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Abstract 

Bearing condition monitoring and fault diagnosis have been studied for many years. 

Popular techniques are applied through advanced signal processing and pattern 

recognition technologies. The subject of the research was vibration condition 

monitoring of incipient damage in rolling element bearings. The research was 

confined to deep-groove ball bearings because of their common applications in 

industry. The aim of the research was to apply neural networks to vibration condition 

monitoring of rolling element bearings. Kohonen's Self-Organising Feature Map is 

the neural network that was used to enable an automatic condition monitoring system. 

Bearing vibration is induced during bearing operation and the main cause is bearing 

friction, which ultimately causes wear and incipient spalling in a rolling element 

bearing. To obtain rolling element bearing vibrations a condition monitoring test rig 

for rolling element bearings had to be designed and built. A digital vibration 

measurement acquisition environment was created in Labview and Matlab. Data from 

the bearing test rig was recorded with a piezoelectric accelerometer, and an S-type 

load cell connected to dynamic signal analysis cards. The vibration measurement 

instrumentation was cost-effective and yielded accurate and repeatable measurements. 

Defects on rolling element bearings were artificially inflicted so that a pattern of 

bearing defects could be established. A input data format of vibration statistical 

parameters was created using the time and frequency domain signals. Kohonen's 

Self-Organising Feature Maps were trained in the input data, utilising an 

unsupervised, competitive learning algorithm and vector quantisation to cluster the 

bearing defects on a two-dimensional topographical map. 

A new practical dimension to condition monitoring of rolling element bearings was 

developed. The use of time domain and frequency domain analysis of bearing 

vibration has been combined with a visual and classification analysis of distinct 

bearing defects through the application of the Self-Organising Feature Map. This is a 

suitable technique for rolling element bearing defect detection, remaining bearing life 

estimation and to assist in planning maintenance schedules. 
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Chapter 1 Research Introduction 

Chapter 1 

Research Introduction 

1.1 Introduction 

The subject of the research is vibration condition monitoring of rolling element 

bearings. The scope of the research and the layout of the dissertation are given in this 

chapter. Some of the relevant literature is mentioned, but the proper literature review 

is in chapter 2. 

A review of the relevant literature provides the background to the discussions of the 

problems associated with bearing damage and failure methods of analysis. The 

development of bearing damage is explained with the assistance of the bath-tub curve. 

An introductory overview to neural networks and the Self-Organising Map neural 

network is provided. This is followed by an explanation of the objectives, purpose, 

delimitations and assumptions for the research. Then the scope and expectations of the 

research are discussed, giving the layout of the dissertation. 

1.2 Background 

Shiroishi et al. (1997:693) wrote that bearings are of paramount importance to almost 

all forms of rotating machinery and are among the most common of machine 

elements. As a consequence of their importance and widespread use, bearing failure is 

one of the foremost causes of breakdown in rotating machinery. Research on the cause 

and analysis of bearing failure has been conducted for over four decades. Bearing 

vibration monitoring and analysis provides many benefits in terms of optimising 

process efficiency. Costly downtime can be minimised or eliminated by providing 

early warning of potential problems, thus preventing catastrophic machine failures. 

1 



Chapter 1 Research Introduction 

By studying vibration changes over time, the condition of the monitored bearing can 

be determined and a maintenance schedule planned. A decision on plant shut down 

can be made with minimal disruption to production. 

SKF (2004:31) reported that in South Africa the cost of maintenance on machinery 

overhauls for bearing replacements on industrial rollers in conveyor idlers is very 

high, dictating the necessity for a condition monitoring system that can be applied in 

predictive maintenance. Great savings in time, effort and expense can be achieved if 

the bearing user can establish the reason for premature failure and undertake 

corrective action to prevent further failure. Information on the extent of the bearing 

damage can provide good guidance on scheduling maintenance routines. 

Chen (2000:2) reported that the most important and expensive task in terms of labour 

time and cost in machinery maintenance is fault detection and diagnostics. Without 

accurate identification of machine faults, production maintenance and scheduling 

cannot be effectively planned for necessary repair work. In addition, accurate fault 

detection and diagnosis is essential for reducing troubleshooting and repair time. 

Moreover, machine reliability is improved by correct fault diagnosis. 

Li et al. (1997:693) noted that several fault detection techniques employing time and 

frequency domain analysis have failed to consistently predict bearing damage and 

failure. This observation is corroborated by Al-Gahmd et al. (2004: 1) who states that 

the extent of bearing damage frequently eludes the diagnostician. 

Barkov et al. (1995a: 1) suggested that the operational life of rolling element bearings 

can be divided in four main stages or periods according to the extent of bearing 

damage conditions: running-in, operation without defects, development of wear 

defects and increased bearing damage degradation. 

2 



Chapter 1 Research Introduction 

During the first three stages of bearing lifetime, up to bearing damage degradation, it 

is possible to make an accurate assessment of bearing condition and lifetime. To 

accomplish this successfully it is necessary to detect and identify all the bearing 

defects that influence its operational life. At the final stage of bearing degradation, the 

remaining operational life is predicted mainly by the magnitude and rate of change of 

measured parameters. Bearing condition assessment and lifetime prediction does not 

depend on the methods and results of condition assessment used for other machine 

components. The bearing life span is illustrated in figure 1.1 with the use of the bath

tub curve. 
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An Evaluation of the Development of Damage in Rolling Element 
Bearings using Vibration Condition Monitoring 

'The Bath-Tub Curve' 
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-------
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Figure 1.1: Bearing Life Span : 'The Bath-Tub Curve' 

The bearing life begins at point A, when the bearing is first mounted on the shaft and 

machine operation takes place. The first bearing vibration measurement may show 

peaks as the lubrication spreads between the surfaces ofthe bearing components. 
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Chapter 1 Research Introduction 

The earliest incipient damage initiates at point D. Ultrasonic methods may detect such 

damage. High frequency detection techniques indicate damage from point F onwards. 

The severity of the incipient damage increase through stages 2, 3, to stage 4. 

BAT Services (2004:5) also described four stages of rolling element bearing damage 

progression to failW'e. Stage one is recorded when a new bearing is installed. During 

stage two race way surface defects begin and bearing noise increases. During stage 

three, induced bearing frequencies are clearly noticeable on a frequency spectrum. 

Stage four is characterised by noise from the bearing, which is an unmistakable sign 

that the bearing must be changed. The vibration frequencies then appear with side 

bands on the frequency spectrum. 

Taylor et a/.(2004: 1 0) noted that, for bearings with rotating inner race and stationary 

outer race, the bearing normally fails in the following order: ( 1) the outer race in the 

load zone fails since the load zone does not shift on the outer race; then (2) the inner 

race, since a single location on the inner race shifts in and out of the load zone with 

each shaft rotation; followed by (3) ball elements or rollers; and lastly ( 4) cage 

damage. This is true for a correctly installed bearing, because it stands to reason that if 

the cage was accidentally damaged during installation then the cage would probably 

be the first to fail. The patterns of bearing damage requires analysis from a skilled 

personnel who should be familiar with spectrum analysis and all the techniques most 

commonly used. Accurate measurements and accurate analysis are difficult to achieve 

and are the reason for uncertainty when analysing the vibration. 

Rao (1995:821) wrote that vibration measurements that are not similar or identical 

even though the measurements were taken under similar conditions, are random 

vibrations. Bearing vibrations are an example of random phenomenon. Bearing 

vibrations are not identical in magnitude of excitation in either force or motion, and 

the measurement reveals this. 

4 



Chapter 1 Research Introduction 

A neural network is trained to perform a particular function by adjusting the numerical 

values of the connections between elements. The network is adjusted, based on a 

comparison of the output and the targeted output. The network is repeatedly adjusted 

until the network output either matches the target or differs by an extremely small 

amount. When the input is compared to a specific target, the learning is known as 

supervised learning. Neural networks utilising supervised learning are commonly 

used, but other networks can be obtained from unsupervised learning or from direct 

design methods. 

Unsupervised learning networks can be used to identify groups of data. Bearing 

vibration data can be classified into groups of different bearing defects, using 

unsupervised learning networks. The chosen self organising feature map network uses 

unsupervised learning and unsupervised training techniques. The supervised learning 

network can also be used on bearing vibration data where a solution or target output is 

known. In this case, the supervised learning network is limited to a two conditional 

output where the data is recognised according to known desired output, and the 

solution from the network points to a bearing which is either damaged or not 

damaged, irrespective of the extent of the damage sustained. 

Kohonen's Neural Network (KNN) may be referred to as Self-Organising Map 

(SOM), or Self-Organising Feature Map (SOFM). The SOFM enables good cluster 

visualisation of a data set. The architectural construction of Kohonen's map is 

illustrated in figure 1.2. The main components of the architecture are shown, where 

neurons are arranged in a two dimensional topological layer, and are grouped into 

clusters. 

6 



Chapter 1 

Neurons 

Data Inputs 

Winning 
Neuron 

Figure 1.2: Kohonen's Map Topological Architecture 

1.4 Importance of the Research 

Research Introduction 

Neighbouring 
Neurons 

Brown (1977 :41) observed that until recently the most common method for condition 

monitoring relies on either temperature, vibration or noise measurement. Common to 

all these methods is that by the time a significant change has occurred to be 

quantifiable as a measurement, the bearing is probably on the verge of collapse. 

Brown (1977:42) reported on the importance of rolling element bearings and their 

performance in modem industry. Rolling element bearings have a limited life that is 

directly influenced by such factors as their mountings, operational load condition and 

the routine maintenance they receive. 

7 



~hapterl~) Research Introduction 

To avoid plant breakdown due to plant failure, plant engineers have two options open 

to them: 

~ ) • T~ repl(lce bearings well within the bearing manufacturer's recommended 

lifetime. If this particular technique j~ us_ed, some bearings will fail~ before the set 
......_... - -- - ____ , ---. .. --

number of hours have been reached and other bearings will be replaced 

unnecessarily. 

• To monitor continuously the condition of the bearing and only replace the bearing, 
( 

regardless of time used, when the monitoring technique in~ic'!_~es failure. In 

applying this method, the bearing could be on the verge- of collapse by the time 

failure shows. 

These observations and stipulated options, highlight the need for a monitoring system 

that enables early detection of bearing damage and provides automatic reliable 

analysis of the extent of damage as well as the location of damage on the bearing. The 

system should enable well timed maintenance routines. 

1.5 Purpose of the Study 

The purpose of this research project is to develop a condition monitoring system for 

rolling element bearings that is reliable in providing early detection of bearing defects 

and quantifies the extent of defect development. The monitoring system will enable 

the collection of vibration and noise measurements for automatic analysis utilising 

Kohonen's SOM. The analysis involves signal processing, automatic feature 

extraction, and fault classification. 

1.6 Research Problem Statement 

To apply Kohonen's Self-Organising Maps with the automatic evaluation of 

statistical parameters, to monitor the condition of rolling element bearings. 

8 



Chapter 1 Research Introduction 

1.7 Research Objectives 

The objective of the research is to create a condition monitoring system that will be 

able to provide early detection of rolling element bearing damage and provide reliable 

information on the extent as well as the location of the damage. 

