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ABSTRACT 

 

___________________________________________________________________________ 

 

Water quality from surface sources is fast deteriorating due to pollution from organic 

compounds.  Among the organic compounds are chlorophenols, which are described as priority 

pollutants because of their detrimental effects. One way of removing them from water is by 

using membranes. However direct removal of chlorophenols using membranes is limited due 

to the inherent problem of membrane fouling.  The thesis describes fabrication of thin film 

composite membranes modified with Ag-TiO2 and Ag-ZnO for enhancing filtration properties 

of the membranes for removal of 2-CP and 2,4-DCP and improving the antifouling properties 

of the modified membranes.  

Chlorophenols, 2- CP, 2,4-DCP and 2, 4, 6-TCP were determined from Vaal and Klip River 

using SPE- HLPC method. The SPE - HPLC method was validated by determining 

breakthrough volume, repeatability, reproducibility, linearity, MDL and LOQ.   Nanoparticles 

(NPs), Ag, ZnO and TiO2 and nanocomposites (NCs), Ag-TiO2 and Ag-ZnO were synthesized 

using precipitation method and chemical reduction for Ag. The NPs and NCs were 

characterised using UV-Vis, FTIR, XRD, SEM and EDX. The synthesised NPs and NCS were 

evaluated for photocatalytic degradation of 2-CP and 2,4-DCP, antimicrobial activity against 

E.coli. and toxicity against Daphnia magna. Nanocomposites were then embedded into the PA 

thin film membrane surface using interfacial polymerisation and PES as a support material to 

produce the antifouling Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes. The control PA-

TFC membrane was prepared with no added NCs to the membrane. The membranes were 

characterised using ATR-FTIR, contact angle, SEM and AFM. The performance of the 

membranes was tested using permeation flux (using pure water and 2-CP / 2,4-DCP solutions 

as feed) against the neat PA-TFC membrane. Membranes were further tested for rejection of 

2- CP and 2, 4 – DCP, antifouling properties and flux recoveries. The stability of the antifouling 

properties of the membrane was evaluated through silver release test.  The performance of the 

membranes was tested using real water samples from Vaal and Klip Rivers.  

The SPE-HPLC method was repeatable, reproducible with % RSD less than 5%.  Linearity 

range of (0.1-50 µg/ L) and recoveries of spiked water samples of more than 97% for 2-CP and 

2,4-DCP but lower at 64 and 75% for 2.4.6-TCP were achieved. The Ag, TiO2 and ZnO NPs 

showed characteristic peaks of NPs with UV-Vis. The absorption peaks were all blue shifted 

due to quantum confinements. The crystalline structures were confirmed as face centred cubic, 
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anatase and hexagonal wurzite for Ag, TiO2 and ZnO respectively.  The morphology as 

observed from SEM showed spherically shaped nanoparticles with average sizes of 68.25 ± 4.7 

and 50.92 ± 3.39 nm for Ag and TiO2 respectively. The ZnO NPs were rod -like shaped with 

average length = 603 nm ± 50.4 and a width = 82.92 ± 5. 40nm. Successful incorporation of 

silver into the TiO2 and ZnO structures was confirmed by elemental analysis, EDX. From SEM 

images, silver particles were distributed around TiO2 particles and ZnO rods. The presence of 

silver showed a remarkable improvement in photodegradation of 2-CP and 2,4-DCP from less 

than 40% to 86% with 2, 4- DCP. Silver modified TiO2 and ZnO showed antibacterial activity 

against E.coli. with minimum concentration of inhibition as low as 1.56 mg/L for both Ag-ZnO 

(5) and Ag-TiO2 (5). Silver was more toxic against Daphnia magna than Ag-ZnO (5) and Ag-

TiO2 (5). The polyamide layer was confirmed by the presence of the amide I peak at 1650 cm-

1 and 1670 cm-1 in the Ag-TiO2/ PA-TFC and Ag-ZnO/ PA-TFC membranes. The appearance 

of NCs particles spread across the surface of the thin layer of the membranes as observed from 

surface SEM images confirming their incorporation into the PA layer. The presence of the NCs 

in the membranes improved water flux, water permeation, rejection of 2- CP, and 2,4-DCP, 

antifouling properties of the membranes and flux recoveries of more than 93 % was achieved. 

Silver release test revealed that Ag-ZnO/PA-TFC membrane performed better than Ag-

TiO2/PA-TFC membrane because of the steady release of silver, which shows long lasting 

antifouling properties.  When applied to real water samples from Vaal and Klip River, the 

prepared membranes showed better antifouling properties than the neat PA-TFC membrane 
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CHAPTER ONE 

 

 Introduction 

  Background of the study 

 

There is a growing demand for provision of adequate and quality water. Water in dams and 

rivers, which could alleviate the problem of shortage of fresh water often contain complex 

dissolved or suspended materials (contaminants) that render it unsafe for use (Moodley 2014).  

The Sustanable Development goals targeted to reduce the population without access to fresh 

water by half in the year 2015 (Sustainable development goals 7. 2016). Although the target 

was somewhat achieved, there is still shortage of quality water in most parts of the world and 

including South Africa. It is therefore important to continually assess and monitor water 

sources for early detection of various pollutants including the low concentration contaminants.  

Some of these pollutants often survive even the state-of-the art water treatment processes and 

systems (Kosma et al. 2014). This is due to the complexity of the evolving contaminants from 

industrial waste that end up in water sources (Wepener et al. 2011). 

 

The presence of contaminants in water cause detrimental effects on human health, environment 

and aquatic life organisms. There is need for alternative and effective treatment processes or 

methods that will increase fresh water availability (Chunli et al. 2013).  

 

The Vaal River (Gauteng province, South Africa) is one of the important water sources as it 

supplies water to people, industries, agriculture and power stations (Wepener et al. 2011, 

Tempelhoff 2009). The Vaal River receives an inflow from Klip (Gauteng Province, South 

Africa), Suikerbosrant Rivers and Blesbok, Taaibosch, Riet Spruits streams. According to 

research findings, the quality of Vaal River water has deteriorated over time. The deterioration 

was due to pollution in the Vaal River and its tributaries, such as the more polluted Klip River 

(McCarthy et al. 2006, McCarthy et al. 2007). 

 

For more than 30 years ago, an  assessment of  water in  the Vaal River showed that the entire 

length of the Vaal River up to the Vaal Barrage was contaminated with micro-organic 

compounds (Bruwer et al. 1985).  
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In subsiquent years, almost 10 years later, another  assessment for  water quality in the Vaal 

River was carried out, and the results still showed the  presence of organic contaminants. 

According to Wepener, (2011),  the presence of  organic compounds reduce fertility rate on 

fish (Wepener et al. 2011, Saha et al. 1999). It is, therefore worth noting that the rate of active 

research in monitoring organic contaminants in the Vaal River has been low and there are high 

chances of these contaminats being consumed for longer period without knowledge of their 

presence. 

 

 Problem statement 

 

Chorophenols (CPs) are among the priority pollutants in water because they are commonly 

used in various sectors  such as paper production (US EPA. 2014, Karn et al. 2015), pesticides, 

phamaceuticals and as intermediates in production of dyes (Ghaly et al. 2014). Population 

growth  put a demand for increased  paper, textile and food production which    increases 

chlorophenols in wastewater from the industries and ultimately reaching water bodies. CPs are 

among the most detrimental to the natural environment  and to human health because they 

induce toxic effects to aquatic life systems (Ge et al. 2017). They are carcinogenic and 

persisitent in the environmemnt (Igbinosa et al. 2013).  

 

The source of these compounds in the Vaal River is attributed to inflow from the Klip River 

tributary which is heavily polluted from coal mines in Vereeniging  and industrial activities 

from Witwatersrand (Santos et al. 2004, McCarthy et al. 2009).  

 

Research on the Vaal River has not only shown the presence of CPs but also the biological 

substances (Braune et al. 1987) and bacterial pathogens such as E. coli (Grabow et al. 2003). 

Recently, due to the long term pollution from  heavy metals, such as copper  in the Klip River, 

the E.coli  and other bacteria were found to be copper resitant. High levels of copper in water 

systems is expected to be toxic to bacteria and should decrease or limit its exponential growth.  

However, the results showed that E.coli and other bacteria had mutated into copper resistant 

strains and their exponential growth was not affected (Chihomvu et al. 2015).  The E. coli 

O157:H7 strain is the most harmful. It causes inflammation of the colon resulting in diarrhoea 

with blood (Al-Holy et al. 2006).  
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Effective removal of  CPs  and E.coli from water has been a challenge. Several water treatment 

methods have been  employed. These include the use of activated carbon (Siong et al. 2013), 

ozonation (Papageorgiou et al. 2017), ion exchange (Zhijun et al. 2015) and membrane 

technology (Jamaly et al. 2014, Abejón et al. 2015, Rastogi et al. 2015). Although activated 

carbon method  is capable of removing a variety of chemicals such as dyes in the water, the 

use of activated carbon for a specific period, affect the adsorbent surface and  tend to become 

saturated and further removal of the pollutants from the water effluent is prevented (Bañuelos 

et al. 2013).  Limitation associated with ozonation is in the production of intermediates (Ikhlaq 

et al. 2015). 

 

Among these methods, membrane technology is the most flexible and viable long-term strategy 

in the treatment and purification of water (Shahmansouri et al. 2015). The technology is cost 

effective in terms of water quality when compared with the conventional treatment processes 

(Lee et al. 2011). The multi-stage process of the conventional method is achieved cost 

effectively using membrane technology (Lee et al. 2011). The polymeric membranes available 

on the market are micro filtration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse 

osmosis (RO). The choice of the membrane depends on several factors such as, molecular 

weight cutoff (MWCO) of the membrane, chemistry of the surface layer and chemistry of target 

pollutant etc. (Winter et al. 2017).  However, polymeric membranes in water treatment have 

limitations. The limiting factor in membranes wider application in water and wastewater 

treatment is fouling (Xiao et al. 2013). Fouling is deposition of dissolved organic matter on the 

membrane surface. The organic molecules at the surface of the membrane form a cake layer or 

are deposited within the membrane pores (Luján-Facundo et al. 2015).  Fouling causes a 

decline in flux, resulting in a subsequent increase in pressure requirements, ultimately 

increasing operational costs (Rezaei et al. 2014).  

 

Nanomaterials have been recently used in water treatment to improve membrane performance 

in reducing fouling (Rezaei et al. 2014, Mecha et al. 2014, Lee et al. 2016). Studies have shown 

that incorporation of nanoparticles, particularly TiO2, into conventional membranes such as 

PES, Psf, PVDF and PVC has the possibility of reducing membrane fouling (Razmjou et al. 

2011, Simone et al. 2017, Sirinupong et al. 2017). The TiO2 nanoparticles improve membrane 

hydrophilicity but also possess photocatalytic properties. Upon irradiation with the energy 

equivalent or more than the band gap energy, radicals break down organic pollutants such as 

chlorophenols into simpler and harmless products (Singh et al. 2011, Lee et al. 2016).  
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 Justification 

 

Polymer based membranes suffer an inherent problem of fouling including organic and 

biofouling. Fouling lead to high-energy consumption and high operation costs in water 

treatment (Xu et al. 2017). Two approaches may be used to alleviate the problem of fouling. 

The first is to introduce a pretreatment step or stage such as photodegradation of chlorophenols 

using nanomaterials Photodegradation either mineralises or reduces the concentration of the 

pollutant. The low concentration or minerilized effluent from degradation would lead to slow 

fouling of the membrane. The second apporach is to couple the degradation step with a 

membrane with improved hydrophilicity and antifouling properties. Chlorophenols are low 

molecular compounds and can be selectively rejected using thin film composites membranes 

which possess a constricted pore size polyamide surface layer.   

 

Polyethersulfone (PES) is one of the most widely used commercial membranes for preparation 

of asymmetric membranes, owing to its various superior properties: excellent chemical and 

thermal stability, high mechanical strength and tolerance to a wide pH (2–12) range (Yu et al. 

2013). The PES membrane is used in preparation of polyamide thin film composites 

membranes (PA-TFC) membranes for achieving rejection capacities of low molecular weight 

organic pollutants (such as chlorophenols) using interfacial polymerization (Xu et al. 2017, 

Mollahosseini et al. 2014, Lai et al. 2016). In this case the PES is used as a support, and the 

interfacial polymerization takes place by crosslinking an amine or a diamine monomer (e.g m-

phenylene diamine,  PDA, or pepirazine, PIP) with an acyl chloride or acid chloride monomer  

(e.g trimesoyl chloride, isophithaloyl chloride) (Mollahosseini et al. 2014). 

 

Nanoparticles have been used to further modify TFC membranes and were found to improve 

hydrophilicity and antifouling properties (Razmjou et al. 2011, Moochani et al. 2016, Wu et 

al. 2008, Vatanpour et al. 2012, Aini et al. 2015). Among photocatalytic materials, TiO2 and 

ZnO possess super hydrophilic and photocatalytic properties. The combination of these 

properties for antifouling during membrane filtration is desirable (Fischer et al. 2015, Ngo et 

al. 2016, Zhang et al. 2017).  Co-existence of biological microorganisms and dissolved organic 

compounds increase the problem of fouling on membranes because they cause a complicated 

type of membrane fouling. Organic and bofouling can occur simultaneously. Microorganisms 

multiply rapidly and release organic matter at the surface of the membrane.  Biofouling is 
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therefore, considered as a biotic form of organic fouling, organic matter from the microbial 

cellular debris is considered an abiotic form of biofouling (Nguyen, et. al 2012).  

Silver nanoparticles have shown highest antibacterial properties than ZnO and TiO2. 

Incorporating Ag into ZnO and TiO2 structures has been found to alleviate both organic and 

biofouling on the PA-TFC membrane (Sallehuddin et al. 2017).  

 

 Aim of the study 

The aim of the study was to develop novel thin film composite membranes modified with Ag-

TiO2 and Ag-ZnO nanocomposites for enhancing the removal of chlorophemols from water 

and providing an improved antifouling charcteristicats of the synthesised membranes compared 

to the pristine membrane.  

 

 Research questions 

1. What are the concentrations of the selected chlorophenols in Vaal and Klip Rivers? 

2. Do the materials synthesized possess the characteristics of nano materials in terms of 

functional groups, shape and size? 

3. Do the nanomaterials synthesized possess photocatalytic activity against selected 

chlorophenols? 

4.  Do the nanomaterials synthesized possess antibacterial activity against gram positive and 

gram negative bacteria including E.coli? 

5. Can nanocomposites materials (Ag-TiO2 and Ag-ZnO) be effectively incorporated into 

the thin film membranes?  

6. Do the modified thin film membtranes perform better than the pristine membrane in terms 

of flux, permeability, rejection and antifouling tests on chlorophenols? 

 

 Objectives of the study 

 

The specific objectives corresponding the research questions in the study were to; 

 

1. Determine chlorophenols in Vaal River water using solid phase extraction (SPE) for pre-

concentration followed by HPLC analysis. 

2. Synthesise Ag, TiO2, ZnO NPs, Ag-TiO2 and Ag-ZnO NCs and to characterize them using, 

ultraviolet visible spectroscopy (UV-Vis), photoluminescence (PL), Fourier transmission 
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infrared (FTIR), X-ray diffractometry (XRD), Energy dispersive X-ray (EDX) and 

Scanning electron microscopy (SEM). 

3. Carry out photocatalytic degradation of chlorophenols (2-CP, 2, 4, - DCP) using Ag, TiO2, 

ZnO NPs, Ag-TiO2 and Ag-ZnO NCs. 

4. Determine the antibacterial activity of the NPs and NCs against gram positive and gram 

negative bacteria, including E.coli 

5. Synthesize PA-TFC membranes by interfacial polymerisation of pepirazine and trimesoyl 

chloride and an in-situ modification of the PA-TFC layer with different amounts of Ag-

ZnO and Ag-TiO2 NCs. 

6. Characterise the prepared PA-TFC membranes using contact angle, FTIR, SEM and XRD 

and AFM. 

7. Test the performance of the Ag-ZnO/ PA-TFC Ag-TiO2/ PA-TFC using flux and 

permeability, rejection and antifouling tests on chlorophenols. 

8.  Test the performance of the Ag-ZnO /PA-TFC and Ag-TiO2 /PA-TFC on antifouling of 

Vaal and Klip River waters.  

 

 Thesis chapter outline 

 

CHAPTER 1: INTRODUCTION 

 

The introduction gives detailed background of the research work. It also describes the problem 

statement, justification and the objectives of the research work. 

 

CHAPTER 2: LITERATURE REVIEW 

 

This chapter gives a detailed synthesis, description and critical evaluation of scholarly articles 

and other work related to the problem investigated. The chapter further describes different 

aspects indicated as sections below and each taking into account the central problem addressed.  

Part 1: Organic and biological pollution in Vaal River. 

It highlights sources and challenges of water pollution.  It also presents the advantages and 

disadvantages of the methods used to address these challenges. It highlights research on 

chlorophenols and biological contaminants in the Vaal River. 
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Part 2: Methods of synthesizing nanoparticles  

The section describe different methods of synthesizing nanomaterials also highlighting 

disadvantages of other methods and advantages of precipitation method for TiO2 and ZnO and 

chemical reduction method for Ag.  

Part 3: Photocatalytic degradation of organic compounds using nanocomposites and 

antibacterial activity 

 The section describes the photodegradation method using semiconductor catalysts such as 

ZnO and TiO2. The limitations of using ZnO or TiO2 for photodegradation and ways of 

improving the photocatalytic characteristics by incorporation of noble metals such Ag. It also 

elaborates the antimicrobial activity of Ag, TiO2, ZnO, Ag-TiO2 and Ag-ZnO NCs. Toxicity of 

NPs and NCs is described. 

 

Part 4:  Methods of fabricating PA-TFC membranes 

Incorporation of nanomaterials into polymeric membranes for improving hydrophilicity and 

silver release from membranes is described in this section.  

 

CHAPTER 3: METHODOLOGY 

Determination of Chlorophenols in Vaal River water  

The chapter describes the solid phase extraction (SPE) procedure used to precipitate the 

chlorophenols.  It also describes the HPLC method and the optimisation experiments such as 

breakthrough volumes, calibration curves from which the limits of detection and 

quantifications were determined.  

 

Synthesis, characterization of nanoparticles and nanocomposites 

The focus on this chapter is on preparation of Ag, ZnO, TiO2 nanoparticles, Ag-TiO2 and Ag-

TiO2 nanocomposites. The ZnO and TiO2 nanoparticles prepared by precipitation method, Ag 

by chemical reduction and Ag-ZnO, Ag-TiO2 nanocomposites by a combination of the two 

methods are described. 

 

Photocatalytic degradation chlorophenols using Ag-ZnO and Ag-TiO2 NCs 

The chapter outlines at length the photodegradation procedure of 2-CP and 2,4-DCP using NCs 

in a photo-reactor. It also details the optimisation experiments such as effect of the amount of 

silver in TiO2 and ZnO, catalyst loading, effect of initial concentration of the pollutant, effect 

of pH and the use of dark, visible and UV light. 
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Antibacterial activity of Ag-TiO2 and Ag-ZnO NCs on E.coli 

The chapter briefly explains determination of antibacterial activity of Ag, TiO2 and ZnO 

against gram positive (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus) and gram 

negative (Escherichia coli, Klebsiella pneumoniae Pseudomonas aeruginosa). It further 

explains antibacterial activity of NCs against E.coli using minimum inhibition concentration 

(MIC) method and disc diffusion.  

 

Preparation and characterization of polyamide thin film composite membranes (PA-TFC) 

In this section, a detailed description on modification of PES membrane with Ag-ZnO and Ag-

TiO2 is given.  It further elaborates the interfacial polymerisation method used to incorporate 

the nanocomposites by dissolving in pepirazine aqueous phase and polymerising with 

trimesoyl chloride organic phase.  

The chapter of elaborates on the procedure used in preparing samples for analysis by FTIR, 

contact angle, SEM and AFM. 

 

Performance of the prepared polyamide thin composite membrane.  

The chapter describes the performance tests such as flux, rejection and fouling experiments 

using 2-CP and 2,4-DCP from synthetic water.  

 

Application using Vaal and Klip River water 

The prepared membranes were tested for their antifouling properties using real water samples 

from Vaal and Klip Rivers. 

   

CHAPTER 4- RESULTS AND DISCUSSION 

In chapter 4, the results are presented using graphs and tables. Following each graph or table 

are discussions with reference to literature.  At the end of each discussion the results are briefly 

summarized. The sections discussed in this chapter follow the same sequence as presented 

under methodology.  That is, results on determination of chlorophenols in Vaal and Klip Rivers, 

synthesis of NPs and NCs, characterisation of the NPs and NCs, photocatalytic activity against 

2-CP and 2,4-DCP, antibacterial activity against gram positive and gram negative bacrteria, 

toxicity effect of NPs against Daphnia magna, preparation and characterisation of thin film 

composite membranes (TFC), performance of TFC membrane and application. 

 



9 

 

CHAPTER 5. – CONCLUSIONS 

This chapter clearly states the conclusions of the study relating  to the research questions and 

the objectives .  
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CHAPTER TWO 

LITERATURE REVIEW 

Part 1:  Organic and biological pollution in Vaal River 

____________________________________________________________________ 

2.0 Introduction 

Water pollution is a result of human activities in terms of industrialization, transportation, 

agriculture and urbanization (McGrane. 2016).   Large amount of waste such as pesticides, 

pharmaceutical byproducts, wastewater from industries and sewage end up in water bodies 

such as rivers and dams. (Gavrilescu et al. 2015). 

The nature of contaminants reaching the water bodies among others are biological (viruses, 

bacteria) and chemicals (heavy metals, inorganic and organic pollutants). De Villiers and Thiart 

(2007) conducted a study on monitoring trends of chemicals at 25 water catchments points in 

South Africa. The results showed increasing levels at the 24 of the 25 catchment points studied 

(De Villiers et al. 2007). Chemical and biological contaminants loading into water sources 

(which is a result of nutrients and microbial inflow into rivers) is associated with discharge of 

waste from water treatment plants, pesticides from agricultural activities and mining waste 

(Dabrowski et al. 2013, Oberholster et al. 2013). The presence of these contaminants has direct 

and indirect detrimental effects on the aquatic life systems, animal and human health (Igbinosa 

et al. 2013, Ge et al. 2017). Pollutants such as chlorophenols and bacteria require specific 

removal techniques and or protocols due to their chemistry and health effects and level of 

abundance in the environment. In this section, articles related to pollution of the Vaal River by 

both organic and biological substances as well as methods and techniques employed in 

removing them are discussed.  

 

2.1 Chlorophenols 

 

Table 2.1 is a list of the priority chlorophenols by EU and US-EPA. Scheme 1 is the chemical 

structures of 2-CP, 2, 4-DCP and 2,4,6-TCP. Chlorophenols as noted in section 1.2, are among 

the priority listed environmental pollutants detected in the  environment because of their wide 

spread usage in various sectors such paper and pulp industries  (US EPA 2014), Karn et al. 

2015) pesticides, phamaceuticals and as intermediates in production of dyes (Ghaly et al. 

2014). Recently their quantitative measurements, treatment, management and removal from 
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the environment have become significant (Orbeci et al. 2014, Bustos-Ramírez et al. 2015, 

Ambareen 2017).  

                                          

 

Scheme 2.1: Structure of 2-CP, 2, 4, - DCP and 2, 4, 6-TCP 

 

Table 2.1: Priority contaminants set by by EU and US-EPA (Igbinosa et al. 2013).  

EU US-EPA 

2-Amino-4-chlorophenol  

2-Chlorophenol  

3-Chlorophenol  

4-Chlorophenol  

4-Chlorophenol-3-methylphenol  

2,4,5-Trichlorophenol 

3,4,5-Trichlorophenol 

3,5,6-Trichlorophenol 

2,4,6-Trichlorophenol 

2,3,4-Trichlorophenol  

Pentachlorophenol 

Phenol  

2-Chlorophenol  

2,4-Dichlorophenol 

4-Chloro-3-methylphenol 

2,4,6-Trichlorophenol 

Pentachlorophenol 

 

 

2.2 Sources of Chlorophenols 

2.2.1 Agriculture 

 

Demand for more food due to population growth led to expansion and intensification of the 

agricultural sector in terms of food production. This has in-turn led to an increase of more than 

75% of pesticides and herbicides usage. The residue of these pesticides washes into surface 

waters (Stehle et al. 2015). The most commonly used pesticides are 2,4 ‐ 

dichlorophenoxyacetic acid, 4 ‐ chloro ‐2 ‐methylphenoxyacetic acid, 2, 4, 5 ‐richloro‐phenoxy 

acetic acid (Jurewicz et al. 2012). Detection of phenol and some chlorophenols such as 2‐

chlorophenol, 2, 4‐dichlorophenol and 2,4,6 -Trichlorophenol, pentachlorophenol and some 
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catechols in the aquatic environment have been attributed to biodegradation of the mentioned 

pesticides (Padilla-Sanchez et al. 2010). 

2.2.2  Paper and pulp industry 

 

The paper industries use large amount of water that results in generation of waste (Vepsäläinen 

et al. 2011, Lei et al. 2013). Efforts are in place to treat paper and pulp effluent waste before 

disposal and to reduce amount of pollutants reaching the water bodies. Examples of these are 

the use of anaerobic and aerobic processes (Kamali et al. 2016) and advanced oxidation 

processes (AOPs) (Hermosilla et al. 2015).  Removal efficiency of organic biodegradable 

compounds by aerobic processes usually remain very low (between 20-50%). The process is 

also sensitive to shock from high loading of toxic compounds.  It has limited capacity to remove 

non - biodegradable substances, such as lignin and lignin derivatives and toxic chlorinated 

organic compounds (Chanworrawoot et al. 2012). The amount of water reaching the water 

bodies still contain the toxic chlorinated organic compounds (Lindholm-Lehto et al. 2015). 

2.2.3 Industrial waste 

 

Other than the paper and pulp industries, phenol and its derivatives are  produced from coal 

conversion, petroleum refining, resin, and pharmaceutical production, metal coating, and 

textile dyeing industries as well (Kurnik et al. 2015).  

 

2.3 Health effects of Chlorophenols 

 

Chlorophenols are harmful and toxic to both aquatic organisms and humans. Jurewicz, (2012) 

conducted a study on determination of pesticides on the spouses of men working in the farm 

with exposure to pesticides. As already stated, chlorophenols are byproducts from degradation 

of pesticides. The results of the study showed that 45 % of pesticides levels detected in urine 

samples of the spouses (Jurewicz et al. 2012). From the results, pesticides penetrated into the 

reproductive organs of the farm men and ultimately transmitted to the spouses.   In a related 

study, exposure to 2, 4, 6-TCP (1–10 g/L) and PCP (5 g/L) by fish induced serious degeneration 

and ovary impairment as well as follicular atresia (Fang et al. 2014). Saha, (1999) had in a 

much earlier study observed similar results when phenolic compounds were exposed to fish in 

the Vaal River. A drastic weight loss and reduced fertility rate was observed (Saha et al. 1999). 

It is therefore anticipated that exposure to CPs can lead to endocrine disruptions both in vitro 
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and in vivo (Ge et al. 2017, Harris et al. 2005). These changes may include thyroid-disrupting 

effects with alteration in hormone levels, abnormal gene expression and the interference with 

hormone receptors (Ge et al. 2017, Guo et al. 2013, Chen et al. 2015). 

 

2.4 Methods of determination of Chlorophenols 

 

Chlorophenols in water samples are commonly determined using chromatographic techniques. 

These include among others, gas chromatography coupled with different detection such as mass 

spectrometry (MS) (LCGC Editors. 2010), flame ionization detection (FID) (Sun et al. 2015) 

and electron capture detection (ECD) (Al-Janabi et al. 2012). High performance liquid 

chromatography has also been used in detection of chlorophenols, either with ultraviolet 

detection (UV) (Higashi et al. 2009), diode-array detection (DAD) (Lin et al. 2008), or mass 

spectrometry detection (MS) (Jin et al. 2006).  

 

However, chlorophenols generally exists at low concentrations in environmental waters.  

According to the European Union (EU) the maximum concentration limits of pesticides and its 

degradation products such as the mono and poly chlorinated phenols, in drinking water is (0. 5 

µ g L−1) (EU. 1998).  In spite of the start-of-the art analytical instrumentation, the complex 

matrix in environmental waters renders direct determination of chlorophenols ineffective. As 

a result, sample treatment step (s) to clean and pre-concentrate the analytes is required prior to 

chromatographic analysis (Hassine et al. 2015).  

The most used analytical procedures for pre-concentration of organic compounds are liquid- 

liquid extraction and solid phase extraction (Berger 2015).  

2.4.1 Preconcentration techniques 

2.4.1.1 Liquid - liquid extraction (LLE) 

 

Liquid – liquid extraction (LLE) is a separation process based on distribution of liquids in two 

liquid phases. It depends on the phenomenon of mass transfer of the component extracted into 

the extraction solvent (Berger 2015). Although some recent studies still employ the LLE 

method, the limitation of the technique is the use of large quantities of samples and toxic 

organic solvents. Recent research trends include miniaturization of the traditional liquid–liquid 

extraction procedure, in order to reduce volumes of the solvent and the sample (Rutkowska et 
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al. 2014).  One of the miniaturized LLE method is the liquid-phase microextraction, (LME).  

The extraction solvent suspends as a single drop (1-8µL) in a continuously stirred aqueous 

solution. The remarkable reduction of the organic solvent makes the method exceptionally 

environmental friendly (Li et al. 2010). The simplicity of this technique attracted extreme 

motivation and many successful applications due to high enrichment factors.  However, it 

suffers a lot from instability of the suspending drop (Xiaoyi et al. 2013). Even though there has 

been a number of variants to LME procedure such as single drop dispersive liquid-liquid phase 

microetxraction (DLLME) and hollow fiber liquid microextraction (HF-LPME) (Gjelstad et 

al. 2013, Bosire et al. 2016).  

 

2.4.1.2 Solid phase extraction (SPE) 

 

Solid-phase extraction involves liquid- solid partition; the extractant phase is a solid sorbent 

(Faraji et al. 2012).  The choice of the sorbent is the most important step for achieving both the 

selectivity and sensitivity, particularly with trace level analytes. Retention of the analyte onto 

the surface of the sorbent is through the strong but reversible interaction between the analyte 

and the sorbent (Faraji et al. 2012).   The commonly used sorbents for trapping phenolic 

compounds are silica-based, graphitized carbon and polymeric sorbents in water samples 

(Hassine et al. 2015, Qureshi et al. 2011). The silica-based sorbents maybe modified with 

phenyl, NH2, CH, C18 and C8 groups. Although the silica sorbents are capable of high 

efficiencies with specific compounds, the disadvantage is that they are unstable at extreme pH.  

The next type of sorbents are carbon based, which include graphitized carbon black and porous 

graphitic carbon. The disadvantage of this procedure relates to difficulties in eluting some 

compounds because they get irreversible adsorbed (Fontanals et al. 2010). 

 

The introduction of polymeric adsorbents came as a solution to most of the challenges 

experienced with silica and carbon based sorbents. The traditional polymeric sorbents are   

hydrophobic and macroporous polystyrene divinylbenzene.  Their interaction with the analyte 

is due to van der Waals forces and the π-π interactions.  However, its capacity and selectivity 

is generally low in polar compounds (Fontanals et al. 2010). The limitation of poor selectivity 

on the traditional sorbents led to intensive research that focussed on improving capacity and 

selectivity of polymeric sorbents. The improvements made to the sorbents involved the 

introduction of polar monomer to make them hydrophilic and macroporous by crosslinking the 
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monomers (Bielicka-Daszkiewicz et al. 2006, Darwano et al. 2014).  Examples of the 

commercial polymeric sorbents with the same features described above are the Bond Elut-C18, 

Strata-X and Oasis HLB. These sorbents are macroporous copolymers made from a balanced 

ratio of two monomers. Which are the lipophilic divinylbenzene and the hydrophobic N-

vinylpyrrolidone (Tsipi, et al.2015). Bosire, et al. (2016) conducted a study to compare these 

three solid sorbents for recoveries of aromatic and aliphatic compounds from industrial 

wastewater. Strata-X sorbent resulted in the best recovery of the aromatic acids (Bosire et al. 

