, green, blue. The saturation  S  and value  V  components of I 

are used to extract the shadow area. Equation 4-5 shows illustration using Normalized 

Differences Index  NDI .                                    

VS

VS
NDI




                                                                                                                      4-5              

Normalized differences index images are segmented using OTSU thresholding algorithm to 

find an optimal threshold  T  (Krishna Kant Singh et al., 2012). The illustration is expressed 

in equation 4-6. 

 
   
   TTw

TTw
TNDI
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.
 

2
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where is  Tw = ,
T

i iop   T = 

225

2
,

ipTi  

225
,

ipoii
 and 

ip  is the probability of pixel with 

gray-level I in the image [12]. Image pixels with higher NDI than the threshold  T  are 

classified as shadow pixels else non-shadow as expressed in equation 4-7. 
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
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

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jiNDI

TjiNDI
jiI shadow

                                                                     4-7 

 After thresholding, j) (i,Ishadow  denoted as a binary image with a pixel of the shadow set to 1, 

and the pixel of non-shadow is set to 0. In the shadow removal process, the connected 

component algorithm is used for the connecting regions classified as 1. mI  Signifies connected 

component of shadowI , illustration expressed in equation 4-8. 

  ....... 3, 2, 1,         ,   B    1   mIII shadowmm                                                                     4-8    
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where B denotes structure element that ends operation when 1   mm II .  Equation 4-7 creates 

many ‘n’ components of the shadow area that exists in the image. The next phase is the 

estimation of the buffer area  k ,buffI  characterized as the non-shadow area around the shadow 

area. An expression illustrated in equation 4-9. 

 kdilatedbuff III  -   k ,k ,                                                                                                           4-9 

where 

 
squarekdilated II B    k  , 

,
 

k  ,dilatedI denotes image dilation operation that will expand the shadow boundaries, kI represents 

shadow pixel location in the image, squareB signifies 3x3 square structure element used for 

image, where k = 1, 2, 3, 4………. n . 

In the shadow removal process, the transformation function represented as  jiI i

k ,  in equation 

4-10 is the mean and variance of the buffer area used to compensate the shadow regions.         

    
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,
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





                                                                                   4-10  

where   , Kbuff   and   , Kbuff  are the mean and variance of the pixels of an image I  at a 

location KbuffI  , . 
K  and 

K  are the mean and variance of the shadow pixels image I  at a 

location  (Krishna Kant Singh et al., 2012). 
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4.4.2 Light filtering algorithm 

The light filtering algorithm is capable of addressing the effect of light intensity caused by 

sunlight and this is a common environmental noise because of the high intensity generated 

from the sun. The removal effect of light intensity is estimated by modelling first object 

reflected by colour camera based on the dichromatic reflection model, which is the linear 

combination of specular and diffuse reflection components represented as  xI  is expressed in 

equation 4-11. 

           GxwxBxwxIxIxI sd

sD                                                                            4-11 

where, I represents the observed image intensity,  yxx  ,   denotes the image coordinate, DI  

signifies diffuse reflection component, SI represents specular reflection component,  xB  

symbolizes the diffuse colour, G denotes specular colour,  xwd  signifies the coefficient that 

governs the magnitude of diffuse reflection component and  xws  denotes the coefficient that 

governs the magnitude of specular reflection component.   

The light intensity detection methodology proposed is based on the dark channel  )(xI dark
 

expressed in equation 4-12 and optimal automatic thresholding expressed in equation 4-13 to 

find high light reflection in an input image. The combination of this technique is used for proper 

classification of the area of the image affected by light intensity. The concept of light intensity 

detection is based on areas with affected high light, will be having high-intensity value while 

areas that are not affected will have low-intensity value in the dark channel model (Zou et al., 

2013).  
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 where  x  denotes the local patch centered at x, x represents the image coordinate and cI  

signifies colour channel of I. 

The optimal automatic thresholding  t  method used for dark channel image segmentation is 

known as valley-emphasis, it is an improved version of OSTU automatic thresholding, and it 

is used for labelling the dark channel image. 

           ttttpArgt t

2

22

2

111max  
                                                                4-13 

where the threshold value is donated as t , tp  representing the probability of occurrence at the 

threshold value of t . 1 and 2  signifying mean gray-level of two classes, 
1  and 

2

representing the probability of two classes.      

The marked image  x  generated by optimal automatic thresholding of dark channel image is 

labelled as 1, which represents the area affected by light intensity and 0 to represent areas that 

are not affected. Illustration thereof is expressed in equation 4-14. t  represents the optimal 

threshold for image classification of mark image  x . 
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  mark                                                                                       4-14  

The light intensity removal process is based on specular-to-diffuse proposed by (Zou et al., 

2013). Illustration of an image without light intensity effect  DI  is expressed in equation 4-15   
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However, introducing these filtering algorithms leads to high computation cost (Shengyan and 

Karl, 2010) and these limitations will be addressed by a concurrency filtering operation known 

as Rotating Tilling (RT) technique, which will be discussed in section 4.5.2.1. This technique 
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is used to increase the processing speed of the filtering operation since the computational cost 

is taken into consideration (Lin et al., 2003).   

4.4.3 Concurrency technique (rotating tilling) 

Concurrency technique proposed for the filtering algorithms allows multiprocessing within a 

limited time (Chin et al., 2001). Concurrency technique was invented to overcome the 

limitation of the traditional method (serial operation) with delay processing speed. Various 

techniques of concurrency exist, but the two well-known methods are Parallel Pipelined (PP) 

and Binary Swapping (BS) technique (Lin et al., 2003). In Parallel Pipelining, ring rotation 

topology is employed for partial image composition. This allows arbitrary numbers of 

processors to use but with larger communication steps. In Binary Swapping, this technique can 

only function when the number of processors is limited to a power of 2 with less 

communication step than the parallel pipeline technique (Lin et al., 2003).   In this research, 

we employed the use of Rotating Tilling (RT) (Lin et al., 2003). It combines the advantages 

for both Parallel Pipelined and Binary Swapping techniques to overcome their limitations. This 

was possible because the processor arrangement functions on ring rotation topology (parallel 

pipelined) and the data communication technique is based on indexing the operation of the 

Binary Swapping method. In Rotating Tilling technique, three stages are involved during the 

processing of the image and are discussed in section 4.4.3.1 - 4.4.3.3 

4.4.3.1 Image (data) partitioning stage     

The objective at this phase is to distribute image volume across processors and to minimise 

computation cost (Lin et al., 2003). In the RT technique at the data partitioning stage, any 

efficient data partitioning technique can be employed and various types of this technique exist 

(Lin et al., 2003). In (Sano et al., 2000) slice data partitioning distributes evenly, volume image 

slices to processor but this result into high overhead communication and excess computation 
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time at the image compositing phase while in (Zhang et al., 2005) volume data partitioning 

revealed, has similar characteristics with even volume distribution across processors with 

minimised overhead communication and excess computation time at the image compositing 

phase. The shared volume data partitioning mentioned in (Zhang et al., 2005) minimises the 

overhead communication with less computation time at the image compositing phase, but 

image volumes are not evenly distributed across processors.    

4.4.3.2 Image (data) rendering stage  

This is the second phase after the operation of the volume data (image) partitioning, which 

resulted in the partial image depending on the number of processors (Sano et al., 2000). Each 

partial image assigned to one processor applies the rendering operation. The rendering 

algorithm performs encoding, resampling and generation of the corresponding initial block 

from the partial image (Lin et al., 2003). In the operation, block images belonging to each 

processor are numbered before distribution across corresponding processors and can avoid 

overlapping because initial blocks are created independently by each processor (Lin et al., 

2003). The distribution allows the simultaneous detection and removal process of the 

environmental noises. In the RT technique, using the processor  rP , the block size   mAk

r  

of its partial image is sent to corresponding processors  iP  using equation 4-16  and receives 

block size 
  mAk

j  of a partial image from processor 
 jP

  using equation 4-17 (Lin et al., 

2003). 
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where, rj,  and i  represent processor ranks, k  is a positive integer while m  and n  are 

represented as blocks numbers.  

4.4.3.3 Image (data) composition stage. 

This is the last phase, after the rendering operation, which resulted in a number of initial blocks. 

At this stage, each processor composites the block it received during distribution using the 

Over-operation. MPICH, a gather directive of a message passing library on multicomputer 

memory distribution, is used for merging this block until the final image (filtered image) is 

generated (Lin et al., 2003). This is achieved in a short period of time with less environmental 

effects. In the Rotating Tilling technique,  Plog  communication steps exist, when the 

communication step 1K , 








P

N
 is represented by a maximum number of send/receive 

operation performed by processors and 
N

A
 is denoted as the block size sent or received by a 

processor. The output result of maximum data communication  RTTcomm  and the 

computational time  RTTcomp  among the processors is expressed below in equation 4-18 and 

4-19. 
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When the communication step  K  is more than 1, 




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Bk2
 represents a maximum number of 

send and receive operations performed by processors. 
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The output result for maximum data communication time  RTTcomm  and computational time 

 RTTcomp  among processors is illustrated below in equation 4-21 and 4-22                      
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and 
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The total processing time represented as  RTTtotal  according to the above equations is 

formulated in equation 4-23. 
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where  RTTtotal  is factorized by the data transmission time per byte pT  the computation of 

the over operation per pixel 0T , the image size in pixels A , the start-up time of a 

communication channel sT ,  represents a total maximum amount of data exchange between 

processors, the number of initial block of partial image N  and the number of processors P  

(Lin et al., 2003). 

Algorithm 2: Filtering stage for the proposed SLAM technique 

Input: P  represents numbers of processor 

A  represents numbers of partial image size 

N  represents numbers of an initial block from partial images 

K  represents the communication step 

M  represents the frame of images from stream m......1  

Output: Filtered Image M   

Step 1: Data distribution is applied to M  generate A  

Step 2: Processors break A  into N  block of images   

Step 3: Each processor in the ring rotation topology sends N block of its images across to 

corresponding processors 

Step 4: the Corresponding processor receives N block of images from other processors 

Step 5: Each processor composites the block received with its local block using Over-

operation. 

Step 6: Processors in the ring rotation topology that sent N  block of images to others and 

idle are removed from the ring. 

Step 7: Other processors in the ring rotation topology break composite image into two equal 

halves 

Step 8: Repeat steps 3-7 for several k  until the final image is generated.      
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In algorithm 2, the concurrency method used allows the frame M  receives high computing 

performance over a short period of time because simultaneous filtering operations are carried 

out on M  (Chin et al., 2001). Figure 4-4 illustrates filtering algorithms in concurrent operation. 

This stage is the first algorithm introduced for the re-modification of DIK-SLAM and the 

output here is an image with a higher quality image ,which allows easy recognition of samples 

that will be employed to localization and mapping at the next phase. 

 

Figure 4-4: Filtering stage of DIK-SLAM technique 

4.5 Simultaneous Localization and Mapping stage 

Localization is the ability of a robot to establish its own orientation and position within an 

environment, while mapping is the ability of a robot to construct a safe path for the unknown 

environment (Oh et al., 2013). These operations are fundamental problems for mobile robots. 