The research concentrates on creating a condition monitoring system that is based on 

artificial intelligence and provides assistance to highly skilled personnel that monitor 

bearings. The system is to operate automatically while it receives a vibration signal. 

The monitoring system will enable the collection of vibration and noise measurements 

to be automatically analysed by Kohonen's Neural Network known as Self-Organising 

Maps (SOM). The analysis will involve signal processing, automatic feature 

extraction, fault classification and extent of bearing damage. This condition 

monitoring system will enable accurate detection of rolling element bearing damage 

through reliable bearing vibration measurement analysis. The system aims to detect 

incipient damage of rolling element bearings, in the four stages of bearing damage as 

described by Barkov et al. (1995a:l). 

To test the monitoring system, a laboratory scale monitoring ng was built to 

accommodate deep-groove ball bearings. 

1.8 Delimitations 

Only rolling element bearings are considered and data acquisition and processing are 

limited to bearing vibrations. 

Tests were performed on deep-groove ball bearings, because of their common 

application in industry. The size of the test rig constrained the size of bearing that 

could be tested. 
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Laboratory tests were performed at different shaft rotational speeds achievable by the 

bearing monitoring rig. Vibration signals were measured at a specific constant shaft 

speed and constant applied radial load conditions. An oil lubricant instead of a grease 

lubricant was used in order to achieve the best bearing vibration measurements due to 

bearing defects, at the same time avoiding a dry bearing which would result in 

excessive bearing vibrations. The common type of bearing defect is spalling, thus the 

considered bearing defects in developing the monitoring system, were induced spalls 

on specific locations on the bearing. Distinct spalling at specific bearing locations 

could be established. 

1.9 Assumptions 

Vibration signals, though random, were captured at a constant rotational speed and 

assumed to be stationary. In stationary operational conditions, the shaft and inner ring 

rotational speeds are constant and do not vary, the static loading on the bearing or 

bearing load when the shaft is not rotating is constant and does not vary. (For varying 

operational conditions other methods of analysis could be applied such as wavelets or 

the Gabor's transform). 

Loading and lubrication are assumed not to interfere with the vibration measurements 

for the detection of bearing damage. 

All bearings considered for experimentation are assumed to be of the same design and 

have similar material and manufacturing properties that remain constant during 

experimentation. Since the shape of a spall defect is irregular, an average diameter of 

the spall size is assumed. 
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1.10 Scope of Work 

A condition monitoring test rig was designed and fabricated. Labview was used to 

perform signal pre-processing, and MA TLAB was used to implement the neural 

network programs. The program enabled automatic extraction of features from the 

measured signal, and processing of the feature vectors that were used as input to the 

(SOM) algorithm. The Self-Organising Maps used for fault classification were to 

illustrate the type and extent of the bearing damage and allow a final decision on 

whether to either keep or replace the bearing. The condition monitoring system was 

developed and tested in the laboratory for reliability by using bearings with known 

types of damage deliberately applied before experimentation. 

1.11 Process Flow Chart 

The following diagram illustrates the steps in performing automatic bearing vibration 

defect detection and classification. 

Methodology 
Experimental 
Operational 

I 
~----------1 Automatic 1 

L--Proc:_e~---: 

~----------1 Automatic 1 

L •• ~r~~s.. •. : 
~----------1 Automatic 1 

L •• ~r~s.. .. : 

Feature 
Extraction 

Step 3 
Statistics 

:··Auiam·aut·· 

L--~~~S.. •• I 

Neural 
NetworX 

Prognosis n Classification of Kohonen's Self 
Result Validation ~+--...... -+ Bearing Damagell4-..... ~ Organising Feature 

Map Projections Clusters Maps 
Frequency 
Spectrum Step 5 Step 4 Step 6 

Figure 1.3: The proposed condition monitoring process flow chart 
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1.12 Dissertation Overview 

Chapter 1: Introduction 

Introduces the subject content and research topic. The plan and scope of the research 

is outlined. 

Chapter 2: Review of the Related Literature 

Reviews the literature related to vibration condition monitoring usmg neural 

networks. A bearing maintenance approach is followed. 

Chapter 3: Bearing Vibration Fundamentals 

Introduces the definition of a rolling element bearing, operational principles, and 

vibration characteristics. The design of the monitoring rig is introduced, so that the 

relationship between the monitoring system and the monitoring rig is established. 

Chapter 4: Signal Pre-processing Techniques 

Introduces digital signal processing and the creation of the time domain and frequency 

domain waveform displays. Signal processing tools are developed in the Labview 

software. Vibration characteristics of the monitoring rig and different bearing defects 

are displayed on the time domain and frequency domain. This is to illustrate the 

difference in signal processing patterns of different rolling element bearing defects. 

Statistical parameters are determined through signal processing. 

Chapter 5: Application of Self-Organising Maps 

Self-Organising Map algorithms are introduced. A single input data set is created. The 

process of clustering and classification are explained. A single data set is processed 

through the learning and training procedures of the algorithm, and the results of the 

procedures are illustrated. 
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Chapter 6: Experimentation 

Different sizes of input data sets are considered so as to compare the performance of 

the Self-Organising Map. Ultimately, two sizes of input data sets are recommended, 

and illustrated in their effectiveness in monitoring rolling element bearing damage. 

Map classification of the bearing defects is displayed for visualisation and analysis. 

Classification matrices are interpreted according to the severity and location of the 

bearing defect considered. 

Chapter 7: Conclusions and Recommendations 

Achievements of the research are reviewed, and recommendation are made, with 

suggestions for further studies. 
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Chapter 2 

Review of the Related Literature 

2.1 Introduction 

Chapter 2, reviews the relevant literature on vibration condition monitoring of rolling 

element bearings. The literature is focused on experiments conducted on rolling 

element bearings, with the aim of applying neural networks to vibration condition 

monitoring of rolling element bearings. Kohonen ' s Self-Organising Feature Maps will 

be utilised. The development of Kohonen's Self-Organising Map algorithm is studied 

and reviewed. The advantages of the self-organising map neural network are 

determined by reviewing the related literature. 

The literature review starts of with an introduction to the development of rolling 

element bearings and conventional vibration condition monitoring applied to rolling 

element bearings. The literature review ends with a presentation of case histories 

where neural networks, specifically Self-Organising Feature Maps are applied to 

vibration condition monitoring of rolling element bearings. The literature study is 

aimed at supporting the purpose of the research. 

2.2 Evolution of Rolling Element Bearings 

Singer (1954:26) an English historian noted that the invention of the wheel gave birth 

to the journal bearing, where the wheel would rotate on the axle. This bearing was of 

the rubbing plain type, where the material of the wheel would rub against the axle 

material . 
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The study of friction by Leonardo da Vinci (1452 - 1519) resulted in the observation 

that the analogy of rolling logs situated between two flat surfaces, as in the sledge and 

log mechanism, provided easier motion of the top surface as compared to when the 

two surfaces where in contact with one another without the presence of rolling logs. 

Leonardo da Vinci attributed this phenomenon to friction, and so from his studies, da 

Vinci conceived the basic construction of the modem rolling element bearing. The 

rolling logs could be substituted by spherical balls, within a circular surface. 

During the twentieth century, the events of the First World War (1914 - 1918) and the 

Second World War (193 9 - 1948) brought a rapid increase in the field of science 

engineering and manufacturing. During the two world wars the demand for steel 

rolling bearings on army vehicles and fighter aeroplanes increased. The strength of 

these bearings was low, owing to their low material strength, and so the machines 

were subjected to regular repairs which was costly. 

Since the 1960's the development of superior rolling bearing steels and constant 

improvement in manufacturing provided accurate geometry and long life to rolling 

bearings. This development was triggered mainly by the bearing requirements for high 

speed aircraft turbines. During the 1970's competition for world-wide markets 

increased between roller and ball bearings which provided consumers with low cost 

high endurance bearings. Also during this period maintenance engineering was 

becoming a structured discipline. 

2.3 Vibration Condition Monitoring of Rolling Element Bearings 

Birchon (1975 :55) states that maintenance covers all activities undertaken to keep 

equipment in a particular condition or to return it to such a condition. 

According to SKF (1992:2), preventive maintenance involves the overhaul of a 

machine or machine parts on a regular basis regardless of the condition of the parts 
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before failure is reached. This process however results in excessive downtime due to 

unnecessary overhauls and the excessive costs of replacing good parts along with 

worn parts. SKF defined vibration condition monitoring of rolling element bearings as 

the process of determining the condition of a rolling element bearing by measuring the 

emanating vibrations as the bearing operates, so that the most efficient and effective 

repair of the bearing prior to failure may be scheduled. 

Van Wyk (1998:42) noted that vibration condition monitoring of rolling element 

bearings is indirect predictive maintenance, in that overhaul of machinery and 

bearings is not necessary before a decisive fault is detected. The state of operation of a 

rolling element bearing in a machine system is predicted through objective vibration 

condition monitoring with the use of digital signal processing techniques, and 

subjective condition monitoring which involves human senses. 

In the 1970's sophisticated vibration condition monitoring began to be widely applied 

in industrial maintenance, although some simple inspection techniques using 

thermocouples and pressure transducers were being used before this. The main 

objectives of a vibration condition monitoring policy for rolling element bearings 

were outlined by Birch on (1975 :65) as follows: to minimise the risk of unexpected 

machine breakdown; to diagnose the state of bearing damage, if any, in a bearing, and 

to specify the work to be performed to restore a pre-determined level of reliability. 

Robson ( 1989:4 7) wrote an indirect predictive maintenance philosophy with regard to 

vibration condition monitoring of rolling element bearings. The philosophy states that 

vibration condition monitoring will provide adequate warning to avert catastrophic 

bearing failure, and that diagnostic data will be available so that when a warning is 

given, the bearing will have visible damage. 
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Table 2.1 lists a number of causes of rolling element bearing failures identified by 

Mathew and Alfredson (1984:447). 

Table 2.1: Causes of Rolling Element Bearing Failure (Adapted from Mathew & Alfredson 1984:447 

Failure Total= 100% Root Causes of Rolling Element Bearing Failure 

43% Improper lubrication 

26% Improper mounting, or mounting technique 

20% Contamination, excessive external vibration, improper application 

10% Design bearing life wear out 

1% Brand new bearing, with metallurgical, or material, or quality control, defects 

Sohoel (1994:2) inventor of the shock pulse method (SPM) in 1970, focuses on shock 

pulses emanating from the bearing. The main difference between conventional 

spectrum analysis and the shock pulse method IS that the shock pulse method 

implements a transducer with a high sensitivity. The shock pulse method is 

implemented in the evaluated vibration analysis method, (EV AM), developed by SPM 

instruments. The EV AM method combines the SPM with statistical evaluation and 

pre-determined amplitude and statistical levels for rolling element bearing damage. 

2.4 Rolling Element Bearings Condition Monitoring Techniques 

Mathew and Alfredson (1984:447) conducted a brief review on techniques of 

condition monitoring of rolling element bearings. In the review, two approaches were 

considered to be applicable in industry. The first approach relies on the analysis of 

lubricating oils and greases. Temperature, thermographic, spectrographic, or a 

ferrographic analysis can be conducted to determine the condition of the lubricant. 