2016). Apart from good recoveries with Strata-X from Phenomenex, it was also efficient 

because it offered unique selectivity for a wide spectrum of analytes. It can simultaneously 

extract a range of both polar and nonpolar analytes. It operates with multiple retention 

mechanisms such as hydrophilic, hydrophobic, hydrogen bonding, as well as π-π interactions 

(Xu et al. 2012).  Scheme 2.2 shows the mechanism of interaction between sorbent and 

chlorophenols in, C18 strata-c SPE cartridges (Strata X – 500 mg Phenomenox, Sulpeco, USA).  

2.4.2 Retention properties 

Sample breakthrough depends on the effectiveness of the interaction between the analyte and 

sorbent, the sample volume and the mass of sorbent. The analyte has some finite capacity factor 

in the sample solvent. That, is if the breakthrough volume is exceeded, the analyte will elute 

from the column at the same time while the sample is still being added at the top of the column 

(Mutavdžić, et al. 2010) 

 

 

Scheme 2.2. Mechanism of interaction between chlorophenols and polymeric sorbent 

(divinylbenzene- N- pyrrolidone) (Strata X – 500 mg Phenomenox, Sulpeco, USA). 
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2.4.3 Analytical techniques 

For analysis of CPs, the most commonly used analytical instruments are gas chromatography 

(GC) or high-performance liquid chromatography (HPLC) (Liu et al. 2003).  

2.4.3.1 Gas chromatography 

 

Gas chromatography is the most widely used technique in determination of organic 

compounds.  The organic sample is passed through the column in a gaseous form.  The 

technigue is usually coupled with MS or electron capture detection. Gas chromatography is 

appropriate for separating and analysing nonpolar volatile materials. It is however limited in 

application to materials with high polarity such as chlorophenols. They tend to produce broad 

tailed peaks. Gas chromatography (GC) analysis also requires some derivatization steps: to 

ameliorate the vitality of the analytes with polar functional groups, to improve thermal stability 

and recoveries and to produce better separated and sharp peaks. (Wang et al. 2009, Ferreira et 

al. 2013, Kartal et al. 2015).  

2.4.3.2 High performance liquid chromatography (HPLC) 

 

The HPLC technique in particular the reverse phase (RP) is a dominating analytical tool for 

separation and quantification of chlorophenols. The technique gives good separations when 

coupled with detectors such as diode array detector (DAD), mass or tandem mass spectrometry. 

The advantage of HPLC over other techniques is the simultaneous analysis of organic 

compounds.   

 

Opeolu, et al.  (2010) conducted a study for determination of chlorophenols in drinking water. 

They used solid phase extraction for enrichment of the analytes before analysis with HPLC 

coupled with UV detector. Their results indicated a good coefficient of determination R2> 0.00 

and mean percentage recoveries ranging from 67.9 ± 7.28 to 99.6 ± 4.26. (Opeolu, et al. 2010). 

From the method used 2, 4-dichlophenol and 2, 4, 6- trichlorophenol were detected with 

acceptable reproducibility. In a more recent article, nine different chlorophenols were 

determined from the petroleum refinery wastewater and from Trigis River, in Iraq. Similar and 

reliable results were obtained with repeatability in the range (2.1-4.95) and % recoveries of 

more than a 100%. The enrichment procedure and analytical technique used were SPE and 

HPLC respectively (Jasim et al. 2015). In the two methods used by Opeolu, et al.  (2010)  and 
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Jasim &Altahir, (2015), a derivatization step was not used and yet good results were obtained 

even in the more complex samples like petroleum refinery wastewater and river water.  
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CHAPTER TWO … 

LITERATURE REVIEW 

 

Part 2: Synthesis of nanoparticles 

__________________________________________________________________________ 

2.6 Introduction  

Nanosized particles of transition metal oxides have received great attention in the recent years 

due to their desirable properties such as electrical conductivity (Han et al. 2014), surface area 

to volume ratio (Quzzine et al. 2013, Ouzzine et al. 2014) antibacterial activity (Jyoti et al. 

2016) and photocatalytic properties (Singh et al. 2016). The shape and size of nanoparticles 

depends on the synthesis method used. The wet chemical methods for preparation of Ag, TiO2 

and ZnO are preferred because they allow for control of parameters such as temperature, 

stirring time, mole ratios of reaction to get the desired sizes (Raza et al. 2016).  The chemical 

methods include among others the chemical reduction (Raza et al. 2016, Rashid et al. 2013), 

precipitation (Anwar et al. 2018a) and sol-gel method (Sharmila et al. 2014). The section 

highlights wet chemical methods used for preparation of Ag, TiO2 and ZnO, as well as relating 

the methods with the size of the nanoparticles produced.  

2.6.1 Chemical reduction method for preparation of Ag NPs 

 

There are various methods for preparation of silver nanoparticles, which include among others 

reduction in solution (Rashid et al. 2013, Kumar et al. 2013), radiation assisted, thermal 

decomposition and recently via bio or green synthesis (Bagherzade et al. 2017, Gomathi et al. 

2017). Preparation of silver nanoparticles using the chemical reduction method is commonly 

used due to its simplicity, convenience and relatively economical in terms of time. In this 

method, solutions of the precursor and the reducing agent are mixed.  Silver nitrate is a 

commonly used precursor with trisodium citrate and sodium borohydride as the reducing 

agents (Rashid et al. 2013, Kumar et al. 2013).  The reaction of silver nitrate with the precursor 

was performed in ice (Kumar et al. 2013), or hot solution (Rashid et al. 2013). This indicating 

that the temperature of the reaction had an effect on the shape or size of the nanoparticles.  

Kumar et al. (2013) used sodium borohydride instead of trisodium citrate. The size of the 

nanoparticles obtained was more than 300 nm and showed a 7 mm zone of inhibition with 

E.coli. (Kumar et al. 2013). Muhammad et al. (2016) compared both trisodium citrate and 
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sodium borohydride. The preparation method for Ag NPs with trisodium citrate reducing agent 

involved boiling, continuous stirring, and finally cooling at room temperature.  For sodium 

borohydride, the method involved quick addition of NaBH4 and vigorous stirring all done at 

room temperature. The shapes and sizes obtained were both spherical with sizes 30 -80 nm 

with TSC and 15 - 50nm with NaBH4. Zone of inhibition was 0.9 mm and 1.5 mm against 

E.coli for TSC and NaBH4 respectively (Raza et al. 2016). Although, some researches assert 

that spherically shaped Ag NPs show greater antimicrobial activity, the results by Kumar et al. 

( 2013)  and Muhammad et al. (2016) were not consistent with the claim (Kim et al. 2017).  

One of the problems in the synthesis of silver nanoparticles was the aggregation also known as 

agglomeration of particles.  Stabilising agents inhibit particles agglomeration. Examples of 

stabilising agents are etyltrimethlyammonium bromide (Syafiuddin et al. 2017), CTAB, (Khan 

et al. 2018), polyvinyl pyrrolidone, PVP (Mirzaei et al. 2017, Patel et al. 2017) and polyvinyl 

alcohol, PVA (Sahu et al. 2017). Synthesis of silver nanoparticles with the use of a capping 

agent could be summarised as a three stage process; preparation (dissolution) of the precursor, 

drop wise addition of the capping agent,   addition of a reductant.  The amount of the stabilising 

or capping agent has an effect on the size of the nanoparticles as well.  PVP capping agent is 

preferred because it is soluble in water (Mirzaei et al. 2017). Dang et al. (2012) indicated that, 

in order to control the size of the NPs a higher concentration of PVP, capping agent is used.   

2.6.2 Precipitation method for preparation of TiO2 NPs 

 

Titanium dioxide is one of the most studied metal oxide owing to its photocatalytic activity, 

physical stability, chemical stability, affordability and ease of synthesis (Mutuma et al. 2015, 

Sabry et al. 2016). TiO2 is stable in different chemical environments. It exists in three different 

crystalline phases: brookite, rutile and anatase (Sabry et al. 2016). The anatase phase is 

preferred for its outstanding photocatalytic and hydrophilic characteristics (Kim et al. 2016). 

Temperature transforms the crystals from one phase to another (Elsellami et al. 2018).  

Elsellami et al. (2018) observed that the intensity of anatase phase was highest between 400-

500 oC and disappeared with appearance of rutile phase between 600 – 800 oC (Elsellami et al. 

2018). Lu et al. (2016) obtained similar results in which he stated that about 85% of the rutile 

phase exists when the calcination temperature reaches 800 oC (Lu et al. 2016).  

Methods for preparing TiO2 NPs include solvothermal (Fan et al. 2016), co-precipitation, flame 

hydrolysis (Mino et al. 2016), chemical vapour deposition (Li et al. 2016) and sol – gel 

(Kaviyarasu et al. 2017). The high surface area anatase phase NPs have been prepared from 
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different precursors such as titanium (iv) butoxide (Hamad et al. 2016), titanium isopropoxide 

(Danish et al. 2015) and titanium tetrachloride.  Titanium isopropoxide and titanium butoxide 

are the most commonly used in wet chemical methods for synthesis of anatase phase.  Morales 

et al (2013) synthesized spherically shaped TiO2 NPs with sizes ranging from 20 – 35 nm using 

titanium (iv) butoxide and the precipitation method (Morales et al. 2013). In another study, 

remarkable 7 mm spherically shaped NPs were produced using titanium butoxide. In this study, 

the NPs were  further applied for photodegradation of methylene blue and 98% efficiency 

(Castro-Beltrán et al. 2018).  

2.6.3 Precipitation method for preparation of ZnO NPs 

 

Zinc oxide nanoparticles have been synthesised by a number of methods, the most recent ones 

being by ultrasound (Meshram et al. 2017), microwave assisted combustion method 

(Mohammadi et al. 2018), anodization (Voon et al. 2017) and co-precipitation (Katiyar et al. 

2017, Li et al. 2017, Dasari et al. 2018).    

 

The precipitation method has been widely used because of its simplicity and relative cost 

effectiveness (Katiyar et al. 2017).   The method involves the reaction between a source of zinc 

such as hydrated zinc nitrate (Anwar et al. 2018b), zinc chloride (Awodugba et al. 2013)) or 

zinc sulphate (Kumar et al. 2014) and a hydroxide.  Depending on the control of the reagents 

ZnO nanostructures prepared using hydrated zinc nitrate, zinc chloride and sulphate lead to 

different shapes such as flowers, needles, dots and rods (Ong et al. 2018). Zinc oxide 

nanostructures are widely used in water treatment to degrade organic pollutants and for 

inhibition growth of wide range of microorganism found in environmental water and 

wastewater, such as, Escherichia coli and Bacillus subtilis (Bojarska et al. 2017). Rajabi et al. 

(2015) have studied the effect of shape of ZnO as NPs and nanorods on membrane fouling. 

They found that ZnO nanorods gave best results in biofouling reduction compared to the NPs 

(Rajabi et al. 2015). In another study, the photocatalytic activity of TiO2 NPs was compared to 

ZnO nanorods. The ZnO nanorods exhibited higher activity on methylene blue degradation 

than TiO2 NPs (Fatin et al. 2012).   
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CHAPTER TWO … 

LITERATURE REVIEW 

Part 3: Antibacterial and photocatalytic degradation of organic compounds using 

nanoparticles 

___________________________________________________________________________ 

 

2.8 Intoduction 

The main reason for the recent rapid increase in research about NPs in treatment of water relate 

to their intrinsic property of high surface area to volume ratio (Wang et al. 2017, Lekshmi et 

al. 2017). This provides the NPs with enhaced charecterisctics compared to the bulk materials 

in degradation of organic compounds and antibacterial effects. Both the photo-catalytic 

degradation and antibacterial activities related to several parameters of the NPs such as size, 

shape and structure. This section covers sources of bacteria and their health effects. Different 

proposals for mechanisms of antibacterial and toxicity effect by NPs are compared and 

discussed. The process and methods of enhancing photodegradation of organic compounds are 

clearly elucidated with cited literature on Ag, ZnO, TiO2 NPs.  Several factors that affect 

percentage degradation of pollutants are discussed showing the chemical interactions that occur 

between the catalyst and the pollutant.  

2.9 Bacteria as water contaminants 

Pathogenic organisms in untreated waste produce microbial contaminants. The untreated waste 

from households, hospitals and industries are discharged into rivers (Omari et al. 2012). A 

small drop of fecal matter contains numerous types of microorganisms (du Plessis 2017). 

African countries are the most hit in biological contamination due to lack of resources to 

maintain sustainability in collection and treatment of waste (Omari et al. 2012). 

The presence of untreated sewage lead to major health risks to human health and destroys 

aquatic ecosystems. Types of illnesses resulting from microbial contamination include amongst 

others meningitis, typhoid fever, salmonella infections, cholera, septicaemia, and diarrhoea (du 

Plessis 2017).  
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2.10 Antibacterial activity of nanoparticles  

 

The antibacterial activity of compounds is related to their ability to kill bacteria or slow down 

bacterial growth. It does not necessarily mean that they themselves are harmful substances 

(Rudramurthy et al. 2016). The mechanism of antimicrobial activity is still not elucidated.  

However, several authors have attempted to come up with the explanation of the mechanism.  

Mahmoudi et al. (2012) suggest that the NPs attach to the membrane by electrostatic interaction 

and attack the membrane of the bacteria (Raza et al. 2016, Mahmoudi et al. 2012). It is also 

worth noting that the effectiveness of this interaction depends on several  bacterial factors such 

as cell membrane, growth rate,  and biofilm formation (Mahmoudi et al. 2012). Among the 

nanoparticles, silver has been widely used as antimicrobial  particles in water medicine and 

water treatment (Haider et al. 2016, Zhao et al. 2017). 

 

 Below is a brief analysis of literature on antimicrobial mechanism of silver against several 

organisms. Wong and Liu, (2010)  proposed three possible mechanisms of antimicrobial 

activity of silver nanoparticles against organisms. At nanometer size the particles have a large 

surface area which enable them to be attached to the organism cell membrane and also penetrate 

through to the inside of the bacteria cell. They further suggested that Ag+ may interact with 

sulfur-containing proteins, as well as with phosphorus-containing compounds like DNA, and 

inhibit their function. Thirdly, silver ions can attack the respiratory chain in bacterial 

mitochondria and lead to cell death (Wong et al. 2010). Duran et al (2010) were in agreement 

with Wong and Liu on the fact that silver ions interact with the thiol group of the protein and 

inhibit its replication. They further explain that the inhibition of the DNA is due to the 

uncoupling of respiratory electron transport from oxidative phosphorylation, the process that 

inhibits respiratory chain enzymes or causes an interference within the cell (Durán et al. 2010).   

Mamambio-Jones and Hoek (2010) described that silver nanoparticles affect the mitochondrial 

respiratory chain, causing reactive oxygen species generation and affecting the production of 

the adenosine three phosphate ATP, which subsequently leads to damage of deoxyribonucleic 

acid  (DNA). They suggest a three stage mechanism in which firstly there is an  (a) uptake of 

free silver ions followed by disruption of ATP  production and DNA replication, (b) silver 

nanoparticle and silver ion generation of reactive oxidative species (ROS) and (c) silver 

nanoparticle direct damage to cell membranes (Marambio-Jones et al. 2010). TiO2 NPs have 

also shown antimicrobial activity against a range of microorganisms such as S. aureus. P. 

aeruginosa and E. coli. (Gupta et al. 2013, Verdier et al. 2014). The antimicrobial property of 
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TiO2 NPs is related to shape, size and the crystal structure (Dizaj et al. 2014). It is proposed 

that the antimicrobial mechanism for TiO2 is due to the induced oxidative stress through the 

generation of ROS that ultimately cause site-specific DNA damage (Dizaj et al. 2014). Carre 

et al. (2014) concur with   Dizaj et al. (2014) as they assert that  the photocatalytic properties 

of the TiO2 nanoparticles plays a vital role in inactivation of  bacteria because these reactive 

oxidative species ( ROS) are produced effectively under UV light. They observed that the 

antibacterial photocatalytic activity caused lipid peroxidation that enhanced membrane fluidity 

and disrupted cell integrity (Carre et al. 2014).  

 

The antibacterial activity of TiO2 is considerably improved when it is doped with metal ions 

such as Au and Ag (Chen et al. 2017, Liu et al. 2018). Korshed  et al. (2018) demonstrated that 

in the presence of Ag-TiO2 NPs the production of ROS in the E. coli. increased compared to 

individual nanoparticles (Korshed et al. 2018). The antimicrobial activity of the Ag-TiO2 is 

better even when incorporated in a membrane. Chen et al. (2017) prepared the Ag-TiO2 

modified polyvinylidene fluoride (PVDF) ultrafiltration membrane using phase inversion 

method.  They describe the antimicrobial activity as excellent because it effectively prevented 

bacteria and formation of biofilm on the membrane surface (Chen et al. 2017). ZnO is another 

photocatalyst with properties similar or better than that of TiO2 in terms of antimicrobial 

activity (Sakthivel et al. 2003). However, ZnO can be a good alternative than TiO2 as a 

photocatalyst because it is relatively cost effective and is able to absorb a large spectrum of 

solar radiation than TiO2 (Lee et al. 2016, Podporska-Carroll et al. 2017). Podporska et al. 

(2017) investigated the antibacterial activity of ZnO and F- doped ZnO against E. coli. (Gram-

negative) and S. aureus (Gram-positive) organisms. They observed antibacterial activity of the 

ZnO NPs within one hour even without light exposure. Thus suggesting that the mechanism of 

antimicrobial activity of ZnO is not limited to production of ROS only (Podporska-Carroll et 

al. 2017). The effect of Zn2+ could also be play a role (Banerjee et al. 2015).  

 

2.11 Toxicity of Nanoparticles  

There has been a considerable growth in the use of nanomaterials in water treatment (Chen et 

al. 2017, Dipheko et al. 2017, Makhetha et al. 2018). Because of this and other activities that 

lead to chemical loading, the world environmental bodies found it crucial to protect aquatic 

and terrestrial biota. Methods that are capable of evaluating the adverse effects of chemicals in 

the environment were hence developed (Asghari et al. 2012). Several testing protocols such as 
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acute and chronic toxicity test conducted with various test species belonging to different 

phylogenetic levels are now well established and standardised (McGillicuddy et al. 2017). The 

common one is the acute toxicity test with freshwater Daphnids, particularly with Daphnia 

magna because it is distributed broadly in a wide range of habitats, has a relatively short life 

cycle and can be easily cultured and maintain in the laboratory (Driesen 2015, Fan et al. 2016). 

Test protocols for undertaking acute toxicity tests with D. magna are performed in accordance 

to the International Standard ISO 6341 (ISO 1998). Sohn et al. (2015) conducted a study in 

which they compared the aquatic toxicity of silver NPs and nanowires. They found silver to be 

toxic to Daphnia magna at higher concentration (Sohn et al. 2015).  

2.12 Photocatalytic activity of the nanoparticles  

Photocatalysis is an oxidation process that occurs at the surface of the semiconductor metal 

oxide. Upon irradiation with photons from UV, the semiconductor absorbs the energy (equal 

or greater than its band gap energy) and cause electrons to be promoted from a valence band              

(evb-) to the conduction band (ecb-) leaving positively charged holes (Coronado et al. 2013). 

The electron-hole pairs can interact with each other thorugh a process called recombination 

which generates a lot of undesirable heat energy.  

The electron-hole pairs can also interact with other molecules. This is the basis of degradation 

of pollutants in the photocatalysis application in water treatment. Equations 2.1 – 2.8 show the 

mechanism of photocatalysis  (Luk 2016).   

Photocatalyst + hv → Photocatalyst + e-
CB + h+

VB      (2.1) 

Photocatalyst (e-
CB) + O2 → Photocatalyst + O2

•-      (2.2) 

O2
• - + 2H+ + e -CB → H2O2         (2.3) 

H2O2 + 2H+ + e - CB→ •OH + H2O        (2.4) 

•OH + H+ → HO2
•           (2.5) 

Photocatalyst (h+
VB) + H2O → Photocatalyst + H+ + •OH    (2.6) 

 Photocatalyst (h+ VB) + OH- → Photocatalyst + •OH      (2.7) 

Organics (pollutants) + •OH, O2
• -, HO2

•→ Degradation Product    (2.8) 
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Figure 2.1 is a schematic diagram to elaborate the mechanism by which organic pollutants are 

degraded by TiO2 and ZnO catalyst in the presence of silver. The presence of silver helps in 

delaying the recombination process between photo-generated holes and the photo- excited 

electrons through the formation of the superoxide radicals (O2
•-) and the reduction reaction  

take place at the conduction band (Badmus et al. 2018, Huang et al. 2018). At the valence band, 

the holes oxidize water (H2O) or hydroxide (•OH) into a hydroxyl radical. The hydroxyl radical 

is a strong oxidant capable of partial or complete mineralization of organic pollutants (Badmus 

et al. 2018).  

 

 

  

Figure 2.1 Mechanism of photocatalytic degradation of pollutants using Ag-TiO2 or           

        Ag-ZnO. Diagram modified (Nainani et al. 2012) 

      

2.13 Factors affecting photocatalytic activity 

2.13.1 Catalyst doping or decoration 

 

Table 2.2 gives a summary of % degradation efficient with doping or decorated catalysts. The 

photocatalytic characteristics of TiO2 and ZnO are relatively limited due to the fast 

recombination of the photo excited electron with the photo generated holes (Binas et al. 2017). 

One way of enhancing the photocatalytic activity is by combining the catalyst with another 
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semiconductor or metal capable of producing “charge separation effect’’ (Hu et al. 2017).  

Metals such as Au, Pt and Ag can effectively act as electron scavengers in the presence of the 

catalysts to increase the photocatalytic activity (Hu et al. 2017). The advantage of silver as an 

electron scavenger is that it possess added advantage of antibacterial properties (Liu et al. 2018, 

Fischer et al. 2017, Safian et al. 2018).  

Incorporation of silver, the Ag+ introduces an extra band closer to the conduction band. Silver 

accepts electrons from the conduction band and delays electron – hole recombination. The 

holes are available to react with the OH- to form hydroxyl radical and the electrons on silver 

react with O2 to form superoxide radicals.The radicals are responsible for degradation and 

mineralization of organic compounds.  

Increase in the amount of silver as a dopant or decorator increase the rate of degradation up to 

an optimum.Beyond the optimum the photogenerated electrons at the surface of silver 

accumulate and generate more negative charges.  This increases the chances of capturing holes 

and reducing efficiency of charge separation (Malik 2013).  

2.13.2 Synthesis method  

 

Table 2.2 summarizes the different methods for synthesis of photocatalyst and the 

corresponding % degradation of phenolic compounds. Generally, the synthesis method of the 

photocatalyst results with different photodegradation activity.   

 

 

Table 2.2 Methods and % degradation of phenolic compounds using photocatalysts   

 

Preparation 

method 

Catalyst Organic pollutant  Light 

source 

Degradation 

efficiency 

(%) 

Reference  

Sol –gel  

 

ZnO Pentachlorophenol 

(PCP) 

sunlight 99.6 (Ba-Abbad, 

et.al. 2017) 

hydrothermal Ag-ZnO Bisphenol 

nolyphenol 

UV 72.1 

82.08 

(Bechambi, 

et al. 2015) 

Sol gel Co-ZnO 2-CP solar 93.5 (Ba-Abbad, 

et.al. 2017) 
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2.13.3 Effect of pH 

The pH of the solution has an effect on the photocatalytic activity of the photocatalyt. This is 

because it influences the adsorption capacity of the pollutant onto the catalyst (Sakthivel et al. 

2003).  Photocatalyst surface is negatively charged when the pH is increased beyond isoelectric 

point of the photocatalyst. The positive charge increases around the catalysts with decrease in 

pH and negative charge increases at higher pH (Zhu et al. 2005, Ahmed et al. 2011).  The pH 

of the solution also plays a vital role in photodegradation of molecules. When the pH is low 

(acidic conditions) the formation of the hydroxyl ions are due to the interaction between the 

hydroxide ions and the photoinduced holes at the surface of the catalyst and the holes are 

predominately responsible for photodegradation.. At higher pH the hydroxyl radicals are more 

available and it follows that photodegradation is high as well (Ahmed et al. 2011).    

 

2.13.4 Effect of initial concentration 

 

Initial concentration of the pollutant has an effect on the effectiveness of degradation.  

Photodegradation usually decreases with increasing concentration of the pollutants.  At low 

concentration, the capacity of the catalyst adsorbing to pollutant molecules is high because of 

the available of active sites.  At high concentration, there is an excessive number of pollutants 

at the surface of the catalyst. This hinders adoption of OH – ions for production of hydroxyl 

radicals leading a decrease in photodegradation (Ba-Abbad et al. 2013). Another reason for 

decrease in the effectiveness of photodegradation of organic compounds is that there is a 

decrease in photons due to light scattering. The reduced amount of photons reaching the 

catalyst results in fewer electrons excited from the valence band to conduction band leaving 

fewer holes. This will ultimately mean less hydroxyl radicals produced and available for 

degradation (Gnanaprakasam et al. 2015). 

 

2.13.5 Effect of light source 

 

Photodegradation depends on the intensity of light. The amount of light energy equal or greater 

than its band gap energy promotes electrons from a valence band  (evb-) to the conduction band 

(ecb-) leaving positively charged holes (Coronado et al. 2013). High light intensity increases 

the rate of degradation. This is because electrons are fast promoted to the conduction band 

leaving holes avaialble for production of radicals responsible for degradation of pollutants. 
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Semiconductors such as ZnO and TiO2 absorb UV light only.  Modification of such 

semiconductos with silver extends their absorption into the visible range. 
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CHAPTER TWO … 

LITERATURE REVIEW 

Part 4: Thin film composites membranes for water purification 

___________________________________________________________________________ 

 

2.15  Introduction 

 

Water purification using membrane has draw -backs because they are susceptible to fouling. In 

this chapter, a broad analysis of literature on membrane technology were discussed. This 

include types of membranes, methods of preparation and mechanisms of transporting water 

across the different types. Organic fouling of the membranes were also discussed broadly in 

this scection.  

 

2.16 Membrane Technology 

Membrane technology is at the forefront of the water treatment industry owing to the unique 

separation principle compared to other units, which is, the transport selectivity of the membrane 

(Werber et al. 2016). The basic separation mechanism is presented in Figure 2.2. The 

breakthrough in synthetic membrane technology dates back to early 1960s when Loeb–

Sourirajan made the defect-free, high-flux, anisotropic reverse osmosis membranes for 

desalination (Mallevialle et al. 1996). The membrane was made from cellulose acetate material.  

 

2.17  Types of polymeric membranes   

Table 2.3 shows the types of pressure driven membranes and their characteristics. A synthetic 

membrane is an interphase that separates two phases and restricts the passage of other 

substances.  
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Table 2.3 Pressure driven membranes and their characteristics (adapted (Van der Bruggen et 

al. 2003 

Membranes 

 

Micro-

filtration 

(MF) 

Ultra-

filtrattion 

(UF) 

Nano- 

filtration 

(NF) 

Reverse 

Osmosis 

(RO) 

 

Permeability 

 (L/hm-2) 

 

>1000 

 

10-1000 

 

1.5-30 

 

0.05-1.5 

Pressure (bars) 0.1-2 0.1-5 3-20 5-120 

Pore size 100-10000 2-100 0.5-2 < 0.5 

Rejection 

 Monovalent 

 Multivalent ions 

 Small organic 

 Macromolecules 

 Particles 

 

 

No 

No 

No 

No 

Yes 

 

No 

Yes/No 

Yes 

Yes 

Yes 

 

No 

Yes 

Yes/No 

Yes 

Yes 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Separation 

mechanism 

Sieving Sieving Sieving/ charge 

effect 

Solution 

diffusion 

Application 
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2.18  Transport and Rejection in membranes 

Rejection is influenced by three main factors; (1) the intrinsic properties of the membrane, (2) 

the solute characteristics and (3) the feed water properties.  The membrane surface properties 

include the charge, morphology, hydrophilicity and pore size. The solute characteristics are the 

molecular size and molecule hydration. The feed water properties is the water chemistry such 

as the pH, ionic strength etc. (Hidalgo et al. 2016). 

 

2.18.1 Transport and Rejection in MF and UF 

 

In microfiltration (MF) and ultrafiltration (UF) membranes, separation of substances from the 

feed water is by size exclusion or sieving. Low pressure is applied to one side of the membrane 

and substances whose molecular weight is lower than the molecular weight cut-off for the 

membrane pass through the membrane.  The high molecular weight substances such as 

suspended solids and bacteria (MF), colloidal matter and proteins (UF) are usually rejected 

(Bundschuh et al. 2016). Attempts have been made to use ultrafiltration for removal of phenol 

and phenolic compounds, and in some cases good rejection capacities have been reported (Sun 

et al. 2015, Conidi et al. 2017). However, the  general observations with using UF is that the 

membranes suffer intense organic fouling attributed to adsorption effect and hydrophobic 

Figure 2.2 Schematic diagram of a separation process at the membrane surface (adapted from 

Mulder (2012) 
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interactions between the surface of the UF membrane and the organic constituents (Kumar et 

al. 2016, Ma et al. 2018).  

2.18.2 Transport and Rejection in RO and NF 

 

In RO separation, high pressure is applied on one side of the nonporous membrane opposing 

the osmotic pressure and forcing water molecules to pass through the membrane. It is known 

for its excellent rejection of monovalent ions, hence its wide application in desalination (Shen 

et al. 2016). Mechanism for transport of solutes across the RO membranes occurs through 

diffusion. The solvent is first dissolved in the active layer of the membrane based on its water 

solubility properties, hydrogen bonding and acidity before it is transported to the permeate  side 

of the membrane (Shon et al. 2013). 

 

Research efforts were made to separate low molecular weight organic compounds using RO 

membranes. However, membrane fouling from uncharged organic compounds became the 

prevailing challenge (Sim et al. 2017). Li, et al. (2010) stated similar argument from their study 

on rejection of phenol by RO and NF. The RO membrane experienced high phenol adsorption 

compared to NF during filtration (Li et al. 2010).  Due to the fouling problem of the RO 

membrane in rejection of low molecular weight organic compounds finding an alternative 

solution is necessary.  

From 1995, low- pressure reverse osmosis (ULP-RO) membrane infiltrated the market. The 

required pressure for a complete production with ULP-RO was estimated at 30 to 40 % less 

than tight RO (Hofman et al. 1997).  Hofman, et al. (1997) investigated the performance of 

ULP-RO in removal of micro-organic compounds and pesticides. The results showed more 

than 98% rejection of organic compounds (Hofman et al. 1997). In the studies on rejection of 

organic compounds from surface water using ULP-RO, Osaki, et al.  explained the mechanism 

that governs rejection of small organic compounds in ULP-RO membranes as due to “polar 

effect”, expressed as hydrogen bonding, dissociation constant (pKa) and Hannet number. 

Uncharged organic compounds do not dissociate when the pH changes. But the polyamide 

membrane is positively charged at feed pH < 5   and negatively charged at pH > 5. A small 

electrostatic force causes the organic compounds to adsorb at the membrane surface.  Charged 

organic molecules are rejected through the Donnan effect, where repulsive forces govern 

rejection of organic molecules with similar charge as the membrane. Molecules oppositely 
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charged from the membranes can be transported across the membrane depending on the size 

(Stein 2012). 