The problem of localizing a robot and building a map in robotics is a different task but deeply 

associated with each other because the mobile robot needs the map to localize itself and the 

accurate position of the robot is needed to build the map (Oh et al., 2013). In an attempt to 

solve this interconnection between the two problems, Simultaneous Localization and Mapping 

(SLAM) technique has attracted many researchers towards focusing on this area and many 

Uncorrupted Image 
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Simultaneous Localization and Mapping (SLAM) techniques have been proposed in the 

literature with outstanding result attained, but in static environments (Fuentes-Pacheco J, 2015, 

Clipp et al., 2009) But in this study, we improved the Simultaneous Localization and Mapping 

(SLAM) technique to cope with both static/dynamic environments. However, the database 

introduced into the SLAM technique shown in the Figure 4-1 will assist to carry out Initializing 

localization, which could be used to address Kidnapped robot. At this stage, the original Monte-

Carlo algorithm presented on pages 23-25 was modified to solve the problem of SLAM and  

will be discussed in section 4.5.1.  

4.5.1 The Second Re-modification in DIK-SLAM 

 The DIK-SLAM model relies on the Monte-Carlo algorithm for localization and map 

estimation, but this algorithm must be enhanced to cope with dynamic, kidnapping and loop 

closure, since there is a possibility of encountering them. Monte-Carlo algorithm is a common 

probabilistic algorithm for solving the issue of concurrent localization and mapping. This 

technique has produced satisfactory results, unlike other algorithms such as EKF and Kalman 

filters, that suffer from high computational complexity (Shiguang et al., 2017). This limitation 

has shifted researchers attention towards particle-based algorithm (Abouzahir et al., 2014). 

Thus, in this research, high computational complexity is a problem we are considering to 

minimize and lead to proposing a particle-based technique known as Monte-Carlo algorithm 

but limited to the Static environment (Thrun et al., 2001). In an environment that is dynamic 

in nature, the Monte-Carlo algorithm needs to be upgraded to cope with such an environment. 

In this research, the second modification to present DIK-SLAM ability to cope with dynamic 

environments only will be discussed in this section. 

The dynamic environment has the ability to change because of the presence of moving objects 

and to handle such condition, the technique relies on altering the map as changes happen in the 
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environment. In the modified MCL each cell of the map is considered to be an independent 

object as expressed in equation 4-24 

 tktt yyY ,,1 ..,,.........                                                                                                       4-24 

Where ty  signifies a set of individual cells in the map. 

Based on the independent cell assumption, the new state equation  tttt uzxyp ,,  will be 

factorized to add a new probability for the cells in the map to the original MCL algorithm 

discussed in chapter 3. This factorization technique is adopted and similar to the technique 

proposed in (Avots et al., 2002) for adding the state of a door into the MCL algorithm. In this 

factorization, the Bayes rule and the Markovian presented in equation 4-25 are the basis 

computation that needs to be factorised to generate the new state. 
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The state-space  tt xy ,   in equation 4-25 is exponential to ty  in size and must be resolved by 

reducing its state space to achieve the goal. Given that the state variable is equally likely and 

the probability for a random sensor scan is constant. Hence,  
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Taking into consideration  that those cells in the map can independently change status in the 

model and re-applying the Markovian assumption equation 4-27 was derived. 

     

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1,

1111,1,,1 ,,,,
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tttt uzxypyypuzxyp                                             4-27                                       

Finally: 

     1111 ,,,,   ttittttttt uzxpuxxpuzxp                                                                     4-28 

Recombining and simplifying equation 4-26, 4-27 and 4-28, the factorization result is provided 

in equation 4-29 
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     t

tttk
k

ttttttt uzxypuzxpuzxyp ,,,,, ,                                                                4-29 

Which contains the addition of a new probability for the cells in the map to the original MCL 

posterior, which plays a role addressing moving object but calculating the new probability for 

the cell, will be discussed in section 4.5.1.1. Thus, detail factorization of adding the new 

probability of the cells to MCL can be seen in the work of (Avots et al., 2002). 

4.5.1.1 Bayes Filtering of Binary Object in an environment 

MCL is referred to as a recursive Bayes filter that has been modified to cope with new 

probability for the cell on the map. However, the study hasn’t discussed how to calculate the 

probability of each cell in the map, which plays a significant role in dealing with moving 

objects. In this research, the method of calculating cell probability is similar to the work 

proposed by (Avots et al., 2002). In this technique, these cells are a binary object which can 

either be absent or present if occupied by a real object. Therefore, map cells can either be 0 or 

1 with a probability summation equal to 1 as defined as tk ,  which represents a single 

numerical probability:  

Let:  ttttktk uzxyp ,,1,,                                                                                      4-30 

Then 
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Where 

    1,1,,1,1,,, 10111 

  tktktktktktktk yypyyp   

But when 0, tky , when the cell is not occupied, represent an opposite event of equation 4-30. 

The probability of such an event is tk ,1  : 
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Where 

    1,1,,1,1,,, 1001 

  tktktktktktktk yypyoyp   

Given the unknown quantities in equation 4-30 and 4-31, the two are divided to cancel the 

unknown quantities as expressed in equation 4-32 with known quantities but commonly 

referred to as odd ratio 
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The equation 4-32 consists of known probability where   1, tkyp   represents prior probability 

for an occupied cell,  1,, tktk yyp  signifies transition probability state for a cell, 1, tk          

denotes prior occupancy probability state and  tttk zxyp ,1,   represents the occupancy 

probability of a cell given sensor data and robot location. However, the odds ratio can be 

resolved using an equally desired probability   tk ,   expressed in equation 4-33 
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In this study, the technique presented an updated map dynamically during localization to avoid 

increasing complexity of the system with an effect that does not severely increase the 

computational time.  

4.5.1.2  The Third re-modification in DIK-SLAM using Similarity and Dissimilarity in 

an image for Resolving Kidnap problem and Loop Closure 

The third re-modification to present DIK-SLAM was to upgrade again the Monte-Carlo 

algorithm to cope with the problem of Kidnapping. The kidnap problem in SLAM happens 

when an unexpected movement occurs to the robot in an environment. This issue arises during 
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a failing sensor or intensification in measurement noise (Guyonneau et al., 2012.). The effect 

of this limitation leads to a robot inability to estimate its pose, therefore, violating the principle 

of addressing the problem of SLAM because pose estimation is a requirement for map building, 

can lead to robot failure without recovery (Sounderhauf et al., 2012). The algorithm selected 

to solve this problem must be able to carry out these objectives: the ability to perform pose 

estimation, detect kidnap problems and global localization (Guyonneau et al., 2012.). In the 

literature, the scan to map matching is a common technique to address kidnapping. In this 

technique, the matching algorithm is introduced for an extensive search of the current 

observation over the reference map (pre-mapped environment) to extract robot position in 

relation to the selected reference map as proposed in the work (Se et al., 2001, Matei et al., 

2013). However, there is a situation where this technique can experience failure. Take for 

instance, if the current observation has changed because of dynamic characteristics, which 

might be impossible to select a perfect match of a reference map and could lead to SLAM 

failure without recovery (Tian and Ma, 2017). In this study, the proposed DIK-SLAM 

technique will be re-modified for the second time to minimize this limitation. This technique 

will take into consideration similarities and dissimilarities between the reference image and 

current observation image before performing its re-localization procedure. Given an 

autonomous robot navigating in an unknown environment using the DIK-SLAM technique, 

how would we know that the robot is kidnapped? Once kidnapping occurs, particle migrate 

from local sample to global samples and after re-localization global samples are migrated has 

local samples. The global samples are a key feature towards robot kidnapping and recovery. 

Furthermore, the particle probabilities are taken into consideration. If the maximum of 

probability of the particle is less than the sensitive coefficient    the robot triggers kidnapping. 

This technique was adopted by the work of (Chuho and Byung-Uk, 2011), although their 
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technique relies on entropy value of particles while the DIK-SLAM technique relies on the 

weight of the particles. Expression is given in equation 4-34 

 


 
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t
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1 max 
                                                                          4-34 

In kidnap conditions, the scan to match algorithm considering their appearance relies on the 

SIFT descriptor to match the reference image of the current view to a previously built map that 

will be used for the re-localization purposes. This technique was proposed by (Se et al., 2001) 

and was adopted because of its outstanding performance. However, the Monte-Carlo algorithm 

was re-modified again by introducing the Fourier signature of the similarity and dissimilarity 

function as illustrated in 4-35 and 4-36 respectively for measurement purposes in images 

(Ishiguro and Tsuji, 1996)   
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where iI  and tI  represent respectively the reference image and current observation image,  

while  kF yi  and  kF yt  signify the Fourier coefficients of the thk  frequency of thy row image 

in the reference image and current observation image.  

The higher the value of the similarity function, the more similar the reference image and the 

current observation image (Ishiguro and Tsuji, 1996). Given this condition, the matching map 

of the reference image can be used to estimate the robot position. 

However, if the dissimilarity function is high, the more dissimilar the reference and current 

observation image (Ishiguro and Tsuji, 1996). In this condition, the matching map of the 
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reference image will not be used, rather, we propose a new solution of generating a new set of 

samples tS  from the current observation image for the re-localization process since the 

dissimilarity in the reference image compared to the current observation image might not 

provide us with a satisfactory result. The set of new samples can be used to generate a map, 

which will be used to estimate a reliable robot position that will assist the robot to keep 

navigating successfully till it gets to a familiar environment, where it can use its reference map 

to continue estimating its position. 

4.5.1.2.1 The Fourth Modification in DIK-SLAM for Loop Closure Detection in SLAM  

The Fourth re-modification to present DIK-SLAM was to upgrade again the Monte-Carlo 

algorithm ability to cope with the problem of loop closure. The loop closing problem in SLAM 

is a task for determining if an autonomous vehicle during exploration has returned to a formerly 

visited environment  (Newman and Kin, 2005). The loop closure is comparable to kidnapping, 

expect that the robot is aware of its environment, but needs to know if the environment has 

been re-visited (Agha-mohammadi et al., 2015). However, in appearance-based localization 

technique, the underlying principle is, if the current image matches one of the reference images 

stored in the database using the SIFT descriptor (built from previous navigation), then a robot 

has returned to its previous location and the loop must be closed otherwise, kidnapping is 

triggered (Ho and Newman, 2007). Considering the problem of loop closure, the MCL based 

Bayesian algorithm was re-modified to address this issue. Given that a robot re-visited an 

environment, the full posterior must be estimated and to find if Loop-Closure occurred, the 

Bayes rule under the Markov assumption can be decomposed into equation 4-37 

     1 t

ttt

t

t ISpSIpISp                                                                                            4-37 

Where   represents the normalization term, tS  signifies the random variables representing 

loop-closure hypotheses at the time t  and t

t III ........,0  represents the sequence of images 
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in the SIFT features space and can consequently be represented by the sequences 

t

t zzz .......,0 .  