The second approach involves the measurement of bearing vibration and bearing 

noise. There are many techniques that can be applied such as acoustic emission, high 

frequency detection technique, shock pulse technique, ultrasonic technique and stress 

wave analysis. The vibration signal can be processed in the frequency domain or the 

time domain so as to highlight certain aspects of the whole vibration signal. 
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Hansford (2001 :39) observed that vibration is usually one of the first parameters to 

show changes in a rolling element bearing, as well as indicating the severity of the 

damage and the potential cause. 

The Vibration Institute of South Africa (2003:5) observed that, although all the 

techniques and methods have been proven to diagnose bearing faults in some form or 

another, there is no single method that is successful over the entire frequency range of 

bearing vibration. However due to past experience the institute has come to trust high 

frequency detection (HFD) spectrum analysis and the haystack effect. 

The Technical Associates of Charlotte (1994:7) reported on case surveys conducted 

on various organisations using the high frequency detection technique. It was found 

from the survey that the HFD was not as effective as either shock pulse, ultrasonic 

flaw detection, nor spike energy in trending the earliest incipient damage. This was 

because of the constant magnitudes from one measurement to the other, reflecting no 

changes in incipient damage, even though incipient bearing damage was developing. 

Some users have reported that the HFD had not detected bearing defects until the 

second stage of degradation. This makes sense, since this is the same stage in which 

the HFD accelerometer responds to bearing vibrations. 

Shiroishi eta!. (1997:694) observed that HFD takes advantage of the large amplitude 

of a defect signal in the range of a high frequency bearing resonance and provides a 

demodulated signal with a high defect signal to noise ratio in the absence of low 

frequency mechanical noise. 

Shiroishi et a!. (1997:697) noted that the HFD demodulation involves three steps. 

Firstly, the measured signal is band passed around a selected high frequency band with 

the centre at a chosen resonant frequency of the bearing assembly. Secondly, the band 

passed signal is demodulated with a non linear rectifier. 
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Thirdly, a low pass filter is used to cancel high frequency components and retain the 

low frequency information associated with bearing defects. 

Barkov et al. ( 1995b: 1) showed that the HFD envelope or demodulation of the 

random vibration excited by friction forces and shock pulses in the bearing, is the 

most effective, accurate and least expensive method of rolling element bearing 

vibration condition monitoring. When bearing defects develop, the high frequency 

bearing vibration acquire amplitude modulation. Bearing defects can be detected by 

the analysis of a demodulated spectrum of this vibration. With this method, vibration 

condition monitoring can be accomplished with only 10 to 20 vibration measurements 

during the bearing's entire operational life. The demodulated signal of a damaged 

bearing obtained by the HFD is contaminated by broadband noise making it difficult 

to detect the earliest incipient damage of the bearing. 

2.5 Human Versus Artificial Intelligence Condition Monitoring 

Mathew and Alfredson (1984:450) recommend that the analysis of acquired rolling 

element bearing vibration measurements requires the skill of a vibration specialist to 

make final evaluations and suggestions of the results. However, it was observed that 

this may be a lengthy process which is prone to human error. Even with highly skilled 

personnel the margin of error is reduced but not overcome. A convinced vibration 

specialist on a bearing fault, would overhaul and replace the bearing. Proceeding with 

machine overhaul would result in loss of revenue and production time. Re-lubricating 

a damaged bearing results in a very short time of proper functioning and then 

malfunctioning of the machine is repeated. 

Sharkels (2004:38) supports rolling element bearing vibration analysis by skilled 

personnel, and warns against relying on artificial intelligence alone in detecting 

bearing damage, especially the reliance on predetermined alert and alarm levels that 

indicate bearing damage. 
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However, he reconunends a combined application of artificial intelligence and human 

evaluation for an informed decision. This observation was based on a case study on a 

paper machine bearing that had been diagnosed to have an inner ring crack, but 

predetermined alert and alarm levels had failed to indicate the damage. The crack was 

revealed when a visual inspection was conducted. 

VanWyk (1998:8) credits the recent developments of expert systems. These systems 

have intricate algorithms with powerful feature extraction and pattern recognition 

capabilities to self-evaluate the data. An expert system would provide information of 

the probable mode of failure of a bearing, the predicted time to failure and reasons for 

such predictions. These expert systems have the same limitations in that they are 

unable to classify data that show a lot of noise or unrecorded behaviour. 

2.6 Signal Processing of Bearing Vibration Waveforms 

Ramirez (1985 :4) recorded that a great deal of scientific theory is written in terms of 

time histories. In 1582, Galileo observed the consistency of a pendulum, and Christian 

Huygens, in 1665, built the first pendulum clock using Galileo's observations. An 

electronic oscilloscope is in many ways analogous to a mechanical pendulum. The 

output of a sine wave oscillator has a time history that closely resembles the time 

history of a pendulum's angular displacement. In all time domain bearing vibration 

measurements an electronic pulse or a frequency counter is used as a time base. The 

time base is used to measure the period of the signal or to generate a time axis for 

recording an amplitude history. 

Fourier analysis has been developed since the early 1800s, when Jean Baptiste Joseph 

Fourier developed the initial concepts and theory. In 1807 Fourier presented a paper 

on the use of sinusoids to represent temperature distributions. The paper made the 

controversial claim that any continuous periodic signal could be represented by the 

sum of properly chosen sinusoidal waves. 
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J.L Lagrange objected strongly to publication on the basis that Fourier's approach 

would not work with signals having discontinuous slopes, such as square waves. So 

the paper was not published until the death of Lagrange 15 years later. Lagrange was 

correct that a summation of sinusoids cannot exactly form a signal with a 

discontinuity. However, a very close approximation can be achieved if enough 

sinusoids are used. This is described by the Gibbs effect. 

The Fast Fourier transform, the commonly used algorithm for determining the 

characteristics of a real vibration waveform on a frequency domain plane, was 

developed from the Fourier series and Fourier theory. In the 1960's J. W. Cooley and 

J.W. Tukey published an article on the algorithm for the machine calculation of 

complex Fourier series. This algorithm became known as the Fast Fourier Transform, 

(FFT), and has since become the new context for Fourier analysis. This algorithm 

allows for quick economical application of Fourier analysis and techniques to a 

variety of practical situations including filter design. 

BAT Services (2004: 1) observes that even when the most advanced manufacturing 

technology is used, noise still occurs naturally in rolling element bearings. As such, 

vibration and sound from a new bearing are accepted as normal bearing 

characteristics. Raceway noise is the most basic sound in rolling element bearings. It 

is generated in all bearings and is of a smooth and continuous amplitude. 

BAT Services (2004:2) characterises raceway noise as follows: 

• 

• 

• 

The frequency of bearing sound does not change even when rotational speed 

changes. The frequency of bearing sound is the natural frequency of non-damaged 

raceway rings. 

An increase in the running speed, causes an increases in sound magnitude . 

Reducing the radial clearance, causes an increase in sound magnitude . 
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• The higher the lubrication viscosity, the lower the sound magnitude . 

• The higher the rigidity of the housing, the lower the magnitude of the sound . 

2.7 Statistical Analysis on Rolling element Bearing vibrations 

Mathew and Alfredson (1984:451) recommends the application of statistical analysis 

on bearing vibration. They conducted experiments on rolling element bearings. The 

bearings were subjected to unfavourable operational conditions. All bearings were 

allowed to run in for a reasonable period. This way the bearings developed defects 

according to the initiated defect. 

Martin et al. (1994:76) confirmed that the statistical approach shows a great deal of 

promise in achieving tracking of bearing damage from the incipient stage. The use of 

statistical moments on the rectified raw data, especially the skewness, has been shown 

to be effective for tracking incipient damage. In using rectified data, both the odd and 

even moments can be used effectively, giving more flexibility for field operation. The 

method is also capable of characterising surface finishes in addition to surface 

damage, using the damage mapping approach. 

Mathew and Alfredson (1984:452) analysed the time domain waveforms using the 

root mean square (RMS) statistical parameter. More information was obtained by 

measuring the ratio of the peak amplitude to RMS value which is the crest factor. The 

crest factor indicates deterioration of the bearing, the amplitude increases more rapidly 

than the RMS levels because of the increase in impulses. Skewness values near zero 

indicated that the data is symmetric about the mean. A kurtosis value of 3, indicates a 

good bearing. Mathew and Alfredson (1984:452) observed that an increase in 

incipient damage causes an increase in impulses on the time domain waveform giving 

kurtosis values of 6. Another observation made was that the sensitivity of the kurtosis 

value to good bearings seemed to lessen, due to dynamic impulses, when the testing 

shaft speed was increased. Crest factor and kurtosis patterns were similar. 
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Dyer and Stewart (1978:229) proposed kurtosis as a measurement parameter of the 

variation from the Gaussian distribution of a new bearing that would normally 

produce kurtosis values less than or equal to 3. 

Mathew and Alfredson (1984:453) observed that damaged rolling element bearings 

produce impulsive vibration signals which would result in probability densities that 

were non-Gaussian. With the probability density normalised to its standard deviation, 

the shape of the distribution would have spikes indicating damage. A near Gaussian 

signal resembles a good bearing because of the evenness in amplitude, or lack of 

impulses in the time domain waveform. Various statistical moments can then be used 

to describe the shape of distribution. For example, the third moment, which is related 

to skewness, is used to identifY lack of symmetry of the distribution. 

Chen (2000:42) noted that the probability density distribution can be represented in 

the form of a histogram. It can be observed that a good bearing with random 

vibrations has a Gaussian distribution, while changes in the distribution curve, 

particularly at the lower values of the probability density distribution, indicate early 

stages of bearing failure. Changes at low probability have been found to be important 

in detection of bearing damage. The vertical axis is the density of the data, and 

horizontal axis is the acceleration of the vibration signal normalised to the standard 

deviation. A severely damaged bearing may also produce a near Gaussian distribution 

due to the evenness of many high amplitude impulses in the time domain waveform. 

2.8 Induced Rolling Element Bearing Defects 

Mathew and Alfredson (1984:449), in experimenting with rolling element bearings, 

induced bearing damage on seven bearings. The first bearing was contaminated with 

small amounts of solid particles. The outer raceway was finally worn. The second 

bearing had a small groove on the outer raceway. Severe damage subsequently 

occurred in the load zone of the outer raceway. 
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On the third bearing, small flat surfaces were ground on the rolling elements. The 

outer raceway in the load zone was subsequently damaged and so did the rolling 

elements. Bearings 4, 5 and 6 were operated under overload conditions. The cage 

became loose, the outer raceway was damaged in the load zone and the rolling 

elements were spalled. The seventh bearing had its lubrication drained out. All 

components of the bearing had been subjected to very high temperatures and bluish 

burn marks were evident on the rolling elements and the inner raceway. The outer 

raceway was damaged in the load zone. The high frequency detection technique was 

used on analysing the time and frequency domains of these induced damages. 

Rubini et al. (2000:287) subjected a radial load of SOON on a self-aligning bearing 

which guarantees a bearing life of over 16 000 million cycles to failure. One bearing 

was damaged on the inner race, one on the outer race and the last one on a rolling ball. 