NF membranes came into existence in the 1970s then referred as “loose RO” due to its larger 

pore size compared to RO. Its major application is rejection of low molecular weight organic 

compounds and multivalent ions (Taheran et al. 2016). The characteristics properties of NF 

fall between UF and RO. Even though RO can reject essentially all molecules, NF surpasses 

RO in performance because it has desirable lower energy consumption (operating pressure) 

and higher fluxes (Shon et al. 2013). The structure composition of commercial NF membranes 

is essentially a thin film composites containing a polyamide layer over a more porous support 

such as polyethersulfone (PES) and polysulfone (Psf) (Chidambaram et al. 2015).  Rejection 

mechanism for NF is through charge and size exclusion. For large molecules, sieving becomes 

the dominant rejection mechanism (Labban et al. 2017). Tu, N.P (2013) gave an in- depth and 

broad description of various ways molecules are transported and rejected at the membrane 

surface of the NF membranes (Tu 2013). Neutral molecules are transported by two 

mechanisms; (1) convection due to pressure difference and by (2) diffusion due to 

concentration gradient (Tu 2013). Charged molecules interact with the membrane surface 

through electrostatic interaction. Positively charge molecules at the negatively charged 

membrane surface get attracted and pass through the membrane resulting in low percentage 

rejection. Negatively charged molecules on the other hand experience the Donnan effect as 

explained under ULP-RO (Chidambaram et al. 2017).  

2.19  Methods of fabricating thin film membranes 

Misdan et al. (2014) states that to obtain high permeability and selectivity in thin film 

membranes, the separation layer should be very thin and highly cross linked (Misdan et al. 

2014). The authors were suggesting that the preparation methods for thin film membranes is 

one of the essential components that affect the performance of the membrane. The two main 

synthesizing methods for thin films, asymmetric membranes are phase inversion and interfacial 

polymerization.  
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2.19.1 Phase inversion synthesis 

Below is the description of phase inversion technique for preparation of integrally skinned 

asymmetric membranes known as the “dry–wet phase inversion technique” (Loeb-Sourirajan 

method). The Loeb –Sourirajan phase inversion method was a breakthrough in preparation of 

asymmetric membranes. Fabrication of  thin film membranes through phase inversion follows 

the same procedure with a few modifications (Lalia et al. 2013).  

 

A casting solution is prepared from cellulose acetate, magnesium perchlorate solution (pore 

former) and acetone water (solvent). The solution is cast on a glass plate using a casting knife 

to a specific thickness. After casting there is a solvent exchange starting from the top of the 

solution to produce a thin skin layer of solid polymer at the top of the cast film.  Then the cast 

film is immersed in a coagulation bath where the polymer solidifies due to aqueous-organic 

exchange. In this exchange process, the solvent diffuses into the coagulation bath whereas the 

non- solvent diffuses through the thin layer of the cast film, as illustrated in Figure 2.3 (Lalia 

et al. 2013, Loeb 1981, Khulbe et al. 2008).   

 

 
 

Figure 2.3 Schematic diagram of the phase inversion process in the coagulation bath 

(Adapted from: (Sianipar et al. 2017) 

 

2.19.2 Factors affecting the performance of the membranes in phase inversion 

 

To date researchers are exploring factors that can improve surface characteristics of the thin 

film responsible for separation (Lalia et al. 2013). Factors that affect the properties of the 

membrane in phase inversion method including choice of monomer, solvents, non- solvents, 
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precipitation time and temperature of coagulation bath etc. Choice of the solvent and non-

solvent affect the morphology of the membrane.  

2.19.2.1 Choice of Solvents 

 

Solvents that are highly miscible with the polymer lead to porous membranes and those that 

make a more viscous polymer lead to dense membranes (Razali et al. 2017). Polar aprotic 

solvents are generally preferred because they produce anisotropic membranes with high 

porosity and high flux (Charkoudian et al. 2017, Kumar et al. 2017). 

 

2.19.2.2 Coagulation temperature 

Sunmugam et al (2017) investigated effect of coagulation temperature during solvent/non-

solvent demixing. They varied the temperature of the coagulation bath from 15oC to 35oC. 

Their results show that the membrane had a dense surface at low temperatures resulting in low 

permeability. Membrane porosity increased with increasing temperature resulting in increased 

water permeability.  At low temperature, the membrane structure was dense due to the delay in 

the liquid-liquid de-mixing process. The porous structure formed at higher temperature due to 

the instantaneous de-mixing.  The optimal temperature at which a good rejection and water 

permeability was achieved was 25oC (Sanmugam et al. 2017).  These results were analogous 

to those obtained by Thomas et al. (2014), though they used a two- stage coagulation bath 

(water and ethanol). They reported that at 60oC the membrane had an open structure on top 

connecting well with the underlying finger like structures and macrovoids (Thomas et al. 

2014). 

 

2.19.2.3 Casting polymer concentration 

 

Casting polymer concentration is another parameter of importance in fabrication of asymmetric 

membranes. Ma, et al. (2014) observed drastic decline in flux with increasing concentration of 

casting polymer (Ma et al. 2014). The polymers used were poly(ethersulfone) (PES) 

poly(sulfone) (PSf), Poly(vinylidenefluoride)  cellulose acetate, poly(acrylonitrile or their 

blends (Chidambaram et al. 2015, Irfan et al. 2015, Wang et al. 2017). These polymers are 

hydrophobic. Although they are capable of reaching high flux rate and relatively energy cost 

effective, their hydrophobic surface lead to membrane fouling.  
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2.19.3 Interfacial polymerization 

 

Cadotte, et al (1980) conducted the first experiment on interfacial polymerisation to produce a 

thin film polyurea membrane. The microporous polysulfone polymer was soaked into a 

solution of polyamine and into di-isocyanate in hexane. The membrane was heated to 110oC to 

effect crosslinking in the thin layer (Cadotte et al. 1980). The performance properties of the 

thin film polyurea membrane included better flux and salt rejection compared to the integrally- 

skinned cellulose acetate by loeb-Sourirajan.  

Polysulfone, polyethersulfone (PES) and polyvinylidene fluoride (PVDF) are common 

microporous support used in interfacial polymerization.  However, PES is the most important 

because it is stable at high temperature and has amorphous characteristics that make it 

preferable for preparation of asymmetric and thin films membranes as a support (Abdulkarima 

et al. 2013, Behnam et al. 2016, Rui-Xin et al. 2017).   

The structure and the morphology of the thin film layer is a result of the interplay of diffusion 

and reaction of the monomers, therefore solubility and diffusivity of the monomers have an 

impact on the ultimate flux of the membrane. The choice of the monomer in thin film composite 

(TFC) membranes is one of the most important factors in the synthesis conditions.   The 

different monomers of importance in fabrication of TFC membranes include the charged, 

hydrophilic, chlorine resistant and pH stable monomers (Paul et al. 2016a). 

 

2.19.4 Choice of the monomers 

2.19.4.1 Charged monomers  

Charged monomers have an effect on the overall charge of the membranes. The membrane 

charge is investigated using zeta potential analyzer. The surface charge determines the 

effectiveness of solute rejection. It is well understood that charged solutes are rejected by 

repulsive forces. 

 Li, et al. (2014) investigated the effect of different amine monomers, Diethylenetriamine 

(DETA), Triethylenetetramine (TETA), Tetraethylenepentamine (TEPA) and piperazidine 

(PIP) with the organic soluble monomer, trimesoyl chloride in fabrication of NF membranes 

for rejection of orange GII solution (Li et al. 2014). It was observed that the PIP/TMC 

membrane readily rejected the orange GII. This was attributed to negative charge of the PIP 

and rejection was through repulsive interactions also known as the Donnan effect. In this study 
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the PIP monomer was used for preparation of the TFC membrane for rejection of chlorophenols 

due to the its negative charge.  

 

2.19.4.2 Hydrophilic monomers 

 

With regard to increasing membrane hydrophilicity, monomers with sulfonic group have been 

the popular choice.  Liu, et al. (2012)  used 2,5-bis(4-amino-2-trifluoromethyl-

phenoxy)benzenesulfonic acid (6FAPBS) and [1,10-Biphenyl]-3,30-disulfonic acid, 4,40-

bis[4-amino 2(trifluoromethyl)phenoxy] as co-monomers with PIP reacting with TMC in 

fabrication of thin film membranes for rejection of dye solutions. They observed an increase in 

flux as the concentration of the sulfonated monomer was increased against PIP, however with 

decreasing rejection of methyl orange and Rhodamine dyes (Liu et al. 2012). Similar results 

were recently observed by Akbari, et al. (2016) in the NF membrane they fabricated for 

rejection of textile wastewater. They used 50% diaminobenzenesulfonic acid (2,5-DABSA) in 

the amine mixture and obtained the membrane with high hydrophilic surface  and a substantial 

increase in flux compared to the neat PIP-TMC membrane (Akbari et al. 2016). 

 

2.19.4.3 Chlorine tolerant monomers 

  

One of the weaknesses of the polyamide membranes is lack of chlorine stability. Natural water 

and wastewater treatments involve the use chlorine as a biocide to prevent biofouling. 

Therefore to prevent damage to the chlorine sensitive membranes water is normally 

dechlorinated before re-chlorination of the permeate (Verbeke et al. 2017). As a result, efforts 

were made to develop chlorine tolerant TFC membranes. Geise, et al. (2010) elaborates that 

the amidic hydrogen in the amide is the most liable moiety towards chlorine attack and could 

be replaced by either methyl or phenyl. The aromatic ring bonded to the amide nitrogen could 

also be replaced with aliphatic chains or cyclic carbon (Geise et al. 2010). Another way is to 

prevent the irreversible chlorination from Orton’s rearrangements (Paul et al. 2016b). Hong et 

al (2013) prepared a TFC chlorine stable membrane using m-phenylene diamine (MPD) and 

1,2,4,5-benzene tetracarbonyl chloride (BTC) with subsequent thermal imidization in the 

presence of a catalyst. The chlorine resistance was achieved by replacement of chlorine-

sensitive amide groups with chlorine-resistant imide groups (Hong et al. 2013). Although 

polyamide membranes with tertiary amides or aromatic rings with ring-deactivating groups are 
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chlorine tolerant, they however, show reduced salt rejection compared with conventional 

polyamide membranes (Hong et al. 2013).  

 

2.19.4.4  pH tolerant monomers 

 

The pH instability is yet another area in membrane fabrication that limits their wide application. 

The TFC membranes (NF and RO) are negatively charged due to carboxylic and sulfonic 

groups and they remain negatively charged at neutral pH and alkaline medium. In acidic 

conditions (3 < pH < 7) they get deprotonated leading to lower rejection percentages. It is a 

well-known fact that most NF and RO membranes have lower rejection at low pH (pH< 3), or 

after acid rinse (Kuśmierek et al. 2015). The amide group is also inherently susceptible to 

hydrolysis via direct nucleophilic addition of OH- to the carbonyl group at feed pHs > 11, 

resulting in severe reduction in performance (Lee et al. 2015). Lee, et al. (2015) prepared the 

pH stable polyamide TFC membrane by interfacial polymerisation of polyethylenimine and 

cyanuric chloride on porous polyethersulfone supports. The membranes showed extended 

superior pH stability and good salt rejection between pHs 1-13 (Lee et al. 2015).  

 

2.19.5 Other factors 

 

Apart from choice of the monomer there are factors such as reaction time, curing temperature, 

additives and support material that also affect membrane performance.  

2.19.5.1 Reaction time 

 

It is accepted that longer reaction time between the amide and the acyl chloride in the 

fabrication of the PA results in a thicker top layer with decreased flux. Hermans et al. (2015) 

prepared the PA membrane using meta-phenylenediamine and trimesoyl chloride over the Psf 

support. Among the investigated parameters was the reaction time. They also found that 

increasing reaction time resulted in a thicker PA layer, but this cuased no significant decline 

on flux. The reason advanced was that the PA layer would be completely formed within 

seconds  (Hermans et al. 2015).  
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2.19.5.2 Curing temperature  

Hermans, et al. (2015) investigated the effect of curing temperature on salt rejection 

performance of the PA –TFC membranes between 25oC – 110oC. The results showed a 

decrease in permeation with increasing curing temperature, but an increase in salt rejection 

from 92% to 97.5% due to increase in temperature from 25o C to 50 oC.  Temperature higher 

than 50oC had a negligible effect on performance in realation to salt rejection (Hermans et al. 

2015).  Khorshidi et al. (2015) obtained similar results as they reported that TFC membranes 

developed with curing temperature at 25 oC, had high rejection but poor water flux.  Further 

increase in the curing temperature showed a slightly decreased in flux but improved rejection 

(Khorshidi et al. 2015).  

2.19.5.3 Monomer concentration  

Khorshidi et al. (2015) prepared PA-TFC membranes using MPD and TMC. They investigated the 

effect of monomer concentration of MPD and TMC.  At a higher MPD concentration (2 wt %) there 

was a considerable flux decline compared with flux at 1 wt% but with higher salt rejection 

(Khorshidi et al. 2015). Klaysom et al, (2013) also reported similar results in which flux 

decreased with increase in MPD concentration and reaction time, however with no performance 

change with increasing TMC concentration except at low values where water flux dropped with 

increase in TMC concentration (Klaysom et al. 2013). Based on the results there was a strong 

interaction between MPD and TMC concentrations, showing the importance of monomer 

concentration (molar) ratio on rejection (Khorshidi et al. 2015).   

  

One of the reasons that led to thorough investigations on factors that affect the TFC membranes 

is the quest to develop a membrane with high rejection and high flux. These two parameters 

are usually a trade-off for each other. Membrane fouling on TFC- NF and RO membranes is 

an inherent problem that affect the membrane performance. Subsequent sections describe 

membrane fouling and the various ways researchers have used to alleviate it on TFC 

membranes during interaction with small organic compounds.  

 

2.20 Membrane fouling 

 

Membrane fouling is the deposition and accumulation of suspended and/or dissolved 

substances on the membrane surface (Mahlangu 2015).  This causes a rapid and often 
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irreversible loss of flux through the membrane (Katsoufidou et al. 2005). Even though, 

backwashing measures are still employed as an attempt to reverse fouling (Luján-Facundo et 

al. 2015), it is limited in achieving total reversibility. Some deposited matter on the membrane 

surface and inside the pores cannot be removed by simple backwashing (Singh et al. 2015).  

Further damage to the membrane due to flux decline results in increased cost due to significant 

increase in energy consumption, breakdowns, frequent cleaning, membrane degradation and 

shorter life span (Mohammad et al. 2015, Brami et al. 2017). 

 

 Types of fouling that lead to flux decline are concentration polarization and cake formation. 

(Chidambaram et al. 2017). The build-up of rejected constituents at the membrane surface due 

to concentration polarization eventually leads to cake formation (Nguyen et al. 2014). When 

concentration polarization is attained on the membrane side, several fouling mechanism are 

bound to occur (Mohammad et al. 2015b).  The fouling mechanisms are in three stages: (1) 

pore narrowing, (2) pore plugging, and (3) gel/cake formation (Harrison et al. 2015). In order 

to further understand fouling, there is need to unpack this complex phenomenon. Pore 

narrowing and plugging are due to constituents that are smaller than the pore size and both 

increase concentration polarization and promote gel/cake formation. Pore narrowing is due to 

constituents adsorbed within the pores (Holman et al. 2007).   

Researchers continue with the quest for fabricating PA-TFC membranes that effectively reject 

low molecular organic compounds through modification of surface characteristics (Razmjou et 

al. 2011, Jamshidi Gohari et al. 2014, Liu et al. 2015). 

2.21 Mechanism of organic fouling 

  

Tijing, et al. (2015) defines organic fouling as the adsorption or deposition of dissolved organic 

matter and colloidal matter on the membrane surface. They further describe humic acids to be 

among the most abundant organic pollutants in surface waters. This is because composition of 

humic acids ranges from heterogeneous to polymeric organic degradation products of low to 

moderate molecular weight aromatic and aliphatic components with carboxylic and phenolic 

functional groups (Tijing et al. 2015). 

It is important to understand the fouling mechanism by organic matter. It is generally accepted 

that organic fouling on the membrane occur in three ways (1) chemical affinity, (2) electrostatic 

and (3) hydrophobic interaction. Organic constituents can partially or completely adsorb or 

deposit inside the pores of the membrane. They can also form a separate gel-like layer on the 
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surface of the membrane. Finally, they can bind to other particles forming aggregates of low 

permeability particle/organic constituents layer on the surface of the membrane (Tijing et al. 

2015). The PA-TFC membranes have been employed for removal of low molecular weight 

organic compounds (Wang et al. 2015, Winter et al. 2017).  

However, surface hydrophilicity/hydrophobicity, surface charge, and surface roughness are 

major factors that lead to the TFC membranes susceptibility to fouling (Mah et al. 2016). The 

hydrophilic membrane is preferred because it is more resistant to membrane fouling since many 

foulants are naturally hydrophobic. In this case the foulants are kept away from the membrane 

surface by a protective water-layer that builds up due to hydrogen bonding between the water 

and the membrane (Kochkodan et al. 2015).  The membrane surface charge also plays an 

important role in membrane fouling. The PA-TFC membranes reject substances by 

electrostatically repelling foulants with similar charge to the surface of the membrane thereby 

reducing the extent of membrane fouling (Saqib et al. 2016).  The PA-TFC surface is primarily 

composed a ridge and valley - like structure that is relatively a rough surface. The rough surface 

provides more surface area and adsorption site for foulants, though the rough surface has an 

advantage for increased flux (Xu et al. 2011). Common approaches of incorporating substances 

for improving hydrophilicity, charge and surface texture include grafting and surface coating 

(Yan et al. 2016b) and recently  interfacial polymerization (Sallehuddin et al. 2017) and  phase 

inversion (Lai et al. 2016).  

 

Previous studies based on the concept of mixed-matrix membranes, in which a small filler 

material was dispersed throughout polymeric matrix, brought a breakthrough in the 

development of advanced thin film nanocomposites (TFN) (Jeong et al. 2007).  

 

2.22 Biofouling  

 

Biofouling is among the important membrane fouling for research attention. The mechanism 

of biofouling in not yet explicitly known. The phenomenon is believed to occur in three stages: 

(i) beginning with bacterial adhesion on the membrane surface. At the surface they produce a 

biofilm of exo-polymers (extracellular polysaccharide substance) (EPS) and other chemical 

organic substance that bind firmly to the surface  (ii) form biofilm colonies  (iii) the biofilm at 

the surface eventually develops  into a mature biofilm (Mollahosseini et al. 2012, Li et al. 

2013a, Maddah et al. 2017). Figure 2.4 illustrates the mechanism of biofouling.  



66 

 

 

Figure 2.4 Mechanism of biofouling (Maddah et al. 2017) 

 

2.23 Methods of preventing membrane fouling 

2.23.1 Surface modifications 

Surface coating involves immersion of support membrane in a coating solution and evaporation 

of excess solution to construct the coating layer. Polyvinyl alcohol, zwitterion coating, 

polydopamine, polyethylene glycol are examples of coating solutions widely used (Banerjee et 

al. 2011, He et al. 2016, Huang et al. 2018). For example, Kim et al. (2014) prepared PA-TFC 

membrane by coating polyvinyl alcohol (PVA) on the surface of RO membrane. It was found 

that the modified membrane had a smooth surface and exhibited improved fouling resistance 

in separating dye from wastewater. Poly (ethylene glycol) (PEG) has demonstrated good 

antifouling properties towards proteins and oil emulsions (Banerjee et al. 2011). PEG reject 

proteins by forming a hydration layer through hydrogen bonding to prevent protein 

adsorption (Nurioglu et al. 2015). Zwitterionic materials possess both positive and negative 

charged components in the structure. They are capable of forming stable hydration layer via 

electrostatic interaction with water molecules to keep away the organic foulants from being 

adsorbed on the membrane surface (He et al. 2016, Huang et al. 2018). A study by McCloskey 

et al. (2010) reported on Polydopamine (PDOPA) coated UF, MF, NF and RO membranes 

for rejection of Bovine Serum.  The results showed an improved hydrophilicity of the 

membranes. They further investigated the extent of BSA adhesion   (membrane fouling) to 

the PDOPA-modified membranes and found it significantly lower than the unmodified 

membranes (McCloskey et al. 2010), meaning that polydopamine significantly reduced 

membrane fouling. Polydopamine is non selective hence may be limited in application such 

as in specific separation. Surface coating may result in membranes with increased chlorine 
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resistances and can also have a negative impact on the permeate flux (Kim et al. 2004). Another 

drawback is that the coating material may penetrate into the ridge and valley structure of the 

PA-TFC membranes and increase the permeation resistance (Mbuli 2014).  

2.23.2 Surface grafting 

 

Triethanolamine (TEOA) was grafted through esterification reaction between the hydroxyl 

groups of TEOA and the residual acyl chloride groups of the PA-TFC membrane for rejection 

of model proteins, polysaccharide and positively charged substances. The results showed an 

increasing surface hydrophilicity of the membrane with increasing amount of TEOA on the 

membrane. It was apparent from the results that during filtration of water in the presence of the 

foulants both the modified and neat membranes exhibited a noticeable decline in water flux. 

This was attributed to the accumulation of foulants on membrane surface, due to concentration 

polarization and membrane fouling. However, comparatively, the TEOA-modified membranes 

flux decline was slower indicating that the attachment of TEOA onto the surface of polyamide 

NF membrane performed better in mitigating membrane fouling (Yan et al. 2016a). Zhu et al. 

(2015) grafted poly (amidoamine) dendrimer (PAMAM) onto the interfacially polymerized 

PA-TFC hollow fibre NF membrane using the unreacted acyl chloride groups. The preparation 

of the PA-TFC with interfacial polymerization often increases surface roughness making it 

susceptible to fouling.  The AFM results of the PAMAM grafted PA/TFC membranes showed 

a smooth surface contributing to less tendency to fouling and increased water permeation (Zhu 

et al. 2015). However, the efficiency of the grafting method depends on the choice of a suitable 

grafting monomer. As already noted from the study by Fang, et al. (2016), the wrong choice 

of monomer can lead to a huge flux decline that renders the prepared membrane ineffective. 

Therefore, with grafting method the membrane should first be assessed for critical flux (Yan 

et al. 2016a, Reis 2016). 

2.23.3 Feed pH 

 

The pH of the feed also has an effect on the overall interaction of the PA-TFC membranes with 

organic foulants. Yu, et al. (2018) conducted a study for removal of humic acids from synthetic 

and surface water using PA-TFC membranes.  They investigated feed charge due to change in 

pH in relation to surface charge of the membranes (Wang et al. 2011). From their results, the 

negatively charged PA-TFC membranes showed greater fouling at lower pH than at high pH. 

This was due to adsorption of the constituents to the membrane surface at low pH because the 
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constituents are either positively charged or neutral. At high pH, repulsive forces between the 

negative PA-TFC membrane and the negatively charged HA led to reduced fouling propensity 

on the membrane.  It was further observed that at high pH organic compounds at the membrane 

surface were easily backwashed from the membranes and  more than 90% flux recoveries was 

achieved (Yu et al. 2018). The target analytes in the current study are 2-CP and 2, 4, - DCP. 

These organic compounds exist in solution as phenolate ions at pH = or > 7 which is favourable 

for rejection by the PA-TFC membranes (Lee et al. 2015).    

2.23.4 Incorporation of nanomaterials (Zeolite and Carbon Nanotubes) 

 

 It is now evident that surface characteristics of the membrane have an influence on the 

transportation of substances through the membrane. Special features on the membrane surface 

can either promote and/ or inhibit certain molecules from passing through the membrane 

(Jamshidi Gohari et al. 2014, Ahmad et al. 2015). The breakthrough by Joeng and Hoek in 

their pioneering new fabrication method for RO using interfacial polymerization continued to 

be explored. They incorporation zeolite nanoparticles within the PA layer of the composite 

membrane made of m-phenylediamine (MPD) and trimesoyl chloride (TMC) (Lau et al. 

2015b). The zeolite incorporation led to several advantages such as improved permeability, 

hydrophilicity, antifouling propensity and mechanical resistance. The negatively charged three 

dimensional sieve pore network, provided flow paths for water permeation and high solute 

rejection (Jeong et al. 2007, Li et al. 2017). The same concept was later applied to carbon 

nanotubes in water desalination (Lind et al. 2009, Lau et al. 2015).  

2.23.5 Zeolite  

 

Zeolite has special properties when incorporated into the thin film layer of the PA-TFC 

membranes. It provides a preferential flow path through the super-hydrophilic membrane 

surface and molecular sieve nanoparticle pores. For example¸ clinoptilolite zeolite consists of 

two  dimensional array of channels occupied by exchangeable Na+, K+, Mg2+ and Ca+ 

responsible for ions exchange and molecular sieving.  They are good in separation of ions 

(Mihaly-Cozmuta et al. 2014, Giwa et al. 2016). These materials often provide the membrane 

with improved mechanical, electrical, optical, chemical and thermal stability (Dong et al. 2011, 

Al-Hobaib et al. 2017). TFC membranes incorporated with zeolite showed enhanced 

membrane permeability (high flux) and high solute rejection (Safarpour et al. 2017). However, 
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they are not suitable for rejection of low molecular weight organic compounds particularly at 

neutral charge (Giwa et al. 2016).  

2.23.6 Carbon nanotubes 

 

Carbon nanotubes (CNTs) including both the single walled carbon nanotubes (SWCNTs) and 

the multi walled carbon nanotubes (MWCNTs) has been incorporated in PA-TFC membranes 

have been used in water desalination and wastewater purification (Lee et al. 2016). Their 

attractive properties in this application are high specific surface area, high mechanical strength, 

excellent water transport properties and chemical inertness (Ma et al. 2017, Sweetman et al. 

2017).  

Lee, et al. (2014) prepared the PA-TFC membrane embedded with dopamine coated multi-

walled carbon nanotubes (MWCNTs) through interfacial polymerization. Addition of 

dopamine was for free dispersion of the CNTs and to enhance hydrophilicity of the membrane. 

They observed that the presence of the CNTs in the PA matrix showed 40% enhanced water 

permeation (Lee et al. 2014). In another study, Lee et al. (2017) modified and oxidized the 

CNTs (o-CNT) solution which was then cast on polysulfone to prepare a more porous support 

through the non- solvent induced phase separation (NIPS).  Subsequently the PA-TFC 

membrane was prepared using interfacial polymerization on top of the as prepared porous o-

CNT/Psf for application in water desalination.  In this case, the water permeation was 35% 

more than the pristine membrane without any loss in NaCl rejection performance (Lee et al. 

2017). Carbon nanotubes are commonly used for water desalination. However, the process of  

adsorption and desorption mechanisms lead to greater losses of the analyte (Lee et al. 2016).  

2.23.7 Incorporation of TiO2 and ZnO  

 Among the nanomaterials, titanium dioxide (TiO2), Zinc oxide (ZnO) and  silver (Ag) have 

been extensively used for water treatment applications, because of their super-hydrophilic 

(TiO2 and ZnO), antibacterial (Ag) and photocatalytic properties. Incorporation of the 

nanomaterials into the membranes results in better performance, in terms of permeability, 

antifouling properties, solute rejection and membrane lifetime (Vatanpour et al. 2012, Fischer 

et al. 2015, Ngo et al. 2016a, Zhang et al. 2017). Methods used to incorporate nanomaterials 

in the PA-TF layer are (i) attachment via self-assembly (Ngo et al. 2016), (ii) blending using 

phase inversion (Vatanpour et al. 2012) and  (iii) in-situ integration through IP reaction (Kim 

et al. 2016). Self-assembly involves coating the prepared or commercial TFC membrane with 
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the nanoparticles suspension. Ngo et al (2016) coated commercial TiO2 nanoparticles to a 

commercial PA-TFC membrane (Filmtec BW30). The PA-TFC membrane is first wetted and 

dipped into a suspension of TiO2 nanoparticles followed by UV irradiation. They proposed the 

interaction between nanoparticles and the membrane to be through hydrogen bonding (Ngo et 

al. 2016). Although, membrane performance in terms of hydrophilicity was improved, the 

prevailing disadvantage of this method is the possibility of early detachment also known as 

leaching of the nanoparticles from the membrane (Mollahosseini and Rahimpour 2014). 

Nanoparticles could also be blended with the membrane using phase inversion method. A 

suspension of the dissolved polymer and the nanoparticles is prepared and cast on a glass 

support before it coagulates.  The main problem with this method is aggregation of 

nanoparticles as it is difficult to form a consistent or homogenous cast solution (Sotto et al. 

2011). Vatanpour, et al. (2012) blended TiO2 using phase inversion method in PES membrane. 

They investigated different sizes of TiO2 nanoparticles and observed a decline in flux for the 

small sized nanomaterials (8.0 nm). They ascribed this to agglomeration (Vatanpour et al. 

2012). The in- situ integration of the NPs using IP method was introduced as a way to resolve 

the leaching problem experienced in coating. In this method, TiO2 suspension is directly 

dispersed into one the reacting monomers, usually the aqueous phase prior to interfacial 

polymerization (Mollahosseini et al. 2014). In the study by Kim, et al. (2016) they prepared a 

PA-TFC membrane and blended it with TiO2 through interfacial polymerization. They 

observed a remarkable salt rejection of more than 94 % with negligible loss in flux during 

antifouling tests with BSA (organic foulant) (Kim et al. 2016).  

 

2.23.8 Methods of preventing biofouling 

Similar to other types of fouling, biofouling is affected by factors such as feed water 

characteristics, hydrodynamic conditions and membrane surface properties (Nikkola et al. 

2013). Surface modification with microbe-repelling or anti-adhesive polymers is documented 

as one of the methods for anti-biofouling. Some of the materials used for the modification are the 

zwitterionic polymers (Abdelhamid et al. 2015), amphiphilic polymers (Choudhury et al. 2018a) 

and quaternary ammonium polymers (Xue et al. 2015). Recently, nanomaterials have gained 

popularity in reducing bio-foulant adhesion at the membrane surfaces (Choudhury et al. 2018).  

Noble metals like silver, gold and platinum have been used to improve the antibacterial 

properties of TiO2 and ZnO in catalysis (Mohite et al. 2015, Cao et al. 2017).  Among the noble 

metals mentioned, silver is known to possess high antibacterial properties even at minimum 



71 

 

concentrations of (<0.001 mg/L), as it has been reported to be effective in killing bacteria 

(Kotlhao et al. 2017). Our previous study on antibacterial activity of silver yielded positive 

results using disc diffusion. The zones of inhibition were 7mm, 9mm, 6 mm and 11 mm for 

Escherichia coli, Bacillus cereus, Bacillus subtilis and Klebsiella pneumoniae respectively 

(Kotlhao et al. 2017). Zhu et al. (2010) describes the antibacterial mechanism to be associated 

with interaction with thiol group on the cell membrane of a bacteria (Zhu et al. 2010). Gordon 

et al. (2010) gave a similar explanation that the interaction is between the silver and the electron 

donor groups such as nitrogen, oxygen and sulphur. He further stated that it is still not clear as 

to whether this is due to thiol alone (Gordon et al. 2010). The proposed mechanism is that silver 

ions react with cysteine (HO2CCH(NH2)CH2SH) by replacing the hydrogen ion and forming 

silver bonded cysteine (HO2CCH(NH2)CH2S-Ag). This denatures the normal enzymatic 

function and lethally affects the bacteria as illustrated in Figure 2.5 (Zhu et al. 2010).  

Li et al. (2013) conducted a study in which silver nanoparticles were incorporated into the 

PVDF membrane. They observed excellent hydrophilic properties of the membranes and 

outstanding antifouling, both anti-organic fouling and anti- biofouling (Li et al. 2013b).  Figure 

2.5 shows the mechanism of antibacterial activity of nanoparticles on microorganisms. 

 

 

 

Figure 2.5 Mechanism of the antibacterial activity of nanoparticles on microorganisms. 

(Adapted from (Sahoo et al. 2011)  
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2.24 Choice of the nanomaterials for surface modification of the membranes 

As stated earlier in this report, fouling is a result of specific interactions between the membrane 

and components in the feed water that either enhances or reduces performance. Membrane 

fouling can results in reversible (foulants loosely deposited on the surface) or irreversible 

(foulants adsorbed within the walls of the membrane pores) loss of flux (Mahlangu 2015).  In 

either case fouling should be reduced in order to run sustainable membrane water treatment 

and purification plants. Surface modification with nanomaterials is one of the common ways 

to reduce fouling. In this study TiO2, ZnO and Ag nanomaterials are incorporated into the PA-

TFC membrane as Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC for evaluation of their antifouling 

properties against the small molecular weight organic compounds (2-CP and 2,4-DCP). 