Therefore, the  t

t ISp  will be replaced by  t

t zSp  to derive the full posterior expressed in 

equation 4-38  

     1 t

ttt

t

t zSpSzpzSp                                                                                                                4-38 

Where  tt Szp  is the likelihood  tt zSL  of tS  given the words tz  closes the loop with the 

matched previous image (Angeli et al., 2008). 

Algorithm 3: Simultaneous Localization and mapping stage for the proposed SLAM 

technique 

Input: M = frame of filtered images from stream m,........,1  

Output: Model representation (map) of M . 

Step 1: Select a frame M  from stream m,........,1  images. 

Step 2: Apply 4-29 on M for sample extraction. 

Step 3: if kidnap is true apply equation 4-35 and 4-36     

              Else  

 Loop closure problem apply 4-37 and 4-38  

        return to step 2 

Step 4: model representation for stream M  for every stream m,........,1  images 

In algorithm 3 frame M  signifies a block size of the image captured by a camera, which is 

analysed by using sets of samples appearing in various region of the image to address 

simultaneous localization and mapping and dynamic environment, while the database will 

assist to address the issue of kidnap problem and loop closure. The outcome at this stage will 

result in a model representation of the environment captured. This stage will attain a good result 
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Simultaneous and Localization Stage 

because environment noises, which degrade images characteristic have been addressed at the 

previous stage. These environmental noises are widely complained by many researchers (Irie 

et al., 2012., Cras et al., 2011) however, they are not only limited to shadow and light intensity, 

but there are also others like rain, snow, mist, fog, humidity, etc which can be encountered in 

an outdoor environment. The study only targets shadow and lighting variation because they are 

the likely noises we can encounter in the data used for carrying out this experiment. Figure 4-

5 represents the simultaneous and localization stage of the proposed SLAM technique (DIK-

SLAM). 

 

 

 

 

 

 

 

 

 

Figure 4-5 Simultaneous and localization stage of DIK-SLAM technique 

4.6 Navigation Algorithm stage 

Autonomous robot system needs a reliable estimate for the current robot position and a precise 

map of the environment for perfect navigation to be attained, but this can be solved at the fourth 

stage (SLAM). Thus, the problem of path planning, which considers a map of an environment 

or a model to extract an optimal pathway for an autonomous robot to navigate from the starting 
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position to the end position of the map, must be addressed (Guyonneau et al., 2012). This 

problem becomes cumbersome because the autonomous robot will not have complete map 

information and any pathway generated from its initial map may be unacceptable or 

substandard as it constantly collects updated map information from its sensor (Djekoune. et 

al., 2009). Therefore, it is important for the navigation algorithm of the robot to be able to 

update its map and re-plan its optimal pathway once new information is received from its on-

board sensors. In the literature, various navigation algorithms have been proposed, but A* and 

D*algorithm is common. These two are widely used algorithms(Djekoune. et al., 2009), 

because of their capabilities in efficient use of heuristics and the ability to cope with increased 

updated map information from its sensor. However, the D* algorithm was selected in this study 

because it has been modified for improving its performance over the older version (Zhang and 

Li, 2017). Thus, this section discusses the important information on how the algorithm 

operates. The D* algorithm relies on a grid-based approach that split the area of exploration 

into nn  grid. The grid-based algorithm (D*) relies on the cost function to plan the 

trajectory/path. The basic cost function of the D* algorithm based on distance travelled is 

presented below. Let k  be the cost of moving vertically or horizontally  verticalhorizontal  

in the cell, the cost function is expressed in equation 4-39 and 4-40.  

  Unitskverticalhorizontalyxt *,cos                                                                         4-39 

    unitskdiagonalyxt **2,cos                                                                                 4-40 

where the Unit represents an attached weight that varies depending on the size of the cell. 

The cost function in equation 4-39 and 4-40 are recomputed to include factors, the terrain slope 

and its azimuth (the horizontal angle). Considering a robot navigating between two points 

 111 ,, zyxA  and  1222 ,, zyxB , the slope is computed using equation 4-41 
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While the azimuth (the horizontal angle ( )) is computed using equation 4-42 

    1212

1 /tan
180

yyxx 









                                                                                    4-42 

Where zyx ,, represent state variables for point A  and B ,     signify the horizontal angle.  

The re-computed cost function is given in equation 4-43 

    factorslopeyxtfunctiont *,cos_cos                                                               4-43 

Where factor  in equation varies based on different terrain. In ascending, a higher factor is 

given than descending and in level terrain, factors are made zero (Saranya et al., 2016). Given 

equations 4-43 the cost functions are calculated for all cells and the robot moves through the 

cells with the lowest cost functions. In D* algorithm, this is the basic concept of how the robot 

trajectory is created. Thus, the D* algorithm has been modified to improve its performance. In 

this study, the enhanced D* lite algorithm proposed by (Ganapathy et al., 2011) will be 

employed to implement this stage. This algorithm was selected because it can cope with 

dynamic mapping and most importantly it functions in real-time.  

Algorithm 4: Navigation stage for the proposed SLAM technique 

Input:  The model representation of the Environment (map) of M  from stream m......1  

Output: Robot Trajectory 

Step 1: Input map of M  from stream  m......1  

Step: 2 Apply the grid-based approach to spilt M from stream m......1  to nn  cell 

Step 3: Apply the cost function in 4-43.          

Step 4:  Compute Robot trajectory 

In algorithm 4, the idea of proposing the navigation stage into the system is to assist with the 

computation of the robot trajectory. This algorithm has the ability to extract the safest path for 
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a robot. Figures (4-6) illustrate the navigation stage of the proposed Simultaneous Localization 

and Mapping (SLAM) technique.  

 

 

Figure 4-6 Navigation stage of DIK-SLAM technique 

4.7 Computational Complexity (CC) 

Computational Complexity (CC) is one of the major setbacks related to SLAM in terms of 

hardware cost for implementation. In order to improve this setback, particle filtering was 

introduced so as to reduce the number of samples that we analyze. We consider that the exact 

Computational Complexity (CC) will perform on every sample in order to get a projection. The 

combination of particles at a particular position into a single particle is referred to as particle 

filtering, in which which weight is allocated to that particle to reflect the number of particles 

that were combined to form it.  This eliminates the need to perform a redundant computation 

without the probability distribution.  In particle filtering, this is accomplished by sampling the 

system to create P particles, then comparing the samples with each other to generate an 

importance weight, thereafter,  normalizing the weights, which resample P  particles from the 

system using these weights.  This process greatly reduces the number of particles that must be 

sampled, making the system much less computationally intensive. The states  s  to be 

estimated are the coordinates and orientations of the robot ,which are ,, yx  and w . 

 wyxs ,,,                                                                                                                          4-44 
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Algorithm 

 

Environment 



88 

 

Where each represents yx,  coordinates, phase angle and weight respectively. This defines the 

state of the mobile robot, which determines the motion control and path evaluation defined as: 

2

min 








f

m
                                                                                                                             4-45 

Where 7f  and   stepstepgapstepm max:1 , where 1300max step in gaps of 20 

The path of the robot can be calculated based on: 
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Related to x  and y  respectively. A decision metric of, if the difference of end index and start 

index is greater than zero related to x  parameters, employ the y  function, and if the difference 

in end index and start index is greater than zero related to y , employ the x  function. In the 

proposed SLAM technique (DIK-SLAM), the study has shown the ability to remodify the 

Monte-Carlo algorithm to add new observations and maintaining a minimal ancestral tree, 

which requires  APO  time. However, the part that intensifies the proposed technique is the 

filters and has been minimized by the concurrency technique. The other part of the algorithm 

that could increase its complexity is the operation of the resampling, which happens at the 

Localization and Mapping stage and not to further increase its complexity. We avoid 

introducing a standalone algorithm. Rather, techniques used to address the issue of kidnapping 
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and dynamic environment are Monte-Carlo based technique with an effect that does not 

increase it beyond unacceptability. Therefore, for P  particles, the time taken is given in 

equation 4-48 

 PPO log                                                                                                                             4-48 

While the overall complexity of the proposed algorithm is given in equation 4-49 

)()log( APOPPOcomplexity                                                                                     4-49 

=  APPPO log  

Thus, the area covered by the sensors matters, and could be larger than , Plog  which can also 

contribute to high computational complexity, as well as the numbers of particles used, can also 

contribute to high lead to high computational complexity. Given this study, we are satisfied in 

stating the complexity of the algorithm as simply  APO  (Eliazar and Parr, 2019). 

4.8 Chapter summary 

This section discussed the DIK-SLAM technique, operating based on the re-modification of 

the Monte-Carlo algorithm to cope with dynamic and kidnapping issues. The image acquisition 

stage was employed to capture lifestreams of images that are sent to the SLAM technique for 

processing. At the feature extraction stage, samples for different regions were used for building 

maps and providing guidance for robot trajectory. In the presence of environmental noises, 

these samples were difficult to extract. To resolve this issue, filtering algorithms working in 

parallel mode, were employed to minimize the effect caused by shadow and light intensity, 

which had assisted the mapping and localization stage to achieve better results, while assisting 

the navigation algorithm attain successful navigation for the robot.  
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CHAPTER FIVE 

5 EXPERIMENTS AND RESULTS 

This chapter discusses the evaluation techniques deployed to measure the performance of the 

proposed SLAM technique. These evaluation methods are popular measurement schemes 

employed by previous researchers because of their reliability. Using these evaluation 

techniques, the comparison of results obtained was used to reveal the SLAM technique with 

the best performance. Experimental validation was carried out to achieve the purpose below: 

 Measuring the effectiveness of the proposed SLAM technique 

 Estimating the robot trajectory in the environment. 

 Estimating the computational cost as related to processing speed/time. 

 Measuring the robot positioning in the environment. 

In this study, the probabilistic modelling coupled with the Bayes rule presented in equation 4-

25 was used to generate the simulated map and the robot trajectory for the proposed SLAM 

technique (DIK-SLAM) was simulated by an image processing software known as Matlab. 

Matlab is a simulation software that supports multi-paradigm numerical computing 

environment and propriety programming language, developed by MathWorks (Teng, 2000). 

The software was employed to carry out this test because it allows the implementation of an 

algorithm, plotting of data/function and matrix manipulation, which is a major requirement for 

achieving the objectives of this study. Thus, this is not only limited to these three functions, it 

also supports the creation of user interface and accommodates codes within other programming 

languages like C/C++. However, the experiment is not only limited to simulation software, 

data collected are equally important because they are measured, reported and analysed to 

visualize the performance of the technique proposed using graphs, images, etc. In this study, 

public and private datasets are used for validation of various SLAM techniques and will be 
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discussed in this chapter. These datasets are all evaluated based on Absolute Trajectory Error 

(Absolute pose difference). Given that a robot is navigating in an environment, the quantitative 

measurement was carried out by using Absolute Trajectory Error (ATE) at time step k  for 

every distance covered and was compared to ground truth estimate for error measurement. 

Illustration of ATE is expressed below in equation 5-1. 