Starting from the undamaged condition, three different pit dimensions were artificially 

produced by an electric pen to simulate a gradual increase of the damage. A transverse 

line, approximately 1 mm wide, involving the race of one ball row was created on the 

raceway. In the case of the outer race, the bearing was mounted taking care to locate 

the damage at the point subjected to the highest load, where the probability of fault 

appearance was at a maximum. 

Shiraishi et al. (1997:694) also conducted tests on rolling element bearings. The 

acoustic emission technique was used. The recorded defect reached a defect size of 

0.0645 mm2 which is commonly defined to be incipient damage by industry standards, 

and can be detectable by the acoustic emission technique. In the conducted tests all 

damage took the form of scratches made to the centre of the raceways with a diamond 

scribe. All cup and cone scratches were controlled to a length of approximately 2.54 

mm. The width of the damage created was controlled by the number of passes made 

by a scribe made over the raceway. The defect widths examined ranged from 15.40!-lm 

to 408.48f.lm. 
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The defect sizes were such that they were well below industry standards for the 

definition of incipient failure as detectable by the acoustic emission technique. The 

acoustic emission technique is more sensitive than the high frequency detection 

technique. 

Al-Gahmd et al. (2004:5) also applied the acoustic emiSSIOn technique. The test 

bearing employed was a Cooper split-type roller bearing. The split-type bearing was 

selected as it allowed defects to be seeded onto the raceways, furthermore, assembly 

and disassembly of the bearing was accomplished with minimum disruption to the test 

sequence. Five test conditions of varying severities were simulated with point defects 

engraved on the outer raceway of the test bearing. 

2.9 Historical Development of Kohonen Neural Networks 

Bennington (200 1:194) reported that in the early 1900s, electronic devices began to 

replace manually operated mechanical machines. In later years, the inventions of the 

transistor and the silicon chip in the 1950s, allowed the computer to develop. Binary 

code is the language that all computers use in performing calculations. Through binary 

coding the programs that carry the functions and operations of neural networks is 

understood by the computer. 

McCulloch and Pitts (1943 : 117) published the first papers on neural networking. 

A significant event was recorded in 1956 at Dartmouth College that modelled the 

basics of artificial intelligence (AI). The Rockefeller Foundation sponsored a 

conference on the topic of potential use of computers and simulation in every aspect 

of learning and any other feature of intelligence. It was at this conference that the term 

artificial intelligence was formally defined. Artificial intelligence was defined as: 

computer processes that attempt to emulate the human thought processes and are 

associated with activities that require the use of intelligence. 
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This definition includes the fields of automatic learning, understanding natural 

language, vision-image recognition, voice recognition, game playing, mathematical 

problem solving, robotics and expert systems. In recent years researchers have 

accepted neural networks as a legitimate field of artificial intelligence. The reason for 

the slow acceptance of this artificial intelligence is the similarity of neural networks to 

biological entities. 

Rosenblatt (1958:386) initiated the development of the first perceptron neural network 

along with the training algorithm. A perceptron is the most basic structure of a neural 

network. A single neuron or perceptron consist of a transfer function with a number of 

inputs, with each input having its own weight. The perceptron training algorithm 

allows for the weights to be adjusted so that the perceptron produces a target output. 

The target output, is the reason the perceptron is grouped into supervised neural 

networks. A single neuron can model a linear relationship. Applying neurons m 

parallel results in a neural network that can model non-linear relationships. 

In the following publications by Rosenblatt (1958:386), numerous upgrades were 

introduced for faster and better learning and training. Upgrades such as the 

Steinbach's learning rule and Widrow-Hoff learning rule brought rapid development 

in supervised neural networks. As a result Widrow and Lehr (1990: 1415) recorded 

that Werbos developed the back propagation learning rule in 1971. 

The earliest unsupervised neural network learning rule was the Hebbian learning rule 

discovered by D. Hebb in 1949, a neurophysiologist who found that 'if one neuron 

repeatedly excites another neuron, the amount of excitation is lowered'. Hebbian 

learning extract and copies the pattern ofthe input data vector space, so that the output 

is similar to the input. 
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Real developments in unsupervised neural networks began in the late 1950s and early 

1960s with Stratonovitch (1957:416) studied vector quantisation and suggested that 

data vectors can be grouped with relating vectors by a cluster vector. Glenn (1996: 1) 

recorded studies on vector quantisation conducted in 1964. Von der Malsburg 

(1973 :85) developed the first simulation of self-organising. In 1976 Von derMalsburg 

and Willshaw (1976: 121) suggested the idea of a self-organising map (SOM). In the 

1980s refinement of the structure and computational algorithms of the self-organising 

map were developed by Kohonen ( 1982a: 1 ). 

2.10 Biological Analogy to Artificial Intelligence Neural Networks 

Haykin (1994:4) provided a good comparison of biological neurons and artificial 

intelligence neural networks. The development of neural networks is based on 

neurobiological modelling. The processing elements that make up the neural network 

are named neurons, after the term for biological cells that make up the nervous 

system. 

Haykin (1994:6) elaborated that biological neurons and artificial intelligence neurons 

are stimulated by an input, the neurons then process and transmit the data either to 

other neurons or produce an output. In biological terms the output would be for 

example contraction of the muscles to produce body motion. The input in artificial 

intelligence neural networks is transmitted to the neuron through connection weights, 

which in biological terms would be the synapse. The input is admitted into the neuron 

and processed by the transfer function, this would be the cell nucleus in biology. The 

output of the transfer function is transmitted to another neuron or is itself the expected 

output. The input progresses through repeated calculations until the output is reached. 

The transmission path of the stimulation in a biological neuron is through the axon, 

and then spreads to other neurons through the dendrites, this would resemble the 

repeated steps of calculations to reach an output. Many neurons can work together in 

parallel to process the same input, in a similar fashion to biological neurons that work 

in parallel. 
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Haykin (1994:20) and Uhrig (1996: 1) noted that the accuracy of a neural network 

output, is increased by the number of neurons working in parallel. Factors affecting 

this include the strength of the weight connections and the strength of an additional 

weight connection known as the bias connection. Similarly, the strength of the 

response from a biological neuron also depends on the number of neurons transmitting 

the stimuli amongst and on other factors such as the synapse strength and the amount 

of iron content in the synapse which resembles the bias factor. 

2.11 Development of the Self-Organising Map Algorithm 

2.11.1 Competitive Algorithm 

The idea of competitive learning may be traced back to the early works of von der 

Malsburg ( 1973 :90) on the self-organisation of orientation sensitive nerve cells in the 

striate cortex of the brain; Fukushima (197 5: 121) on a self-organising multi player 

neural network named the cognitron; Willshaw and von der Malsburg (1976:431) on 

the formation of patterned neural connections by self-organisation; and Grossberg 

(1972:49, 1976a:121, 1976b:187) on adaptive pattern classification. Durbin et al. 

(1989: 133) highlight the importance of competitive learning in the formation of a 

topographic map, and the work by Ambros-Ingerson et al. (1990:1344) provides 

further neurobiological justification for competitive learning. 

Grossberg (1976a: 187) defined hard competition, and soft competition. The 

competition in unsupervised neural networks allows for exploring the input data 

without the need for controlling the output. With hard competition, only the closest 

neuron to an input data is active and thus has its weights updated. With soft 

competition the closest neuron is active, and its neighbours are also active, although 

somewhat less than the winning neuron. This allows for a topological mapping of 

neighbouring neurons to the input data space. 
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Grossberg (1976a:8) noted that the major difference between competitive learning and 

Hebbian learning is that Hebbian learning tends to extract information from the input 

space, whereas competitive networks are used to cluster similar inputs. Hebbian 

networks are neuron associators to the input data, while competitive networks 

compete for input data resources. Grossberg introduced most of the ideas of 

competition in mathematically terms. Kohonen took a more engineering oriented 

approach to these ideas and introduced an enhanced set of principles that are easily 

implemented in digital systems. Kohonen's approach is used in this research. 

2.11.2 Data Pre-processing and Feature Extraction 

Martin-del-Brio and Serrano-Cinca (1993:193) referred to data pre-processing as the 

operations performed on data before information can be extracted from the data. Data 

pre-processing includes normalisation, linear scaling, and linear regression. As far as 

normalisation is concerned, input and output vectors should be normalised to unity if 

correlation is used to determine convergence, unless Euclidean distance or squared 

error is used, where upon normalisation need not be to unity. For a data set that is 

normally distributed the data can be normalised so that the mean becomes zero and 

the standard deviation becomes unity. 

Kohonen (1982b:5) notes that data processmg includes data pre-processmg and 

feature extraction. Feature extraction is referred to as the process of determining 

characteristics of data that can easily be modelled. Mao and Jain (1995:297) wrote that 

if a mathematical model can duplicate a data set, indicating a certain condition, and 

the same model can duplicate an unknown data set, then the assumption that the same 

condition exists for both data sets is valid. Feature extraction may also be viewed as a 

data projection by means of mapping an input data space to an output space. The 

result is a reduction in dimensionality, enabling easier access to large data sets, as well 

as separating different data state conditions. 
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De Backer et a!. (1998 :711) studied feature extraction and four feature classification 

of high dimensional input data sets. Large feature vectors that are able to describe 

complex objects and to distinguish between them are generated. The four 

classification methods studied were: multi dimensional scaling approach, Sammon's 

mapping, Kohonen's Self-Organising Map, and an auto associative feed-forward 

neural network. All four neural networks yield better classification results than the 

optimal linear approach of the back propagation neural network, and therefore can be 

utilised in feature classification schemes. The findings were that the multi dimensional 

scaling and Sammon's mapping algorithms, are most suited for high dimensional data 

sets with a limited number of data points, while self-organising map and the auto

associative feed-forward neural network are more appropriate for low dimensional 

problems with a large number of data points. 

2.11.3 Output Topology and Classification 

Topology is the lattice structure of the output layer. The neurons in the output layer 

are arranged in a one or two dimensional lattice structure producing a topology that 

ensures that each neuron has a set of neighbouring neurons. There are two topological 

models inspired by von der Malsburg (1973:85). The first model, proposed by 

Willshaw and von der Malsburg (1976:431), comprises two separate two-dimensional 

lattices of neurons connected together, with one projecting on to the other and a group 

of neurons win or dominate the map at any one time. The Willshaw-von der Malsburg 

model is specialised to mappings where the input dimension is the same as the output 

dimension. The second model was introduced by Kohonen (1982a:59), and comprises 

a single two-dimensional lattice of neurons. The Kohonen model is more general than 

the Willshaw-von der Malsburg model because of the ability to perform data 

compression as there is one winning neuron, resulting in a greatly reduced output 

dimension. 
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The Kohonen model may be derived in two ways, one is the consideration of 

traditional neurobiology and the second approach is vector quantisation. The Kohonen 

model is used in this research for its data compression capabilities. 

Kohonen (1982b:45) used statistical data features to train a classifier for classifying a 

data set within non linear boundaries. Classification involves grouping input data 

vectors into clusters and presenting the cluster according to condition cluster label. 

MacQueen (1967:281) adopted the k-means clustering algorithm as a vector 

quantisation method that makes use of the competitive transfer function. The 

algorithm minimises the sum of squared errors among a number of k clusters. 