The Ag-TiO2 and Ag-ZnO nanomaterials consist of tripartite properties for membrane 

antifouling. (a) The hydrophilic properties that was investigated through contact angles. (b) 

Enhanced antimicrobial properties of the Ag – TiO2 and Ag-ZnO nanocomposites (from MIC 

experiments and disc diffusion).  (c) The photocatalytic characteristics for both Ag-ZnO and 

Ag-TiO2 (from photodegradation of 2-CP and 2,4-DCP using powder nanoparticles and 

modified membranes- Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC) (Vatanpour et al. 2012, 

Fischer et al. 2015, Ngo et al. 2016a, Zhang et al. 2017). 

In the synthesis of the Ag-ZnO and Ag-TiO2 modified PA-TFC membranes interfacial 

polymerization method was used. The amount of Ag-TiO2 and Ag-ZnO was varied from 0 to 

2.0 wt %. The prepared membranes were characterized using contact angle for hydrophilicity, 

ATR-FTIR, XRD, SEM and AFM.  Membrane performance was tested using flux, flux 

recovery and fouling tests. Fouling tests using both synthetic water and river water under light 

were performed. The ICP spectroscopy was used to investigate possible leaching for silver after 

filtration.  

 

2.25 Silver release 

 

One of the problems of the antibiofouling membranes embedded with silver is the potential 

risks of releasing Ag NPs and Ag+ at high concentrations that can affect the environment. One 

way of solving the problem or the risk is to immobilize Ag NPs onto the membrane surface to 

allow for a slow release. A slow release of silver during membrane filtration is a good 

characteristic feature for a long lasting antibiofouling membrane (Yin et al. 2013).  Silver 
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leaching test are usually performed on composites membranes, but there is no developed 

protocol for the silver release tests. The most common types are the batch immersion (Rahaman 

et al. 2014), dead end filtration (Tang et al. 2015) and cross flow filtration (Bi et al. 2018). 

However, batch method and dead end filtration are conventional methods. The release of silver 

is important for monitoring antibacterial efficacy of the membrane during water treatment (Bi 

et al. 2018).  A batch method is usually characterised by a rapid release of silver at the 

beginning of the experiment followed by a slow release rate for extended periods (Yin et al. 

2013). 

 

2.26 Summary  

 

The literature adequately covers areas that describe sources of chlorophenols and their effects 

to the environment and health. Methods used for determination of organic compounds in water 

samples are well documented. It is clear from the cited literature that direct determination of 

chlorophenols is almost impossible. As a result, preconcentration step is an important stage in 

determination of chlorophenols. The use SPE methods is applied in most procedures in 

determination of organic compounds. In some cases coupled with gas chromatotography.  The 

results show that preconcentration of the analyte increases detection of chlorophenols. 

However, there is limited information in determination of chlorophenols in Vaal River resulting 

in this area being one of the novelty part in this study.  

The methods of synthesising NPs and incorporation into membrane using are well documented. 

The Ag-TiO2 nanocomposite is well described, literature show that it was mostly incorporated 

into ultrafiltration membranes such as PES using phase inversion method. Incorporation of Ag-

ZnO NCs, however, has received little attention in research. Further more, very few articles are 

available in which the NCs were incorporated using interfacial polymerisation and for rejection 

of chlorophenols.  This is another novelty aspect of this study as well as application in Vaal 

river water.   
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CHAPTER THREE 

METHODOLOGY 

Determination of chlorophenols in Vaal and Klip Rivers 

___________________________________________________________________ 

3.1 Introduction 

This chapter gives details of the research procedures followed in this study. It covers the 

following methodologies.  Determination of 2-CP, 2,4-DCP and 2,4,6-TCP in the River using 

SPE for preconcentration of the analyte and analysis with the HPLC. The procedure for 

synthesis of the NPs (Ag, TiO2 and ZnO) and NCs (Ag-TiO2 and Ag-ZnO) is described in 

detail. The NPs were characterised using various instrumentation such as UV-Vis, PL, XRD, 

FTIR, SEM and EDX. The chapter also gives a detailed description on the preparation of the 

samples and instrumental parameters for characterisation procedures.  The chapter describes 

details of the method of photocatalytic degradation of the NPs using 2-CP and 2,4-DCP as 

model pollutants and their antibacterial activity using disc diffusion and MIC.  The NPs and 

NCs were tested for toxicity against organisms and the method described. The nanomaterials 

were embedded onto the PA-TF membrane to enhance flux and rejection of 2-CP and 2,4-DCP 

as model pollutants. The process of incorporation of the nanoparticles into the membranes, 

characterisation of the membrane and testing for membrane performance were described in 

detail. The membranes were further tested for silver leaching and the chapter give a clear 

description of the leaching process.  

3.2 Reagents  

All reagents were used without any further purification. For determination of chlorophenols, 

2-chlorophenol, 2,4 - dichlorophenol and 2,4,6-trichlorophenol were purchased from Sigma 

Aldrich.  Acetonitrile (HPLC grade, 99% purity), formic acid were supplied by Merck.  

Hydrochloric acid (HCl) 32% was purchased from Glass world. All apparatus were thoroughly 

cleaned with purified water prepared by Milli Q and dried in an oven at 80oC.   Hydrochloric 

acid and sodium hydroxide were used to adjust the pH during sample preparation with SPE.  

For synthesis of nanopartilces, Titanium tetrabutoxide (TBT), acetic acid, ethanol, sodium 

borohydride, Silver nitrate, Zinc nitrate hexahydarte (97%), (ZnNO3)2. 6H2O), Sodium 

Hydroxide (NaOH, 97%), and PVP were purchased from Sigma Aldrich.. Material for disc 
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diffusion included the Mueller Hinton Agar for broth and agar plates. Sodium Hydroxide and 

hydrochloric acid (32%) for adjusting the pH during photodegradation were purchased from 

sigma Aldrich. Materials used for incorporation of the NPs into the membranes were 

commercial polyether sulfone, 5kDa supplied from Microdyn Nadir. Sodium dodecyl Sulphate 

(98.5%), Pepirazine (99%), trimesoylchloride (98%) and hexane (98%) were purchased 

purchased from Sigma Aldrich and sodium carbonate for adjusting the pH of the aqueous 

phase.  

 

3.3 Materials and Instrumentation 

 

Water samples were collected in opaque 1 L glass bottles to avoid direct sunlight. For solid 

phase extraction, the pH measurements were done using the Hanna pH meter model H12210 

with a pH range of 0.00 to 14.00. Both synthetic and river water samples were preconcentrated 

in a solid phase extraction manifold system. The 6 ml silica based  C-18 teflon tubes for solid 

phase extraction were used: Strata X – 500 mg (Phenomenox)   (Sulpeco, USA). Chlorophenols 

were analysed using an Agilent 1100 Series HPLC (Agilent Technology Inc., Santa Clara, CA, 

USA) with a programmable wavelength diode array and reversed phase column. Instruments 

for characterisation of nanoparticles included the optical properties of the NPs, characterized 

using the Perkin Elmer UV-Vis, T80 double beam spectrophotometer. The absorption was 

performed in the wavelength range from 200 to 900. Photoluminescence properties to study 

the electronic structure of the nanomaterials were analyzed using an Edinburgh Instruments 

FLS920. Glass quartz cuvettes with a 1 cm path length were utilized during the analysis using 

distilled water as a solvent. The excitation wavelength was scanned from 200 to 600 nm. 

Fourier transform infrared, FTIR, analysis (PerkinElmer Spectrum 400 FT-IR/NIR 

Spectrometer, Waltham, MA, USA) was used for determination of the functional groups of the 

nanomaterials. The wavenumber scan range was from 400 – 4000cm-1. The effect of Ag on 

crystalline structure of TiO2 and ZnO was investigated using Shimadzu-XRD 700, X-Ray 

Diffractometer, Cu Ka radiation (l = 1.154056 Å). Analysis was carried out in the 2Ɵ range 

from 10 – 90o. The morphology of the NPs and membranes were studied using SEM, equipped 

with EDX for elemental analysis. For photodegradation of the chlorophenols using the NPs, a 

300 ml batch photoreactor equipped with 16 W UVC lamp and a peristaltic pump to agitate the 

mixture throughout was used. It was connected to a 5 ml syringe for sampling of aliquots.  After 

incorporation of the NCs into the membranes, they were characterised. Determination of 

functional groups was done using Attenuated total reflectance Fourier transformed infrared 
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(ATR– FTIR) spectroscopy (PerkinElmer Spectrum 100 spectrometer, USA). Pure water flux 

was investigated using the stirred dead-end cell (Sterlitech, HP4750) with a total volume 

capacity of 300 ml, a diameter of 5.1 mm and 22.4 mm height and an active membrane size of 

14.6 cm2.   pH measurements were taken with Hanna instruments pH meter model HI 98103. 

The accuracy of the pH meter is ±0.2 pH at 20oC. Conductivity measurements were taken with 

a Metrohm 660 conductivity meter. 

 

3.4 Method for determination of chlorophenols 

3.4.1 Sampling protocol 

Three samples from each sampling point were collected using a grab method for replicate 

measurements. The sampling bottle was submerged into the water inverted to allow the neck 

of the sample bottle to be upright, pointing to the water flow, and completely filled. A dark 

glass bottles was used to prevent direct sunlight. Replicate measurements of the pH, 

temperature and electrical conductivity of the samples were recorded on site. Samples were 

collected in August and September 2017 prior to rainy season. During rainy seasons, surface 

waters are more dilute and the chlorophenols may not be detected because they usually exist at 

low concentration (Hassine et al. 2015). During the months of August and September, the 

rainfall levels are lower, and the weather is characterised by high winds, and heat from the sun 

rays which lead to rapid evaporation of surface water. This is favourable for determination of 

chlorophenols because they usually exist in low concentration levels.  The samples were 

transported in a cooler box with ice. The samples were preserved through filtering using a 0.45 

μm filter paper, adjusting the pH to 2 using HCl and storing in the fridge. Sample analysis was 

performed within seven days.  

3.4.2 Sampling points  

Figure 3.1 shows the map of Africa and South Africa. The map of Vaal River covering a 

distance of 200 km is shown.  Figure 3.2 is the Vaal River map showing the sampling points. 

The sampling points were selected based on the possibility of high levels of phenolic 

compounds and biological contaminants because of location, activities in the vicinity (or from 

the tributaries) and previous research on the area. Below are descriptions of each sampling 

point as sources of phenolic compounds and biological contaminants.  

 

Sampling point 1 (SP1) - Klip River: (29.070643°S 23.636732°E)  
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 The Klip River runs through the Gauteng province and incorporates the greater metropolitan 

part of Johannesburg. It is a tributary of the Vaal River and joins it at Vereeniging. It is 

described as the most heavily affected river system in South Africa because it is subjected to 

almost all types of pollution (DWAF 1999). The runoff that goes into the Klip River consists 

of treated and untreated sewage water, discharge from industrial activities and acid mine 

drainage. Industrial effluents from petroleum refineries and, pharmaceutical industries have 

been described as sources of phenolic compounds (Meikap et al. 1997). On the upper Klip 

River are a number of industries some of which are for recycling paper, glass and metal. During 

paper production, the paper mills use bleaching agents such as chlorine (Cl2) and chlorine 

dioxide (ClO2). These react with lignin (chemical component of the paper/ wood) to produce 

toxic chlorophenols (Choudhary et al. 2015).  

 

Sampling point 2 (SP2)- Border between Freestate and Gauteng province  (26.750557oS, 

27.826311oE)-26.773825, 27.666552°46'24.0"S 27°39'59.9"E 

This sampling point is characterized by heavy industrialization upstream of the river. In 

addition to paper and pulp industries, there is dairy processing industry. A study on the 

prevalence of E. coli O157:H7 in dairy cow faeces and urine samples was conducted and 

showed that 4.1% of the animals were found to have the pathogenic strain, (Keen et al. 2003). 

Waste from the dairy farms reaches the river through run offs leading to contamination 

(Pantshwa 2006). 
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Figure 3.1   Map Africa, position of South Africa and Vaal River in a stretch of about 200km 

as it passes through villages and towns.  

 

 

 

Figure 3.2 Sampling points along the Vaal River and Klip River 
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3.4.3 SPE procedure 

 

Due to the complexity of the matrix in environmental waters and existence of chlorophenols at 

low concentrations, direct determination of chlorophenols is almost impossible. As a result, 

sample treatment step(s) to clean and pre-concentrate the analyttes is required prior to HPLC 

analysis (Hassine et al. 2015).  

 

The 6 ml  solid phase extraction columns (C-18) were used (Strata X – 500 mg Phenomenox, 

Sulpeco, USA) connected to a vacuum suction pump.  The SPE procedure  was performed 

according to an established  protocol (Bielicka-Daszkiewicz et al. 2012). Strata –X is a 

functionalized polymeric sorbent that contains polystyerene- divinylbenzene –N- 

vinylpyrrolidone for multiple modes of retention for stronger analyte-sorbent interaction 

(Caban et al. 2015). The procedure consists of four main steps: (i) conditioning of the sorbent; 

(ii) isolation of the analytes, (iii) washing and (iv) elution step (Bielicka-Daszkiewicz et al. 

2012). The catridges were conditioned with 5 ml acetonitrile followed by rinsing with 5 ml of 

deionised  water. The catridges were then  dried under vacuum pump for 15 minutes after which  

the samples (standards and river water at pH 2.0)  were loaded  to allow for isolation of the 

analyte at a flow rate of 2 ml/min. The column was rised with 5 ml of acidified deionised water 

and finally eluted with 2ml of of acetonitrile in batches of 1 ml at a time. The eluate was 

eveporated in a stream of nitrogen. Figure 3.3 shows the four stage process for retention and 

elution of the analyte.    

 

 

Figure 3.3 Typical procedure for sample retention and elution using SPE cartridges. (adapted 

from:  www.mn-net.com) 

http://www.mn-net.com/
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3.4.4 Retention properties  

 

The retention capacity of  the sorbent was evaluated by varying the volumes of the analytes, 2-

CP, 2, 4, - DCP and 2,4,6-TCP from 50, 100, 150, 200 and 250 ml. The concentration was 

maintained at 5µg/L.  The sorbent material weight was 500 mg. Aqueous samples were 

introduced into the SPE catridges at a flow rate of 2 ml/min. The peak areas of the eluate was 

measured using HPLC. The retention parameters were calculated from the boltzmann 

sigmoidal curves.    

3.4.5 Preparation of standards and calibration curve in HPLC 

 

Stock solutions of 1000ppm, 2-CP, 2,4-DCP and 2.4.6-TCP were prepared. Standard solutions 

(0.1, 1.0, 5, 10 and 50 μg/L) for calibration curves were obtained through serial dilution of the 

stock solution.  

3.4.6 HPLC analysis 

 

Samples analysis  were performed using HPLC (Perkin Elmer) equipped with  a sampler and 

a  diode array detector and C18 column.  Eluent phase consisted of acetonitrile with 0.1% 

formic acid (A) and deionised water with 0.1% formic acid (B) . The flow rate was maintained 

at 1 mL min-1  at an injection volume of 100µL. An isocratic program was used: 70% (A) and 

30% (B) at a total run time of 8 min.  Washing cycles were run before the sequence until a 

stable baseline was obtained. Detection  was done using UV dectector at λ of  280 nm for all 

the samples. Standard samples containing a mixture of 2-CP,  2,4 –DCP  and 2.4,6-TCP at 

corresponding concetrations from 0.0 to 50.0 μg/L were injected into the HPLC column to 

obtain retention times and the calibartion curves. Water samples were also injected and the 

retention times compared with the standards. The concentrations of the chlorophenols were 

quantitatively measured.  
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3.4.7 Precision of the HPLC method 

3.4.7.1 Linearity 

 

The linearity of the calibration curves of the method was investigated by direct injection of 

standards at five concentration levels, from 0.1 to 50 µg/L. The linearity of the curve was 

evaluated by linear regression analysis using least squares regression method. This method was 

used to determine the slope, intercept, and correlation coefficient (R2) and linear regression 

equation, 

3.4.7.2 Repeatability 

 

Repeatality of the study was obtained by running one standard sample of 10 µg/L five times 

using the same method and sample.  

3.4.7.3 Reproducibility 

 

Reproducibility of the retention times  for the chlorophenols were established from running  

new standard solutions of concentrations ranging from  0.1- 50 µg/L. This was performed a 

week after the repeatbility measurements.  For both repeatability and reproducibility, the 

mean and standard deviation  and % RSD were calculated using equation (3.1) and equation  

(3.2) and (3.3). 

 

    𝒙̅ =  
𝟏

𝒏
 ∑ 𝒙𝒊               (3.1) 

 

    𝒔  =   (√∑(𝒙𝒊 − 𝒙̅ )𝟐/(𝐧 − 𝟏) )             (3.2) 

 

𝒔% 𝑹𝑺𝑫 =    (√∑(𝒙𝒊 − 𝒙̅ )𝟐/(𝐧 − 𝟏 )) * 100           (3.3) 

3.4.7.4 Limit of Detection (LOD) and limit of quantification (LOQ) 

Limit of detection (LOD) is the minimum concentration of the analyte that the analytical 

method can reliably differentiate from the blank.    It was calculated from the equation 3.4  

DL = 3.3 σ / S                (3.4) 

where, σ = the standard deviation of the response.  

 S = the slope of the calibration curve. 
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Limit of quantification is the minimum concentration that can be quantified; it is calculated 

using equation 3.5. 

LOQ =   10 σ / S                   (3.5) 

3.4.8 Recoveries 

In order to further validate the proposed method, environmental river water samples were 

spiked with 5 µg/L of a mixture of chlorophenols standard solutions. The concentrations of the 

spiked samples and unspiked samples were analysed using the HPLC method. The % recovery 

was calculated using equation 3.6 

% Recovery =  
 (𝐒𝐩𝐢𝐤𝐞𝐝 𝐬𝐚𝐦𝐩𝐥𝐞 𝐫𝐞𝐬𝐮𝐥𝐭𝐬−𝐮𝐧𝐬𝐩𝐢𝐤𝐞𝐝 𝐬𝐚𝐦𝐩𝐥𝐞 𝐫𝐞𝐬𝐮𝐥𝐭𝐬)

(𝐊𝐧𝐨𝐰𝐧 𝐬𝐩𝐢𝐤𝐞𝐝  𝐜𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 )
             (3.6)   
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CHAPTER THREE 

METHODOLOGY 

Synthesis and characterisation of nanoparticles 

___________________________________________________________________ 

3.5 Synthesis of nanoparticles 

3.5.1 Preparation of TiO2 nanoparticles 

 

Preparation of TiO2 nanoparticles followed an established precipitation method (Alabbad et al. 

2014). A 50 ml of 1.00 mol solution of titanium tetrabutoxide (TBT) was reacted with 50 ml 

of 1.0 mol solution acetic acid (AcOH), which was added slowly, “drop by drop” under 

constant stirring at 4000 rpm. Immediately, 0.9 g of polyvinlylpyrrolidone (PVP), dissolved in 

10 ml of ethanol was added to the mixture to prevent agglomeration. The mixture was covered 

and continued stirring for a further 30 minutes after addition of PVP. The mixture formed a 

white precipitate as an indication of the formation of titanium hydroxide. The precipitate was 

allowed to mature for 12 hours after which it was centrifuged at 2000 rpm for 10 minutes, 

washed with deonised water and ethanol before drying in an oven at 80 oC. The prepared 

powder was calcined at 500 oC for 2 hours to convert titanium hydroxide to TiO2 nanoparticles 

(Alabbad et al. 2014). The proposed reaction scheme is shown in equations 3.7, 3.8 and 3.9 

(Stoller et al. 2007). 

 

Hydrolysis:    Ti(OC4 H9)4  + 4H2O  T(OH)4 + 4C4H9OH                (3.7)  

Polycondensation:   Ti(OH)4   TiO2 ( precipitate) + 2H2O              (3.8) 

Calcining:   TiO2 (precipitate)   TiO2             (3.9) 

3.5.2 Preparation of Ag nanoparticles 

         

An amount of 0.85 g and 0.23 g silver nitrate (AgNO3) and sodium borohydride (NaHB4) 

respectively were each dissolved in 50 ml distilled water. The NaBH4, a reducing agent, was 

added slowly into the solution of AgNO3 in an ice bath and constantly stirred at 4000 rpm. 

Immediately, 0.9 g of polyvinlylpyrrolidone (PVP) dissolved in 10 ml of ethanol was added to 

prevent agglomeration. Stirring was continued for about 45 minutes during which a colourless 

solution turned yellowish as an indication of the formation of silver nanoparticles. The mixture 
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was centrifuged at 2000 rpm for 10 minutes, washed with deionised water then dried at 80 oC. 

Equation 3.10 shows the reaction and products between silver nitrate and sodium 

borohydride(Mavani et al. 2013).  

2AgNO3 (aq) + 2NaBH4 (aq) 2Ag(s) + H2 (g) + B2H6 + 2NaNO3 (aq)          (3.10) 

 

3.5.3 Preparation of Ag – TiO2 nanocomposites 

 

Preparation of the nanocomposites was a combination of the individual method as described 

by Mavani and Alabbad (Mavani et al. 2013, Alabbad et al. 2014).).  To prepare Ag-TiO2 

nanocomposites, the procedure for synthesis of TiO2 was followed and within the first 30 

minutes of stirring 0,077 g of silver nitrate dissolved in 25 ml ethanol was added slowly. The 

reaction proceeded for 10 minutes then 0,010 g of sodium borohydride in 25 ml ethanol was 

added slowly to reduce the silver ions into silver atoms. Immediately, 10 ml ethanol solution 

of 0.9 g polyvinlylpyrrolidone (PVP) was added to prevent agglomeration. The mixture was 

stirred for a further 30 minutes.   The light brown precipitate was removed from the magnetic 

stirrer, covered with an aluminium foil and allowed to age for 12 hours. The precipitate was 

centrifuged at 2000 rpm for 10 minutes followed by drying in an oven at 80 oC. The prepared 

powder was calcined at 500 oC for 2 hours to convert titanium hydroxide to TiO2 nanoparticles. 

The reaction was repeated with the amount of silver nitrate varied from 1% to 5%. 

3.5.4 Preparation of ZnO nanoparticles 

 

Zinc nitrate hexahydrate, Zn (NO3)2. 6H2O (7.86 g) and sodium hydroxide (0.79 g) were each 

dissolved in 50 mol of 0.5 M ethanol. Sodium hydroxide was added dropwise into the solution 

of zinc nitrate under constant stirring at 4000 rpm for 30 minutes.  The amount of 0.9 g 

polyvinlylpyrrolidone (PVP) dissolved in ethanol was added to prevent agglomeration. The 

mixture was stirred for a further 30 minutes after addition of PVP. The mixture formed a white 

precipitate as an indication of the formation of zinc hydroxide. The reaction mixture was 

allowed to maturate for 12 hours. The precipitate was centrifuged at 2000 rpm for 10 minutes, 

and washed with a mixture of deionised water and ethanol then dried in an oven at 80 oC. The 

prepared powder was calcined at 500 oC for 2 hours to convert zinc hydroxide to zinc oxide 

nanoparticles. Equations 3.11 and 3.12 shows the formation of ZnO Nps  

Zn(NO3)2 . 6H2O (aq)+ NaOH (aq) Zn(OH)2 (s)+ NaNO3(aq)           (3.11) 
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Zn(OH)2 (s)  ZnO(s) + H2O(l)                          (3.12) 

 

3.5.5  Preparation of Ag - ZnO nanocomposites 

To prepare Ag-ZnO nanocomposites sodium hydroxide was added into a solution of Zn (NO3)2. 

6H2O as described in the preparation of ZnO nanoparticles then stirred for 30 minutes. An 

amount of 0.0774 g silver nitrate in 25 ml of ethanol was then added. After 30 minutes, 0,01033 

g (equivalent to 1% doping) of silver nitrate was added and 10 minutes later sodium 

borohydride was added to reduce silver ions to silver atoms.  Immediately 0.9 g of PVP was 

added to prevent agglomeration. The reaction mixture was removed for the stirrer after 30 

minutes of stirring, sealed with aluminium foil and allowed to age for 12 hours.  The 

precipitatate was centrifuged and washed with a mixture of deionised water and ethanol. It was 

then dried at 80 oC and calcined at 500 oC for 2 hours. The amount of silver nitrate was varied 

from 1% to 5%. 

 

3.6 Characterisation of nanoparticles and nanocomposites  

3.6.1 Ultra Violet -Visible 

The optical properties of the TiO2, ZnO Ag-TiO2 and Ag-ZnO nanocomposites were 

characterised using the Perkin Elmer UV-Vis, T80 double beam spectrophotometer. The 

absorption was carried out in the wavelength range from 200 to 900 nm. The NPs and NCs 

were dissolved in 10 ml of deionised water.  The suspensions were sonicated for 20 min before 

analysis. The same samples were analysed for photoluminescence characteristics.  

3.6.2 FTIR 

Fourier transform infrared, FTIR, analysis (PerkinElmer Spectrum 400 FT-IR/NIR 

Spectrometer, Waltham, MA, USA) was used for determination of the functional groups of the 

nanomaterials. The samples were analysed as dry power. A small amount was placed on the 

sample holder and directly analysed at wavenumber scan range was from 400 – 4000cm-1. 

3.6.3 XRD 

The effect of Ag on crystalline structure of TiO2 and ZnO was investigated using Shimadzu-

XRD 700, X-Ray Diffractometer, Cu Ka radiation (l = 1.154056 Å). Analysis was carried out 

in the 2Ɵ range from 10 – 90o.    
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3.6.4 SEM and EDX 

SEM was used to study the morphology of the NPs, NCs and mambranes. EDX was used for 

elemental analysis of the NPs and NCs. All these were done at a differennt labaoratory. 
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CHAPTER THREE… 

METHODOLOGY 

Antibacterial activity of NPs and NCs on bacteria 

______________________________________________________________________ 

3.7 Antimicrobial activity 

3.7.1 Disc diffusion  

 

Mueller Hinton broth was used to culture gram positive (Bacillus cereus, Bacillus subtilis, 

Staphylococcus aureus) and gram negative (Escherichia coli, Klebsiella pneumoniae 

Pseudomonas aeruginosa) bacteria   overnight in an orbital shaker (150 rpm) at 37 o C. The 

organisms were streaked over the surface of Mueller Hinton agar plates using sterile swabs. 

The inoculated plates were covered and allowed to dry for 5 min at room temperature. 

Thereafter disc impregnated with 50 µl of 200 mg/L of Ag, TiO2, ZnO suspensions and 

streptomycin antibiotic were placed on the surface of inoculated plates using a sterile forceps. 

The plates were placed in an upright position for 10 min to allow for diffusion of the solutions.  

Then the plates were incubated at 37o C for 24 hours. After 24 hours zone of inhibition was 

measured. The solvent was used as a negative control and antibiotic as positive control 

(Vineetha et al. 2015). The same procedure was repeated where Ag, TiO2 and ZnO were 

compared with Ag-TiO2  (3) and Ag-ZnO (3)  NCs for inhibition of E.coli.  

3.7.2 Minimum Inhibitory concentration 

 

The MIC tests were performed in sterile 96 well microliter plates using a documented protocol 

(Wiegand et al. 2008). An amount of 50 µl of Miller Hinton broth medium was placed in each 

well and 50 µl of Ag, ZnO and TiO2 suspensions were added to the first well of the plate mixed 

and serially diluted to the last well.  From an overnight bacterial culture of gram positive 

(Bacillus cereus, Bacillus subtilis, Staphylococcus aureus) and gram negative (Escherichia 

coli, Klebsiella pneumoniae Pseudomonas aeruginosa) (diluted to 106 CFU), 50 µl of 105 CFU 

bacteria was placed into each wells. The solvent (negative control), broth media and 

streptomycin antibiotic were used at positive control. To this solution 50 µl of Resazurin dye 

was added in each well. The micro plate was covered and incubated at 37 o C for 24 hours. The 

concentration of the initial well was 200 mg/L. The procedure was repeated with concentration 
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with E.coli bacteria. The investigated NPs were Ag, ZnO, TiO2 and Ag-TiO2  and Ag-ZnO 

NCs.  

3.7.3 Determination of mobility inhibition of Daphnia magna 

Procedure for acute toxicity of NPs to daphnia magna followed the OECD guideline 202 (No 

2004). Young daphnids of less than 24 hours were exposed to five levels of concentrations of 

nanoparticles (50mg/50 ml) for 48hrs.  The different concentrations were obtained by serial 

dilution of the first level concentration, 1000ppm to 62.5ppm. Twenty daphnids were used in 

each test concentration, with each test vessel containing 10 ml of standard fresh water and 5 

daphnids. The control test wells were prepared from 10 ml standard fresh water and daphnids 

without nanoparticles. Immobilisation of the daphnids was recorded at 24 hrs and 48 hours then 

compared with the control values. The results were analysed to calculate effective 

concentration (EC50) at 24 hrs and 48hrs.  Figure 3.4 depicts the procedure for toxicity test of 

the NPs against daphnia magna.  

 

 

 

Figure 3.4 Procedure for toxicity test of nanoparticles on daphnia magna. 
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CHAPTER THREE… 

METHODOLOGY 

Photocatalytic activity of nanoparticles against chlorophenols 

 

 

3.8 Photodegradation  

 

Figure 3.5a  and Figure 3.5b show  a schematic diagrams of the photocatalytic degradation 

using UV and LED light respectively. The photocatalytic activity of the Ag, TiO2, ZnO, Ag-

ZnO (1, 3, 5 wt%) and Ag- TiO2 (1, 3, 5wt%) was studied through degradation of 

chlorophenols. The photodegradation experiments were evaluated in a batch mode using a 

photocatalytic reactor.  The reactor was fitted with a water cylinder with volume capacity of 

400 ml.  The photoreactor consisted of the 16 W UVC lamp. The reactor was filled with 300 

ml mixture of 2-chlorophenol, 2,4 dichlorophenol and 2,4, 6 - trichlorophenol  organic 

contaminants and  nanoparticles / nanocomposites then sonicated for 20 min. The mixture of 

the catalyst and chlorophenols was continuously bubbled through using air from a peristaltic 

pump.  For the first 30 minutes, the reaction was allowed take place without light.  The reaction 

was then monitored for further 120 minutes under UV light with aliquots of the mixture 

sampled through a 0.45µm filter membrane after every 20 minutes (Manikandan et al. 2014, 

Otieno et al. 29th - 30th December 2016). The residual amount of the organic contaminants 

was determined using the T80 UV-Vis double beam spectrophotometer at λmax of 306.  The 

method was validated by varying factors that have an effect on the percentage of degradation 

of analytes. (1) The type of catalyst on degradation of chlorophenols. (2) The amount of silver 

on TiO2 and ZnO. (3) Catalyst loading, that is, concentration of the catalyst. (4) Initial 

concentration of the pollutant (5) the pH of the solution containing pollutant. The 

photocatalytic degradation procedure was also performed with visible light using LED light 

rated at 14 Watts using a side armed conical flask housed in a dark box to prevent natural light 

from going through. The LED light was coiled around the flask. The samples were collected at 

20 minutes intervals through a syringe that was connected to a 0.45μm filter paper.  Therefore 

the other factor, (6) was to carryout degradation in dark, UV and under LED light. 



106 

 

 

Figure 3.5a Experimental set up for the photodegradtion of selected chlorophenols using UV 

light photoreactor in the presence of the Ag, ZnO, TiO2 Ag-TiO2 ( 1-5wt%) and Ag- ZnO (1-

5wt%)  as catalysts.  