 1

kF  kk QSP                                                                                                                          5-1 

The 
kF  represents the ATE at a time step k , which can be calculated by comparing the absolute 

distance between ground truth and simulated trajectory. As these trajectories are specified in 

an arbitrary coordinate frame, they need to be aligned first. This is accomplished using the 

method proposed in (Shalal et al., 2015., Kaser, 2019). Furthermore, the 
kF  finds the euclidean 

transformation S (geometric transformation of euclidean space that preserves the euclidean 

distance between every pair at a point) corresponding to the least-square solution that maps the 

estimated trajectory mP:1   onto the ground truth trajectory mQ :1  (Kaser, 2019). 

5.1 Experiment 1: Evaluation with Publicly Available Datasets 

In this section, the publicly available dataset was employed for evaluation and the presented 

DIK-SLAM technique was evaluated using a dataset known as TUM RGBD. The TUM RGBD 

is originally owned by the computer vision group at TUM. This dataset was generated from a 

Microsoft Kinect RGB-D camera sensor highly accurate and time-synchronized ground-truth 

poses from a motion-captured system. This sensor can provide a sequence of colour and depth 

images of 640*480 resolution at 30Hz video frame rate.  The TUM RGB-D is a huge dataset 

equipped with a sequence of RGB-D data and ground truth trajectory estimate for a different 

sequence of data. This dataset consists of numerous sequences of environments but for this 

study only four of these sequence were employed and are discussed in Table 5-1 (Kaser, 2019).  
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Table 5-1: TUM RGB-D dataset description 

Environment 

Sequences 

Description 

Freiburg2_desk_ 

with_person 

This environment is an office scene with a person moving and 

interacting with some object in the environment. This scene was 

selected in this study to check the SLAM algorithms robustness in a 

dynamic situation. The scene characteristics are provided below, 

which makes validation with other SLAM algorithms achievable. 

Duration: 142.08s 

Duration with ground-truth: 119.37s 

Ground-truth trajectory length: 17.044m 

Avg. translational velocity: 0.121m/s 

Avg. angular velocity: 5.340deg/s 

Trajectory dim.: 2.30m x 3.93m x 0.51m. 

File size: 2.71GB. Thus, this scene information was last updated on 30 

September 2011 at 15:17 pm.   

Freiburg2_360_ 

kidnap 

In this environment scene, the sensor was covered numerous periods 

while pointing to a different location to generate an environment that 

the robot will be unable to recognise, which will make pose tracking 

difficult. Since the study targeted kidnapping and loop closure, this 

scene was selected to see if SLAM algorithms could identify and 
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recover from kidnapping and loop closure. The scene characteristics 

are provided below: 

Duration: 48.04s 

Duration with ground-truth: 47.49s 

Ground-truth trajectory length: 14.286m 

Avg. translational velocity: 0.304m/s 

Avg. angular velocity: 13.425deg/s 

Trajectory dim.: 4.26m x 3.44m x 0.12m 

File size: 0.89GB. Thus, this scene information was last updated on 30 

September 2011 at 15:15 pm. 

Freiburg3_structure 

_texture_far 

This scene was created by moving the sensor through an environment 

with much texture and structure,since the study targeted environmental 

noises. The scene was selected because texture and structure in the 

image cast different forms of illumination variation that allows testing 

the SLAM algorithms ability to overcome environmental noises. The 

scene characteristics are provided below: 

Duration: 31.55s 

Duration with ground-truth: 31.56s 

Ground-truth trajectory length: 5.884m 

Avg. translational velocity: 0.193m/s 
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Avg. angular velocity: 4.323deg/s 

Trajectory dim.: 1.90m x 4.56m x 0.08m 

File size: 0.55GB. Thus, this scene information was last modified: on 

07 August 2012 at 18:55 pm 

Freiburg3_nostructure 

_notexture_near 

_withloop 

This environment scene represents an industrial hall recorded 

intentionally with little visible structure and features. This scene was 

selected because this technique relies heavily on predefined objects and in 

the absence of these features, the performance is affected (Wurm et al., 

2003). This experiment is crucial because the SLAM algorithms proposed 

for evaluation are particle-based and will like to monitor their behaviour 

under low numbers of feature and texture present in the environment with 

their ability to identify previously visited position. 

Duration: 37.74s 

Duration with ground-truth: 37.72s 

Ground-truth trajectory length: 11.739m 

Avg. translational velocity: 0.319m/s 

Avg. angular velocity: 11.241deg/s 

Trajectory dim.: 2.98m x 5m x 0.34m 

File size: 0.45GB. Thus, this scene information was last modified: on 

07 August 2012 at 18:57pm. 
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These sequences of environment datasets are used to analyse and test the robustness of various 

SLAM algorithms and can be found on this site: https://vision.in.tum.de/data/datasets/rgbd-

dataset. The TUM RGB-D is a popularly used dataset most especially in visual SLAM, since 

the study proposed a visual SLAM, this dataset was employed to test for comparison with the 

Monte-Carlo algorithm. In this section, the simulation was carried out using Matlab for a 

comparison between DIK-SLAM and the Monte-Carlo algorithm. The qualitative trajectory 

results were validated by using the Root Mean Squared Error (RMSE) overall time indices of 

the translational component as related to the Absolute Trajectory Error (ATE). An expression 

is provided below in equation 5-2. 
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FRMSE                                                                                      5-2 

where  kFtrans  represents the translation component of the Absolute Trajectory Error kF  

for every time step k  and m  is the total number of time step in the sequence. Thus, the result 

obtained from the Root Mean Squared Error (RMSE) evaluation is presented in Figure 5-2. 

This assessment technique was employed because of easy comparison in case we are interested 

in comparing our result with other researchers study since it is common technique of evaluation 

but for now our attention of comparison is focused on the Monte-Carlo algorithm 

 

 

 

 

 

 

https://vision.in.tum.de/data/datasets/rgbd-dataset
https://vision.in.tum.de/data/datasets/rgbd-dataset
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Figure 5-1: Absolute trajectory error measured using RMSE results of TUM RGB-D dataset  
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Given the comparison experiment presented between DIK-SLAM and Monte-Carlo algorithms 

in Figure 5-1, the results showed that DIK-SLAM represented with a blue bar of the chart 

performed better than the Monte-Carlo algorithm represented in the green bar of the chart. The 

result for every sequence of image presented in Figure 5.1 showed the DIK-SLAM attaining 

lower RMSE of ATE in its trajectory, compared to the Monte-Carlo algorithm. Moreover, this 

was the study expectation since the original Monte-Carlo algorithm had been modified to 

present the DIK-SLAM. However, in the Freiburg2_360_kidnap experiment, the original 

Monte-Carlo algorithm attained a lower RMSE of ATE in its trajectory compared to DIK-

SLAM. Thus, investigation after comparison with the ground truth discovered that the Monte-

Carlo algorithm got kidnapped and could not recover. Therefore, RMSE of ATE in its 

trajectory was only estimated to the point where it got kidnapped. But in the case of DIK-

SLAM, it was able to cover more distance because of its ability to recover from kidnapping. 

This accomplishment in DIK-SLAM further allows the continuity of measuring RMSE of ATE 

in its trajectory, beyond where the Monte-Carlo algorithm experienced kidnapping. Moreover, 

this situation allows DIK-SLAM to attain higher RMSE of ATE in its trajectory than in the 

Monte-Carlo algorithm. Nonetheless, the margin of the higher RMSE of ATE in its trajectory 

of the Freiburg2_360_kidnap experiment compared to other environment scenes is the highest 

because of the frequent occurrence of kidnapping. Thereafter overcoming kidnapping, a slight 

significance error occurs in its pose after recovering and its accumulation contributes to why 

DIK-SLAM attained the highest RMSE of ATE in its trajectory of the Freiburg2_360_kidnap 

experiment compared to other environment scenes. Meanwhile, comparing this study with the 

work of other researchers that employed a similar dataset, the result obtained is in accordance 

(Kaser, 2019).  
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5.2 Experiment 1.1: Evaluation with Publicly Available Dataset based on Relative 

Pose Error Translational using RMSE 

The environment sequences presented in Table 5.1 were further evaluated for pose error using 

Relative Pose Error (RPE). The RPE is an important measurement that must be carried because 

it corresponds to the drift of the robot trajectory from the ground truth measurement. This 

becomes useful for evaluating the visual odometry system. Thus, the relative pose error metric 

allows rotational and translational error to be combined to a single measure, but the rotational 

errors are indirectly captured by the Absolute Trajectory Error (ATE). The two measurements 

are strongly connected; therefore, the study’s relative pose error measurement will only be 

limited to translational error. The relative pose error translational (RMSE) metric used for 

evaluating the global error of trajectory at the time step k  is presented in equation 5-3. 
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where 

 mn , 

 kEtrans  signifies the translation components of the relative pose error kE , m  represents a 

sequence of camera poses and n  represents individual relative pose errors along the sequence, 

while   represents a fixed time interval, which is an intuitive value. In this study, the fixed 

time value is 1 and  mERMSE :1  then gives the drift per frame as presented in equation 5-4 

   



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m

ERMSE
1

:1:1 ,
1

                                                                                       5-4 

Equation 5-4 was used to extract the relative error pose for the sequence of the environment on 

an average overall of time intervals. Illustration of the result is presented in Figure 5-2. 



99 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e 
P

o
se

 E
rr

o
r 

Tr
an

sl
at

io
n

al
 in

 R
M

SE
 (

m
et

er
s)

Sequences of Various Environments

Evaluation Results for Four different 
Sequences from TUM RGB-D Dataset 

DIK-SLAM Algorithm

Monte-Carlo Algorithm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Relative pose error Translational measured using RMSE results of TUM RGB-D dataset 
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Figure 5-2 presents a comparitive result between DIK-SLAM and Monte-Carlo algorithms,  

which is similar to the one obtained in Figure 5-1. The results displayed, support DIK-SLAM 

signified by a blue bar of the chart attaining better performance than the Monte-Carlo algorithm 

presented in the green bar of the chart for every sequence of environments. The DIK-SLAM 

was declared to have better performance because it attained lower relative pose translation error 

(RMSE) in its trajectory, compared to the Monte-Carlo algorithm. This was expected since the 

Monte-Carlo algorithm had been modified to present the DIK-SLAM. Hence, in the 

Freiburg2_360_kidnap experiment, the DIK-SLAM attained higher relative pose translation 

error (RMSE) in its trajectory than the Monte-Carlo algorithm. Thus, investigaton into the 

ground truth discovered that the Monte-Carlo algorithm could only cover limited trajectory 

because it got kidnapped and could not recover. Therefore, a limited measurement was only 

allowed on its trajectory up until where it experienced kidnapping, unlike the DIK-SLAM 

algorithm, which covers more trajectory because of its ability to recover from kidnapping. 