Bouldin (1979:224) evaluated vector quantisation and cluster algorithms. The k

means algorithm divides out an input data set into, k, number of classes. The process 

of creating the first data clusters is similar to that of Self-Organising Maps. However, 

as the number of classes to be recognised is initially not known, the process of cluster 

creation must be repeated for different values of, k. The value of k classes is then 

estimated by means of a validity criterion such as the Davies-Bouldin index. The 

Davies-Bouldin index is used as a measure of the validity of the number of clusters 

obtained with the k-means method. 

2.11.4 Learning Vector Quantisation Neural Network 

Kangas et a!. (1990:93) observed that the best results for pattern classification are 

achieved by the use of an unsupervised Kohonen self-organising map together with a 

supervised learning algorithm or neural network. 

Kangas et a!. (1990:99) recommends the learning vector quantisation network, which 

is a supervised network in that it has a non-linear competitive layer, and a linear 

output layer transfer function. 
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This linear transfer function enables the output to be placed in groups or classes. A 

learning vector quantisation network performs similar functions to that of the self

organising feature map network. The learning vector quantisation network however 

creates classes or groups on the topological map instead of only classifying the input 

on the topological map. The learning vector quantisation network can be used to 

analyse the input data that is analysed by the self-organising feature map network, and 

thus enables support evaluation. 

2.12 Applied Neural Networks on Vibration Monitoring Systems 

2.12.1 Rolling Element Bearing Condition Monitoring 

Shao and Nezu (1995: 1543) used the factor of the degree of creditability and the basic 

principle of the expert system on an online monitoring and diagnostic method of 

rolling element bearings with artificial intelligence, namely fuzzy logic. The technique 

enhanced traditional vibration analysis and provided a means of automating the 

monitoring and diagnosis of vibrating devises. It was observed that identifying 

incipient damage was a problem with traditional vibration analysis due to the 

sensitivity of parameters. The parameters assist in determining alarm limits 

automatically, however such parameter values are affected by the load variations, 

speed variations, contamination, and measurement error. The uncertainty of the 

parameter value, for good and damaged bearings, is the reason Shao and Nezu used 

the factor of the degree of creditability. New bearings were used for experimentation, 

and no distinct fault classification was performed. Therefore, visualisation and 

diagnosis of bearing damage can not be achieved by this method. 

Crupi et al. (2004: 113 7) noted a disadvantage of neural networks in that data acquired 

from real fault conditions is required to train the network. Also noted is that neural 

networks have replaced the traditional expert systems, used in the past for fault 

diagnosis, because neural networks are dynamic systems adaptable to continuous 

variable data. 
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Toshiya et al. (1995:1) used the feed-forward back propagation neural network to 

monitor the conditions of journal bearings. The feed-forward back propagation neural 

network is limited to only two numerically classified conditions, because of the tan 

sigmoid transfer function, and the bearing is classified as either in a 'good' or a 'bad' 

condition. 

Li et al. (2000: 1 060) concentrated specifically on rolling element bearing faults, and 

used a machine fault simulator apparatus to simulate bearing faults. The bearing fault 

vibration was generated by replacing the front bearing of the apparatus with a bearing 

of known fault condition provided by the bearing manufacturer. Severe faults were 

simulated on the ball element, inner raceway, and outer raceway. Vibration 

measurements were measured in the radial and axial directions. Statistical parameters 

such as: peak amplitude, mean amplitude, kurtosis, amplitudes at the shaft frequency, 

and amplitudes at the ball pass frequency of the outer and inner ring, were the 

extracted features that created the input dataset. A three layer feed-forward neural 

network was trained using the Levenberg-Marquardt algorithm. A decisive 'good' or 

'bad' two conditions numerical classification of bearing condition was achieved, 

because a tan sigmoid transfer function was used. Bearing defect visualisation was not 

achieved and defect severity could not be analysed. 

Samanta et al. (200 1 :327) extracted statistical feature parameters from the wavelet 

transform in condition monitoring of rolling element bearings. The use of the wavelet 

transform is not within the scope of this research, but could be considered for further 

study. Samanta used a feed-forward neural network. The results of this 

experimentation, showed that wavelet feature extraction did not improve the results of 

bearing fault detection significantly. The training was quite fast requiring significantly 

small number of epochs. This substantial reduction in training epochs was due to pre

processing of vibration data and using a substantially smaller number of extracted 

features as inputs. Although the number of extracted features was smaller, they were 

still effective when extracted from raw signals. 
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Alguindigue et al. (1993 :209) implemented a methodology for interpreting rolling 

element bearing vibration measurements based on the combination of the back 

propagation feed-forward neural network and the re-circulation neural network. This 

methodology is also an automated monitoring process. A new bearing was used to 

obtain bearing vibration measurements. The re-circulation neural network classifies 

bearing faults with six output neurons. A fault excites one of the six neurons, and is 

numerically classified. The limiting factor is that the faults might not be visualised on 

map classification, and a definite fault is given instead of the severity of the fault. 

Chen (2000:64) researched condition monitoring of rolling element bearings. A three

layered artificial neural network was introduced to accomplish the non-linear mapping 

from the feature space to the classification space. One advantage of the artificial 

neural network approach is that a complicated non-linear relationship can be 

constructed between data spaces. Defect detection was on tapered roller bearings used 

in rail traction. To train the neural network for non-linear mapping, a multi defect data 

set prepared from operating the bearings under various conditions such as different 

loads and speeds, was used. Severity of the defects was also reflected by single and 

multiple spalls. Natural fatigue spalls instead of artificially induced spalls were 

considered. 

The back propagation feed-forward neural network was combined with a two

dimensional mapping rule that allows the application of piecewise linear boundaries. 

The cluster arrangement was somewhat arbitrarily placed evenly on a unit circle in 

the quadrant of a two-dimensional Cartesian plane. A unit circle was chosen so that 

the outputs would fit into the range of a sigmoid function, that is, between 0 and 1. 

The desired cluster centre coordinates were chosen on the Cartesian plane. A 

distribution type classification method was used. Visualisation of bearing defects was 

achieved. However, analysis of the clusters was limited because the cluster 

distribution could be controlled. Therefore, only bearing defects could be visualised, 

and not vibration parameters. 
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2.12.2 Machining Tool Condition Monitoring 

Scheffer et al. (200 1: 1185) implemented a tool condition monitoring strategy based 

on vibration measurement. The techniques considered were: time and frequency 

domain techniques, statistical feature extraction, and wavelet technique. Statistical 

parameters extracted were used to create a neural network input dataset. The Self

Organising Map could achieve progressive classification of tool wear considering all 

statistical parameters. The condition of the cutting tool was not limited to a two 

conditions numerical classification. 

Godin et al. (2004:299) statistically analysed acoustic emission signatures of various 

types of damage in composite materials during tensile tests on cross-ply laminate 

composites. A Kohonen's self-organising map was used as an unsupervised pattern 

recognition method suitable for the discrimination of acoustic emission signals, and 

clusters were identified by application of the k-means method. 

2.12.3 Machinery Condition Monitoring 

Kowalski et al. (2003: 1) developed a monitoring method for induction motors in the 

case of rotor, stator, and rolling element bearing faults. A feed-forward multi-layer 

perceptron neural network, was compared to the Self-Organising Map neural network. 

Bearing failure was shown to be the major contributor of motor failures. Kohonen 

neural network were found to be more efficient for initial classification of motor 

faults. The multi-layer perceptron is more applicable in severe motor faults and a two 

condition classification. 

Vander Merwe et al. (2003:139) conducted experiments on machine imbalance and 

rolling element bearing outer ring fault detection. Kohonen self-organising maps were 

used and compared to the radial base function neural network and the feed-forward 

multi-layer perceptron. The radial base function network was better than the multi

layer perceptron, on a dataset that had well-defined clusters. 
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2.13 Summary 

An introduction in which condition monitoring of rolling element bearings were 

described, with the focus on the application of Self-Organising Maps to automatic 

fault detection and classification. The purpose and application of condition monitoring 

in the maintenance of rolling element bearings was discussed. An overall review of 

previous studies and developments in the application of neural networks to condition 

monitoring of rolling element bearings was presented. The techniques used for the 

purpose of this research were introduced through a discussion of the related literature, 

as in the case of bearing damage infliction and signal processing. The literature on 

induced bearing damage highlighted different severities of incipient damage 

detectable by the high frequency technique. 

The literature research on Self-Organising Maps for condition monitoring purposes, 

revealed the applicability of the technique and is the reason for the decision to develop 

a similar monitoring system for rolling element bearings. Feature extraction 

techniques like statistical moments, spectral and amplitude parameters of the raw data 

can be used as features, serving as input to the Self-Organising Map. 

The literature review ref1ects the dynamic nature of neural networks, and that the self

organising map is an excellent tool in the visualisation of high dimensional data. As 

such, it is most suitable for the data understanding phase of the analysis process. 

However, Self-Organising Maps can also be used for data preparation, modelling and 

classification. 
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Cbapter 3 

Bearing Vibration Fundamentals 

3.1 Introduction 

This chapter provides a description of the deep-groove ball bearing on which vibration 

condition monitoring experiments were done in the research. More specifically, the 

characteristics and properties of the rolling element bearing that influence bearing 

vibration are discussed. The design of the monitoring rig is presented with reference to 

how the bearing is accommodated in the rig, as well as the operation mechanism of 

the rig. Characteristics of the operations of a bearing include bearing friction, bearing 

lubrication, bearing loading, bearing speed, and bearing life. Barkov et. al. (1995b: 1) 

highlighted that bearing friction is the main cause of wear and ultimately spalling in a 

bearing. This is the reason bearing friction receives so much attention in discussions 

of the operations of a bearing. 

Different types of rolling element bearings are noted and the reasons for researching 

the deep-groove ball bearing are mentioned. The nomenclature and vibration 

characteristics of the rolling element bearing components are explained so as to assist 

in locating bearing defects. The characteristics of complex phenomena of bearings 

such as bearing waviness and the fluctuation of bearing stiffness are also mentioned so 

that limits to the scope of the research are established. The discussion on the design of 

the monitoring rig is accompanied by illustrations of the structure of the rig. The 

concept of machine vibration in relation to bearing vibration, is discussed with 

specific attention to rolling element bearing vibration. 
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3.2 Types of Rolling Element Bearings 

Harris (2001 :4) wrote that the term rolling element bearings includes all forms of 

bearings that utilize the rolling action of ball or roller elements to attain minimrnn 

friction between one body relative to another. Today, technical and environmental 

requirements for bearings are very complex. In certain conditions, ball bearings are 

more applicable than roller bearings. The selection of a bearing requires the expertise 

of skilled personnel, and the selection is supported by mathematical calculations. 

There are different classes of ball bearings, and these are classified according to 

general construction, rather than being grouped in terms of shields, seals, and snap 

rings. The ball bearings can be classified into nine main groups. These groups are: 

deep-groove, maximum capacity, angular contact, self-aligning, double-row, Y

bearings, cam rollers, thrust, and thrust angular contact. 