  

Figure 3.5b Experimental set for the photodegradtion of selected chlorophenols using LED 

light photoreactor in the presence of the Ag, ZnO, TiO2 Ag-TiO2 ( 1-5wt%) and Ag- ZnO (1-

5wt%)  as catalysts.  
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CHAPTER THREE 

METHODOLOGY 

Fabrication of Ag-TiO2/ PA-TFC and Ag-ZnO/PA-TFC membranes 

__________________________________________________________________________ 

3.9 Synthesis of the neat and modified membranes 

3.9.1 Pre-treatment of the membrane 

Commercial PES membranes (5kDa, from Microdyn Nadir, USA)  were treated by soaking in 

sodium dodecyl sulphate (0.5%) for 12 hours. The membranes were rinsed twice in deionized 

water for 1 hour. The membranes were dried in the fume hood for 2 hours before use. 

3.9.2 Preparation of the neat Polyamide TFC membrane 

The procedure followed in the fabrication of PA-TFC membranes was adapted from Mbuli et 

al. (2017) (Mbuli et al. 2017). The PA-TFC membranes were synthesised using interfacial 

polymerization. Aqueous solutions of pepirazine and varied amounts of nanocomposites (Ag-

TiO2 and Ag-ZnO), and the organic phase of TMC and hexane were prepared according the 

quantities shown in Table 3.1. The mixtures were stirred in a closed beaker for 1 hour after 

adjusting the pH of the aqueous solution to pH = 8.0 using ammonium chloride.   

To prepare the PA –TFC thin layer, the PES membrane support was adhered to the glass plate 

using a thin double-sided tape and firmly held on the edges with a masking tape.  The PES 

support was covered with the aqueous solution and allowed to soak for 5 minutes. The excess 

solution was removed from the membrane using a rubber roller and immediately the organic 

phase was gently poured, over the aqueous phase covering the PES support for 60 seconds.  

After draining excess organic phase the membrane was cured in the oven at 65oC for 15 minutes 

to ensure complete polymerisation. The fabricated membranes were washed three times with 

deionized water and stored wet and cold in de-ionized water (Dumée et al. 2017). Scheme 2 

represents interfacial polymerization reaction between pepirazine and trimesoyl chloride and 

scheme 3 is the structural formula for polyether sulfone. 
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Scheme 2: Synthesis of PA-TFC from trimesoyl chloride and pepirazine 

 

Scheme 3: structure of polyether sulfone 

2.9.3 Preparation of the modified Polyamide TFC membrane 

The modified PA-TFC was prepared according quantities shown in Table 3.1. 

Table 3.1 Proportions of quantities of the organic phase, aqueous phase and the 

nanocomposites in the preparation of PA-TFC 

 

3.10  Characterisation of synthesised membranes  

The prepared membranes were characterized using ATR-FTIR, XRD, SEM, AFM and 

Contact angle. The specifications of these instruments were described in section 3.3.   

PA-TFC 

/Ag-TiO2 or 

Ag-ZnO (wt%) 

 

Organic phase 

 

Aqueous phase 

 TMC 

(wt%) 

Hexane 

(wt%) 

Pepirazine 

(wt%) 

Water 

(wt%) 

Nano- 

composites 

(wt%) 

PA-TFC  0.0 0.4 99.6 2 98 0.0 

PA-TFC  0.5 0.4 99.6 2 98 0.5 

PA-TFC 1.0 0.4 99.6 2 98 1.0 

PA-TFC 1.5 0.4 99.6 2 98 1.5 

PA-TFC 2.0 0.4 99.6 2 98 2.0 
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3.11 Contact Angle – Membrane hydrophilicity 

 

Figure 3.6 is an illustration of hydrogen bonding due to hydrophilicity at the membrane surface. 

Contact angle measures the hydrophobicity and hydrophilicity of the membrane. Angle 

measurements for pure PES, PA-TFC and PA-TFC (0.5 - 2.0 wt %) were analysed using DSA 

10 Mk2 (Krüss, Germany) equipment. A drop of deionized water was lowered onto a dry 

membrane surface at room temperatures (23oC) from a needle tip and the digital camera 

recorded  a magnified image of the droplet. Measurements were taken 30 sec after the drop 

contacted the membrane surface. At least, 10 measurements were taken at different locations 

on the membrane surface and 5 were used to determine the average contact angle. The contact 

angles of the water drops were calculated using SCA 20 software. The lower the contact angle 

to higher the hydrophilicity of the membrane surface. In a typical example, the incorporation 

of TiO2 nanoparticles into a membrane surface promotes the attachment of surface hydroxyl 

groups that are polar when irradiated with UV light or visible light for Ag-TiO2. A strong 

interaction is exhibited with water molecule through Van der Waals forces and hydrogen 

bonding leading to the formation of hydration layer (Goh et al. 2015).   

 

 

Figure 3.6 Illustration of hydrogen bonding at the membrane surface.  
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3.12 Pure water Flux 

 

 

Pure water flux was investigated using the stirred dead-end cell (Sterlitech, HP4750) as shown 

in Figure 3. 7. The stirred cell has a total volume capacity of 300 ml, a diameter of 5.1 mm and 

22.4 mm height, with an active membrane size of 14.6 cm2. The cell was connected to nitrogen 

gas cylinder and to a regulator from which the pressure was controlled and measured. A Teflon-

coated magnetic stir bar hanging from the top of cell was used to provide an agitation to reduce 

concentration polarisation or “cake” formation which is typical problem in dead- end cells.  

Operation parameters such as effect of feed concentration and transmembrane pressure on 

water flux were evaluated. Before the filtration experiments were conducted, the neat PES, PA-

TFC and Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes, cut to the correct diameter were 

compacted for 30 minutes at 1100 kPa to achieve stabilization. The permeate volume was 

collected into a measuring cylinder and measured using a balance.  Pure water flux was 

calculated using equation 3.13. 

 

                                                Jwo = 
𝑚

𝐴.𝑡
        (3.13)  

                       

Where Jwo is the pure water flux (Lm2h), m is the mass of the volume, A is the effective 

membrane area (m2) and t is the permeation time (h). The average flux was obtained from three 

replicates. 

3.13 Effect of operational parameters on flux 

3.13.1 Effect of feed concentration 

 

The 2,4-DCP solution was used to determine the effect of concentration on water flux. The 

concentration of the feed was varied from 5, 25, 50 and 100 ppm. The 200 ml solution of 2-CP 

was added to  dead end cell subjected to 1000 kPa transmembrane pressure on the PA-TFC 

membrane (as shown in Figure 3.7).  Five measurements (about 3 ml) of the permeate volume 

was collected after every 15 minutes from which the permeate volumes were measured.  The 

average of permeate solution was calculated. The flux was calculated using equation 3.13 and 

the corresponding %RSD calculated and tabulated. The optimal feed concentration was 

determined and used in all other experiments.       
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3.13.2 Effect of transmembrane pressure on permeation flux 

The effect of increasing transmembrane pressure on flux was investigated using pure water in 

the dead end cell. After 30 minutes of compaction at 1100 kPa, pure water was passed through 

the PES, PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes one at a time and 

triplicate measurements were recorded for each membrane.  The pressure was increased from 

200 to 800 kPa and the corresponding mass/volume of the permeate was recorded after every 

15 minutes, the average of which was used to calculate flux using equation 3.13.  A plot of flux 

against pressure was plotted and the permeation flux of the membranes calculated from the 

slope of the fitted linear regression plot (Kargari et al. 2015). 

The same procedure was followed for aqueous solutions of 2-CP and 2, 4, - DCP using optimal 

concentration. However, the transmembrane pressure was extended from 200 to1000 kPa.  

 

Figure 3.7 Dead end cell set-up for filtration experiments  

 

3.14 Membrane performance testing 

3.14.1  Rejection of 2-CP and 2,4-DCP 

Rejection tests for 2-CP and 2,4-DCP using neat PA-TFC,  Ag-TiO2/PA-TFC and Ag-ZnO/ 

PA-TFC membranes were carried out in the dead cell at both the  optimal pressure and 

concentration for the membranes. The volume of the feed solution was maintained at 200 ml 

for all experiments. To quantify the concentrations of the feed and the permeate, an ultraviolet 

spectrophotometer UV-2450 (Shimadzu) was used at an absorption wavelength of 280 and 306 

cm-1 for 2-CPand 2,4-DCP respectively. Percentage rejection of model pollutants by the 
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prepared membranes was calculated using Equation 3.14 (Makhetha et al. 2018).  

   

                                                  R(%) =
Cf−Cp

Cf
× 100%                                                             (3.14)  

Cp is the concentration (mg/L) of chlorophenols (2- CP and 2,4-DCP) in the permeate solution 

and Cf is concentration (mg/L) of chlorophenols of the feed solution.  The calibration curves 

for chlorophenols were prepared from 1-5 ppm. The standards were prepared using 1:1 v/v of 

chlorophenols and 5.0 M of sodium carbonate solution respectively (Bueno et al. 2012). 

3.14.2 Evaluation of antifouling properties using synthetic and real samples 

The method for testing the antifouling performance of the membranes was reported elsewhere 

(Rahimpour et al. 2011). The antifouling test for the neat PA-TFC, Ag-TiO2/PA-TFC and Ag-

ZnO/PA-TFC membranes was investigated using water flux recovery after fouling the 

membranes with 2-CP and 2, 4, - DCP.  The membranes were first compacted for 30 minutes 

at 1100 kPa to obtain a steady flux. Ther after they were subjected to pure water permeation 

for 60 min to obtain initial water flux (Jw0). Without removing the membranes from the dead 

end cell, the feed solutions of 2-CP and 2,4 - DCP were filtered through for another 60 minutes 

to obtain water flux of the 2-CP and 2, 4- DCP solutions (Jwt). The filtrated membranes were 

cleaned with deionised water for 10 minutes to remove the foulants molecules that were loosely 

deposited on the surface of the membranes. The membranes were re-examined to obtain flux 

of the cleaned membranes (Jwc) (Mbuli et al. 2017, Makhetha et al. 2018b). Water recovery 

ratio (FRR) was  determined using equation 3.15; 

          

                                                𝐹RR(%) =  
Jwc

Jw0
                      (3.15) 

                     

Where Jw0, Jwt and Jwc are the water fluxes of pure water, 2-CP and 2,4-DCP solutions and 

cleaned membranes respectively.  

Detailed fouling parameters such as total fouling ratio (Rt); reversible fouling ratio (Rr) due to 

loose attachment of foulants on the surface of the membrane; and irreversible fouling ratio (Rir) 

which is a result of adsorption of foulants on membrane pore walls or surface were also used 

to describe the fouling resistance of the membranes using equations (3.16), (3.17), (3.18) and 

(3.19) (Rahimpour et al. 2011, Razmjou et al. 2011). 
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                                   𝑅𝑟(%) = [
𝐽𝑤𝑐−𝐽𝑤𝑡

𝐽𝑤0
] 𝑥 100     (3.16)        

                                 𝑅𝑖𝑟(%) = [
𝐽𝑤0−𝐽𝑤𝑐

𝐽𝑤0
] 𝑥 100     (3.17)         

                                𝑅𝑡 (%) = 1 − [
𝐽𝑤𝑡

𝐽𝑤0
]  𝑥 100      (3.18)  

                                         𝑅𝑡 = 𝑅𝑟 + 𝑅𝑖𝑟                           (3.19) 

   

A lower Rt value means a better antifouling property, while a higher FRR value indicates a 

higher cleaning efficiency. 

3.15 Silver release 

Bench-scale batch tests were performed for silver release from the modified Ag-TiO2 /PA-TFC 

and Ag-ZnO/PA-TFC membrane. Circular membrane coupons with an area of about 3.0 cm2 

were placed in 10 mL of 0.9% NaCl (saline water) in a beaker. The purpose of NaCl was to 

react with silver to give AgCl for detection of Ag+ ions. The membranes were continuously 

agitated using a benchtop orbital shaker 24 hrs. The pH was adjusted to pH = 5.0 using HNO3 

and pH = 8.0 and pH=10.0 using NaOH. The saline water was collected as a sample every 24 

hrs and and a new saline solution was placed in the beakers. The procedure was repeated for 6 

days. The longest contact time according to NSF/ANSI 61 protocol is 3 days. The leachates 

were analysed for Ag using ICP-OES. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

Determination of chlorophenols in Vaal and Klip Rivers 

 

 

4.1 Introduction 

Chlorophenols are described as priority pulutants in water bodies. In this chapter, the results of 

determination of chlorophenols from Vaal and Klip Rivers were discussed. The presentation 

of the results begin with the determination of breakthrough volume and related retention 

parameters followed by results on preconcentration of chlorophenols using the SPE method. 

The quantitative results of concentrations of chlorophenols carried out using HPLC were 

presented and discussed. The results on validation of the HPLC method, such as repeatability, 

reproducibility and limit of dection were also discussed.  

4.2  Retention parameters 

 

The retention capacity of the sorbent material (500 mg) towards the analytes samples 2-CP, 2,4-

DCP and 2, 4, 6-TCP was investigated by varying the volume from 50, 100, 150, 200 and 250 ml at 

a concentration of 5µg/L each. Figure 4.1 is the elution curve for sorbent capacity retention of 2-CP, 

2,4-DCP and 2, 4, 6-TCP.  The sorbent capacity is described by a Boltzmann sigmoidal curve. The 

function of the curve is given below. The retention properties were estimated using the following 

parameters, breakthrough volume, VB, retention volume, VR and hold-up volume, Vm. VB, 

(breakthrough volume) corresponds to 1% of maximum concentration found in the eluate that is the 

maximum volume that can be loaded without losing the analyte.  VR, (retention volume)  is the volume 

at which the analyte adsorption is in equilibrium with its desorption from the sorbent (it corresponds 

to the inflection point of retention curve) VM (hold –up volume) is the volume at which the 

concentration of the analyte is equivalent the 99% of the eluate concertation. The breakthrough curve 

is fitted using Boltzmann expression containing A1, A2, x, xo regression parameters regression as 

shown in Equation 4.1 

𝑦 =  𝐴2 +
𝐴1−𝐴2

1+ 𝑒
𝑥− 𝑥𝑜

𝑑𝑥

         (4.1) 
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where y is the y- axis response and x is the volume added into the cartridge. It follows that the 

expression above can be now be used to calculate VB, VR and VM using Equations 4.2 and 4.3 

(Bacalum et al. 2011, Rusen et al. 2017).   

 

𝑉𝐵  =  𝑥0 + (𝑑𝑥) ln[
100

99
 (1 - 

𝐴1

𝐴2
 ) − 1]      (4.2) 

 

𝑉𝑀  =  𝑥0 + (𝑑𝑥) (99 − 100  
𝐴1

𝐴2
 )       (4.3) 

 

𝑉𝑅  =  𝑥0          (4.4) 

 

Table 4.1 Calculated sorbent retention parameters 

 VB VM VR 

2-CP 148.63 149.09 149.10 

2,4-DCP 142.34 145.29 145.28 

2,4,6-TCP 148.16 152.34 152.33 

 

The elution curves and their calculated breakthrough parameters pointed out clear retention property 

of the synthesised adsorbents.  
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Equation y = A2 + (A1-A2)/(1 + exp((x-x0)/dx))

Adj. R-Square 0.99893 0.99099 0.99711

Value Standard Error

B A1 594.04928 5.70338

B A2 280.51336 4.16867

B x0 149.10382 1.49264

B dx 17.63235 2.00671

C A1 567.87689 36.96722
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C dx 18.33902 4.63646

D A1 264.99804 17.01743

D A2 1070.76312 32.70104

D x0 152.33523 3.46328

D dx 21.26165 3.29949

R 
2 
= 0.9989

 

Figure 4.1 Elution curve for retention capacity of the sorbent 

 

4.3 UV-Vis absorption of the chlorophenols  

 

The absorption wavelength were obtained to establish the optimal wavelength to be used in  

HPLC.   Figure 4.2 is  the UV-Vis absorption spectra of  the chlorophenols. The results indicate 

that absorption for 2-CP, 2,4-DCP and 2, 4, 6 -TCP appeared at wavelengths  272, 282 amd 

284 nm.  
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Figure 4.2 UV-Vis absorption for spectra for 2-CP, 2,4-DCP and 2,4,6-TCP.  

 

4.4 Identification of the chlorophenols 

 

The retention times for chlorophenols were obtained  by running each standard independently 

and then as a mixture. Figure 4.3 shows the chromatogram of the mixture of the chlorophenols 

obtained at λ= 280 nm. The peaks appearing at 2.1, 2.5 and 3.3 minutes were assigned to 2-CP, 

2,4-DCP and 2,4,6 - TCP respectively. The results show that all the components  were attracted 

to the polar mobile phase (H2O/ACN)  under isocratic conditions more than the non polar 

sorbent. This is because they were all eluted within the first half of the total run time ( 8 min). 

The results also indicated a decreasing recovery with increasing substitution of the chlorine 

atoms in the aromatic ring of the phenol observed from decreasing peak heights with the same 

initial concentrations of the standards. This could mean that increasing the number of 

substituted chlorine atoms yielded the formation of new species produced by the interactions 

between the analyte molecules with themselves or with other species, hence the new species 

were separated at a different tR and not detected at the selected wavelength (Al-Janabi et al. 

2011). 
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Figure 4.3   Chromatographic spectra of 2-CP, 2,4-DCP and 2,4,6 - TCP of standard  mixture 

of  10 µg/L concentration  and  calibrartion curves for chlorophenols  ( insert). 

 

4.5 Method Validation 

 

4.5.1 Linearity of the calibration curves 

Linearity of the calibration curve is the method's ability to obtain results that are directly 

proportional to the concentration of analyte in the sample. A linear curve is quantified by 

correlation coefficient, R2, and it is good when the R2 value is close to 1.0.  The linear 

regression lines were used to obtain the equations of the curves.  Linearity of the method was 

determined for each calibration curve. Figure 4.3 shows the calibration curves from the 

chlorophenols standards. The results show high correlation coefficients that were achieved at   

R2 = 0.9996, 0.9994, 0.9992 for 2-CP, 2,4-DCP and 2, 4, 6-TCP respectively. The closeness of 

the correlation coeffients to 1.0 suggest that the method is reliabile and valid. The curves were 

linear in the range between 0.1-50 µg/L for 2-CP, 2.4-DCP and 2, 4, 6-TCP.  
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4.5.2 Precision of the results 

Precision of the results was investigated using repeatability and reproducibility tests.  

4.5.2.1 Repeatability of the results 

Repeatability of measurements refers to the variation in repeat measurements from the same 

subject under identical conditions. Repeatability of the method was established from 7 repeated 

runs of one standard performed  by one operator using the same method and the same HPLC 

instrument. Table 4.2 is the results of repeatability of the method showing retention times for 

2-CP, 2,4-DCP and 2,4,6-TCP for the seven runs each.  The % RSD were 0.459, 0.353 and 

0.308 % for 2-CP, 2,4 - DCP and 2,4,6 – TCP. The results  indicate that the method  was valid 

for  analysis chlorophenols because the standard deviation are all below 5%.   

Table 4.2.  Repeatability results of the method (n=7) for 2-CP,  2,4 - DCP and 2,4,6 - TCP from 

a spiked standard sample mixture ( 10 µg/L) 

4.5.2.2 Reproducibilty 

 

Reproducibility for the chlorophenols were established by a different operator a week after 

repeatability measures were taken.Table 4.3 is the reproducibility results of the method 

showing retention times.  Figure 4.4 is the  overlay chromatograms of the chlorophenols 

showing reproducibility results. Retention times were obtained from a  new batch of standards 

at varied concentrations from  0.1 - 50 µg/L. The results show that % RSD of 0.28, 0.22 and 

Run number 2CP 24DCP 246TCP 

1 2.086 2.546 3.291 

2 2.084 2.542 3.287 

3 2.104 2.561 3.308 

4 2.104 2.563 3.311 

5 2.104 2.562 3.306 

6 2.104 2.561 3.308 

7 2.107 2.564 3.313 

Average 2.099 2.557 3.303 

%RSD 0.459 0.353 0.308 
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0.21 for 2-CP, 2,4-DCP and 2,4,6-TCP respectively. The results indicate that the method was  

reproducible.  

Table 4.3 Reproducibility results of the method through  ( n=5) for 2-CP, 2,4 - DCP and  

2,4,6-TCP from a spiked standard sample mixture ( 0.1 - 50 µg/L) 

 
2-CP 2,4-DCP 2,4,6-TCP 

Conc (µg/L) Retention times 

0.1 2.093 3.000 3.313 

1 2.093 2.555 3.303 

5 2.100 2.563 3.317 

10 2.093 2.550 3.303 

50 2.107 2.563 3.317 

Mean 2.097 2.558 3.311 

RSD 0.007 0.006 0.007 

%RSD 0.284 0.224 0.206 

 

Figure 4.4 Overlay chromatograms of chlorophenols showing reproducibility (0.1-50 µg/L) 

 

 

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

-10

0

10

20

30

40

50

60

70

80

 

 

R
e

sp
o

n
se

Retention times (minutes)

 0.1

 1

 5

 10

 50

2
C

P

2
4

D
C

P

2
4

6
T

C
P



124 

 

4.5.3 Limit of Detection (LOD) and Limit of quantification (LOQ) 

 

The Limit of Quantification (LOQ) is the lowest analyte concentration that can be 

quantitatively detected with a stated accuracy with precision. Limit of detection on the other 

hand is the concentration of the analyte in the sample that can be reliabily distinguished from 

the blank (Vashist, and Luong, 2018). Table 4.4 shows the results for linearity, detection limits 

and limit of quantification. In this case the results for limit of detection range from 0.478, 1.385 

and 0.202 for 2-CP, 2,4-DCP and 2,4,6-TCP respectively and for limit of quantification were 

1.449, 4.197 and 0.611 for 2-CP, 2,4-DCP and 2,4,6-TCP respectively. This is to suggest that 

any concentration of sample below the LOQ will not be quantifiable as such would be recorded 

and not detected.   

Table 4.4 Limit of detection  for 2-CP, 2,4-DCP and 2,4,6-TCP from standard samples with 

concentration ranging  from 0.1- 50 µg/L  

 

Chlorophe

nols 

Regression equation R2 Linearity 

(µg/L) 

LOD 

( µg/L) 

LOQ 

(µg/L) 

2-CP 

 

y = 1.684 x + 0.1819 0.9988 0.1-50 0.478 1.449 

2,4-DCP 

 

y = 0.9496 x - 0.00123 0.9986 0.1-50 1.385 4.197 

2,4,6-TCP y= 0.201x + 0.041 

 

0.9987 0.1-50 0.202 0.611 

 

 

4.5.4 Recoveries 

 

Percentage recovery in HPLC method provides information about the extent of losses of the 

sample losses throughout the process of sample preparation. Recoveries were obtained spiked 

water samples from Klip and Vaal Rivers. Table 4.5 shows the recoveries of water samples 

from the Klip River and Vaal River. The recoveries of the spiked samples were in the range 

96.7-102.4%, 97.5-98.0% and 64.3-75.2% for 2-CP, 2,4-DCP and 2, 4, 6-TCP respectively. 

The results show that recoveries for 2, 4, 6-TCP were lower than 2-CP and 2,4-DCP. This could 

be below 2, 4, 6-TCP is affected by sample matrix more than 2-CP and 2,4-DCP. The 2, 4, 6-
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TCP is also sparingly soluble in water, and could have an effect on the overall concentration if 

it is not completely dissolved. The results are in agreement with the chromatogram peaks 

shown in Figure 4.4 where as the number of chlorine atoms  increase in the benzene ring there 

was a decrease in peak intensity and peak area for  2,4,6-TCP compared to  2-CP and 2,4-DCP.  

Table 4.5. Recoveries of spiked river water samples 

 

% Recoveries (% RSD) (n=4) 

Water sample Spiking 

concentration 

(µg/L) 

2-CP 2,4-DCP 2, 4, 6-TCP 

Klip River 5 102.2 (0.76) 98.0 (3.76) 64.3 (1.58) 

 

Vaal River 5 96.7    (2.42) 97.5 (3.00) 75.2 (2.36) 

 

  

4.6 Determination of chlorophenols in real water samples 

 

The HPLC method was applied to real water samples to determine the presence of 

chlorophenols by matching retention times and concentration through peak areas against the 

calibration curves.  Table 4.6 shows concentrations of 2-CP, 2,4-DCP for both Klip River and 

Vaal River in the months of August and September 2017. Figure 4.5 shows the chromatograms 

for real water samples from Klip and Vaal Rivers collected in months of August and September 

2017. Two samples were collected from each site for replicate measurements. The results show 

standard deviations ranging from 2.3 - 8.0%, which was high. This was attributed to the 

complex nature of the samples.   The chromatogram showed fewer peaks, which means the 

SPE method was able to eliminate most of the interfering substances in the water samples. 

However, undefined intense peaks were observed at retention times 2.71, 2.79, 2.86 and 3.00 

minutes.  The peak appearing at 2.79 min in Klip River water showed the highest concentration.  

These could be peaks due to the mono and di-substituted chlorophenols. It was also observed 

that the highest recorded concentration of the chlorophenols was in the Klip River (2,4-DCP = 

30.11). This was consistent with the information on the sources of chlorophenols in the Klip 

River. It is mentioned that the river is one of the heavily polluted river systems because it runs 

through the heavily polluted metropolitan part of Johannesburg (DWAF 1999).  Discharges 
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reaching the river are due to run-off from treated and untreated sewage, discharge from 

industrial activities in the vicinity, acid mine drainage, industrial effluents from petroleum 

refineries and pharmaceutical industries (Meikap et al. 1997). The 2, 4, 6-TCP was not detected 

in all the samples. This could be due to its lower solubility compared to 2-CP and 2,4-DCP.  2-

CP was not detected in September for both Klip and Vaal Rivers, However, it was detected in 

August at almost the same concentration of 5.00 µg/L and 4.38 µg/L in Klip River and Vaal 

River respectively. Undection of 2-CP could be due to dilution of the water from the rain. The 

detected concentrations of chlorophenols pose a threat to the environment because they are all 

above the recommended limit of 0.5 µg/L allowed for environmental water by the European 

Union (EU, 1998).  

Table 4.6: Levels of chlorophenols in river water samples  

 

Concentration levels (µg/L)    (%RSD) 

 2-CP 2,4-DCP 2,4,6-TCP 

Klip River ( August) 5.00 (3.5) ND ND 

Klip River ( Sept) ND 30.11 (6.3) ND 

    

Vaal River ( August) 4.38 (2.4) 4.10  (2.3) ND 

Vaal River ( Sept) ND 12.50 (8.0) ND 
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Figure 4.5 Chromatograms for real water samples from Klip and Vaal Rivers collected in the 

months of August and September 2017 

4.7 Summary of the results- determination of chlorophenols  

 

A preconcetration method of chlorophenols using an SPE cartridge containing  polystyerene- 

divinylbenzene –N- vinylpyrrolidone SPE column ( Strata-X) followed by HPLC analysis was 

used to determine the concentration levels of 2-CP, 2,4-DCP and 2, 4, 6-TCP from river water 

samples. The method was validated through several parameters such as linearity, repeatability, 

reproducibility, detection limits and limits of quantification and recoveries.   Good calibration 

curves with R2 > 0.999 were achieved. The results were repeatable and reproducible with 

acceptable % RSDs of < 5 %. The spiked samples showed recoveries of more than 97% for 

both 2-CP and 2,4-DCP. However, recoveries for 2, 4, 6-TCP were lower at 64% and 75%. 

Low recoveries depend on the effectiveness of retention to the column bed.   The sample pH 

affects the retention capacity of the analytes and could lead to different recoveries. The pH was 

maintained at pH= 2 because at lower pH the chlorophenols are protonated and remain in their 

neutral form which has a greater affinity to the sorbent through hydrogen bonding interaction   

(Bagheri et al. 2001).   For analysis of analytes, in real water samples, it was observed that 2- 

CP was not detected in both the Vaal River and the Klip River in the month of August. 

However, 2,4-DCP was detected in the Vaal River for the same month at 4.10 µg/L. High levels 

of 2,4-DCP in September for both the Klip River (30.11 µg/L) and the Vaal River (12.50 µg/L) 

were detected.  
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CHAPTER FOUR … 

RESULTS AND DISCUSSIONS 

 

Characterisation of Nanopoarticles 

 

4.8  Introduction 

Nanoparticles play an important role water purification. In this project Ag, TiO2, ZnO, Ag-

TiO2 and Ag-ZnO were synthesized using chemical reduction method for Ag NPs and 

precipitation method for TiO2, ZnO, Ag-TiO2 and Ag-ZnO. The morphology and size of the 

NPs are vital characteristics in water treatment. In most cases the smaller the size of the NPs 

the more effective they become because of the high surface area to volume ratio.  Different 

characterisation technigues (UV-Vis, FTIR, XRD, SEM and EDX) were employed to establish 

the functioanal groups, morphology and size of the NPs.  The results of characterisation of 

nanoparticles are presented and discussed.  

 

4.9  Characterisation of Ag, TiO2, ZnO nanoparticles, Ag – TiO2 and Ag-ZnO NCs    

4.9.1 UV-Vis for Ag 

 

Optical properties of Ag NPs were investigated using UV-Vis. Figure 4.6 is the UV-Vis 

spectrum for silver nanoparticles. The UV-Vis spectrum for pure silver showed a slightly broad 

absorbance peak in the range 384 - 410 nm which is a characteristic peak  of localised surface 

plasmon  resonance (LSPR)  for monodispersed and spherically shaped silver  NPs (Kuriakose 

et al. 2014). Localised surface plasmon resonance originates from the collective oscillation of 

electron at the surface of silver nanoparticles. SPR peak location is modified as a result of 

changes in size and shape and dielectric environment surrounding the nanoparticles (Angkaew 

et al. 2012). The results confirm the formation of silver nanoparticles due to the blue shifted 

absorption compared to the bulk silver with an estimated plasmon resonance of 1000 nm 

(Praveenkumar et al. 2014). It has been shown that the smaller the silver nanoparticles the more 

effective it is for antimicrobial activity 
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Figure 4.6 UV-Vis absorption Ag, NPs  

 

4.9.2 UV-Vis for TiO2 and Ag-TiO2 nanocomposites 

 

Tauc plots were used to establish the band gap energies (Eg). This is a plot of (αhv) 2
 versus 

photon energy in (hv). The optical band gap energy Eg was determined by extrapolating the 

linear portion to (αhv)2
   = 0  ( equation 4.5) (Peiqiang et al. 2014). Figures 4.7 shows the 

absorption spectra and Tauc plots for TiO2 and Ag- TiO2. (Insert). Table 4.7 is the band gap 

energies for TiO2 and Ag-TiO2 (1, 3, 5wt %).   

 

 

 

         

where, K is constant, hν is the photon energy and Eg is the band gap energy for indirect 

transitions and (α), the absorption coefficient. TiO2 and ZnO semiconductors and the 

fundamental properties for semiconductors is the bandgap energy separation between the 

valence band and the conduction band. When electrons are excited from the valence band to 

(4.5) 
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the conduction band, the energy absorbed is characteristic to the band edge and reveals the 

optical characteristics of the semiconductor (Mofokeng et al. 2018).  

The band gap of TiO2 was estimated to be 3.54, which was higher than 3.2 eV for the bulk. 

This showed a blue shift as a result of the quantum confinements (Gupta et al. 2013). Addition 

of silver NPs into the TiO2 crystal showed a slight red shift towards a higher wavelength, 

between 1% and 3%, but an observable red shift at 5 wt % of Ag which indicates a reduction 

in band gap. This revealed that addition of Ag at 5 wt% introduced an effect on the optical 

properties of TiO2 (Chauhan, R., Kumar,A. et al. 2012).  In a successful doping, an energy level 

of silver is introduced and it lies above the valence band and below the conduction band causing 

the visible absorption through a charge transfer between Ag+/Ag conduction band and valence 

band of the parent crystal. This results in reduction of the band gap (Chauhan, R., Kumar,A. et 

al. 2012). The band gaps reduced from 3.54 (TiO2) to 3.45 (Ag-TiO2 1 %), 3.41 (Ag-TiO2   3%) 

and 2.75 (Ag-TiO2 5%). This may contribute to an enhanced photodegradation by the 

nanocomposites (Gupta et al. 2013). This could also confirm that the silver atoms were 

distributed throughout the TiO2 structure (Wang 2004, Xie et al. 2010).  
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Figure 4.7 UV-Vis absorption spectra and variation of (αhv)2 with energy (hv), (Tauc plots)  

for  TiO2 and  Ag - TiO2 ( for x- 1, 3 and 5 wt%) (insert) 
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Table 4.7 Band gap energies for TiO2 and Ag-TiO2 (from 1, 3 and 5wt %). 