These recoveries lead to more accumulation of relative pose translation error (RMSE) in its 

trajectory, which contributes to the reason, DIK-SLAM attained higher value than the Monte-

Carlo algorithm. Nevertheless, the margin of the translation (RMSE) error in the 

Freiburg2_360_kidnap experiment compared to other environment scenes is the highest 

because of the frequent occurrence of kidnapping. Thereafter recovery from kidnapping, more 

error occurs in its pose and its accumulation contributes to DIK-SLAM attaining the highest 

translation (RMSE) error in Freiburg2_360_kidnap, compared to other environment scenes. 

Thus comparing the study result with the publicly available results that employed a similar 

dataset, the result corresponds (Kaser, 2019). 
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5.3 Experiment 1.2: Evaluation with Publicly Available Datasets based on 

Processing Time 

 In this study, the SLAM algorithms is further evaluated by recording the time required to 

process an entire sequence of the environment, since the study is taking into consideration 

computational cost as related to processing speed. The result acquired is given in Figure 5-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: Time taken results to process sequences of Environment in TUM RGB-D datasets 
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Considering the comparison result between the DIK-SLAM and Monte-Carlo algorithm 

presented in Figure 5-3, the results displayed, support Monte-Carlo algorithm presented in the 

green bar of the chart attaining better performance than DIK-SLAM signified by a blue bar of 

the chart for every sequence of environments. This conclusion is because Monte-Carlo attained 

a lower processing time compared to the DIK-SLAM, which implies that processing speed in 

Monte-Carlo is faster than the DIK-SLAM algorithm (Wei et al., 2019). Investigation reveals 

that, the modification of Monte-Carlo to present DIK-SLAM with an improved performance 

has increased it computational complexity. The effect slowered the processing speed but 

considering the performance and the processing time margin between the two algorithms, the 

DIK-SLAM processing time is acceptable. Thus, the two algorithms attained the highest 

processing time at the scene Freiburg2_desk_with_ person, because the size of the file is huge 

compared to other environment scenes. The size of the data determines the processing time 

since the file is huge, it requires more processing time than other sequences of environments 

(Baeza-Yates and Liaghat, 2017).  

5.4 Experiment 2: Evaluation with Private Dataset. 

Given that the study presented a DIK-SLAM technique that was further investigated using a 

private dataset. This private dataset was recorded by a digital camera to generate multiple 

images with a resolution of 320 X 240 pixels.  These images include features like the wall, 

floor, etc. representing samples used to guide the robot trajectory. The private dataset was 

generated from the electrical building of a university in South Africa, containing six (6) 

classrooms, three (3) offices with all their doors closed, one (1) hall used as cafeteria, two (2) 

corner ways that lead to two (2) staircases, two (2) corner ways that lead to the 2 lifts  and 

passages. Hence, three SLAM algorithms were tested on the private dataset using Matlab 

simulation and were evaluated based on the ground truth measrement of the dataset. Thus, this 

ground truth was extracted using SICK-S 200, a 2D Laser scanner with a 270-degree field of 
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view, 50-meter maximum range, 0.1 mini-meter resolution and a camera sensor based on the 

technique proposed by (Ming and Ji-Ying, 2010) and  (Ceriani et al., 2009). These sensors has 

assisted to extract the ground truth measurement also the classification of a detailed map, 

illustration is presented in Figure 5-4a. The ground truth measurements were assumed to be 

without error, close to real life measurement and the safest path for any robot to follow. These 

ground truth measurements were used for comparison with the simulation results of the SLAM 

algorithms obtained from Matlab. 

 

 

 

 

 

 

 

 

 

Figure 5-4a: The extracted ground truth of the generated dataset using laser sensors 

The ground truth generated map presented in Figure 5-4a, represent an indoor environment of 

the private dataset and sample frame from the dataset is provided in Figure 5-4b.  
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Figure 5-4b: Sample of generated dataset image used to test the SLAM algorithms 

This dataset was intended for studying the performance of various SLAM algorithms and 

results obtained were discussed broadly in the experiment below. However, the private dataset 

was employed because of the access to the ground truth measurement of the environment which 

facilitate easy comparison with the experimental result obtained from the SLAM algorithms. 

 Experiment 2.1: Qualitative Experiment on Kidnapping Evaluation for DIK-SLAM 

VS Original Monte-Carlo Algorithm 

Kidnapping in robotic is often experienced during navigation. This happens when the robot is 

not aware of its new position and given that there is no failing sensor, increasing in 

measurement noise is a common factor that can lead to it. The consequences lead to erroneous 

or inability to estimate pose, and in worst cases, can lead to kidnapping with no recovery, which 

violates the basic principle of SLAM. In the attempt to validate the proposed DIK-SLAM 

ability to overcome kidnapping, the private dataset was employed for evaluation. This dataset 

was first generated without the introduction of objects for monitoring the behaviours of the 

algorithms. Matlab simulation software was employed to demonstrate the map built and robot 

trajectory developed by the SLAM techniques. The robot trajectory is significant to show the 

robot pose at every distance covered in the map created and facilitate easy error measurement 

for these trajectories (Absolute pose difference when compared to ground truth) (Sturm et al., 

2012). This experiment was implemented using Matlab simulation for a comparison between 

DIK-SLAM and the original Monte Carlo algorithm presented in the study of (Thrun et al., 

2001). The original Monte-Carlo algorithm is publicly available and can be accessed from this 
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site: https://ch.mathworks.com/matlabcentral/fileexchange/8068-montecarlo. Figure 5-5a 

shows the qualitative result of the SLAM algorithms. 

 

 

 

 

 

 

 

 

 

Figure 5-5a: Qualitative trajectory results for DIK-SLAM and Monte-Carlo algorithm 

In Figure 5-5a, there are two different robot trajectories in the simulated map representing the 

environment. The orange colour represents the robot trajectory for DIK-SLAM, while the black 

colour represents the robot trajectory of the original Monte-Carlo algorithm. The simulated 

map is made up of two colours, the yellow part is boundaries/blockage or obstacles with a bit 

represented by one, while the blue part is road or drivable part with a bit represented by zero. 

This information is meant to assist in successful trajectory. At the beginning, the robot’s 

trajectory was perfect but as they began to cover more distance, the black colour trajectory 

which signifies the Monte-Carlo algorithm often got to the yellow part (blockage) before 

correcting its step back to the blue part (Road/drivable) and this was experienced in many parts 

of the map in Figure 5-5a. This trajectory error will be measured quantitatively to demonstrate 

the SLAM algorithm with the best performance. The Absolute Trajectory Error (ATE) will be 

https://ch.mathworks.com/matlabcentral/fileexchange/8068-montecarlo
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employed to measure the errors in the robot trajectories.  Furthermore, it was discovered that 

the robot is kidnapped because the black trajectory could not get to the destination, as a result 

of not recovering from the kidnapping position, whereas the orange representing DIK-SLAM 

was able to reach its destination. Thus, the area where the kidnapping happened on the dataset 

is a complex environment, considering a corner suddenly ends by an obstruction (wall) and 

continues after the obstruction (wall). Furthermore, it could be the unforeseen noises in the 

natural form of the image that triggers kidnapping because when the image was matched to the 

simulated map, where the kidnapping occurred, heavy shadow and lighting noises were present. 

The presence of such noises adulterate the RGB colour properties. The effect might changed 

the appearance of the image, making it difficult for the robot to recognise it. Moreover, the 

study further justified this reason by performing another experiment of increasing the image 

noise to monitor the behaviour of these SLAM algorithms. Environmental noises, like any other 

noise, degrade image quality which causes loss of data and dissatisfactory in visual 

consequence, as a result of distortion in the RGB properties of the image (Alqadi, 2018). 

However, the study only targets shadow and light intensity and to increase such noises in the 

images, the attention is focused once again on  the Matlab to increase the noise measurement 

in the image. Environmental noises alter the number of occurrences of colour mixture that ends 

up changing the appearance of the image, depending on the noise intensity (Alqadi, 2018). The 

effect makes interpretation in an image very difficult and could lead to miss-classification in 

images (Alqadi, 2018). Hence, introducing these noises into the image can occur naturally, but 

Matlab can be used to generate such noise in images. In Matlab, the ‘Imadjust’ function has 

been used by researchers to increase or decrease the level of shadow and light intensity in 

images based on the concept of contrast and brightness (Sinecen, 2016). The brightness of the 

image can be adjusted when adding or subtracting respectively a certain value to Gray  Scale 

level of each pixel, while the contrast of the image can be adjusted by multiplying all pixels 
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ji,  by a certain value.  Illustration for both brightness and contrast is presented in equations 

5-5 and 5-6 respectively.  

    )(,, 0

0

IncreaseBrightnessb

DecreaseBrightnessbbjiFjiG 

                                                                     5-5 

    )(*,, 0

0

IncreaseContrastc

DecreaseContrastccjiFjiG 

                                                                        5-6 

where  jiG ,  is the pixel representation of the image in the Gray Scale level and  jiF ,  

represents the pixel of the input image (Sinecen, 2016). 

The ‘Imadjust’ function based on equation 5-5 and 5-6 is used to increase both the brightness 

and contrast. Thus, increasing the brightness will severely increase the light intensity noise 

already affecting the image (Shuang et al., 2014) while increasing the contract will intensify 

the shadow noise by making it darker (Jack et al., 1999). Considering this experiment, the 

percentage_alteration of the noise ratio in the private dataset that was generated from the 

electrical building of a university in South Africa was increased by 10%. The experiment 

between the DIK-SLAM and the original Monte-Carlo algorithm was implemented once again 

to study and compare the SLAM algorithms behavior towards the new dataset with increased 

environmental noises. Illustration of the result obtained is provided in Figure 5-5b      

 

 

 

 

 

 



108 

 

 

 

 

 

 

 

 

 

 

Figure 5-5b: Qualitative trajectory results for DIK-SLAM and Monte-Carlo algorithm in 10% increase noise level 

In Figure 5-5b, the orange colour still signifies the DIK-SLAM trajectory, while the Black 

colour represents the trajectory of the Monte-Carlo algorithm. The simulated map is 

represented in two colours, the yellow part still symbolizes boundaries/blockage or obstacles 

with a bit denoted by one, while the blue symbolizes road or drivable part with a bit denoted 

by zero. 

 This information is meant to assist in a successful trajectory. In the beginning, the robot’s 

trajectory is perfect but as they begun to cover more distance, the original Monte-Carlo 

algorithm got kidnaped earlier than in Figure 5-5a, just right after the second corner and could 

not recover.  

Meanwhile, the DIK-SLAM proceeded to cover more distance even after the second corner in 

its trajectory, but eventually got kidnap and could not recover. Thus this experiment proved 

that DIK-SLAM could only withstand kidnapping in Figure 5-5a and to some extent, in 5-5b, 

because of the filters’ ability to reduce the effect of the noises and its ability to re-localize itself. 

However, this study shows kidnapping does not only occur when there is a failing sensor, or 
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when the robot is teleported into an unknown environment. Kidnapping can occur during 

severe/high intensity of noises (illumination variation and measurement noises) as supported 

by this experiment. This experiment also supports the effectiveness of the filtering algorithm 

employed towards addressing the problem of shadow and light intensity. Conclusively, Figures 

5-5a and 5-5b that represent the qualitative results and for a comparison with both trajectories, 

support the DIK-SLAM ability to attain better performance than the original Monte-Carlo 

algorithm. 