SKF (2004:31) lists the advantages of deep-groove ball bearings that have led to their 

widespread use as: (1) lower friction torque than roller bearings, (2) higher grease life 

than roller bearings, (3) reduced sensitivity to misalignment, and (4) lower production 

costs per volume of production achieved. The research is focussed on bearings that are 

most commonly used and have wide-spread applications as is the case with deep

groove ball bearings. 

3.3 Deep-Groove Ball Bearing Nomenclature 

The nomenclature of a modem type of ball bearing is shown in figure 3.1. This 

bearing is named a deep-groove ball bearing because of its characteristic deep groove 

raceway on the outer surface of the inner ring and on the inner surface of the outer 

ring. A deep-groove ball bearing consists of an inner ring, an outer ring, ball elements, 

a cage or separator, and seal caps if the bearing is to be sealed. The seals may not be 

required, where upon the seal grooves on the two rings are not necessary and this 
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may be changed according to specific design requirements. Another additional feature 

is the lubrication groove on the outer surface of the outer ring, with an inlet hole for 

the lubrication to pass into the rolling element area. This may be required for 

lubricating bearings that are difficult to reach, and may not be a necessary feature of a 

bearing because some bearings are greased only once by the manufacturer and then 

sealed. Additional features can be changed according to design requirements. 

Figure 3.1: Deep-Groove Ball Bearing Nomenclature 

The ball cage or ball separator has two halves which are used to space the ball 

elements at equal distance from each other and thus prevent one ball from rubbing 

against another. The cage follows the shape of the ball element so that there is smooth 

rolling between the ball element and the cage. At half the distance between two ball 

elements, the cage is pin riveted thus bringing the two cage halves together. The cage 

is placed halfway between the space separating the inner ring and the outer ring and 

the pitch circle diameter lies along the cage. The cage also helps to absorb dynamic 

forces that may occur when the ball elements roll in and out of the bearing load zone. 
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The deep grooves on the inner race and outer race are accurately ground to eliminate 

sliding friction between the balls and the grooves, while simultaneously providing 

proper support for the balls. The rolling balls are similarly ground like the raceways 

for the same purpose of eliminating sliding friction. The deep-groove ball bearing in 

figure 3.1 has a single row of rolling elements. In other designs there may be two or 

more rows to increase the support load. The bore has rounded edges to easily 

accommodate the shaft diameter and the outer ring is similarly rounded to reduce 

stress concentration when mounted in the bearing housing. 

3.4 Design and Manufacture of rolling element bearings 

The design and manufacturing processes of bearings and how these processes affect 

the vibration characteristics of the bearing are discussed below. 

3.4.1 Rolling Element Bearing Design 

SKF (1996:8) consider the following factors when designing rolling element bearings: 

load zone, contact areas, contact stress, elastic deformation, and rolling and sliding 

friction. While rolling friction may approach zero, a small amount of sliding friction 

will exist in all rolling element bearings. Although bearing components are made of 

hardened steel, they are elastic bodies under load and this property of the bearing 

material is partly responsible for the vibration response of a bearing, because elasticity 

is essentially the stiffness property of a bearing. 

3.4.2 Rolling Element Bearing Materials 

A vall one et a!. ( 1989:739) recorded that for many years the most important bearing 

material was Babbitt metal, patented by Isaac Babbitt in 1839. Babbitt metal, an alloy 

of tin with small amounts of antimony, copper and lead, has a number of varieties, 

depending on the proportions of the constituents. Other metallic materials are a 

combination of Babbitt metal and steel. The type of material used in a bearing affects 

the stiffness properties of the bearing and the natural frequency of the bearing. 
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3.4.3 Rolling Element Bearing Manufacturing 

SKF (1996:20) implements manufacturing of rolling element bearings in four basic 

process stages:- first form, heat treat, final form and assembly. Rings are formed from 

solid bars by numeric controlled machines. Balls and rollers are turned from bar stock. 

Taylor et a/.(2004:68) warns that the grinding process, to remove peaks of surface 

roughness that initiate spalling, may result in magnetising the bearing, which attracts 

metal particles that can initiate incipient spalling. 

3.4.4 Rolling Element Bearing Preload 

Bearings are designed with a certain amount of internal clearance between the 

component elements. Once the bearing has an applied load, the internal clearances 

reduce. To minimise the internal clearance without depending on the applied load, a 

rolling element bearing can be preloaded. A preload is applied when the bearing is 

first installed and then maintained under a constant load. Preloading a rolling element 

bearing influences the stiffness and damping properties of the bearing which 

influences the amplitude of bearing vibration. Therefore amplitude alone cannot be 

relied upon to indicate defect severity. 

3.4.5 Rolling Element Bearing Stiffness 

The bearing stiffness influences the frequency response of the bearing. This frequency 

is higher than the frequencies of the other components of the bearing, such as 

contacting bearing rings and rolling elements. On a time domain waveform there is a 

component sinusoid of the waveform that has the same frequency of the effective 

bearing frequency response. 

3.4.6 Rolling Element Bearing Waviness 

Bearing waviness refers to the surface contours on the raceways of the outer ring and 

the inner ring. Contours with long wavelengths are produced during machining. 

Contours with short wavelengths result from preload and loading conditions as the 

rolling elements apply pressures at different points in the raceways. 
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The relationship between the surface geometry and bearing vibration level is complex 

and is not within the scope of this research. What is of concern here is the fact that 

bearing noise of a new bearing is mainly due to bearing waviness among other factors 

such as lubrication, surface roughness or finish, load and speed. 

3.5 Operating Principles of Rolling Element Bearing Friction 

Ruiyun (1984 : 1) studied friction, and proposed a theory explaining the causes of 

friction. The theory is based on the fact that the surfaces of the pieces of solid in 

contact are not completely smooth and when they move relative to each other uneven 

surface peaks will prevent the bodies from moving thus producing resistance to 

motion. The resistance to relative motion in rolling element bearings is due to many 

factors, the basic one being rolling friction. This was long assumed to be the only 

resistance to motion in this type of bearing, however it has been established that 

rolling friction is a small amount of the whole bearing friction. Nevertheless, the 

contribution of rolling friction to wear and tear and operating temperature is 

important. 

The major motion of a rolling element bearing is concerned with rotation since it 

supports a rotating shaft. The presence of friction between the rolling elements and 

the inner ring allow the rolling elements to rotate in the opposite direction to the 

rotation of the inner ring and the shaft, and thus reduce sliding friction. The 

unpredictable rotational path or direction of the rolling element is the reason why 

there are different types of frictional force in rolling element bearings. In bearings, this 

frictional force is termed a friction torque, because a torque or a couple sets the shaft 

into a rotational motion. 

There is friction torque due to: 

• differential sliding while the rolling element rotates. 

• elastic hysteresis depending on the elastic properties of the rolling element and 
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ring materials and the amount of deformation that takes place under preload and 

loading conditions. 

• geometric errors, for example a geometric error in the shape of the outer race may 

result in inconsistent surface contacts. 

• shearing of the lubricant, which depends on the viscosity of the lubricant. 

• temperature changes which result in lubricant viscosity changes. 

3.6 Deep-Groove Ball Bearing Vibration Characteristics 

Bearings first begin to wear when incipient damage starts, causmg the natural 

frequencies of bearing components to become excited. One set of their natural 

frequencies is concentrated within the range up to 2000 Hz. Another set is found 

within ultrasonic frequency range between 20 KHz and 100 KHz. Bearing vibrations 

are induced when the natural frequency of the bearing and its components are excited, 

as a rolling element rolls over an incipient damage or due to external mechanical input 

such as misalignment. 

Frequencies associated with bearing components include: the characteristic defect 

frequencies, and the frequencies of the outer race, inner race, ball elements and cage. 

The frequency at which the ball element rolls over a defect, is a characteristic bearing 

frequency. 

Bearing characteristic frequencies can be calculated based on bearing rotational speed 

and bearing geometry. Figure 3.2 shows the geometry of a rolling element bearing 

with its relation to the velocities of the inner race, outer race, ball and cage as defined 

by Taylor et al. (2004:20). The meaning of the symbols used in figures 3.2 and figure 

3.3 are shown in table 3.1. 

Figure 3.3 shows the side view of a rolling element bearing illustrating the change of 

contact angle between the rolling element and the raceway. The change of 
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contact angle affects the length of the inner radius and length of the outer radius with 

reference to the position of the rolling element. The symbols in the figures are applied 

in the derivation of bearing defect frequency equations. The derivations of the 

equations for determining characteristic bearing frequencies are shown in annexure 1 

(p132), and the formulas are tabulated in annexure 2 (pl37). 
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Figure 3.2: Front View of a Deep-Groove Ball Bearing 
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Figure 3.3: Side View of a Deep-Groove Ball Bearing 
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Table 3.1: Symbols for Figure 3.2 and Figure 3.3 

V c = linear speed of the cage We= rotational speed of the cage 

vi =linear speed of the inner race Wi =rotational speed of the inner race 

Y0 = linear speed of the outer race W0 = rotational speed of the outer race 

vb =linear speed of the ball wb =rotational speed of the ball 

r c = rotational radius of the cage Pd =Pitch circle diameter 

ri =rotational radius of the inner race Bd = Ball diameter 

r0 =rotational radius of the outer race oc = contact angle 

rr =rotational radius ofthe balls z = number of balls Pe =end play 

3.7 Rolling Element Bearing and Machine Vibrations 

For a well balanced and aligned machine with an old damaged rolling element 

bearing, most of the vibration energy is generated by the shock force and frictional 

force emanating from the bearing. Under such circumstances, the machine must be 

overhauled and the bearing replaced, to prevent consequent detrimental effects on the 

machine such as the generation of excessive noise and malfunction of resulting 

unaligned components. Since general rolling element bearing vibrations account for a 

very small part of the whole machine's vibration energy, special care must be taken 

when monitoring bearings to ensure that measurements of the vibration are those 

generated from the bearing and reflect the vibration conditions of only the bearing. 

A rolling element bearing generates shock forces throughout the bearing's life. Shock 

forces create a transient pressure wave that is transmitted and absorbed by the bearing 

material and adjacent bodies and the surrounding air. SPM instruments (2000:12) 

confirm that the intensity of the shock pressure wave is directly related to the 

thickness of the oil film between the rolling element and raceway, and to the 

mechanical condition of the bearing surface. 
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An initial shock wave generated on a bearing will cause a pressure wave to be 

transmitted through the bearing and machine body. The beginning of a second shock 

wave during the first wave transmission, initiates induced bearing vibration. For a 

bearing in rotational motion, the repetition of the first shock wave starting and its 

combination with the second wave, creates a continuous induced bearing vibration 

which can be measured. The induced bearing vibration excites the natural frequency 

response of the bearing and its components. Induced bearing vibration and bearing 

natural frequencies are dangerous if they result in high amplitudes. Induced bearing 

vibration is mainly responsible for the progression of incipient damage into severe 

damage in a bearing, assuming that external sources of vibration such as imbalance 

are at a minimum. 

3.8 Design of the Condition Monitoring Rig 

The first problem was to design and build the test rig. The rig was used for defect 

testing on rolling element bearings, and was located in the Iscor Innovation Centre at 

the Vaal University of Technology. The rig was used to conduct experiments in 

acquiring rolling element bearing vibration measurements. Safety was a priority in the 

design and operation of the condition monitoring rig, so the South African 

occupational health and safety regulations acts of 2003 for rotary machines were 

followed. 