4.9.3 UV –Vis for ZnO and Ag-ZnO nanocomposites 

 

Zinc oxide is a semiconductor with band gap energy for the bulk at 3.37 eV (368 nm). Figure 

4.8 is the UV-Vis spectra and Tauc plot (insert) for ZnO and Ag-ZnO.  Table 4.8 is the band 

gap energies for the ZnO and Ag-ZnO (1, 3, 5 wt %).  The observed band gap for ZnO was 

3.38 eV when compared with the bulk (3.33 eV). The slight blue was attributed to quantum 

confinements (Kumar et al. 2013).  However, addition of Ag to ZnO showed a reduction in 

band gap energy from 3.23 eV for Ag-ZnO (1) and Ag-ZnO (3) to 3.11 eV for Ag-ZnO (5). 

Reduction in band gap is an indication that as the amount of silver was increased the absorption 

shifted towards a higher wavelength.  
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Figure 4.8 UV-Vis absorption spectra and variation of (αhv)2 (Tauc plots)  for  ZnO and Ag –

ZnO  (1, 3 and 5 wt%) (Insert)  

Nanoparicles Band gap ( eV) 

TiO2 3.54 

Ag - TiO2 (1 %) 3.45 

Ag -TiO2   (3 %) 3.41 

Ag - TiO2 (5 %) 2.75 
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Table 4.8 Band gap energies for ZnO and Ag- ZnO (1, 3 and 5wt %). 

 

 

 

 

 

 

4.9.4 FTIR analysis of Ag-TiO2 

 

The presence of functional groups in the sample was investigated using FTIR. Figure 4.9 is the 

FTIR spectra for Ag NPs, TiO2 and Ag-TiO2.  The FTIR spectrum for silver NPs is labelled 

(i). The peaks at 3019 cm-1 was assigned to the CH _
 stretch. The weak and broad peak 

appearing at 3186 cm-1 due to –OH stretching vibrations resulted from the adsorbed water on 

the surface of the nanoparticles. The more intense peak appearing at 1736 cm-1 was assigned 

to the C=O- from PVP capping agent. Other peaks from PVP were the C-N stretching 

vibrations at 1220 cm-1  and the doublet peaks  at 1449 cm-1 (weak) and 1365 cm-1 (strong) 

were  due to the  attached CH2 in the pyrrole ring and the ring C-C- appearing at 797 cm-1(Gutul 

et al. 2014, Gharibshahi et al. 2017). The significant band at 444 cm-1 was assigned as the 

characteristic peak of the stretching mode Ag. (Shah et al. 2013). Figure 1(ii) is the FTIR 

spectra of TiO2 NPs. From the results, it was evident that the different peaks assigned due to 

PVP on Ag NPs spectrum were not observed in TiO2 NPs. This was attributed to complete 

removal of PVP or less interaction of TiO2 with PVP (Gharibshahi et al. 2017).  Shajudheen et 

al. (2016) obtained similar results, with FTIR spectra for PVP capped TiO2 showing no peaks 

from the PVP (Shajudheen et al. 2016). This could also be due to calcination because it does 

decompose PVP at around 380 oC. However, the results indicate that Ag NPs bind more to PVP 

than TiO2 because upon addition of silver to TiO2 peaks characteristic for PVP were observed 

as in Ag-TiO2 (1, 3 and 5wt %).  This was confirmed by Song et al. (2014) by revealing that 

PVP affect the silver nanostructure because it prefers to adsorb to the (100) facets of silver 

nanoparticles (Song et al. 2014, Song et al. 2014).    

 

Nanoparticles Band gap ( eV) 

ZnO 3.36 

Ag - ZnO (1 %) 3.23 

Ag -ZnO (3 %) 3.23 

Ag - ZnO (5 %) 3.11 
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Figure 4.9 FTIR spectra for Ag, TiO2, Ag-TiO2 (1, 3, 5 wt %)  

4.9.5 FTIR analysis for Ag-ZnO 

Figure 4.10 is the FTIR spectra for PVP, Ag, ZnO and Ag-ZnO (1, 3, 5 wt %). The broad and 

weak absorption peak observed around 3444 cm-1 was attributed to the –OH stretching 

vibrations of the adsorbed water on the surface of the nanoparticles (Hosseini et al. 2015, Saoud 

et al. 2015). The peak at 3006 cm-1, was assigned to the C-H group from PVP. The C=O 

stretching from PVP was observed at 1735 cm-1.The peak at 1218 cm-1  was assigned to the C–

N stretching vibrations and the doublet peaks  at 1458 cm-1 and 1364 cm-1 to the attached CH2 

in the pyrrole ring (Gutul et al. 2014). Upon addition of Ag into ZnO the sharp peak appearing 

at 556 cm-1 in ZnO was shifted towards wavelengths 539 cm-1 and 517 cm-1 for Ag-ZnO (1 and 

3) and Ag-ZnO (5) respectively. This indicates an interaction between Ag and ZnO 

nanoparticles. The results are in agreement with the XRD results in which the silver diffraction 

peaks 2θ = at 38.24o, 44.37o, 64.67o and 77.58o were observed in the Ag- ZnO (Jyoti et al. 

2016).   A significant band at 421 cm-1 was assigned as the characteristic peak of the stretching 

mode of Zn-O bond (Shah et al. 2013).  
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Figure 4.10 FTIR spectra for Ag, ZnO, Ag-ZnO (1, 3, 5 wt %) 

4.9.5 XRD analysis  for Ag-TiO2 

 

The crystalline structures of Ag, TiO2 and Ag-TiO2 was investigated using XRD. Figure 4.11 

shows the XRD pattern for TiO2 and Ag-TiO2. For the purpose of clarity, XRD pattern for Ag 

and the anatase pattern for JCPDS card no. 21-1272 are also shown.  The diffraction peaks at 

(25,50o), (37,89o), (48,40o), (53,98o), (55,29o), (62,65o), (68,47o), (70,57o), (75,34o) were 

indexed to (101), (004), (200), (105), (211), (204), (220), (220) and (215) crystalline planes 

respectively.  This corresponded to the anatase phase of TiO2 according to JCPDS Card No. 

(21-1272). The anatase phase of TiO2 is preferred over rutile and brookite for photocatalytic 

degradation of both organic compounds and microbial contaminants and for enhancing 

hydrophilicity of the membrane surface (Sahu et al. 2011). The Ag peaks could not be observed 

in the Ag-TiO2 pattern, which indicated that silver was homogenously distributed on the 

surface of the TiO2. (Gafoor et al. 2012). There was no peak which was not indexed or 

corresponding to silver oxide phase observed.  This suggested that the nanocomposites 

prepared were of high purity. Increasing the concentration of silver on TiO2 did not change the 

anatase phase.  This could mean that the low % percentage of Ag could not be detected.  
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Figure 4.11 XRD patterns for Ag, TiO2 and Ag- TiO2 (1, 3, 5 wt %) also showing the anatase 

peaks from the card No. JCPDS 21-1272  

Figure 4.12 is the expanded (101) peak for TiO2, and Ag-TiO2 (1, 3, 5 wt %).  The (101) peak 

at a diffraction angle of 25,50o was magnified to observe the changes on the position of the 

peak as the amount of Ag was increased on TiO2.  As the amount of Ag was increased from 1 

wt % to 5 wt % the peaks became broader.  This could be attributed to Ag being deposited on 

the surface of the TiO2 crystal structure. It was also observed in Figure 4.15 that the (101) peak 

was slightly shifted to a lower diffraction angle.  In the TiO2 lattice, the Ti4+ size is 0.68 Å and 

that of Ag is 1.26 Å, therefore for Ag+ to replace the Ti4+ high energy is needed and only a 

small amount of Ag+ can enter the TiO2 lattice to induce either O vacancies or deficiencies of 

Ti4+. This can also explain why there was no visible peak in the Ag-TiO2. (Talam et al. 2012, 

Pham et al. 2014, Navabpour et al. 2017). 
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Figure 4.12 The position of (101) anatase peak in the XRD patterns for TiO2 with respect to 

Ag-TiO2 at different wt % of Ag (1, 3, 5 wt %) 

4.9.7 XRD analysis for Ag- ZnO 

 

Figure 4.13 is room temperature XRD patterns for ZnO and Ag-ZnO. The XRD patterns for 

neat ZnO exhibited peaks that are characteristic of the hexagonal wurzite structure. All the 

peaks were in agreement with JCPDS card (No. 36-1451). The peaks appeared at 2Ɵ = 31.81o, 

34.50o, 36.19, 47.78o, 56.54o, 62.97o, 66.36o, 68.06o, 69.11o, 72.49o, 77.24o corresponding to 

(100), (002), (101), (102), (110), (103), (200), (112) and (201) crystalline planes respectively. 

Additional low intensity diffraction peaks at 38.24o, 44.37o, 64.67o and 77.58o corresponding 

to the face centred cubic lattice planes of metallic silver of (111), (200), (220) and (311) 

respectively were observed after addition of Ag to ZnO (Jyoti et al. 2016).  The hexagonal 

structure was retained even after addition of Ag. The possible explanation is that Ag atoms 

systematically substituted Zn ions without changing its crystal structure. There was no impurity 

peak observed in the XRD pattern, which was an indication of high purity of the ZnO 

nanoparticles and Ag-ZnO nanocomposites.  
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Figure 4.13 XRD patterns for Ag, ZnO and Ag- ZnO (1, 3, 5 wt %) . 

 

To investigate changes in the NCs due to addition of silver NPs, the (101) crystalline plane was 

expanded. Figure 4.14 is the expanded (101) peaks for ZnO and Ag-ZnO (1, 3, 5 wt).   A slight 

shift of the peak position towards a larger 2θ angle was observed. This further confirms that 

the ZnO lattice structure experienced some strain with addition of Ag.  The nature of the strain 

associated with shifting of the peaks towards higher 2θ values is known as compression stress 

(Kumar et al. 2014, Thandavan et al. 2015). This is also shown by a decrease in d- spacing 

(crystallite size) values. Another observation is that of peak broadening as the amount of Ag 

was increased on the ZnO lattice.  
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Figure 4.14 The position of (101) anatase peak in the XRD patterns for ZnO with respect to 

Ag-ZnO at different wt% of Ag (1, 3, 5 wt %) 

4.9.8 SEM images and EDX  analysis for TiO2 and Ag-TiO2 

 

The morphology and size of the nanoparticles and nanocomposites investigated were using 

SEM.  Figure 4.15 is the SEM images for Ag, TiO2 and Ag- TiO2 (3 wt %) and size distribution 

curves (inserts). The SEM image for Ag nanoparticles showed mostly spherical, however 

agglomerated nanopartilces. The mean particles size obtained from particle distribution curve 

(Gaussian fitting)   was 68.25 ± 4.27 nm. The TiO2 micrograph showed particles with mixed 

shapes but predominantly spherical. The mean particle size was found to be 50.92 ± 3.39 nm. 

The non-uniform and size shape could be attributed to weak or no interaction between PVP 

and TiO2 (Kamari et al. 2014). It was observed from the FTIR that there was no attachment 

between the PVP and TiO2. The function of a capping agent  is to control the nucleation process 

and aggregation and stabilizes the nanoparticles.    As the amount of silver was increased in the 

TiO2 structure, the SEM images revealed the presence of silver appearing as bright white 

irregular shaped spots (Khan et al. 2013). The particles appeared a little amorphous as silver 



139 

 

particles were distributed around the TiO2 structure. The mean particle size for Ag-TiO2 (3) 

was 52.83 ± 0.71 nm.  

 

 

  

Figure 4.15 SEM images for  TiO2 , and Ag-TiO2  nanocomposites. Size distribution curves 

for TiO2 , Ag-TiO2 ( inserts). 

Energy dispersive X-ray (EDX) analysis was performed to further establish the elemental 

presence and percentage weight of silver in the Ag-TiO2 (1, 3,5 wt %) nanocomposites and 
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also to confirm the formation of Ag, and TiO2 nanoparticles. Figure 4.16 shows the EDX 

spectra for Ag, TiO2 and Ag-TiO2 (1, 3, 5 wt %).  In the EDX spectra of TiO2, it was revealed 

that Ti and O elements with no extra peaks of impurity were present. However, in Ag-TiO2 (1 

wt %) and Ag-TiO2 (3%) nanocomposites, minor traces of vanadium were observed. This could 

be attributed STEM calibration as the Vanadium peak appears at the same position as Ti.  This 

is because there was no peak of impurity on the XRD patterns. The EDX data showed that the 

percentage weight for silver increased from 1.48, 4.33 to 7.75%.  This is in agreement with the 

STEM images which showed a gradually increase in silver ions.  
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Figure 4.16 Energy dispersive X-Ray (EDX) spectra for Ag, TiO2 and Ag-TiO2 (1, 3, 5 wt %) 
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4.9.9 SEM  images and EDX  analysis for ZnO and Ag-ZnO 

 

The morphology of Ag, ZnO and Ag-ZnO was observed from SEM imgaes. Figure 4.17 shows 

SEM images for Ag, ZnO and Ag-ZnO (3 wt %). The image shows Ag nanoparticles that are 

spherical and agglomerated. The mean particle size of Ag was 68.25 ± 4.27. SEM images 

revealed mixed shapes for ZnO particles.  The shapes of the particles appeared predominately 

as rods of irregular sizes, randomly oriented, with some spherical and agglomerated. The 

estimated length of the rods was 530 nm ± 20.6. Khoza et al. (2012 observed the nanorods in 

preparation of ZnO NPs in the presence of NaOH and concluded that organic solvents promote 

the formation of rods (Khoza et al. 2012a). In our case methanol was used as the solvent. ZnO 

is known to have a fast growing 0001 plane during the initial stage of the reaction.   Due to 

this, the plane that elongates more than the others results in the formation of rods (Khoza et al. 

2012b). When Ag was added to ZnO more spherical particles appeared as agglomerates around 

the rod shaped particles. The estimated length of the rods was 603 nm ± 50.4 with diameter of 

82.92 ± 5. 4.   The mean sizes for the spherical particles around the rods in Ag-ZnO (3%) was 

36.7 ± 6.9 nm. Zhang and Mu (2007) also observed the appearance of rods in Ag-ZnO (Zhang 

et al. 2007). The presence of silver confirms the formation of Ag- ZnO, which was also 

observed in the XRD patterns.  In the presence of silver, the diameter of the rods increased to 

285 ± 0.32 nm.  
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Figure 4.17 SEM images for Ag, ZnO nanoparticles   and Ag-ZnO ( 3 wt %)  nanocomposites 

and size distribution for Ag and ZnO NPs 
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.  

Energy-dispersive X-ray spectroscopy (EDX) was used to determine the percentage elemental 

composition of Ag in Ag-ZnO (1, 3, 5 wt %) and the purity of the NPsand NCs synthesised. 

Figure 4.18 is the EDX spectra for Ag, ZnO and Ag-ZnO (1-5%). As observed in the Ag EDX 

spectra, the silver element was the only one identified with a percentage weight of 100%. This 

further agrees with the XRD data, which showed uncontaminated sample, characteristic of Ag 

only.  In the synthesised ZnO nanoparticles, EDX spectra also revealed the presence of Zn and 

O elements only.  This also agrees with XRD patterns that the precipitation method produced 

ZnO nanoparticles of high purity.  For the Ag-ZnO nanocomposites, EDX spectra showed the 

presence of Ag, Zn and O elements only.  The EDX spectra for Ag, ZnO nanoparticles and Ag-

ZnO (1, 3, 5 wt %) nanocomposites showed no extra elements just as was observed in XRD, 

which is an indication high purity for the prepared nanoparticles / nanocomposites.  The 

elemental percentages for silver observed was 100 for Ag NPs, 4.34% for Ag-ZnO (1), 7.39% 

for Ag-ZnO(3) and 7.81% for Ag-ZnO (5). These were higher than expected which could be 

due errors in calcultaions or the presence of some interfering elements.  
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Figure 4.18 Energy dispersive X-Ray (EDX) spectra for Ag, ZnO and Ag-ZnO (1, 3, 5 wt %) 
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4.10 Summary 

 

 

The UV-Vis results for silver showed a characteristic surface resonance plasmon peak around 

400 nm. The SPR peak was broad indicating a large range of particle size. The FTIR spectrum 

confirmed the presence of the PVP capping agent and the binding of silver to PVP than TiO2 

and ZnO. The XRD pattern confirmed the face centred cubic lattice plane of metallic silver.  

SEM images revealed predominantly spherical shape with agglomerates and size range of 

68.25 ± 4.27 nm.  Elemental analysis for silver indicated the presence of pure silver 

nanoparticles due to silver as the only element detected. The size and shape of Ag is suggest 

possible application of Ag antimicrobial NPs. 

The optical results for TiO2 showed the expected blue shift from the bulk material due to 

quantum confinements and formation of nanoparticles. Addition of silver to the TiO2 structure, 

lead to a band edge shift towards a higher wavelength (red shift) as expected. This revealed 

that the presence of silver caused reduction in band gap.  The FTIR spectra showed no 

attachment of TiO2 to the capping agent. It was interesting to observe that gradual increase of 

silver to TiO2 structure, re- introduced the functional groups of PVP. From the results, TiO2 

did not show binding characteristics to the capping agent.  The XRD pattern for TiO2 revealed 

the anatase crystalline phase. The anatase phase is important for photocatalytic degradation of 

chlorophenols, antimicrobial activity and for enhancing membrane hydrophilicity.  It was 

revealed that upon addition of silver to TiO2, the anatase phase was retained. The effect of 

incorporating silver to TiO2 was shown by the slight shift of the (101) peak to a lower 2-theta 

value, indicated that only a small amount of Ti4+ was replaced by silver. It was concluded that 

the bulk of silver nanoparticles were distributed on the surface of TiO2 because there was no 

peak from silver observed in all the Ag-TiO2 (1, 3 and 5 wt %) XRD patterns.  The morphology 

results from SEM showed spherically shaped and agglomerated TiO2 nanoparticles with size 

range of 50.92 ± 3.39 nm. The size increased to 52.83 ± 0.71 nm with Ag-TiO2 (3).  The TiO2 

NPs and Ag-TiO2 NCs synthesized in this study possessed characteristics needed for 

application in photocatalytic degradation of chlorophenols, antimicrobial activity and 

application in water treatment as thin film nanocomposites membranes. Elemental analysis 

confirmed the presence of silver in Ag-TiO2 (1, 3 and 5 wt %).  

The optical characterisation of ZnO NPs revealed a blue- shifted band edge from the bulk, 

which is an indication of the formation of nanoparticles. Silver modified ZnO showed a red 
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shift with band gap decreasing from Ag-ZnO (1) to Ag-ZnO (5).  The FTIR results for ZnO 

revealed the attachment of PVP. The FTIR spectra revealed a difference between TiO2 and 

ZnO NPs. The spectrum showed PVP functional groups such as (C = O, C-N, and CH2) within 

ZnO NPs which was not the case with TiO2. It was noted that peaks due to PVP became more 

intense in Ag-ZnO (1, 3, 5wt %), indicating interaction between Ag and PVP.  The crystalline 

structures for ZnO NPs and Ag-ZnO were confirmed with XRD analysis. The XRD patterns 

were indexed to a hexagonal wurtzite structure. The wurtzite structure was maintained upon 

addition of Ag to ZnO. X-ray diffraction peaks for silver were observed in the Ag - ZnO (1, 3, 

5 wt %) patterns, revealing a successful incorporation of silver in ZnO nanostructures. SEM 

revealed agglomerated ZnO nanorods. Silver NPs appeared as clusters around the rods and 

some attached to the rods in Ag-ZnO. This was confirmed by the elemental analysis from EDX 

results. The silver elements were  detected in Ag –ZnO NCs. Nanorods have been used for 

photocatalytic degradation of organic pollutants, antimicrobial and water treatment 

applications.   
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CHAPTER FOUR … 

RESULTS AND DISCUSSION 

Photocatalytic activity of nanoparticles against chlorophenols 

 

 

4.11 Introduction  

 

One of the most applied property of NPs in water treatment is its photocatalytic activity to 

degrade organic compounds into harmless byproducts. In the previous section of this  research, 

Ag, ZnO and TiO2 NPs were synthesized and the characterisation results revealed 

morphologies and sizes that  could perform better in photodegradation of organic compounds, 

in this case chlorophenols. The current section of this research is a contribution in the area of 

photodegrtaion of chlorophenols from water using Ag-TiO2 and Ag-ZnO NCs, which by far is 

not well researched.  It is well documented that ZnO and TiO2 NPs are limited in degradation 

of organic pollutants due to the wide band gap. The purpose of this research was to enhance 

the degradation characteristics of ZnO and TiO2 by incorporating Ag into their structures. 

Incorporation of silver into TiO2 and ZnO enhances degradation of organic pollutants because 

it acts as a charge carrier of the photogerenated electron and reduces recombination rate with 

the holes (positive charge). For this reason, the NCs were applied in degradation of 

chlorophenols from water samples.  

4.12 Photocatalytic degradation of chlorophenols 

 

The  photocatalytic activity of nanoparticles ( Ag, TiO2 and ZnO)  and nanocomposites Ag-

TiO2  (1,3 5 wt %) and Ag-ZnO (1,3 5wt %)  on 2-chlorophenol and  2,4 DCP was investigated 

under UV and visible light irradiation in aqueous medium. Optimisation parameters were 

investigated. The degradation efficiency was calculated using the relationship in equation 4.6 

 

𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛  ( %) = (
𝐶𝑜−𝐶

𝐶𝑜
 ) ∗ 100 %       (4.6) 

where Co is the initial concentration and C is the final concentration of the target pollutants.  
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4.12.1 Type of catalysts and amount of silver 

 

Degradation of chlorophenols depend on the type of the catalyst. The amount of silver added 

into the ZnO and TiO2 was investigated to find out its effect on degradation of chlorophenols.  

Figure 4.19 shows the effect of type of catalyst and amount of silver in TiO2 and ZnO for 

photodegradation of chlorophenols. The results show % degradation of 17.7, 43.1, 54.7, 76.5 

and 61.7 % for Ag, ZnO, Ag-ZnO (1), Ag -ZnO (3) and Ag-ZnO (5) respectively.  Figure 4.13 

(a) show % degradation of 16.4, 19.4, 58.5, 87.2 and 80.5 % for Ag, TiO2, Ag-TiO2 (1), Ag-

TiO2 (3) and Ag-TiO2 (5). The degradation of 2, 4-DCP with silver NPs is lowest compared to 

TiO2, ZnO, Ag-TiO2 and Ag-ZnO. The UV – Vis peak for silver NPs extends mostly towards 

the visible region (400 nm – 480 nm) than in the ultra violet region.  Only a small amount of 

the UV light may be absorbed leading to the effect of low percentage degradation in silver NPs 

alone.   Incorporation of silver to TiO2 and ZnO improved the photocatalytic degradation 

performance. As the amount of silver increased on the catalyst from 1 wt % to 3 wt %, the total 

% degradation of the organic pollutants increased. However, a decline was observed with the 

5 wt % of Ag.  In the case of TiO2 and ZnO semiconductors, upon irradiation with light, 

electrons from the valence band are excited to the conduction band leaving behind holes. There 

is a tendency of fast recombination of the photogenerated electrons with the holes in the valence 

band. However, with incorporation of silver, the Ag+ introduces an extra band closer to the 

conduction band. Silver receives electrons from the conduction band. This charge transfer 

phenomenon inhibits electron – hole recombination and increases concentration of 

photogenerated holes. The holes react with the OH- in the water to form hydroxyl radicals and 

the trapped electrons on silver react with O2 to form superoxide radicals. The radicals are 

responsible for degradation of chlorophenols, which increase with increasing amount of silver 

from 1% to 3wt%. The optimum amount of silver was reached at 3 %. At 5 wt% the % 

degradation dropped for both Ag-TiO2 and Ag-ZnO. Beyond the optimum amount, the 

photogenerated electrons trapped at the surface of silver accumulate and generate more 

negative space charges with increased chances of capturing holes and resulting in reduced 

efficiency of charge separation, and reduction in production of radicals with a subsequent 

decrease in efficiency of degradation of chlorophenols. Accumulation silver around the ZnO 

and TiO2 may hinder light penetration into the semiconductor (Malik 2013).   
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Figure 4.19 Effect of catalyst and amount of silver in TiO2 (a) and ZnO (b) in  

photodegradation of 2,4-DCP. 

4.12.2 Catalyst loading 

 

The amount of Ag-TiO2 (3) and Ag-ZnO (3) catalysts was investigated at 3, 10 and 16 mg/L 

on degradation of 2, 4 – DCP.  Figure 4.20 is the results of degradation of 2,4-DCP against the 

amount of the catalyst. The percentage of 2,4-DCP degraded increased with increasing amount 

of catalyst.  The optimum amount for degradation was 10 mg/L. This is because as the amount 

of the catalyst increases there is an increase in the active sites for adsorption of the pollutant 

due to increase hydroxyl radicals at the surface of the catalyst. The hydroxyl radicals are 

responsible for the degradation chlorophenols (Gnanaprakasam et al. 2015).   Yunus et al. 

(2017) investigated catalyst loading of N and S doped TiO2 catalyst at 1, 2 and 3 g/L for 

degradation of phenol. They obtained a complete degradation of phenol at catalyst loading 

concentration of 3 g/L (Yunus et al. 2017). Above the optimum levels, the suspension becomes 

opaque.  Light scattering is then increased leading to reduction in % degradation (Zhang et al. 

2008).  It is important to relate the concentration of the catalyst with the recommended levels.  

Giovanni et al. (2015) reported that significant cytotoxicity of TiO2 and ZnO due to the 

presence of NPs is detected at around 100 mg/L. However, beyond 10 mg/L of the catalyst 

could elevate the intracellular oxidative stress in organisms (Giovanni et al. 2015).  The amount 
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of the catalyst used in this study was within the recommended level not to cause an 

environmental threat.   
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Figure 4.20   Amount of Ag-TiO2 (3) and Ag-ZnO (3) catalysts for degradation of 2,4-DCP  

 

4.12.3 Initial concentration 

 

The initial concentrations investigated were 5, 25 and 50 ppm. Figure 4.21 shows results of 

three initial concentrations of 2-CP and 2,4-DCP investigated for photocatalytic degradation. 

The Ag-TiO2 NCs are responsible for degradation of the chlorophenols.  The results indicated 

% degradation of CPs as 57.3, 19.3 and 14.6% for 2-CP at 5ppm, 25ppm and 50 ppm 

respectively. The same trend was observed for 2,4-DCP at 73.2, 59.6 and 34.7% for 5 ppm, 25 

ppm and 50 ppm. Degradation was higher at lower concentration because the molecules are 

adsorbed to the catalysts and the produced hydroxyl radicals are sufficient to cause an effective 

degradation.   However, the % of CPs degraded decreased at higher concentration because of 

the insufficient number of active sites for the chlorophenols to be adsorbed on the catalyst 

surface. Excessive molecules of CPs adsorbed onto the catalyst surface would hinder the 

hydroxyl radicals generation due to increased number of collisions between pollutant 

molecules. The other reason is that at high concentration the ease of penetration  of the radiation 

photons to the catalyst surface is hindered and screened off, thereby, reducing the 

photocatalytic activity in the system (Gnanaprakasam et al. 2015, Ba-Abbad et al. 2013).  
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Figure 4.21 Initial concentration at 5 ppm, 25 ppm and 50 ppm for photodegradation of 2-CP 

and 2,4-DCP using Ag-TiO2 (3) 

 

4.12.4  Solution  pH 

 

The pH of the solution is an important parameter that has an effect on the rate of degradation. 

Figure 4.22 is the photodegradation of 2,4- DCP investigated at pH 6.0, 8.0 and 11.0 using Ag-

TiO2 (3) and Ag-ZnO (3). It determines the surface charge properties of the photocatalyst and 

hence the adsorption behaviour of the organic substrate (Gnanaprakasam et al. 2015, Ba-Abbad 

et al. 2013, Patil et al. 2014, Tolosa et al. 2011, Ahmed et al. 2010). The results show a total 

degradation of 23.4%, 76.1% and 60.0% for pH 6.0, 8.0 and 11.0 respectively with Ag-ZnO 

(3) and 12.6 %, 62.8 % and 62.0% at pH 6.0, 8.0 and 11.0 respectively with Ag-TiO2 (3) In 

acidic medium (pH below the point zero charge for TiO2 is 6.9) the surface of TiO2 is 

protonated and becomes positively charged. On the other hand, the TiO2 surface is 

deprotonated in alkaline medium (above pH = 6.9). Equations 4.8 and 4.9 further illustrate the 

protonation and deprotonation of TiO2 (Patil et al. 2014, Singh et al. 2016).  

 

TiOH + H+   TiOH2
+                         (4.8) 

TiOH + OH-  TiO- + H2O                 (4.9) 
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It follows that when the pH is increased the hydroxide ions become predominant (Ahmed et al. 

2011). The presence of Ag, in the Ag-TiO2 nanocomposites reduces the recombination rate and 

more holes are generated and are available to interact with hydroxide ions to produce the 

reactive hydroxyl radicals, responsible for oxidising the organic compounds as illustrated in 

the equation 4.10 (Ahmed et al. 2010). 

 

hVB
+ +  OH−   →  OH. (radical)                (4.10) 

 

In the case of ZnO, the point zero charge is ~ 9.0 (Marsalek 2014). This means the surface 

charge becomes positive below pH 9.0 and negative above pH 9.0 (Ba-Abbad et al. 2013). 

However, the pKa for 2,4-DCP is 7.8.  At pH < pKa the molecules exit as neutral and as anions 

at pH > pKa (Lee et al. 2016). Degradation of 2,4-DCP is high at a pH between the point of 

zero charge for the catalyst and the pH equivalent to the pKa value of the pollutant. The results 

indicate that photodegradation of 2,4-DCP using Ag-ZnO was favoured at pH=8.0.   

 

Figure 4.22 Photocatalytic degradation of 2,4-DCP at pH 6.0, 8.0 and 11.0 using Ag-TiO2 (3) 

and Ag-ZnO (3). 
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4.12.5 Dark , LED light  and UV light 

 

Type of light affects the rate of degradation. The dark, LED and UV light were investigated to 

establish and compare percentage degradation of 2,4-DCP using Ag, ZnO and Ag-ZnO 

(1,3,5%).  Figure 4.23 is the results of degradation of 2,4-DCP in the dark (a), LED (visible) 

light (b) and UV light (c) using Ag-ZnO (3) catalyst.  The results indicate a maximum 

degradation efficiency of 17 %, 62.5% and 87.8 % in the dark, LED and UV light respectively.   

Percentage reduction of 2,4-DCP could be a result of adsorption onto the catalyst. 