5.5 Experiment 2.2: Quantitative Result for Trajectory Error Measurement of the 

DIK-SLAM and Original Monte-Carlo Algorithm based Absolute Pose 

Difference. 

This section discusses a different type of evaluation scheme used to validate the DIK-SLAM. 

This evaluation is carried out on the initial qualitative result of the private dataset generated 

from an electrical building of a university in South Africa without adjusting the brightness and 

contrast as presented in Figure 5-5a. The purpose of the experiment this time around, is to 

measure errors in the trajectories using the absolute pose difference as related to the ground 

truth robot trajectory for a comparison between DIK-SLAM and the original Monte-Carlo 

algorithm. There are several techniques that can be employed to implement error measurement, 

one of which is the pairwise error probability (Nobelen and Taylor, 1996, Nezampour et al., 

2011). In this study, the Absolute Trajectory Error (absolute pose difference) presented in 

equation 5-1, will be employed for estimating the error in the robot trajectory as related to the 

ground truth trajectory. Illustration of the results obtained is given in Figure 5-6. 
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Figure 5-6: Quantitative result for trajectory error measurement for DIK-SLAM and Monte-Carlo algorithm 
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Figure 5-6 signifies the quantitative result of the error measurement derived from the absolute 

pose difference as related to the ground truth trajectory. The purple line colour in Figure 5-6 

represents the result of the absolute trajectory error in the DIK-SLAM Trajectory, while the 

blue colour in Figure 5-6. represents the result of the absolute trajectory error in the original 

Monte-Carlo algorithm trajectory. Considering the observation in Figure 5-6, the absolute 

trajectory error between the two trajectories at the beginning is relatively low, but as much 

distance is covered into the areas where the images are suffering from severe lighting, shadow 

effect and corners, etc.  

The absolute trajectory error between both algorithms becomes significant. The purple line 

colour which represents the DIK-SLAM trajectory attained a lower absolute trajectory error in 

most cases of the trajectory. The blue colour which signifies the original Monte-Carlo 

trajectory attained a higher absolute trajectory error for most trajectory covered. Its trajectory 

could not reach the final destination unlike DIK-SLAM because it could  not recover from 

kidnapping. However, there are instances in the quantitative results, where both SLAM 

algorithms attained higher absolute trajectory errors in their trajectory. This is due to the 

presence of corners suddenly appearing at the edge of the passages. These places are 

challenging and it is where misdetection mostly appears in the qualitative results.  

Given the relationship between accuracy and error, accuracy means the closeness of agreement 

between a true value and the measured value while error signifies differences between a 

measurement and the true value   (Kitchenham et al., 2001). Thus, the higher the error, the 

lower the accuracy in trajectory and vice versa   (Kitchenham et al., 2001). Based on the 

experimental results presented in Figure 5-6, the DIK-SLAM with lower error, attained a higher 

accuracy trajectory than the original Monte-Carlo algorithm. Overall, the performance of the 

DIK-SLAM algorithm is better than the original Monte-Carlo algorithm.   
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5.6 Experiment 2.3: Qualitative Experiment for DIK-SLAM Dynamic Environment 

Evaluation   

In literature, SLAM algorithms were first introduced to address static environments (Thrun et 

al., 2001), but not all environments are static, there are environments that are dynamic in nature 

due to the presence of moving objects. Therefore, we observe the performance of the DIK-

SLAM in a dynamic environment. In the DIK-SLAM technique, cells in the maps are altered 

as changes happen in the environment, since the concept relies on the assumption that cells in 

the map are independent of an object. Therefore, identifying changed cells in the map requires 

a constant comparison of the previous map with the current one to reveal the status of the cell 

that has changed and identified as a dynamic environment.  In this experiment, the initial private 

dataset generated from an electrical building of a university in South Africa,  was created without the 

object and was converted to a dynamic environment by first introducing 35 objects into the 

environment. 5 objects are introduced to the short passage, 14 objects to the long object and 8 objects 

to the hall. While 8 objects at an average of 2 are introduced at every corner (4) into the environment. 

These objects include boxes, bins, tables, chairs and people, all stationed in the environment 

before recording, using a digital camera to generate a dataset with objects. Illustration of the result for 

the object introduced in the environment is presented in Figure 5-7.    

 

 

 

 

 

 

 

 

 



113 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7: Qualitative result of DIK-SLAM on object detection  

In Figure 5-7, there is a robot trajectory in orange colour representing DIK-SLAM in the 

simulated map representing the environment. The simulated map is made up of two colours, 

the yellow part is boundaries/non-drivable/blockage or obstacles with a bit represented by one, 

while the blue part is road/free/drivable part with a bit represented by zero just like Figure 5-

5a. Thus, the difference between the mapping of Figure 5-7 and Figure 5-5a, which is an 

environment without an object, is that 35 certain cells of the map labeled blue in Figure 5-5a 

have changed to yellow in Figure 5-7. These cells are occupied by an obstacle/object, therefore, 

their status changed to yellow appearing in the mist of blue as presented in Figure 5-7. After 

the introduction of the object into the environment, we proceeded to the dynamic experiment 

by completing the removal of some objects/obstacles out of the environment. 3 objects were 

removed completely from the short passage, 10 objects were remove completely from the long 

passage, 4 objects were removed completely from the hall while 1 object was removed 

completely from every corner (4). Afterwards, the proposed concept that relies on the previous 

status to predict the current state is applied to compare the previous map with the current one 
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to identify a cell that has changed its colour status and will be identified by x representing part 

of the environments that are dynamic in nature. The illustration is given in Figure 5-8a. 

 

 

 

 

 

 

 

 

 

 

Figure 5-8a: Qualitative result of DIK-SLAM on the dynamic environment  

In Figure 5-8a, the orange colour trajectory represents the DIK-SLAM navigation within a 

simulated map that is developed with two colours. The yellow part is boundaries/non-

drivable/blockage or obstacles with a bit represented by one, while the blue part is 

road/free/drivable part with a bit represented by zero just like Figure 5-7. Thus, the difference 

between the mapping of Figures 5-7 and 5-8a is the DIK-SLAM ability to identify yellow cells 

(occupied by object) that are changed to blue (object free) and mark x representing the dynamic 

environment where, an object has been removed completely. While the yellow cells (occupied 

by object) in the mist of blue signifies the object that was not removed from the environment. 

The result presented in Figure 5-8a validated the DIK-SLAM ability to detect and cope with a 

dynamic environment. Although not all dynamic environments initiated were detected but the 

evaluation was carried out to determine the cause and the success rate of dynamic detection. 

These will be presented at the quantitative experiment. Furthermore, since the study targets 

dynamic noisy environments, it is important to study the behavior of the proposed SLAM 
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algorithm in various noise level ratios. Thus, using the same dataset used to present the dynamic 

result in Figure 5-8a, the private dataset generated from an electrical building of a university 

in South Africa is already affected by shadow and light intensity noise. The study further 

intensifies these noises using the concept of brightness and contrast based on the “Imadjust” 

function of the Matlab as presented in equation 5-5 and 5-6. The brightness was increased to 

intensify the light intensity while the increase of contrast will intensify the shadow by making 

it darker. They both increased at a ratio of 5% before re-running the simulation once again, and 

an illustration of the result obtained is presented in Figure 5-8b.   

 

 

 

 

 

 

 

 

 

 

Figure 5-8b: Qualitative dynamic result for DIK-SLAM algorithm in 5% increase noise level 

In Figure 5-8b, the orange colour trajectory represents the DIK-SLAM navigation within a 

simulated map that is developed with two colours. The yellow part is boundaries/non-

drivable/blockage or obstacles with a bit represented by one, while the blue part is 

road/free/drivable part with a bit represented by zero. Thus, the DIK-SLAM was able to 

identify yellow cells (occupied by object) that are changed to blue (object free) and mark x 

similar to Figure 5-8a representing the dynamic environment, where the object has been 

removed completely. While the yellow cells (occupied by object) in the mist of blue signifies 
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the object that was not removed from the environment. However, in Figures 5-8a and 5-8b, 

they both were unable to detect all true positive dynamic environments initiated. Thus, the 

difference between them was that there were false positive detections of the dynamic 

environment in Figure5-8b. In the simulated map, certain cells labelled blue, changed to yellow 

and was mark x since the cell status changed even though there was no object placed in that 

surrounding to initiate a dynamic environment. This will be evaluated quantitatively to 

determine the cause and the rate of dynamic false positive detection attained ,and the outcome 

will be discussed in experiment 2.4. 

5.7 Experiment 2.4: Quantitative Experiment for DIK-SLAM Dynamic 

Environment Evaluation   

Given that DIK-SLAM has shown the ability to cope with the dynamic environment, the study 

has not measured the rate of success attained by the SLAM algorithm. In carrying out this 

experiment, the qualitative result of the dynamic dataset generated from an electrical building 

of a university in South Africa as presented in Figure 5-8a will be evaluated. Thus, this 

qualitative result compared to the real-life scene will be evaluated to measure the success rate 

of the DIK-SLAM algorithm. In the real-life dataset, 35 objects were originally introduced into 

the environment, a total of 21 objects were removed from their initial position to initiate 

dynamic condition. However, in the simulation result presented in Figure 5-8a, not all the 

dynamic environments present in the dataset were detected. Therefore, it is important to 

measure the DIK-SLAM performance and the result obtained is presented below in Table 5-2.     
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Table 5-2: Quantitative result on DIK-SLAM dynamic environment evaluation  

Environment Section Real-Life Object 

introduced to the 

environment 

Simulated object 

detected in the 

environment 

Real-life object 

removed to 

initiate dynamic 

environment 

Simulated 

dynamic 

environment 

detected 

Total objects in the 

short passage 

5 5 3 3 

Total objects in the 

long passage 

14 14 10 10 

Total objects in the 

hall 

8 8 4 4 

Total objects at all 

the Corners  

8 8 4 0 

Total objects in the 

environment 

35 35 21 17 

 

Figure 5-8a has shown DIK-SLAM ability to cope with the dynamic environment, but  did not  

display the success rate. Nevertheless, Table 5-2 based on the evaluation of the qualitative 

result presented in Figure 5-8a has helped to reveal the success rate of DIK-SLAM. In 

summary, every object removed to initiate a dynamic environment at both passages and the 

hall is perfectly detected. However, at the corners, 4 objects at an average of 1 for each corner 

was removed to initiate dynamic condition, but the DIK-SLAM could not identify any of the 

dynamic environments at the corners. This miss-detection happens because some of the objects 

are small and positioned very close to the wall, while the other miss-detection was caused by 

reflections from the walls.  

The DIK-SLAM performance is satisfactory because of its ability to identify a total number of 

17 dynamic environments compared to the real-life, where a total number of 21 dynamic 

environments were initiated. Overall, the percentage of dynamic detection for DIK-SLAM is 

estimated at 81% using equation 5-7.  
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where dx  represents the number of dynamic environments detected and tx  represents the total 

number of all dynamic environments initiated in the environment. 