3.8.1 Structural Support Framework 

In order for the rig to be ergonomically designed for quick exchange of tested 

bearings, the base-plate was elevated to near human waist height of 740mm. The 

support structure had a rectangular shape with a top view length of 790mm and width 

of 685mm. The structural support frame work is illustrated as part of the rig in figure 

3 .4. The support structure stood on four elastomeric mounts which had adjustable 

nuts, for setting a horizontal level of the base-plate. The elastomeric mounts dampen 

the vibrations transmitted from the test rig to the floor. 
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3.8.2 Variable Speed Drive 

A 2.2KW, single phase, capacitor start, capacitor run electric motor was used for the 

test rig. The electric motor received power from a frequency inverter, which in tum 

was connected to the 230V, 50Hz line voltage. The frequency inverter enabled smooth 

speed variation of the electric motor unlike a manual gear system. A variable speed 

drive system was used for the electric motor and the frequency inverter. The frequency 

inverter used was a CFW-08 series that ran on version 3.9X0899.4690 E/5 digital 

software. 

3.8.3 Test Bearing Mounting Mechanism 

The electric motor drives a test bearing shaft through a pulley and V -belt system. The 

test bearing shaft has a diameter of 30mm and length 490mm with respect to a safety 

factor of, n = 2, which is conservative to minor impact loading. The shaft pulley and 

electric motor pulley both have an outside diameter of I 05mm. Equal pulley sizes 

enable equal speed transmission from the electric motor to the test bearing shaft. The 

speed is set by the frequency inverter. The test bearing shaft is supported by two Y

bearings. 

The shaft is elevated on a rigid shaft-base, giving an allowance for adequate mounting 

and dismounting of the tested bearing. The shaft pulley and the tested bearing are 

located at the ends of the shaft, with the pulley on the one end and the tested bearing 

on the other, thus creating overhangs on both ends of the shaft. The test bearing shaft 

and V -Belt drive system are illustrated in figure 3.5. The tested bearing is however 

mounted on a stepped chuck and it rests at the back of the step pushing against the 

chuck. Figure 3.6 shows the tested bearing under a bearing seat and mounted on a 

stepped chuck mounting mechanism. This method of mounting, greatly reduces 

misalignment of the bearing on the chuck. A tapered mounting washer strengthens the 

mounting and alignment when the taper pushes on the bearing and is locked in place 

by lock nuts at the end of the shaft. 
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3.8.4 Loading Mechanism 

The loading mechanism is mounted on the base-plate, and aligned at right angles to 

the tested bearing. The mechanism is assembled on two parallel round bars. The 

whole loading assembly is able to slide over the round bars. The round bars are 

25.4mm in diameter and 760mm in length. There are two locking spring bushes one 

on each bar. The springs enable smooth loading of the bearing. A hydraulic jack is 

attached to the upper arm with the cylinder extending towards the base-plate. A load 

cell is attached on the clevis of the cylinder and on the lower arm. The hydraulic 

cylinder and the load cell are located along the centre between the two round bars. The 

lower arm also holds the bearing seat. The bearing seat is manufactured in a way that 

resembles a bearing housing. The bearing seat covers the top half of the bearing so 

that the load zone is within the bearing seat. Figure 3. 7 illustrates the test bearing 

loading mechanism with the load cell and attached accelerometer. 

Figure 3.4: Rolling Element Bearing Condition Monitoring Rig 

48 



Chapter 3 Bearing Vibration FundamentaJs 

Figure 3.5: Test Bearing Shaft and V-Belt Drive System 

Figure 3.6: Bearing under a Bearing Seat and Stepped Chuck Mounting Mechanism 

Figure 3.7: Test Bearing Loading Mechanism with Load Cell and Accelerometer 
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3.8.5 Data Acquisition Instrumentation 

The vibration transducer, or vibration measuring instrument, chosen for use on the 

monitoring rig was an industrial type, model 624All accelerometer. The 

accelerometer was selected according to its sensitivity and mounting applicability, 

while ambient temperature was not critical since experimentation took place at room 

temperature. Since the high frequency detection technique was used in the monitoring 

of rolling element bearings, the sensitivity of the vibration transducer was important. 

The sensitivity of the piezoelectric quartz crystal accelerometer, was a hundred milli

volts per unit gravitational acceleration, that is IOOmV/g, where g is 9.8lm/s2
. Two 

accelerometers with the same sensitivity were used, namely, a magnetic base and a 

threaded stud accelerometer. The threaded stud accelerometer is accommodated on the 

bearing seat, and is located in the radial direction to the bearings rotational axis. 

An 'S ' type model LT400 load cell with a maximum load capacity of 200 Kg was 

used. This load cell was most suitable for this rig because of its small size, 76x50x 25 

mm, and light weight of 248.5g as it is manufactured from anodised aluminium. The 

connection configuration allows the strain gauges to measure bending strain within 

the load cell. Applying a load on the tested bearing subjects the load cell to a 

compressive load. A remote optical sensor was applied as a tachometer. 

The piezoelectric accelerometer, load cell and the remote optical sensor tachometer 

are connected to a data acquisition card. The data acquisition card used is the NI-DAQ 

7.x and a driver software from National Instruments Corporation. There are two plug 

in devices, the accelerometer that is linked to device PCI-4474 and the tachometer that 

is linked to device PCI-6220. A PXI module was installed at the position where the 

signal conditioning box with configurable connectors links the load cell to the SC-

2345 signal conditioning channel. 
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3.9 Artificial Infliction of Defects on Rolling Element Bearings 

The requirement for condition monitoring of rolling element bearings was to have 

standard rolling element bearing vibration data that could be compared with data 

acquired on any monitored bearing at hand. The standard vibration data was to 

indicate the pressure of a common spalling defect on the three components of a rolling 

element bearing, namely, the outer ring, inner ring and ball element. The standard 

vibration data of bearing defects was also required for the creation of an input data set 

that would be applied in the training of the Self-Organising Feature Map. 

Condition diagnosis of previously damaged bearings was used as a guide, in terms of 

spall size, when inflicting artificial spalls through the application of a corrosive 

technique. The damage inflicted bearings was then used to obtain standard vibration 

data of a specific spall defect. 

3.9.1 Application of the Corrosive Technique Method 

Aquaregia was the corrosive solution used in the infliction of artificial defects. 

Aquaregia is a yellow acid mixture solution of hydrochloric acid and nitric acid, 

mixed in a ratio of 3H:1N. The bearings considered for experimentation were the 

6012.ZZ3C, 6010.ZZ3C and 6008.ZZ3C deep groove ball bearings, with their 

respective bore diameters of 60, 50 and 40mm. The difficulty of dismantling a bearing 

for the creation of spalls was the main reason the corrosive technique was considered. 

The bearing remained assembled, but the seals were removed and the lubricant 

cleaned off. Copper tape with a hole template was placed on the raceway between two 

ball elements. The size of the template hole on the copper tape determines an 

estimated size of the corroded spall. The bearing was pre-heated to 30°C and kept 

constant for 30 minutes during which aquaregia was applied. Since surface 

components in a bearing are close together, tiny droplets of aquarigia would settle on 

these surfaces leaving stained marks as the aquaregia bubbles. The created spall is 

more significant than the additional stained marks. 
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For a single bearing size, spalls of ±lmm and ±2mm were created on the inner and 

outer raceways respectively. An inflicted spall of diameter ±2mm is shown in figure 

3.8 with a magnification of x 10. A problem arose when trying to create a spall on the 

ball element, because of the limited space for placing the copper tape and the rounded 

surface of the ball element. So, to create a fourth stage damage and a ball damage, a 

0.8mm slit was cut on each raceway for all bearing sizes. The slits were cut with an 

induction wire cutter. 

Figure 3.8: An Artificially Inflicted Bearing Spall of± 2mm 

Damage infliction was conducted on eight bearings of the same size to provide rolling 

element bearing vibration data. The first was a brand new bearing, the second and 

third bearings were inflicted with a ±lmm spall on the inner and outer ring 

respectively, the fourth and fifth bearings had a ±2mm spalls on the inner and outer 

ring respectively, the sixth and seventh bearings received a 0.8mm slit cut on the inner 

and outer ring respectively, and the eighth bearing a slit cut spall on the ball element. 
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3.10 Summary 

Rolling element bearing vibration fundamentals were discussed in detail with 

explanations of the relation between bearing properties and bearing vibration 

characteristics. An understanding of the operations of rolling element bearings 

brought to light the fact that the source of induced bearing vibration is friction 

between the rolling element and the raceways. The design of the test rig and infliction 

of bearing defects was discussed. Different bearing defects were created so that a data 

set of bearing vibration measurements could be created. 
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Chapter 4 

Signal Pre-processing Techniques 

4.1 Introduction 

The acquisition of bearing vibration measurements and analogue to digital signal 

processing of the measurements are discussed in this chapter. The application of the 

Fourier series, Fourier integral, Discrete Fourier Transform and ultimately the Fast 

Fourier Transform, to the bearing vibration measurement is discussed. The application 

of Fourier theory leads to better analysis of the measurement. Application of 

mathematical theory governing analogue to digital signal processing enables the 

application of statistical processing on bearing vibration measurements. Furthermore, 

this chapter focuses on the analysis of different formats of bearing vibration 

measurement through the signal processing software implemented. 

Data acquisition and processmg are performed. Here, data refers to the digital 

information obtained from a vibration measurement. Signal pre-processing assists in 

achieving the best results from vibration measurements. The relevance of the Fourier 

series and the progression to Fourier Transform, Discreet Fourier Transform and Fast 

Fourier Transform, is explained for better understanding of time domain and 

frequency domain analysis. The measurement parameters that characterise bearing 

vibration measurement are statistically defined. The signal processing software is 

developed to perform continuous bearing vibration analysis, and acquisition of the 

vibration measurements. A series of time domain and frequency domain 

measurements of bearing defects is illustrated. 
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4.2 Time waveform Development 

Ramirez (1985:2) showed that the sine wave output on an oscilloscope can be 

described according to frequency. The time amplitude record of the sine wave, is 

termed the time domain waveform, (figure 4.1 a), and the frequency amplitude record 

of the sine wave, is termed the frequency domain spectrum, (figure 4.1 b). A spectrum 

is an arrangement or display of the frequency range contained in a waveform. The 

frequency representation of the sine wave is the reciprocal of the waveform period. 

The projected representation of the sine wave on to the frequency domain is in the 

form of an impulse that instantaneously rises and falls , with a peak amplitude equal to 

that of the sinusoid. A description of the time domain and frequency domain is 

illustrated in figure 4.1, with the time domain on the left and frequency domain on the 

right. The time domain shows a sine wave. A frequency impulse can be seen on the 

frequency domain, at a frequency of 25Hz, which is the frequency of the sine wave. 

The amplitude in they-axis is in milli-gravitational units, lmg = 0.00981rnls2
. 