Photodegradation by a photocatalyst occurs when UV light is irradiated onto the semiconductor 

causing electrons to be promoted from the conduction band to the valence band leaving behind 

positively charged holes (+ve). The holes are responsible for degradation of 2,4-DCP by 

generating hydroxyl radicals (Coronado et al. 2013).  When UV light is used, the presence of 

silver delays the recombination process between photo - generated holes and the photo - excited 

electrons leading to more available holes for photodegradation (Gnanaprakasam et al. 2015, 

Badmus et al. 2018, Huang et al. 2018b). The results also indicate that incorporation of Ag into 

the ZnO structure led to light absorption by the catalyst in the visible range, that is, absorption 

of the LED light and enhancing photodegradation up to 62.5%. The results are in agreement 

with UV-Vis absorption spectra and band gaps.   
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Figure 4.23 Degradation of 2,4-DCP in the dark (a), LED light (b) and UV light (c) using 

optimum conditions. (5 ppm, pH= 8 and 10 mg/L catalyst)  

 

4.13 Summary 

 

The synthesized NPs and NCs were applied on degradation of chlorophenols.   Degradation 

method was carried out in a batch, 10 W UV-light reactor. Several parameters for validation of 

the method were investigated.  These were amount of silver in TiO2 and ZnO; loading amount 

of catalyst, initial concentration, pH and UV vs visible light.  Amount of the catalyst affect 

degradation of pollutants. The results revealed that degradation of CPs increased with 

increasing amount of the catalyst up to an optimal. As the amount of catalyst increased, 

availability of active sites for attachment of the CPs to the catalyst increased, leading to an 

effective degradation.  Beyond the optimal amount, degradation of CPs became less effective. 

This was attributed to light scattering due to increased viscosity. A comparison on the effect of 

the amount of silver on the modified semiconductors, Ag-TiO2 (1, 3 and 5wt %) and Ag-ZnO 

(1, 3, 5 wt %) revealed that as the amount of silver was increased, % degradation of CPs also 

increased to an optimum. The optimum was obtained at 3 wt % Ag. There was a decline at 5 
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wt %. The explanation given was that from 1 to 3 wt %, silver is increasingly introduced into 

an additional band below the conduction band. It then increasingly accepts photoexcited 

electrons leading to delay the recombination rate. The holes become more available for 

formation of hydroxyl radicals responsible for degradation. At 5 wt%, the accumulated 

electrons on the surface of silver tend to re-combine with the holes hence reducing the % 

degradation.   

Initial concentration of 2, 4 - CP was varied at 5, 25 and 50 ppm to determine to best 

concentration for degradation. The best results were obtained at 5 ppm. At a lower 

concentration of the CPs, there are enough catalyst sites for CPs to adsorb.  At higher 

concentration, the pollutants compete for fewer active sites and due to high viscosity; light rays 

are hindered from reaching the catalyst.  

The pH is another important parameter that affects the effectiveness of degradation. A good % 

degradation for 2, 4 –DCP was obtained at pH = 8 for both Ag-ZnO and Ag-TiO2. The results 

were higher for Ag-ZnO. At pH = 8, the pollutant is effectively adsorbed to the catalyst through 

electrostatic attraction, giving the hydroxyl radicals at the surface of the catalyst conducive 

conditions to effectively degrades the pollutants. Visible and UV sources of light were applied 

for degradation of 2,4-DCP.  The results showed that both silver modified TiO2 and ZnO 

absorbed in the visible range. The presence of extended the capacity of the NCs to absorb also 

in the visible range. This was a confirmation of   the UV- Vis results. As the amount of silver 

increased on the semiconductors, the band edge shifted towards a higher wavelength. So far, it 

was established that silver modified TiO2 and ZnO NCs showed better photocatalytic 

degradation towards 2-CP and 2,4-DCP. However, degradation protocol employed did not 

mineralize the pollutants completely. This meant that the effluent from degradation process 

still contained some harmful contaminants although at a reduced concentration, 

nanocomposites and possibly other degradation intermediates. However, degradation 

intermediates were not determined in this study. 
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CHAPTER FOUR … 

RESULTS AND DISCUSSION 

Antibacterial activity of NPs and NCs on bacteria 

 

4.14 Introduction 

 

Bacteria and organic pollutants are usually difficult to separate. As already, memntioned, the 

biotic form of organic fouling, which is the organic matter from the microbial cellular debris 

is considered an abiotic form of biofouling (Nguyen, et. al 2012). As a result, biofouling and 

organic fouling usually occur together. It is therefore prudent to come up with methods that 

aim at mitigating both organic and biofouling. In this section of the research the synthesized 

NCs (Ag-ZnO and Ag-TiO2) contain a silver component which is known for its excellent 

antibacterial  properties. The purpose of this section of the research was to apply the NPs and 

NCs for antibacterial activity against gram positive and gram negative bacteria using disc 

diffusion and MIC and to find out the quantitative effect of silver in TiO2 and ZnO in improving 

the antibacterial activity. They were further assessed for toxicity against Daphnia magna.  

 

4.15 Disc  diffusion and MIC diffusion results for  bacteria  

 

Disc diffusion and MIC technigues were used to test the Ag, ZnO and TiO2 for antibacterial 

activity against some gram positive and gram negative bacteria. Figure 4.24 is disc diffusion 

results for gram positive (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus) and gram 

negative (Escherichia coli, Klebsiella pneumoniae Pseudomonas aeruginosa) bacteria 

measured in duplicates. The TiO2 and ZnO nanoparticles showed no antibacterial activity for 

both disc diffusion and MIC results. Silver nanoparticles showed antibacterial activity against 

some gram positive and negative bacteria including Escherichia coli (7 mm ± 0.09), Klebsiella 

pneumoniae (11 mm ± 0.3), Bacillus cereus (9 mm ± 0.11), and Bacillus subtilis (6 mm ± 0.08).  

Klebsiella pneumoniae was the most sensitive bacteria towards silver. The results were 

consistent with those reported by Masoud et al. (2016). They also found Klebsiella pneumoniae 

sensitive towards silver nanoparticles (Masoud et al. 2016). The mechanism for antibacterial 

activity is not elucidated.  However, Mahmoudi et al. (2012) suggest that the NPs attach to the 

membrane by electrostatic interaction and attack the membrane of the bacteria (Mahmoudi et 

al. 2012, Raza et al. 2016).The bacteria, Klebsiella pneumoniae is gram negative. The first 
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stage of antibacterial activity is the electrostatic attraction between the positive NPs (Ag+) and 

the gram-negative bacteria, Klebsiella pneumoniae. The attraction possibly promoted the 

penetration through the cell membrane and leading to death (Franci et al. 2015)  

Figure 2.25 is the MIC results for gram positive (Bacillus cereus, Bacillus subtilis, 

Staphylococcus aureus) and gram negative (Escherichia coli, Klebsiella pneumoniae 

Pseudomonas aeruginosa) bacteria. Measurements were taken in duplicates. The initial 

concentration for the first well was 200 mg/L. The results were in agreement with disc diffusion 

showing antibacterial activity of silver nanoparticles only in the first well with concentration 

of 200 mg/L. That is, growth inhibition of bacteria was observed at a minimum concentration 

of 200 mg/L, Ag NPs. The minimum concentration of Ag that caused a bacterial activity was 

relatively high. This is because the bacterial activity of silver NPs increases with decreasing 

size of the NPs. Agnihotri, et al. (2014) carried out a study in which they investigated effect of 

Ag NPs sizes on antibacterial activity against E. coli, B. cereus and B. subtilis respectively.   

They observed the minimum inhibitory concentration of 140, 90 and 160 mg/L for E. coli, B. 

cereus and B. subtilis respectively with Ag NPs of size, 63 nm. At 5.0 nm, Ag NPs, the 

minimum inhibitory concentration had decreased to 60, 30 and 70 nm for E. coli, B. cereus and 

B. subtilis (Agnihotri et al. 2014).  The size of the Ag NPs synthesized in this study was 68 nm 

and the MIC values were within comparable range. Ag NPs did not show antibacterial activity 

towards Pseudomonas aeruginosa and Staphylococcus aureus as it was observed with disc 

diffusion.  
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Figure 4.24 Disc diffusion results for Ag, ZnO and TiO2 NPs against gram positive (Bacillus 

cereus, Bacillus subtilis, Staphylococcus aureus) and gram negative (Escherichia coli, 

Klebsiella pneumoniae Pseudomonas aeruginosa) bacteria. 
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Figure 4.25 MIC results for Ag, ZnO and TiO2 against gram positive (Bacillus cereus, 

Bacillus subtilis, Staphylococcus aureus) and gram negative (Escherichia coli, Klebsiella 

pneumoniae Pseudomonas aeruginosa) bacteria. 
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4.16 Disc  diffusion and MIC diffusion for E.coli  

 

Further analysis of antibacterial activity of Ag-ZnO and Ag-TiO2 against E.coli were 

performed using disc diffusion and MIC. These were compared with Ag, TiO2 and ZnO to 

establish the effect of Ag in ZnO and TiO2 on antibacterial activity.   Figure 4.26 are the results 

of disc diffusion to establish the antibacterial activities of the Ag, TiO2 and Ag-TiO2 (3).  The 

results showed zones of inhibition at 0.0, 10.8 ± 0.08 and 12.6 ± 0.09 mm for TiO2, Ag and 

Ag-TiO2 respectively, indicating that TiO2 alone did not inhibit the growth of E.coli bacteria. 

The presence of silver improved the inhibition properties from 10.8 ± 0.04 to 12.6 ± 0.03 mm.  

Figure 4.27 are the results of disc diffusion to establish the antibacterial activities of Ag, ZnO 

and Ag-ZnO (3). Zones of inhibition was recorded as 0.0 mm 6.2 ± 0.08 mm 12.5 ± 0.10 mm 

for ZnO, Ag and Ag-ZnO  (3)  respectively. The presence of silver increased zone of inhibition 

in ZnO.  

 

Figure 4.26 Disc diffusion results for Ag, TiO2 and Ag-TiO2 (3 wt %) against E.coli showing 

triplicate measurements  

 

Figure 4.27 Disc diffusion results for Ag, ZnO and Ag-ZnO (3 wt %) against E.coli showing 

triplicate measurements  
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Figure 4.28 is the MIC results for TiO2, Ag, Ag-TiO2 (1, 3, 5 wt %) and Figure 4. 29 is the 

MIC results for ZnO, Ag, Ag-ZnO (1, 3, 5 wt %). The results are in agreement with disc 

diffusion in that antibacterial activity against E.coli. bacteria using TiO2 and ZnO was not 

detected. However, upon incorporation of Ag to TiO2, and to ZnO an increasing trend of 

inhibition against the E.coli. bacteria with increasing amount of silver was observed. The 

minimum inhibition concentration for experiment involving TiO2 was  100 mg/L, 50 mg/L , 

6.25 mg/L and 1.56 mg/L for Ag,  Ag-TiO2 (1) , Ag-TiO2 (3) and Ag-TiO2 (5) respectively.  In 

the case of Ag and ZnO experiment the minimum concentrations of inhibition were 100 mg/L, 

50 mg/L, 25 mg/L and 1.56 for Ag, Ag- ZnO (1), Ag-ZnO (3) and Ag-ZnO (5)  respectively.  

This shows that the presence of Ag induced bacterial inhibition.  It is known that the 

antibacterial activity of semiconductors such as TiO2 and ZnO is considerably improved when 

it is doped with metal ions such as Au and Ag (Chen et al. 2017, Liu et al. 2018). Korshed et 

al. (2018) demonstrated that in the presence of Ag NPs the production of ROS is increased 

(Korshed et al. 2018).  Silver acts as a charge carrier because electrons from the conduction 

band are transferred onto the silver surface. The accumulated electrons reduce oxygen on the 

surface of the catalyst to produce superoxide radicals (reactive oxidative species). The 

increased ROS induce stress on organisms hence an increase in antibacterial activity for Ag-

TiO2 and Ag-ZnO as shown in disc diffusion and MIC (Korshed et al. 2018). The minimum 

concentration needed to cause an antibacterial activity reduces with increasing amount of silver 

because more electrons are accumulated on silver below the conduction band and the 

production of ROS for antibacterial activity is increased. It is also proposed that silver exhibit 

antibacterial activity through its interaction with electron donor groups such as nitrogen, 

oxygen and sulphur in the bacteria and a lethal affect (Gordon et al. 2010).  

 

Figure 4.28 MIC results for Ag, TiO2 and Ag-TiO2 (1, 3, 5 wt %) against E.coli.  (duplicate 

measurements). 
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Figure 4.29 MIC results for Ag, ZnO and Ag-ZnO (1, 3, 5 wt %) against E.coli. showing 

duplicate measurements. 

4.17 Toxicity test for Ag- TiO2 and Ag- ZnO 

 

Toxicity of nanoparticles (Ag, ZnO and Ag-ZnO) against Daphnia magna was investigated to 

establish the concentration of NPs that cause a toxicity effect to Daphnia magna. This has 

implications on loading of NPs into environment and aquatic life. Figures 4.30, 4.31 and 4.32 

are the EC50 results for Ag, ZnO and Ag-ZnO against Daphnia magna. EC50 is the effective 

concentration needed to immobilise 50 % of neonates.  The EC50 values were estimated 

statistically from the fitted dose response sigmoidal curve.   The results show increasing 

immobility of Daphnia magna with increasing in concentration of the NPs.  EC50 48h for Ag, 

ZnO and Ag-ZnO was 226.0, 238.4 and 256.4 mg /L. The results show that Ag was more toxic 

than ZnO and Ag-ZnO. The order of increasing toxicity was Ag > ZnO > Ag-ZnO.  
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Figure 4.30 Effective concentration (EC) values of Ag, NPS for Daphnia magna neonates 

during 48 hrs. 
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Figure 4.31 Effective concentration (EC) values of Ag- ZnO NPs nanorods for      Daphnia 

magna neonates during 48 hrs. 
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Figure 4.32 Effective concentration (EC) values of ZnO nanorods for   Daphnia magna 

neonates during 48 hrs 

4.18 Summary 

 

Synthesised NPs and NCs were applied for antimicrobial activity. Zinc Oxide and TiO2 showed 

zero zone of inhibition towards the gram positive (Bacillus cereus, Bacillus subtilis, 

Staphylococcus aureus) and gram negative (Escherichia coli, Klebsiella pneumoniae 

Pseudomonas aeruginosa) bacteria at 200 mg/L.  Silver NPs showed bacterial inhibition 

towards gram negative, Escherichia coli (7 mm ± 0.09), Klebsiella pneumoniae (11 mm ± 0.3), 

bacteria and gram positive, Bacillus cereus (9 mm ± 0.11), Bacillus subtilis (6 mm ± 0.08), 

bacteria.  Klebsiella pneumoniae was the most sensitive bacteria towards silver. The initial 

electrostatic attraction between Ag+ ion and gram-negative (Klebsiella pneumoniae) facilitated 

penetration of Ag+ thorough bacterial cell membrane leading to denaturing of the DNA. Growth 

inhibition of bacteria was observed at a minimum concentration of 200 mg/L, Ag NPs. The 

minimum concentration of Ag that caused a bacterial activity was relatively high. This was 

because of the large size of the Ag NPs, estimated at 68 nm.  Bacterial activity of silver NPs 

increases with decreasing size of the NPs. However, the results were comparable with   

literature.  

Further experiments on MIC showed that incorporation of silver to TiO2 and ZnO improved 

antibacterial activity. Minimum inhibitory concentration of 50 mg/L, 6.25 mg/L and 1.56 mg/L 



166 

 

for Ag-TiO2 (1), Ag-TiO2 (3) and Ag-TiO2 (5) respectively, were achieved.  In the case of Ag 

and ZnO, the minimum inhibitory concentration were reduced to 50 mg/L, 25 mg/L and 1.56 

mg/L for Ag- ZnO (1), Ag-ZnO (3) and Ag-ZnO (5)  respectively.   

The as prepared NPs that is, Ag NPs, Ag-ZnO and Ag-TiO2 NCs showed antibacterial activity 

against E.coli. It was therefore crucial to evaluate their toxicity because of application in water 

purification. Silver, ZnO and Ag-ZnO were employed for evaluating their toxicity against 

Daphnia magna. The results were computed as 48hr EC 50, obtained from the fitted dose 

response sigmoidal curves. The 48hr EC50 is the effective concentration that caused 

immobilisation of 50 % Daphnia magna, in 48 hrs. The results showed that increasing 

concentration of the NPs increased their toxicity towards Daphnia magna.  The 48 hr EC50 

values for Ag, ZnO and Ag-ZnO were 226.0, 238.4 and 256.4 mg /L respectively.   This meant 

that Ag was more toxic to Daphnia magna than ZnO and Ag-ZnO. It was further established 

that, Ag-ZnO and Ag-TiO2 NCs showed antibacterial activity towards E.coli with Ag-ZnO 

(5%) and Ag-TiO2 (5%) achieving maximum bacterial growth inhibition.   
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CHAPTER FOUR … 

RESULTS AND DISCUSSION 

Fabrication and performance PA-TFC 

 

4.19 Introduction 

 

Chorophenols are low molecular weight organic pollutants. Their removal in water require 

membranes with molecular weight cut-off. of 150-300 Da. The commercial membranes such 

as NF and RO are highly susceptible to fouling.  They also have low membrane permeability 

that negatively affects water prufication production.  The purpose of this section of the research 

was to fabricate PA-TFC membranes with enhanced antifouling properties by incorporating 

Ag-ZnO and Ag-TiO2 NCs. Incorporation of Ag-ZnO and Ag-TiO2 in PA-TFC is not well 

documented and this aspect becomes part of  novelty of this research.  Polyethersulfone was 

used as a support materal to enhance permeability because of its porous structure.  The prepared 

membranes were characterised using ATR-FTIR to establish the functional groups of the 

polyamide layer. They were further characterised with SEM and AFM. The images were 

analysed to confirm the presence of the nanocomposites in the membranes. The Ag-ZnO and 

Ag-TiO2 modified membranes were tested for performance using flux, permeability, flux 

recoveries, fouling tests. The results were discussed to establish the performance of the 

modified membrane in comparison with the unmodified membrane. The membranes were 

further tested for flux using the real water samples from the rivers.    

 

4.20 Characterisation of membranes 

4.20.1 FTIR for Ag-TiO2 

The PES membrane consists of an aromatic ring and two sulfonyl groups. The asymmetric and 

symmetric S=O bands are expected at 1340-1310 nm and 1365-1165 cm-1 (Smith, 1998). 

Figure 4.33(a) is the ATR-FTIR spectra of PES, PA-TFC and Ag-TiO2/PA-TFC (0.5 - 2.0 wt 

%) membranes. Figure 4.33 (b) is the expanded graph. The PES spectra confirmed the presence 

of the asymmetric and symmetric S=O bands at 1365 and 1163 cm-1. Upon cross linking 

pepirazine with trimesoyl chloride, using PES as support, a poly (pepirazine amide) was 

expected to be formed.  This was evident on the FTIR spectra with two new bands appearing 

at 1660 cm-1 and 1753 cm-1. The band at 1660 cm-1 was attributed to the aromatic polyamide 
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of the carbonyl carbon, C=O stretching (amide I) while the one at 1753 cm-1 was assigned to 

be the C=O from the carboxylic acid (Wu 2015).  Strong bands that appeared at 2855 cm-1 and 

2918 cm -1 region on the PA-TFC and Ag-TiO2/PA-TFC (0.5-2.0 wt %) membranes were due 

to the asymmetric and symmetric CH2 stretching from pepirazine aliphatic ring. The broad 

band at 3381 cm-1 was assigned as the –OH stretch (Belfer et al. 2000). The intensity of the –

OH group on the membrane surface increased with increasing concentration of the Ag-TiO2 

nanocomposites. Similar results were obtained by Li, et al (2015) shown by the IR spectra of 

Ag-TiO2/PDVF membrane. They also observed an increasing intensity of the –OH band with 

addition of Ag-TiO2 on the PVDF membrane. They attributed it to increasing surface hydroxyl 

groups due to additional photocatalytic property of TiO2 (Li et al. 2015b, Kim et al. 2016). 

Figure 4.34 represents the ATR-FTIR spectra of PES, Ag-ZnO/PA-TFC membranes (0.5-2.0 

wt %). The characteristic peaks for PES have been identified and assigned. The C=O (amide I) 

peak of poly (pepirazine amide) was observed at 1670 cm-1 and 1751 cm-1. The strong bands 

appearing at 2924 cm-1 and 2846 cm-1 region on the PA-TFC and Ag-ZnO/PA-TFC (0.5-2.0 wt 

%) was due both to the asymmetric and symmetric CH2 from pepirazine aliphatic ring. It was 

also observed that increasing addition of the nanocomposites (0.5-2.0 wt %) caused a reduction 

in the intensity of the CH2 peaks. The intensity of the –OH group on the membrane surface 

increased with increasing concentration of the Ag-ZnO nanocomposites. It can be inferred that 

addition of Ag-ZnO increased hydrophilicity of the membranes as already explained (Li et al. 

2015b, Kim et al. 2016).  

In summary both Ag-TiO2 and Ag-ZnO were incorporated into the thin PA layer using 

interfacial polymerization. The Ag-TiO2/ PA-TFC membrane showed a peak at 752 cm-1 due 

to Ti-O-Ti fingerprint which increased in intensity with increasing amount of Ag-TiO2. In the 

case of Ag-ZnO/PA-TFC a weak peak related to the Zn-O fingerprint was observed at  

760 cm-1. 
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Figure 4.33 The FTIR spectra of neat PES, PES/PA-TFC and PES/PA-TFC (at different 

amounts of Ag-TiO2:  0.5, 1.0, 1.5 and 2.0 wt%) (a) and the expansion of the FTIR spectra from 

1600 cm-1  - 2800 cm-1. 
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Figure 4.34 The FTIR spectra of neat PES, PES/PA-TFC and PES/PA-TFC (at different 

amounts of Ag-ZnO).  

 

4.20.2 SEM Analysis 

 

SEM analysis was carried out to investigate surface distribution of NCs within the PA-TFC 

membrane. A well modified membrane should show an evenly distributed NCs across the surface 

of the PA-TFC membrane.   Figure 4.35 is the surface area of SEM images showing (a) and (b) for 

PA-TFC and Ag-ZnO/PA-TFC membranes respectively. Figures 4.35 (c) and Figure 4.35(d) are 

cross sections for PA-TFC and Ag-ZnO/PA-TFC membranes respectively. Figure 4.36 (a) and (b) 

are surface SEM images for PA-TFC and Ag-TiO2/PA-TFC. Figure 4.36 (c) and Figure 4.36 (d) are 

SEM cross section images for PA-TFC and Ag-TiO2/PA-TFC.  The results of the surface images 

indicate that the particles of Ag-ZnO and Ag-TiO2 were evenly distributed inside the nanocomposite 

polyamide matrix of the membrane.  The SEM images for surface morphology of PA-TFC, Ag-

ZnO/PA-TFC and Ag-TiO2/PA-TFC membranes further show the characteristic “ridge-and-

valley” structure of polyamide distributed throughout the plane (Baroña et al. 2013). Cross 

section images of the PA-TFC, Ag- ZnO/ PA-TFC and Ag- TiO2/ PA-TFC membranes confirm   
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the formation of the characteristic thin layer on the surface of the membranes. The thin layer 

confirms the formation of the PA layer. The results are in agreement with the ATR- FTIR amide I 

peak observed at 1650 nm.  For the cross section image of Ag-TiO2/PA-TFC membrane the 

presence of Ag-TiO2 was observed underneath the dense polyamide layer. However, the NCs were 

not observable with  the case of Ag-ZnO/PA-TFC cross section image.  

 

                                

 

Figure 4.35 SEM images showing surface area (a) PA-TFC, (b) Ag-ZnO/PA-TFC and cross 

section (c) PA-TFC, (d) Ag-ZnO/PA-TFC membranes. 

. 
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Figure 4.36 SEM images showing surface area (a) PA-TFC, (b) Ag-TiO2/PA-TFC and cross 

section (c) PA-TFC, (d) Ag-TiO2/PA-TFC membranes 

4.20.3 AFM Analysis 

 

AFM was used to determine the quantitative information on the surface roughness and changes 

that result with modification. Figure 4.37 shows the 3-D topographic AFM images of PA-TFC 

and Ag-ZnO/PA-TFC membranes. Surface roughness has an effect on membrane fouling and 

water flux. The image reveals the typical “nodular” feature with a few leaf-like structures. This 

is because a rougher PA layer was formed on a relatively dense substrate due to an interfacial 

instability from the curing heat during interfacial polymerization between PIP and TMC (Zhou 

et al. 2018). However, surface roughness increased from 12.3 nm to 20.8 nm for PA-TFC and 

Ag-ZnO/PA-TFC respectively. It was expected that surface roughness will decrease with 
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modification with the NCs. High surface roughness could increase water flux by providing a 

larger surface area for water transportation across the membrane. However, it could also 

increase membrane fouling because foulants easily adsorb on rough surface. Al Mayyahi et al. 

(2018) observed similar results from a TiO2/PA-TFC fabricated using interfacial 

polymerization. Addition of TiO2 to the PAA-TFC membrane resulted in increased roughness. 

They reported significant performance in term of water flux, organic fouling resistance, and 

bactericidal activity while maintaining high salt rejection (Al Mayyahi 2018). 

 

Figure 4.38 shows the 3-D AFM image for PA-TFC (a) and Ag-TiO2/PA-TFC (b) membranes. 

It was observed that the surface roughness decreased from 12.3 to 7.7 nm.  Reduction in 

membrane roughness reduces the contact area between the pollutants and the membrane 

surface. This could lead to improved and favourable antifouling properties of the membrane 

(Makhetha et al. 2018).  

 

       

     

                    

 Figure 4.37. AFM images of PA-TFC (a) and Ag-ZnO/PA-TFC membrane (b) 
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Figure 4.38 AFM images of PA-TFC (a) and Ag-ZnO/PA-TFC (b) membranes 

 

4.20.4 Contact angle 

 

Contact angle measurements were used to evaluate the hydrophilicity of the membrane. 

Hydrophilic membranes possess a contact angle of 0o < θ < 90o, while hydrophobic membranes 

have a contact angle of 90o < θ 180o (Isawi et al. 2016). Hydrophilicity interaction is described 

as the hydrogen bonding that occurs between the polar water molecules and the membrane 

surface. Hydrophilicity of the membrane enhances water flux and antifouling properties of the 

membrane (Miller et al. 2017). Hydrophobic membranes encourage membrane fouling because 

foulants are adsorbed onto the surface of the membrane forming a cake layer that reduces water 

flux   (Xiao et al. 2011). Figure 4.39 is the results of water contact angles for pure PES, PA-

TFC (0.0) and Ag-TiO2/ PA-TFC ( from 0.5-2.0 wt % ) prepared by interfacial polymerization.  

The results show that as the amount of Ag-TiO2 was increased on the PA-TFC membranes 

there was a decline in contact angle from 74o to 33o   reaching an optimum at 1. 5 wt% and an 

increase at 2.0wt%. The decreasing trend in contact angle is rationalized through increasing 

hydrophilicity of the membranes. It is inferred that Ag-TiO2 exhibit hydrophilic characteristics   

and affected the membranes positively.    Li et al. (2015) conducted a study by   incorporating 

Ag-TiO2 nanocomposites into a PVDF membrane. The contact angle measurements of the 
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membranes showed a remarkable increase in hydrophilicity with the angles reducing by 40 -

60o (Li et al. 2015a). 

0

10

20

30

40

50

60

70

80

 

 
C

o
n

ta
ct

 A
n

g
le

 (
o
)

Increasing amount of Ag-TiO
2
 on PA-TFC membranes 

PES 0.0 0.5 1.0 1.5 2.0

 

Figure 4.39 Water contact angles for pure PES, PA-TFC (0.0) and Ag-TiO2/ PA-TFC (from 

0.5-2.0 wt% ) prepared by interfacial polymerization  

Figure 4.40 is the results of water contact angles for pure PES, PA-TFC (0.0) and Ag-ZnO/ 

PA-TFC (from 0.5 -2.0 wt %) prepared by interfacial polymerization. The contact angles for 

PA-TFC membranes embedded with Ag-ZnO (0.5 -2.0 wt %) showed a slight decrease from 

74o for neat PES to 54o for Ag-ZnO / PA-TFC reaching an optimum at 1.0 wt%. In our previous 

work, ZnO was incorporated into PES membrane using phase inversion method. The contact 

angles decreased from 87o to 53o with increasing amount of ZnO nanoparticles on the 

membrane from 0-2.0 wt%. The optimum amount of ZnO with highest contact angle was 

reached at 1.5 wt%.  A corresponding increase in water flux was observed (Dipheko et al. 

2017). Shen et al. (2012) observed similar results where ZnO was blended into PES membrane. 

In their case contact angle reduced from 80.0o to 54.7o. A Corresponding increase in water flux 

reaching an optimum with the membrane embedded with 0.2g of the ZnO nanoparticles was 

observed. Beyond 0.2 g there was a decline in water flux.  They explained the sudden increase 

in contact angle or reduction in water flux, as due to viscosity effect and agglomeration. That 

is, the high amount of the nanoparticles in the casting solution increases the viscosity.   

Viscosity effect dominates and hinders the exchange rate between water and solvent during the 
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coagulation in phase inversion method. The particles also tend to agglomerate and affect the 

hydrophilicity (Shen et al. 2012).  

In comparison with the Ag-TiO2/PA-TFC, the Ag-ZnO/PA-TFC nanocomposites showed a 

slight improvement of hydrophilicity compared to PES and PA-TFC membrane (contact angle 

54o). The /Ag-TiO2/PA-TFC membranes on the other hand showed a higher improvement of 

up to 33o, contact angle. Ag-TiO2 provides more hydrogen bonding sites with water molecules 

than ZnO (Shen et al. 2012).  
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Figure 4.40 Water contact angles for pure PES, PA-TFC (0.0) and Ag-ZnO/ PA-TFC (from 

0.5 -2.0 wt %) prepared by interfacial polymerization 

 

4.21 Membrane performance  

4.21.1 Effect of feed concentration  

Feed concentration has an effect on water flux. Table 4.9 presents the effect of feed 

concentration of water flux using dead end cell using 2-CP solution as feed water. It was 

observed that the feed concentration had an effect on water flux. As the concentration 

increased, there was a sharp decline in flux. This was attributed to adsorption of 2-CP 

molecules on the surface of the membranes hence blocking the pores or causing concentration 

polarization at the surface of the membrane. Wide range of standard deviations %RSDs were 
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recorded at high concentration.  However, this was contrary to the results obtained by Hou et 

al. (2015) on effect of water flux using humic acid as feed water at 10 mg/l and 50 mg/l. They 

observed no noticeable difference on water flux for both concentrations (Hou et al. 2015). At 

100ppm feed solution of 2-CP, there was no permeate collected. A dash was recorded in the 

table.  

Table 4.9 Effect of concentration of 2-CP on the water flux and the standard       

deviations  

 

Feed concentration (ppm) Flux ( Lm-2h-1)  (%) RSD 

5 9.45 2.03 

25 7.34 6.89 

50 3.62 10.33 

100 - - 

 

4.21.2 Membrane permeation flux  

 

To obtain water permeability of the membrane, pure water flux(Jwi)  is first obtained and 

calculated using equation 3.13.  

 

Jwo =
V

A.t
                     

                       

Where Jw0 is the pure water flux (L/m2h), V, the permeate volume, A, the membrane area (m2) 

and t is the time (h). Average flux was calculated from an average obtained from three samples 

per membrane with three measurements for each sample and plotted against transmembrane 

pressure (from 200 to 800kPa).  Hydraulic permeability of the membranes calculated from the 

slopes of the fitted linear regression on the graphs of water flux against transmembrane pressure 

(Sotto et al. 2011). 
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Figure 4.41 is the experimental results of pure water flux at different transmembrane pressure 

for PES. Figure 4.42 is pure water flux for neat membrane (PA-TFC), Ag-TiO2/ PA-TFC and 

Ag-ZnO/PA-TFC. Table 4.10 is the hydraulic permeability of the membranes.  

Polyethersulfone showed the highest pure water permeability compared to both Ag-TiO2/PA-

TFC and Ag-ZnO/PA-TFC membranes. Although PES exhibit high permeability and requires 

less pressure, it is an ultrafiltration membrane (Van der Bruggen et al. 2003). The molecular 

weight cut off for ultrafiltration exceed the molecular weight of the target organic pollutants in 

this study, 2-CP and 2,4-DCP.  (MNIF et al. 2017). Amir, et al. (2016)  stated that PES 

membranes are hydrophobic in nature as such experiences a heavy fouling problem in removal 

of organic compounds due to cake formation and pore clogging (Razmjou et al. 2011). 