However, the impressive results of 81% of dynamic environment detected in the original 

dataset without any form of adulteration were considered.. The study, on the other hand, has 

not measured the success rate attained by the DIK-SLAM when the noises in the image are 

increased by 5%. In carrying out this experiment, the qualitative result of the dynamic dataset 

generated from an electrical building of a university in South Africa as presented in Figure 5-

8b will be evaluated. Thus, this qualitative result was compared to the real-life scene to measure 

the success rate of the DIK-SLAM algorithm when encountering dataset with increased noise 

level. Illustration of the results obtained is presented in Table 5-3. 

Table 5-3: Quantitative result on DIK-SLAM dynamic environment evaluation at 5% noise increment     

Environment 

Section 

Real-Life 

Object 

introduced to 

the 

environment 

Simulated 

object detected 

in the 

environment 

Real-life 

object 

removed to 

initiate 

dynamic 

environment 

Simulated 

dynamic 

environment 

detected 

False-

positive 

Simulated 

dynamic 

environment 

detected 

Total objects in 

the short passage 

5 5 3 5 2 

Total objects in 

the long passage 

14 14 10 15 5 

Total objects in 

the hall 

8 8 4 7 3 

Total objects at 

all the Corners  

8 8 4 4 4 

Total objects in 

the 

environment 

35 35 21 31 14 
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Considering the results presented in Figure 5-8b, this once again supports the DIK-SLAM 

mapping technique's ability to cope with the dynamic environment, since the cell in the grid 

can change status. Nonetheless, it did not display the success rate but Table 5-3 based on the 

evaluation of the qualitative result presented in Figure 5-8b has helped to reveal the success 

rate of DIK-SLAM. Thus, a similar object removed to initiate the dynamic environment in 

Figure 5-8a was also used but under the influence of noise increment at a ratio of 5% to present 

the DIK-SLAM result in Figure 5-8b. In summary, at the short passage where 3 real-life objects 

were removed to initiate a dynamic environment,  a total of 5 dynamic environments was 

detected but 2 of them were false positive because no objects were placed in that surrounding 

to initiate a dynamic environment. At the long passage where 10 real-life objects were removed 

to initiate a dynamic environment, a total of 15 dynamic environments was detected but 5 of 

them  were false positive because no objects were placed in that surrounding to initiate a 

dynamic environment. At the hall/cafeteria where 4 real-life objects were removed to initiate a 

dynamic environment, a total of 7 dynamic environments was detected but 3 of them were false 

positive because no objects were placed in that surrounding to initiate a dynamic environment. 

While at the corners, a total of 4 real-life objects at an average of 1 per corner were removed 

to initiate a dynamic environment. Thus, a total of 4 dynamic environments were detected but 

all were false positive because no objects were placed in that surrounding to initiate a dynamic 

environment. However, investigating the cause for the false-positive detection led us to realign 

the pixel  ji,  of the dataset with increased noises to the map obtained in Fgure 5-8b. 

Thereafter, it was realized that point with false-positive detection is affected with high light 

reflection and shadow cast from objects.  This discovery shows that the high intensity of light 

reflection and shadow cast from the object has the ability to trigger obstacle detection on the 

cells of the grip map. Therefore, cell status changed from blue to yellow, and it was marked x 
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by the DIK-SLAM algorithm, since a dynamic condition has been initiated,although there is 

no real object placed in that surrounding to initiate such a condition. 

5.8 Experiment 2.5: Qualitative Trajectory Experiment for DIK-SLAM VS EKF 

Algorithm in a Dynamic Environment. 

The study further validates the performance of DIK-SLAM using the same dataset with the 

introduction of the dynamic environment as presented in experiment 2.3 for evaluation 

purposes. In this experiment, the Monte-Carlo algorithm was not selected because it can only 

cope with a static environment. Alternatively, an Extended Kalman filter proposed by another 

researcher was employed for this evaluation. Thus, the work of (Bailey et al., 2014) was 

selected because they discussed a new version of an Extended Kalman Filtering algorithm that 

could perform better than the original Extended Kalman Filter and can be publicly accessed 

from this site: www.acfr.usyd.edu.au/homepages/academic/tbailey/software/index.html. The 

availability of this algorithm has facilitated an easy comparison with the proposed SLAM 

technique (DIK-SLAM) presented in this study. The evaluation is based on the robot trajectory 

because of the interest in pose difference at every instance, taking into consideration the ground 

truth classification. Figure 5-9 represents the qualitative results obtained between DIK-SLAM 

and the modified Extended Kalman Filter (Bailey et al., 2014).  
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Figure 5-9: Qualitative trajectory results for DIK-SLAM and modified EKF algorithm 

In Figure 5-9, the yellow part is boundaries/non-drivable/blockage or obstacles with a bit 

represented by one, while the blue part is road/free/drivable part with a bit represented by zero 

just like Figure 5-7. However, there are two robot trajectories navigating in the simulated model 

representing the environment, the DIK-SLAM trajectory still maintains the orange colour, 

while the robot trajectory in purple colour represents the modified EKF presented by (Bailey 

et al., 2014). In the simulated model, the yellow part that appears in the mist of blue region is 

classified by the system to be obstacle/object, because their bits are represented by one, since 

the cell of the map is occupied while those  marked x are the detected dynamic environments. 

Given the trajectories of the robots, the movement of the two are very close, they are both able 

to cope with the dynamic environment, but there are instances that the purple trajectory which 

represents the modified EKF, get to the yellow part, which represents non-road/obstacle before 

correcting its trajectory to the blue, which signifies the drivable part. Thus, this similar 

incidence also happens with the orange trajectory, which represents DIK-SLAM, but in few 
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instances compared to the modified EKF. This will be more justified during the quantitative 

experiment because we will be able to visualize better by means of a graph to display the rate 

at which the systems perform in their pose as related to their trajectory for every time step. 

However, in the qualitative results for Figure 5-9, the two algorithms performed closely in their 

trajectory, most importantly they could both cope with the dynamic environment and there was 

no instance of kidnapping without recovery. But, considering the miss-detection that frequently 

happens at the corners, the DIK-SLAM attained better performance than the modified EKF.                        

5.9 Experiment 2.6: Quantitative Result for Error Measurement of the robot 

Trajectory for DIK-SLAM and Modified EKF 

This section discusses a different type of evaluation scheme used to validate the DIK-SLAM. 

The evaluation again is carried out on the qualitative result of the dynamic dataset generated 

from an electrical building of a university in South Africa as presented in Figure 5-9. The 

purpose of the experiment is to measure the error as related to the robot trajectory, taking into 

consideration the ground truth trajectory for a comparison between DIK-SLAM and modified 

EKF algorithm. There are several techniques that can be employed to carry out this task, one 

of which is the pairwise error probability. However, in this study, the Absolute Trajectory Error 

(ATE) presented in equation 5-1 will be employed for estimating the error in the robot 

trajectory. Illustration of the results obtained is given in Figure 5-10.  
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Figure 5-10: Quantitative error results for DIK-SLAM and modified EKF algorithm  
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In Figure 5-10, which represents the quantitative results of the error measurement for DIK-

SLAM and EKF, the purple line colour in the graph in Figure 5-10 represents the result of the 

absolute trajectory error in the trajectory of DIK-SLAM and the black line colour in the graph 

represents the absolute trajectory error in the trajectory of EKF. Given Figure 5-10, the purple 

line colour in the graph which signifies the DIK-SLAM ,attained the lowest absolute trajectory 

error for all distance covered, while the black colour line which signifies EKF, attained the 

highest trajectory error. There are instances where the error value compared to the ground truth 

trajectory for both algorithms is high. This mostly happens at the corners, where misdetection 

appears a lot in the qualitative result.  The trajectory error between DIK-SLAM and the 

modified EKF is relatively low for most trajectories. Unlike the original Monte-Carlo algorithm 

that will experience a low error margin at the beginning, but grows higher as more distance is 

covered towards the challenging part of the image before it eventually gets kidnapped. 

However, considering the relationship between error and accuracy (Kitchenham et al., 2001), 

all experiments carried out in this study support the DIK-SLAM attaining the lowest error in 

most trajectories, implying that DIK-SLAM attained the best accuracy in its trajectory 

compared to either original Monte-Carlo or the modified EKF. 

5.10 Experiment 3: Computational Complexity as Related to Processing 

Time/Speed for SLAM Techniques 

In this section, the SLAM techniques used for experimental purposes were validated based on 

their computational complexity as related to processing time. The computational complexity is 

a common issue complained by many researchers (Thrun et al., 2001, Abouzahir et al., 2014) 

and it was taken into consideration in this study. Therefore, it is important to measure the 

computational complexity of the DIK-SLAM technique for a comparison with the modified 

EKF, and Original MCL algorithm. In carrying out this experiment, a function in Matlab was 

employed to assist in measuring the processing time for each SLAM algorithm. These function 



125 

 

are  known as TIC and TOC (Knapp-Cordes and McKeeman, 2011). TIC is a function called 

before something is to be timed, and TOC is called afterwards. Using these functions, assists 

to estimate the processing time for running each algorithm, using TIC before running the 

program and TOC afterwards (Knapp-Cordes and McKeeman, 2011). Table 5.4 shows the 

results of the computational complexity as related to  the processing time. 

 Table 5-4: Computational complexity as related to processing time 

 

In Table 5-4, the result obtained is similar to that of the publicly available dataset. The Monte-

Carlo algorithm attained the lowest processing time, implying that Monte-Carlo algorithm has 

the fastest processing speed with the lowest computational cost, compared to other algorithms. 

The modified EKF has the highest processing time, implying that it suffers the highest 

computation cost with the slowest processing speed (Wei et al., 2019). This was complained 

by many researchers (Zhang et al., 2011, Thrun et al., 2001, Abouzahir et al., 2014) which 

influenced  us in not selecting  the EKF because, during re-modification of the algorithm, there 

is possibility of increasing its complexity more beyond acceptance, even though it would 

improve its robustness. Rather, we  selected a particle-based technique. The DIK-SLAM 

algorithm has a processing time of 140s closer to the original Monte-Carlo than the modified 

EKF, but there is a possibility of improving the processing speed. This can be achieved by 

using other standalone filtering algorithms with lower computational complexity, than the one 

employed in this study or proposing a particle-based technique of addressing environmental 

SLAM Algorithms Processing time (seconds) 

Monte-Carlo 120(s) 

DIK-SLAM 140(s) 

Modified EKF 300(s) 
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noises rather than introducing new standalone filtering algorithms that also contribute to the 

DIK-SLAM technique complexity. These will be investigated in our next study.  

5.11 Chapter summary  

This chapter discussed the comparison of experiments that were implemented. The outcomes 

derived from them showed that the DIK-SLAM equipped with modified Monte-Carlo 

algorithm, attained better results than other SLAM algorithms, except for the results of 

experiment 8 with minimal difference in processing time, given the experiment of 

computational complexity as related to processing time. The results of the processing time for 

the DIK-SLAM for both private and public dataset compared to the fastest algorithm (original 

Monte-Carlo) were still acceptable, considering their accomplishment. However, it could be 

improved and more research is necessary to accomplish that goal 
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CHAPTER SIX 

6 SUMMARY, CONCLUSION AND FUTURE WORK  

This chapter presents the conclusion, summary and future work for the research conducted. 

The goal of the study was to implement a DIK-SLAM technique that would assist autonomous 

robots to attain perfect navigation when encountering problems such as dynamic environment, 

kidnapping, illumination variation and shadow in its environment. However, since we have 

accomplished this task, it is vital to discuss the SLAM technique achievement, to know whether 

the objective of the study was accomplished or not.  

6.1 Summary of the study 

The objectives and the research questions of the study were addressed by proposing a DIK-

SLAM technique that was implemented by using Matlab. The results accomplished are 

validated by using Absolute Trajectory Error, Root Mean Squared Error (RMSE), TIC and 

TOC to measure the performance of the system. The accomplishment of the study is 

summarised in this chapter.   

 The first objective that targeted previous studies conducted on SLAM techniques for 

identification of problems like dynamic algorithm, environmental noises, kidnap robot 

and concurrency algorithms have been addressed in chapters 2 and 3 which also 

provided a general review and discussion on SLAM and how it had evolved over the 

years. 

 SLAM problems discovered in the literature review carried out in chapters 2 and 3 were 

as follows: the dynamic environment, kidnap problem and environmental noises. These 

problems were targeted and for them to be resolved, they needed the algorithms to be 
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re-modified. Thus, The algorithm modifications were the second objective of the study, 

which was addressed and presented in detail in chapter 4.  

 Given the situation of re-modification and the introduction of new algorithms to 

enhance the performance of a system, this practice increased the complexity as related 

to processing time. However, this issue was minimised by the use of concurrency 

technique, which was the third objective of the study. Thus, this was accomplished in 

chapter 4, which discussed various concurrency techniques, how they function and the 

reason for selecting the Rotating Tilling (RT) concurrency technique.  

 The last objective of the study was the evaluation of the SLAM techniques performance 

and was carried in several experiments and a brief discussion thereof wasgiven below. 

 The experiment with the use of publicly available datasets was to test 

DIK-SLAM's ability to cope with publicly datasets. Thus, considering 

the result obtained, the RMSE for Absolute trajectory error and relative 

pose error translational of DIK-SLAM was lower for all experiments 

compared to the Monte-Carlo algorithm, except for the 

Freiburg2_360_kidnap experiment where the error results attained were 

higher. However, the reason for that were discussed in chapter 5. The 

results obtained were in accordance with the technique of RGB-D 

SLAM and RTAB proposed in the work of (Kaser, 2019) using a similar 

dataset.     

 The qualitative results in Figures 5-5a and 5-9 of the private dataset were 

evaluated quantitatively for the purpose of error measurement. The error 

measurement in the trajectory of the robot that was measured using the 

absolute trajectory error technique showed that in DIK-SLAM, the 

percentage overall error rate for all trajectory stood at 9% and in Monte-
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Carlo algorithm, error stood at 20% while in modified EKF, error stood 

at 14%. Given this value for comparison, it showed  that the DIK-SLAM 

attained minimal error than other SLAM algorithms used in this 

experiment. 

 The qualitative results in Figures 5-5a and 5-8a had proven that DIK-

SLAM could withstand the problem of kidnapping and dynamic 

environment respectively. However, if the noise intensity in Figure 5-3a 

was at a high rate, the DIK-SLAM could experience kidnapping as 

presented in Figure 5-5b. Thus, Measuring the qualitative results in 

Figure 5-8a, 81% detection of the dynamic environment was noted and 

presented in Table5-2, the results of which were accepted. However,, if 

the intensity of the noises were increased, we could have seen the 

dynamic detection performance value dropping below 81% with a lot of 

false detection, as it was presented in Table 5-3.     

 The experiment for complexity computational cost as related to 

processing time had assisted us to realize a possible way of improving 

the DIK-SLAM complexity, which will be discussed under future work. 

The Monte-Carlo attained the fastest processing time for both public and 

private datasets, but the time differences between Monte-Carlo and 

DIK-SLAM algorithms were not much for both cases. Thus, considering 

the private dataset, the Monte-Carlo algorithm attained the fastest time 

of 120sec, while the DIK-SLAM was second in position with 140sec. 

The worst value was obtained from the modified EKF with a results that 

were more than double of DIK-SLAM processing time. However, the 

difference between the original Monte-Carlo and DIK-SLAM stood at 
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20sec, but considering the effectiveness and the number of problems 

DIK-SLAM can cope with, the current processing time was acceptable. 

The experiment had proven DIK-SLAM performance and when benchmarked with the publicly 

available and private datasets, the DIK-SLAM still attained better performance than all SLAM 

algorithms employed for experimental comparison.  

6.2 Summary of contribution 

In the study conducted to present a novel SLAM technique, the following were contributed to 

the research. 

 A similar DIK-SLAM technique that was presented in this study had been published 

by journals and conferences accredited by the Department of Higher Education and 

Training, South Africa. 

 The DIK-SLAM had been evaluated for trajectory error and from the results obtained, 

if the system is adopted by industries and companies involved in exploration, it would 

increase productivity while reducing accidents and injuries. 

 The effect of environmental noises, dynamic environment and kidnaping that cause 

failure to SLAM technique had been minimized and overcame in this study.  

 The high computation complexity as related to processing time after introducing 

filtering algorithms had been minimized to some extent. 

 A good comparison of computational complexity as related to processing time/speed 

for various algorithm is presented in this study. 

6.3 Conclusion 

The attention on SLAM is increasing daily because it supports the possibilities of concurrent 

execution of mapping and localization processes. These become a great achievement in solving 
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the problem of mobile robot autonomously, achieving its goal without being controlled by 

anyone. However, this accomplishment has not been fully attained due to various limitations 

of SLAM. The previous review conducted for this study showed, that SLAM still suffers from 

the issue of illumination variation, kidnap robot, high computational cost and dynamic 

environment (Agarwal and Burgard, 2015., Irie et al., 2012., Jia et al., 2016. .). The proposed 

DIK-SLAM technique has the ability to overcome the problem of illumination variation due to 

the presence of filters introduced into the system. These filters are operating in parallel because 

the computational cost as related to processing speed was also taken into consideration. The 

DIK-SLAM technique was also equipped with a modified Monte-Carlo algorithm to cope with 

a dynamic environment, based on the cell occupancy technique. The DIK-SLAM technique 

can also handle the kidnap problem by using the initializing localization technique.   

Matlab was used for implementation and the experiment was validated based on absolute 

trajectory error, Root Mean Squared Error (RMSE) and computational cost as related to 

processing time. The graphical representation result showed better performance of DIK-SLAM 

compared to other SLAM algorithms when benchmarked with the publicly available and 

private datasets. Thus, the original Monte-Carlo attained the best result for less computational 

complexity, but the result attained by the DIK-SLAM was acceptable considering the number 

of problems the technique was addressing. Eventhough success was attained in this study, the 

next important task is on how to further reduce the computational cost to attain maximum 

processing speed and how to improve its effectiveness around the corners. Although we have 

an idea that will be discussed briefly under future work, but more research is necessary to be 

carried out.  

Considering the experiment carried out in this study, it can be concluded that the DIK-SLAM 

equipped with the modified Monte-Carlo algorithm and filters has the ability to cope with the 
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issue of Illumination variation, dynamic environment and kidnapping at a lower computation 

complexity than the modified EKF to attain perfect navigation in its environment.   

6.4 Future work 

Over the years, the SLAM technique has been proposed to address navigations for an 

autonomous robot, but has been confronted with many challenges. However, some of these 

challenges are addressed in this study, but there are limitations that still need to be 

accomplished to present a future SLAM technique better than DIK-SLAM. For instance, the 

study only targeted two environmental noises (shadow and light intensity). There are several 

environmental noises like humidity, mist, fog, and snow, that we did not address in this study,  

which are still challenges that need to be resolved in the SLAM technique.    

The filtering stage is also an area where many challenges still exist. Apparently, this stage 

contributes to an increase in computational complexity. This issue will be targeted in the future 

study by proposing a particle-based technique to overcome the issue of environmental noises, 

rather than introducing standalone filters that increase the computation complexity. The 

research study also targeted the Kidnap problem, which will only be successful if the 

dissimilarities in the images are low and kidnapping is not happening frequently. Otherwise, 

the robot might be unable to recover from kidnapping just as it was presented in Figure 5-5b 

when the noise intensity was increased at a high rate and DIK-SLAM could not recover from 

kidnapping. Therefore, more research is necessary to handle cases when the dissimilarity is 

high in images and frequent occurrence of kidnapping in the environment scene. 

The study also targeted the issue of the dynamic environment but could perform better when 

moving objects are not too much in the environment. Alternatively, another technique is to 

introduce the Multi Tracking Object and Detection algorithm into MCL to enhance its ability 

to track multiple moving objects and dynamic environments, but with an increase in system 
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complexity that suffers from high computational cost than our technique (Moratuwage et al., 

2013). Given that the study targeted to reduce the computational cost, we could not propose  to 

introduce the Multi Tracking Object and Detection algorithm into MCL, instead, the cell 

occupancy technique, based on the assumption that cells can change independently, was 

proposed in this study. because it works better with a low computational cost.  

However, this assumption might not be accurate in all instances. Thus, the group of adjacent 

cells might be occupied with the same object violating the assumption, because cells might be 

dependent on each other with an effect that would minimize system performance. In 

forthcoming, we plan to propose a better assumption to improve the performance of the system. 

Furthermore, the corners pose challenges for DIK-SLAM and other SLAM algorithms used in 

this study. It was at these corners, the SLAM algorithms used for experiment experienced 

higher error in their trajectories. Thus, for future studies, learning algorithms that can handle 

corners could be introduced into SLAM to overcome the challenges of the corners, but more 

research is still necessary so as to understand how the learning algorithm could be integrated 

into SLAM.    

Lastly, the proposed SLAM stages employed in the study, were not only adaptive to our 

algorithm, but researchers could also still investigate this stage by introducing different SLAM 

algorithms for comparison to reveal the system with the greatest performance.  

The most challenging issue is acquiring 100% accuracy in trajectory under any circumstances 

and this has not been achieved at the moment but for this study based on the dynamic noisy 

environment, 89% trajectory accuracy was obtained. Therefore, there is still need for further 

investigation in SLAM research. 
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6.5 Chapter summary 

This study has proposed a DIK-SLAM technique by using filtering algorithms and concurrency 

technique for minimizing the issue caused by environmental noises and re-modified Monte-

Carlo to overcome the issue of dynamic environment and kidnapping problem. The experiment 

was carried out by using various evaluation schemes and outcomes showed a satisfactory 

performance of the DIK-SLAM technique.     
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