It was observed that the membranes modified with Ag-TiO2 exhibited the highest permeability 

compared to the neat PA-TFC membrane.  Permeability increased from 0.009, 0.019 to 0.21 

kPa L-1m-2/h for PA-TFC, Ag-ZnO/PA-TFC and Ag-TiO2/PA-TFC membranes respectively. 

This was rationalized through the presence of Ag-TiO2 that induced hydrophilicity to the PA-

TFC membrane and resulted in increased flux and permeability.  

The presence of Ag-ZnO in the PA-TFC membrane, showed a similar pattern to that of Ag-

TiO2/ PA-TFC membranes however, with flux and permeability slightly lower than that of Ag-

TiO2/PA-TFC membrane. The results are in agreement with the contact angles achieved in this 

study.  The Ag-TiO2/ PA-TFC membrane showed the lowest contact angle of 33o compared to 

54o for Ag-ZnO/PA-TFC membrane. The contact angles obtained for both membranes were 

comparable to those obtained by other authors (Li et al. 2015a, Dipheko et al. 2017, Shen et 

al. 2012).  It is inferred that Ag-TiO2/TFC is more hydrophilic than Ag-ZnO/PA-TFC 

membrane. The hydrophilic Ag-TiO2/TFC membrane attracts more water molecules to the 

surface and facilitates transport across the membranes (Li et al. 2015a, Dipheko et al. 2017). 
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Figure 4.41 Pure water flux for PES membrane  
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Figure 4.42 Pure water flux of PES membrane and PA-TFC, Ag-TiO2 / PA-TFC and Ag-ZnO 

/PA-TFC membranes as a function of increasing transmembrane pressure 
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Table 4.10 Effect of transmembrane pressure on pure water flux 

 

 

The modified membranes were investigated for permeability and compared to the unmodified 

membranes. This was meant to establish if the modification of the membranes with Ag-ZnO 

and Ag-TiO2 enhaced permeability properties of the membranes. Figures 4.43 (a) and Figure 

4.43 (b) are the results of water flux for PES (a) and modified membranes using 2-CP.  Figures 

4.44 (a) and Figure 4.44 (b) are the results of water flux for PES (a) and modified membranes 

using 2, 4 – DCP.  It was observed that at low pressures (0-600 kPa) water flux increased almost 

proportionally with transmembrane pressure. As pressure was increased the permeation flux 

showed non-proportionality for all the membranes tested (Yoon 2015). This is because when 

pressure continues to be increased the particles or solutes start to be deposited on the surface 

of the membranes creating an additional permeate barrier.  Further increase in pressure causes 

the cake layer formed at the membrane surface to become more compact and an increase in 

permeate flux becoming difficult (Yaraki et al. , Nguyen et al. 2014).  

In summary permeate flux for 2-CP pollutant decreased more than 2,4-DCP. This was 

attributed to the further effect of fouling caused by adsorption of 2-CP molecules within the 

membrane pores due its smaller size (Holman et al. 2007). However, it must be noted that pore 

size analysis was not carried out in this study 

Membranes Pure water hydraulic permeability 

PES 0.100 

PA-TFC 0.009 

Ag-ZnO/PA-TFC 0.019 

Ag-TiO2/PA-TFC 0.021 
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Figure 4.43 Flux of PES (a) membrane and PA-TFC, Ag-TiO2 / PA-TFC and Ag-ZnO /PA-

TFC membranes (b) as a function of increasing transmembrane pressure using 2-CP as a 

model pollutant. 
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Figure 4.44 Flux of PES (a) membrane and  (b) PA-TFC, Ag-TiO2 / PA-TFC and Ag-ZnO 

/PA-TFC membranes (b)  as a function of  increasing transmembrane pressure using 2,4 –

DCP as a model pollutant 
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4.21.3 Rejection of 2-CP and 2,4-DCP 

 

. Chlorophenols have been listed as priority pollutants as such methods of removing them from 

environmental water is crucial (Montero et al. 2005). Low molecular weight organic 

compounds have been found to be a problem to reject from water samples due to the high 

tendency of forming a cake layer on the PA-TFC membrane surfaces (membrane fouling) 

(Breitner 2017). The modified membranes were investigated for their effectiveness in rejection 

of 2-CP and 2,4-DCP from water samples.  Figure 4.45 (a) is the % rejection of 2-CP and 2,4-

DCP using the PA-TFC, Ag-ZnO/PA-TFC and Ag-TiO2/PA-TFC membranes. Figure 4.45 (b) 

and (c) are the calibration curves against which the residual concentration of 2-CP and 2,4-

DCP were measured In this study, PES membranes were modified with Ag-TiO2 and Ag-ZnO 

using interfacial polymerization. The resultant membranes (Ag-TiO2/PA-TFC and Ag-

ZnO/PA-TFC membranes) were expected to enhance rejection for the target low molecular 

weight molecules (2-CP and 2,4-DCP) based on their  lower  molecular weight cut off 

compared to PES and improved hydrophilicity (Li et al. 2015a, Tijing et al. 2015).  

The percentage rejection was calculated according to equation 4.10;  

  

                                                 R (%) =
Cf−Cp

Cf
× 100%            (4.10) 

 

The rejection performance for neat PA-TFC membrane for 2-CP was 43 %.  Rejection 

mechanism for thin film composite membranes is explained in terms of charge and size 

exclusion. For large molecules, sieving becomes the dominant rejection mechanism and 

repulsive forces for small molecules (Shon et al. 2013). In this case, molecular weight for 2-

CP and 2, 4 DCP is 128.6 and 163 g/ mol respectively and are classified as low molecular 

weight organic compounds (Rodriguez et al. 2004).  The surface of PA-TFC is hydrophobic in 

nature and highly susceptible to fouling by small organic compounds. The relatively low 

rejection is due to   adsorption of 2-CP to membrane surface and pore plugging. Surface 

morphology from surface image of SEM and 3-D surface image from AFM revealed “hill and 

valley” or leaf –like structures that are responsible for enhancing adsorption of molecules to 

the membrane surface (enhancing membrane fouling).  Some have indicated that the fouling 

surface layer provides an additional filtration barrier and enhance rejection of organic 

compounds thus preventing subsequent molecules from passing through the membrane (Xiao 

et al. 2011, Razmjou et al. 2011, Coday et al. 2014).  This claim may have some bearing on 
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our results because although rejection of 2-CP is lower with PA-TFC membrane compared to 

the modified membranes, the rejection value of 43 % may be considered high for a hydrophobic 

membrane.  Hidalgo et al. (2013) conducted a study for rejection of 4- CP using different 

unmodified PA thin films membranes. They observed % rejection of 65 % after optimizing 

operation conditions such pH, feed concentration and hydraulic pressure. However, they also 

observed a trade-off between rejection and permeate flux, where the membrane with highest 

rejection had the lowest flux, which is typical for unmodified PA-TFC membranes (Hidalgo et 

al. 2013). In this study rejection of 2-CP was 80% on the Ag-ZnO/PA-TFC membranes and 

76o for Ag-TiO2/PA-TFC membrane. Inferring that incorporation of the nanocomposites Ag-

ZnO and Ag-TiO2 onto the PA-TFC membranes increased the % rejection by 37% and 33 % 

respectively from 43% by neat PA-TFC membrane.  

 

Rejection of 2,4-DCP using the unmodified PA-TFC was 58%, which was still comparable to 

the one obtained by Hidalgo, et al. (2013) (Hidalgo et al. 2013).  Upon modification with Ag-

TiO2 and Ag-ZnO rejection of the 2,4-DCP increased to 80 and 85% respectively. Rejection of 

2,4-DCP is also mainly attributed to repulsive forces between the inherently negatively charged 

PA-TFC membrane and negatively charged molecule of 2,4-DCP (pKa 7.89). At pH above the 

pKa for 2,4-DCP, (which was recorded as pH = 8.44 ± 0.035), the 2, 4- DCP dissociates into a 

phenolate anion and exists mainly as negatively charged species hence the repulsive forces for 

rejection (Coday et al. 2014, Sathishkumar et al. 2009). Rejection increase from 76 % and 80% 

to 80% and 85% for 2-CP and 2,4-DCP respectively, which was attributed to size exclusion.  

This was made on basis of molecular size increase from 128.6g/mol to 163 g/mol for 2-CP and 

2,4-DCP respectively.  Higher rejection for 2,4-DCP was also attributed to enhanced negative 

charge due to an extra chlorine as results increasing the repulsive forces between the membrane 

and the 2,4-DCP molecules (Coday et al. 2014).  
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Figure 4.45 % Rejection of 2- CP and 2,4-DCP using PA-TFC, Ag-ZnO/PA-TFC and Ag-TiO2/ 

PA-TFC membranes (a) and the calibration curves of 2-CP (b) and 2, 4 DCP (c) obtained from 

UV-Vis spectroscopy. 
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4.21.4 Evaluation of antifouling properties 

 

The organic molecules at the surface of the membrane form a cake layer or are deposited within 

the membrane pores (Luján-Facundo et al. 2015).  This phenomenon ultimately leads to 

undesirable high-energy consumption due to increased pressure yrequirements (Tijing et al. 

2015). The purpose of this investigation was to assess the as prepared membranes (Ag-

TiO2/PA-TFC and Ag-ZnO/PA-TFC) for antifouling properties when compared to the neat PA-

TFC. Figure 4.46 presents filtration results of pure water and feed solutions fluxes during 

fouling tests for PA-TFC, Ag-ZnO/PA-TFC and Ag-TiO2/ PA-TFC membranes using 2-CP as 

a foulant. Organic fouling is the adsorption or deposition of dissolved organic matter on the 

membrane surface. The results indicate that the Ag-ZnO/PA-TFC and Ag-TiO2.PA-TFC 

membranes reached a relatively high pure water flux (Jwo) of 10.25 and 9.77 Lm-2h-1 for Ag-

TiO2.PA-TFC and Ag-ZnO/PA-TFC respectively which were almost double that of the neat 

PA-TFC membrane at 6.60 Lm-2h-1. When pure water was replaced with 2-CP the water flux 

(Jwt) was greatly reduced for all the membranes, PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-

TFC. Flux reduction in the PA-TFC membrane was more than in the Ag-TiO2/PA-TFC and 

Ag-ZnO/PA-TFC membranes. Reduction in flux was attributed to adsorption of 2-CP 

molecules on the surface or within the membrane pore walls (Luján-Facundo et al. 2015). The 

third filtration cycle test of pure water was obtained after cleaning the membranes, Ag-

TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes almost retained their initial flux (Jw0). Thus 

the new pure water fluxes after cleaning (Jwc) were 9.71 and  9.11 and Lm-2h-1 for Ag-TiO2/PA-

TFC and Ag-ZnO/PA-TFC membranes respectively which was higher than that of the neat PA-

TFC membrane (5.22 Lm-2h-1) .This illustrated that both Ag-TiO2/PA-TFC and Ag-ZnO/PA-

TFC membranes showed improved antifouling properties owing to enhanced surface 

hydrophilicity (Li et al. 2015b).  

Figure 4.47 presents flux recoveries (FRR) between 1st and 3rd cycles for all the membranes 

using 2-CP model foulant. The results show that FRR (%) was improved from 61.17 (PA-TFC) 

to 94.36 and 93.12% for Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes respectively.  

This means foulants were loosely attached to the Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC 

membranes due to improved hydrophilicity when compared to the neat PA-TFC (Razmjou et 

al. 2011, Rahimpour et al. 2011). When surface hydrophilicity is high the membrane is capable 

of forming stable hydration layer through  hydrogen bonding with water molecules to keep 

away the organic foulants from being adsorbed on the membrane surface (He et al. 2016, 
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Huang et al. 2018a). In the 4th cycle, flux recovery for Ag-ZnO/PA-TFC drastically dropped 

to 67. 5 % compared to 88.0 % for Ag-TiO2/PA-TFC. AFM images of Ag-ZnO/ PA-TFC 

membrane was observed to be rougher compared to   Ag-TiO2/PATFC membrane. The rough 

surface tends to provide a higher surface area for adsorption of pollutants (Al Mayyahi 2018). 

The low recovery of water flux by the Ag-ZnO/PA-TFC membrane was attributed to fouling 

due to more adsorption of 2 – CP to the surface due to its rough surface than Ag-TiO2/PA-TFC 

membrane.  

 

Figure 4.48 is the results of computed fouling parameters such as total fouling (Rt), reversible 

fouling (Rr), irreversible fouling and (Rir) for PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-

TFC membranes in the presence of 2-CP. Reversible fouling can be easily removed from the 

membrane surface through backwashing. Irreversible fouling cannot be removed with 

backwashing because the molecules are adsorbed within the pores, it requires other means to 

remove which sometimes result in damage to the membrane (Luján-Facundo et al. 2015, 

Katsoufidou et al. 2005).  

 

It was observed that modification of the PA-TFC with Ag-TiO2 and Ag-ZnO reduced total 

fouling of the membranes by at least 37%. This indicated that the surfaces of the modified Ag-

TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes were less prone to fouling due to enhanced 

hydrophilicity which, attracts more water molecules to the surfaces and keeping away most of 

the 2-CP foulants (He et al. 2016, Huang et al. 2018a). The results further indicate that 

irreversible fouling was the major cause of fouling in the PA-TFC membrane. This was 

attributed to adsorption of 2-CP within the pores of the membrane which could not be removed 

by backwashing (Makhetha et al. 2018, Luján-Facundo et al. 2015).  Compared to the modified 

membranes the irreversible component of fouling was reduced from 27% for PA-TFC to 5.7% 

and 5.3 % for Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes respectively. However, it 

is noted that the 2-CP molecule caused both reversible and irreversible fouling in the modified 

membranes though at a much lesser extent compared to PA-TFC. This can be explained 

through two possible phenomenon, the first is that some of the 2-CP molecules get adsorbed 

onto the surface of the membrane but easily removed during backwashing. Secondly, it is 

inferred that about the same amount of the low molecular weight organic compound (2-CP) 

enter through the membranes pores and get irreversibly adsorbed on the walls of the membrane 

pores  (Mohammad et al. 2015, Brami et al. 2017).  
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Figure 4.46 Alternating filtration of pure water and feed solutions during fouling tests for PA-

TFC, Ag-ZnO/PA-TFC and Ag-TiO2/ PA-TFC membranes using 2-CP as a foulant. 

 

 

            

 

 

 

 

 

 

Figure 4.47 Flux recoveries on PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes 

with 2-CP used as model foulant. 
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Figure 4.48 Total, reversible and irreversible fouling of the PA-TFC, Ag-TiO2/PA-TFC and 

Ag-ZnO/PA-TFC membranes with 2-CP used as model foulant. 

Figure 4.49 presents the results of pure water and 2,4-DCP feed solution fluxes against time.  

The results indicated a similar pattern to that of 2-CP in which pure water fluxes for the 

modified Ag-ZnO/PA-TFC and Ag-TiO2/PA-TFC membranes were relatively higher than that 

of the neat PA-TFC membrane and reduction of flux when pure water was replaced by 2,4-

DCP.   

Figure 4.50 shows flux recoveries (FRR) between 1st and 3rd cycles for all the prepared 

membranes using 2,4-DCP as a model foulant. The flux recovery for 2,4-DCP (64.70%) was 

slightly higher than the one obtained for 2-CP (61.70%) on the neat PA-TFC membrane. This 

was attributed to the difference in the way 2-CP (128g/mol) and 2,4-DCP (163 g/mol) interact 

with the PA-TFC membrane surface. The 2-CP molecules tend to get adsorbed to the surface 

of the membrane and/or within the pores more than 2,4-DCP molecules. The results are in 

agreement with the rejection results which showed a higher % rejected of 2,4-DCP molecules 

than 2-CP by the PA-TFC membranes. Two chlorine atoms of the 2,4-DCP enhance the 

negative charge on the molecules thus increase the repulsive forces between with the membrane 

(Coday et al. 2014). As a results fewer 2,4-DCP molecules were adsorbed to the membrane 
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surface compared to 2-CP molecules and the greater were easily backwashed from the 

membrane with deionized water (Luján-Facundo et al. 2015). Hence, the relatively higher flux 

recovery for 2,4-DCP.  Upon addition of the Ag-TiO2 and Ag-ZnO to the PA-TFC membranes, 

a similar pattern on water flux recoveries was observed. Flux recoveries increased from 64.70 

% to 94.34% and 95.19% for Ag- TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes 

respectively.  This was also attributed to enhanced hydrophilicity upon modification of the PA-

TFC membranes (Razmjou et al. 2011, Rahimpour et al. 2011) 

Figure 4.51 is the computed fouling parameters such as total fouling (Rt), reversible fouling 

and Rir) for PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes using of 2,4-DCP. 

Irreversible fouling on the PA-TFC membrane was reduced from 27.55% with 2-CP to 11.91% 

with 2,4-DCP. This was attributed to loose attachment of the 2,4-DCP molecules compared to 

2-CP due to enhanced repulsive rejection forces (Coday et al. 2014).  
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Figure 4.49 Alternating filtration experiments of pure water and feed solutions during fouling 

tests for PA-TFC, Ag-ZnO/PA-TFC and Ag-TiO2/ PA-TFC membranes using 2.4-DCP as a 

foulant 
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Figure 4.50 Flux recoveries on PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC 

membranes with 2,4-DCP used as model foulant. 
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Figure 4.51 Total, reversible and irreversible fouling of the PA-TFC, Ag-TiO2/PA-TFC and 

Ag-ZnO/PA-TFC membranes with 2,4-DCP used as model foulant. 
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4.22 Silver release 

 

Batch experiments were used to investigate silver leaching from Ag-ZnO/PA-TFC and Ag-

TiO2/PA-TFC membrane discs of 3.0 cm2 submerged in 10 ml saline solutions. Figure 4.52 is 

the results of silver leaching at pH 5, 8 and 10 using Ag-ZnO/PA-TFC membrane.  Figure 4.53 

is a comparison of the Ag-ZnO/PA-TFC control experiment (without NaCl) with the Ag-

ZnO/PA-TFC membrane with NaCl, both at pH = 8.  The leaching experiments were carried 

out at pH = 5, 8, 10, and samples were collected after 24 hrs for 144 hrs (6 days).  Silver 

leaching was carried out in a solution of NaCl except for the control experiments.  The pH of 

the control was maintained at pH = 8, because it is the most likely pH of river water.  The 

results still showed that after the first 24 hrs the silver concentration for the experiments were 

lower than at 48 hrs. This could mean silver in Ag-ZnO was firmly embedded on the membrane 

surface. This is because in most research the first 24hrs of the silver release test experiment 

usually show highest levels of silver, which they attribute to the loosely adsorbed silver at the 

surface of the membrane (Yin et al. 2013, Zirehpour et al. 2017).  Our results confirm the 

hypothesis that using interfacial polymerization to embed nanoparticles to the PA layer 

alleviate the problem of easy desorption of NPs into the water (Mollahosseini et al. 2014). The 

highest release was observed at the 48th hour after which there was slow release over time. The 

release was highest at pH= 10 which was unexpected.  Then silver release was lowest from the 

72nd hour compared to pH=5 and 8. This is because at the pH > Pizp the surface of the ZnO (9.0) 

is negatively charged and strongly attracted to the Ag+ hence small amounts of silver released. 

The slow release demonstrates a long-term durability of Ag+/Ag available for antimicrobial 

activity against bacteria and anti-biofouling properties of the membrane. It also implies that 

ZnO acts as a good attachment to silver and good in controlling a sustainable Ag release 

(Zirehpour et al. 2017). When the Ag-ZnO/PA-TFC membrane in NaCl solution was compared 

to Ag-ZnO/PA-TFC membrane without NaCl (control, both at pH = 8), it was observed that 

without NaCl the release of metallic silver was much lower.  This is because the solution 

contains less metallic silver than the silver ions. In the presence of NaCl the silver ions is 

attracted to Cl ions.  
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Figure 4.52 Silver leaching from Ag-ZnO/ PA-TFC membrane disc at pH 5, 8 and 10  
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Figure 4.53 Comparing silver leaching from Ag-ZnO / PA-TFC membrane in solution with 

NaCl and without NaCl (control), both at pH=8.0 
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Figure 4.54 is the results of silver leaching at pH 5, 8 and 10 using Ag-TiO2/PA-TFC membrane 

Figure 4.55 is a comparison of the Ag-TiO2/PA-TFC control experiment (without NaCl) with 

the Ag-TiO2/PA-TFC membrane with NaCl, both at pH = 8.  The release at pH = 10 was 

comparatively lower. This is because TiO2 is negatively charged at pH > point of charge for 

TiO2 (6.9) hence electrostatically adsorbed to Ag+. However, for all pH levels the silver release 

dropped fast until almost zero within six days.  The results show that Ag-TiO2 /PA-TFC 

membrane would not maintain a lasting antibiofouling property. The leaching test with Ag-

TiO2/PA-TFC membrane indicated weak attachment between   TiO2 and silver ions.  

Figure 4.54 Silver leaching from Ag-TiO2/ PA-TFC membrane disc at pH 5, 8 and 10  
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Figure 4.55 Comparing silver leaching from Ag-TiO2 /PA-TFC membrane in solution with 

NaCl and without NaCl (control) both at pH =8 
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4.23 Application on Vaal and Klip River water 

 

To evaluate the practical application of the as prepared Ag-TiO2/PA-TFC and Ag-ZnO/PA-

TFC membranes in water treatment field, real river water samples from Vaal River and Klip 

River were  used to confirm the antifouling properties. Water samples were filtered through a 

0.45µm filter paper before passing through the membranes in a dead end unit. Pressure was 

maintained at 1100 kPa. Figure 4.56 is the filtration results of the membranes using Vaal River 

water.  The results show a gradual decrease in flux for Ag-ZnO /PA-TFC and Ag-TiO2/PA-

TFC compared to a fast decline with neat PA-TFC membrane.   Flux obtained for Ag-TiO2/PA-

TFC membrane was higher throughout the duration of the experiment compared to Ag-ZnO/ 

PA-TFC membrane.  The results are consistent with the contact angle measurement. Ag-

TiO2/PA-TFC showed higher hydrophilicity measurements (33o) compared to Ag-ZnO/PA-

TFC membrane (54o). Higher hydrophilicity provides more sites for H-bonding with water 

molecules and enhancing transport across the membrane (Miller et al. 2017). In comparison, 

Ag-TiO2/PA-TFC membranes have shown to possess better antifouling properties than Ag-

ZnO/PA-TFC.  

 

 Figure 4.57 is the filtration results of the membranes using Klip River water. The observed 

higher flux in Ag-TiO2/PA-TFC and Ag-ZNO/PA-TFC membranes compared to PA-TFC 

membrane showed better antifouling effect of Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC than 

neat PA-TFC membrane.  However, the results show a fast decline in Klip River water than in 

Vaal River water.  This could be attributed the nature of Klip River water as it has been 

described as highly polluted (Meikap et al. 1997). 
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Figure 4.56 Filtration through PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes 

at 1100 Pa, using water samples from Val River  
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 Figure 4.57 Filtration through PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes 

at 1100 Pa, using water samples from Klip River 
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4.24 Summary of the results 

 

The presence of NCs in composite membranes improved antifouling propensity of the 

membranes. Silver in Ag-ZnO and Ag-TiO2 NCs improved the antibiofouling propensity of 

the membrane. For these reasons, the Ag-ZnO and Ag-TiO2 composites were introduced into 

the PA layer of the thin film membranes. The PA-TFC membranes were fabricated through 

interfacial polymerisation using PES as a support material. Several parameters were 

investigated to validate the membrane possible usage and application. The membranes were 

first characterised using ATR-FTIR, SEM, AFM and Contact angle. The purpose of the ATR- 

FTIR was to obtain the characteristic polyamide peak of the carbonyl carbon   (C = O) known 

as the amide I peak. The presence of amide I peak confirms the formation of the polyamide 

layer, which is responsible for separation of contaminants from water at the membrane surface. 

The amide I peak was observed in both the Ag-TiO2 and Ag-ZnO modified PA-TFC 

membranes at around 1650 cm-1. Two types of SEM images were obtained, the surface and the 

cross section images. From the surface images, the “hill and valley” structures typical of the 

PA layer were observed across the surface of the membranes. The Ag-ZnO/PA-TFC and Ag-

TiO2/PA-TFC membranes showed the presence of the nanomaterials within the surface of the 

membranes. Cross section images confirmed the presence of the thin layer (PA layer) on the 

membranes surface.  The 3- D AFM images on the other hand showed the expected decrease 

in roughness for Ag-TiO2/PA-TFC membrane but an unexpected increase for Ag-ZnO/PA-

TFC when compared with the neat PA-TFC membrane. A rough membrane is prone to both 

bio and organic fouling because it provides a high surface area for adsorption of the molecules 

and bacteria. The smooth surface, such as in Ag-TiO2/PA-TFC membrane is not favourable for 

adsorption of the molecules and bacteria, hence promotes antifouling properties.   Contact angle 

measurements showed that the NCs improved the hydrophilicity of the membranes. The Ag-

TiO2/ PA-TFC membrane was found more hydrophilic than Ag-ZnO/PTFC membrane with a 

low contact angle of 33% versus 54% for Ag-ZnO/PA-TFC membrane.  

The membranes were tested for pure water permeation flux and water permeation flux using   

2-CP and 2,4-DCP feed water against increasing transmembrane pressure.  Pure water flux for 

all the membranes PA-TFC, Ag-TiO2/PA-TFC and Ag-ZnO, increased proportionally with 

increasing transmembrane pressure. When 2-CP and 2,4-DCP were introduced, in the feed, 

flux increased proportionally with increasing transmembrane pressure in the initial stage 

followed by a decrease. This was attributed to fouling of the membrane caused by adsorption 
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of molecules to the surface and within the pores of the membranes.  Water flux for Ag-

TiO2/PA-TFC membrane was higher than that of Ag- ZnO/ PA-TFC membrane. This was 

because Ag-TiO2/ PA-TFC membrane was more hydrophilic than Ag-ZnO.PA-TFC 

membrane. However, water flux for PA-TFC membrane was much lower than both Ag-

TiO2/PA-TFC and Ag-ZnO/PA-TFC membranes because of the hydrophobic surface.  

The membranes were tested for rejection of 2-CP and 2,4-DCP. Percentage rejection was 

improved from the neat PA-TFC membranes (45- 58%) to 76-80% with the modified PA-TFC 

membranes. The antifouling properties of the membranes were investigated by monitoring 

water flux through alternating cycles of pure water and pollutant- containing feed water. The 

results showed good antifouling properties with recoveries of more than 93 % for both modified 

membranes. This was an indication that the molecules of the pollutants were loosely adsorbed 

to the membrane surface hence it was easy to wash them off the surfaces and almost restored 

the water flux.  The neat PA-TFC membrane showed low recoveries of about 61 and 67 % due 

to irreversible adsorption of molecules to the surface and within the pores of the membranes. 

Flux could not be restored by washing the membranes. The effect of increased roughness on 

the Ag-ZnO/PA-TFC membrane was observed on the fourth cycle. The membrane experienced 

more flux drop than Ag-TiO2/PA-TFC membrane.   

The membranes were investigated for silver release to establish antibiofouling properties of the 

membranes. It was observed that silver release from the Ag-ZnO/PA-TFC membrane was high 

within the first 48 hrs, due to adsorbed NPs, before a slow release up to 144 hrs. The 

concentration of the released silver was about 2 mg/L at pH= 8. We observed from antibacterial 

experiments that the minimum concentration that showed antibacterial activity of Ag-ZnO NCs 

against E. coli was 1.56 mg/L. This means that the amount of 2 mg/L of silver steadily released 

from the membranes could provide the membrane with  sustained antibiofouling properties.   

However, Ag-TiO2/PA-TFC membrane showed a fast release of silver and the amount 

decreased sharply to almost zero within the test period (144 hrs).  Although Ag-TiO2/PA-TFC 

membrane sustained good antifouling properties, recoveries and rejection of the 2-CP and 2,4-

DCP, it will not perform effectively against membrane biofouling.  

Finally, the modified PA composites membrane, Ag-ZnO/PA-TFC and Ag-TiO2/PA-TFC were 

tested for their performance using real water samples. The PA-TFC membrane lost water flux 

sharply compared to the slow and gradual loss of water flux by the modified membranes.  This 

is an indication that the neat PA-TFC membrane was affected by membrane fouling more than 
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the modified membranes. The presence of Ag-ZnO and Ag-TiO2 NCs improved antifouling 

properties of the membranes.  
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CHAPTER FIVE 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1 Conclusions 

 

An SPE- HPLC method was used to determine chlorophenols in Vaal and Klip River water. 

The SPE method was effective in pre-concentrating the CPs and eliminating interfering 

compounds. The HPLC chromatogram showed no baseline noise and nor many unidentifiable 

peaks. The method used for determination of chlorophenols was validated using repeatability, 

reproducibility, linearity, MDL and LOQ parameters. The method was repeatable and 

reproducible with % RSD of less than 5 %. Good recoveries of more than 96 % for 2-CP and 

2,4-DCP were achieved. Recoveries for 2, 4, 6-TCP were lower at 64-75%.   

The Ag-ZnO and Ag-TiO2 NCs particles were successfully synthesized using a combination of 

chemical reduction and precipitation method. The characterisation results (XRD, SEM) 

showed the presence of silver in the ZnO structures. However, for Ag-TiO2 NCs, silver 

particles were distributed on the surface of the TiO2 structure and no Ag peaks were observed 

in the XRD patterns. The XRD patterns and SEM images further confirmed the crystalline 

structures as anatase and hexagonal wurzite for Ag-TiO2 and Ag-ZnO respectively.The anatase 

structure is known to be excellent in photodegradation of organic compounds. It alos possess 

good antibacterial properties.    

Application of the NCs for antibacterial and photocatalytic activity against E. coli and 2-CP 

and 2,4-DCP were assessed. The results showed percentage degradation above 80% against 2-

CP and 2,4-DCP. The syntheiszed NCs also showed good antibacterial activity. It was evident 

that the presence of silver in TiO2 and ZnO enhanced both degradation of chlorophenols and 

antibacterial activity against E.coli when compared with Ag, ZnO and TiO2. 

The NCs (Ag-TiO2 and Ag-ZnO) were successfully embedded into the PA layer of the thin 

film membrane using interfacial polymerisation method. The success in incorporating the NCs 

particles into the membranes was confirmed by surface SEM images. Particles of the NCs were 

observed and well distributed throughout the surface of the membrane.  The NCs improved 
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hydrophilicity of the membranes, water permeation, rejection of the 2-CP and 2,4-DCP, 

antifouling properties with excellent flux recoveries.  

In the silver release test, the Ag-ZnO/PA-TFC membrane showed a steady and slow release of 

silver. This indicated that Ag-ZnO/PA-TFC membrane was relatively good in maintaining long 

lasting antibiofouling properties that improves the antifouling propensity of the membrane.  On 

the other hand, Ag-TiO2/PA-TFC membrane showed a gradual and fast release of silver which 

would lead to high susceptibility to fouling.  

The synthesized membranes (Ag-TiO2/PA-TFC and Ag-ZnO/PA-TFC) were tested for their 

performance with real water samples from Vaal and Klip Rivers.  The modified membranes 

maintained good antifoilinng properties compared to the neat PA-TFC membrane. The Ag-

TiO2/PA-TC showed better antifouling properties than Ag-ZnO/ PA-TFC membrane.  

 

5.2 Recommendations 

 

Elimination of chlorophenols from water bodies is not a well-researched subject.    

 

The following are the recommendations for improvement of the study. 

(a) The two objectives, on development of antifouling (from organic compounds) and 

antibiofouiling membranes may be adequately covering to a good depth if treated 

separately. The limitation observed was that handling procedure for bacteria, E.coli, and 

chemicals such as chlorophenols are difference. Therefore, it was not possible to work with 

them in one system.  

(b) The photocatalytic procedure may be repeated with a higher light intensity and parameters 

such as height of light source investigated.  

 