(a) 

,, 

;. 
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Figure 4.1: Time Domain (a) and Frequency Domain (b) Waveform Representation 

The time domain sinusoid is characterised by positive and negative peak amplitudes 

with a reference median amplitude at zero. Similarly, the frequency domain spectrum 

is characterised by impulses with positive and negative peak amplitudes. The 

symmetry of the impulse about the zero amplitude reference, makes it appealing to 
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project only the positive peak rather than the full peak to peak swing, in representing 

the sinusoid on the frequency domain. The position of the impulse on the frequency 

spectrum indicates the frequency of the sine wave. 

At a time of zero seconds the sine wave does not have to begin with an amplitude of 

zero, but can begin with any amplitude. The position at which the sinusoid begins is 

characterised by its phase shift. In the case of the closest positive peak to time zero, 

occurring after time zero, the sinusoid is said to be delayed. A delay is denoted by a 

negative phase. In the case of the closest positive peak to time zero, occurring before 

time zero, then the sinusoid would have been advanced. An advance is denoted by a 

positive phase. The total range of phase shift that any wave can have is from -180° to 

+180° or 360°. The sine wave in figure 4.1 has a 90° phase delay. 

Ramirez ( 1985:1 0) noted that the system of representing phase within a 2n range is 

referred to as modulus 2n phase. A sinusoid that is advanced by 360° + 90° = 450° is 

not different from the same sinusoid advanced by 90°, so it can be represented as 

having a +90° phase shift. In the case of having a reference phase shift, then shifts 

beyond the 2n range can be represented as such. This system of representing phase 

beyond the 2n range is referred to as continuous phase representation. 

In the above discussion, a single sinusoid was considered. Now consider three 

sinusoids having different frequencies and phase shifts, were presented on the same 

time domain plane. A waveform of the combination of all the sinusoids would result. 

Without a look at the frequency domain, changes in the shape of a sinusoid wave are 

the only indication that some frequency components have been modified. The 

frequency domain would show the specific frequencies of each sinusoid as impulses 

with positive peak amplitudes of the respective sinusoids. 
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Ramirez (1985: 12) represented different frequencies on the same domain or plane, 

similar to the representation of different colours of the rainbow, and referred to the 

frequency domain plane as a frequency spectrum. The representation of physical 

waveforms in the time or frequency domain without the application of Fourier theory 

is referred to as analogue representation of a waveform. The phase shifts of the three 

sinusoids can only be determined mathematically using Fourier analysis, and not 

through analogue representation of waves on the time nor the frequency domain. 

Fourier analysis provides characteristic information of the waveform on the frequency 

domain plane, that is; the frequencies of the three sinusoids, their positive peak 

amplitudes, and their phase shift are determined. Figure 4.2 illustrates a combination 

waveform of three sinusoids on the time domain, and three frequency components on 

the frequency domain. The waveform was composed by sinusoids with frequencies of 

20Hz, 50Hz and 60Hz respectively. 

~~--~~--------, 

•• u • ----co'o;-----;;-';o-----;;:-----:-. --· 

' ( •- ----1f------1r--+-----------
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•,l--~~--.:,----.:.. ----c.;. "-"",., 

Figure 4.2: A Three Sinusoid Waveform Representation 

Unfortunately, however, the classical approach to Fourier analysis is frustrating for all 

except the simplest of waveforms. The simplest of waveform would be a sinusoid. A 

waveform that is non-periodic and random cannot be mathematically formulated or 

expressed as a an equation, and classic Fourier techniques cannot be applied. Special 

Fourier transforms are required for random waveforms. 
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4.3 Stationary Random Bearing Vibrations 

Rao (1995: 17) wrote that, if the magnitude of excitation acting on a vibratory system 

is known at any given time, the resulting system vibration is known as deterministic 

vibration. In a case where the magnitude of excitation is not known and cannot be 

predicted, then the resulting vibration is non-deterministic, or random, or stochastic. 

This is the random phenomenon of mechanical vibrations. 

Rao (1995 :821) recorded that vibration measurements that are not similar or identical 

even though the measurements were taken under similar conditions, give practical 

indication that the vibration is random. Bearing vibrations are an example of random 

phenomenon in that they are not identical in the magnitude of excitation in either 

force or motion for the same bearing condition, Dyer and Stewart (1978:227). 

Bendat and Piersol (1986:542) wrote that a random process is a collection of time 

history records that can be described by appropriate statistical parameters. A stationary 

random process has statistical parameters that do not vary with respect to time. The 

latter is considered appropriate since constant speed conditions were applied in the 

experimental work for this study. Figure 4.3 illustrates a random bearing vibration of a 

new bearing in the time domain and in the frequency domain. 
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Figure 4.3: Random Vibration, Time and Frequency Response 
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4.4 The Fourier Series 

Fourier analysis is performed through the application of Fourier series. The initial 

mathematical series of sine and cosine terms that could describe a periodic system 

were presented by Fourier in 1822, and is as follows; 

( 4.1) 

This expression is termed the Fourier series, and describes the frequency domain 

content of a periodic waveform. Where, y, is the periodic function; x, is the 

fnndamental frequency term in radians per second; in equation 4.1, ao, is the value of 

the peak amplitude of the fnnction over one period; a1, b1, a2 and b2, are the 

coefficients of the sine and cosine terms and represent peak amplitudes at multiple 

frequencies of x. Fourier expanded the series to include the Fourier integral before his 

death in 1830. Each sinusoidal term in the Fourier series is some integer multiple of 

the fundamental frequency and is referred to as a harmonic. The fundamental 

frequency is sometimes referred to as the first harmonic, but integer multiples greater 

than one are always referred to as harmonics. These harmonics are presented on the 

frequency domain plane as impulses at the frequencies of the smaller amplitude 

sinusoids. 

4.5 The Fourier Integral 

The Fourier integral is the tool used to investigate the frequency spectra of non

periodic waveforms. Kreyszig (1999:559) noted that the Fourier integral is developed 

from the Fourier series. Consider a waveform represented by a function x(t) in a 

certain time interval (t), whose time period Tis allowed to approach infinity. The time 

period ranges from negative infinity to positive infinity, that is, -oo to oo. 
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This means that the waveform does not repeat itself. To get the Fourier integral of this 

waveform, the general form of the Fourier series shown in equation 4.1 should be re

expressed in exponential form. Assignment of new variables and manipulation of 

Fourier coefficients results in a more compact exponential form of the Fourier series. 

00 

x(t) = Icn ejnwot (4.2) 
n=---co 

Cn is evaluated for the number of sinusoids that compose the waveform. In this case n 

= -oo, . .. , -2, -1, 0, 1, 2, ... , oo. When the Fourier coefficients have become a 

function of a continuous frequency variable w, and f in Hertz so that w = 2nf. The 

Fourier coefficients are given by the Fourier transform; 

f(w) = [ x(t)e-jwt dt (4.3) 

Although the Fourier integral is an improvement as compared to the Fourier series, 

both these methods of analysis require a mathematically defined waveform, which is 

complex for bearing vibrations. The solution to this problem is the Discrete Fourier 

Transform, (DFT). 

4.6 The Discrete Fourier Transform 

Proakis and Ingle (2004: 120) recognised that digital machines do not work with 

infinite values, but work with samples of time variables that are finite. A waveform is 

sampled if its amplitude values are determined at discrete points along the time axis. 

This means that the waveform can be plotted for these determined amplitude values, 

within the considered time interval. This plotted waveform is considered to be 

windowed because it has been limited within a finite time interval. Each sample 

exists at a single discrete time point, and its value is the amplitude of the waveform. 
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An analogue waveform x(t), recorded over a time interval, t, is digitised by taking, N, 

number of samples. Each sample, n, is part of a sequence comprising the total number 

of samples taken, that is n = 0, l ,2, ... , N - l. Sample n = 0 is the direct current 

sample, equivalent to an average amplitude term in a Fourier series. Each sample, n, is 

measured for the amplitude of the analogue waveform x(t) after every sampling 

period, c.p, over the total time interval, t. This means that the sampling rate or sampling 

frequency, fs = 1/c.p. The Nyquist frequency, fn, is the largest frequency sinusoid of the 

waveform that can be defined at a given sampling rate fs. This sinusoid has a 

frequency fn = fs/2 = 1/2c.p. 

Stander (2003: 1 0) referred to the Nyquist theorem which states that if a waveform x(t) 

is sampled at a rate f, that is equal to or more than twice the value of the waveform's 

largest frequency fn, then the analogue waveform x(t) can be recovered from the 

digital windowed waveform x(nc.p) precisely, and the digital time series contains all 

the information required to reconstruct the analogue waveform. 

Although the discrete Fourier transform can be expressed in terms of the Fourier 

integral, a more general mathematical expression of the discrete Fourier transform is 

as follows, with 'A = 2n/Nc.p = 2nlt radiance per second; 

N-1 

f(kA.) = <p Ix(n<p) e-ikl.n<(J (4.4) 
n=O 

Equation 4.4, enables the transformation of a time series of samples, to a frequency 

series of samples. Now, a random vibration waveform can be transformed to provide 

discrete frequency and amplitude values of sinusoids comprising the waveform. The 

performance of large numbers of repetitive calculations and the consequent time taken 

is the disadvantage of the discrete Fourier transform. 
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4.7 The Fast Fourier Transform 

The fast Fourier transform (FFT) is an algorithm for computing the discrete Fourier 

transform in a time efficient way. The fast Fourier transform reduces the number of 

major operations of the Discrete Fourier Transform. To simplify the algorithm, the 

length of the transform or total number of samples taken N should be a power of two, 

that is N = 2, 4, 8, 16, ... 2b, and b is an integer. A large number of samples 

provide better time resolution and results in the calculation of more frequency domain 

points. 

The fast Fourier transform performs, N log2 N, major operations as compared to N2 

operations of the Discrete Fourier transform. The number of major computational 

operations are reduced resulting in a fast algorithm for determining Fourier 

coefficients of the waveform, hence the algorithm's name Fast Fourier Transform. 

The original Cooley-Tukey algorithm uses a process referred to as a decimation in 

time, the Sande-Tukey algorithm uses decimation in frequency. These two algorithms 

apply where the number of samples N = 2b, and b is an integer. While the two 

methods differ, the result produced is the same. The fast Fourier transform algorithm 

used for signal processing here, is the Cooley-Tukey algorithm. Since fast Fourier 

transform computes a discrete Fourier transform, equation 4.4 applies. 

4.8 Time Waveform Statistical Parameters 

Oppenheim and Will sky (1983 :85) noted that a digital waveform can be statistically 

analysed according to the variation of the amplitudes with time. The average and 

mean value of the amplitudes of one waveform can be determined. A number of 

vibration measurements taken on one bearing operating under the same conditions for 

each measurement, will have similar statistical parameters, but will not necessarily be 

equal. 
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The statistical parameters will not be equal, because the vibration measurements are 

taken at different times. A group of vibration waveforms taken on one type of bearing 

defect, will have statistical parameters that are characteristic of the type of bearing 

defect concerned. A group of vibration waveforms and their statistical parameters 

form a data set, this is the plan for creating an input data set. 

The computation of statistical parameters on one waveform reqmres that the 

amplitude values be normalised. Normalisation is a process of scaling the numbers in 

a data set, in this case amplitude values, to improve the accuracy of the numerical 

computations that follow. A way to normalise data is to find the difference between an 

amplitude value and the mean amplitude value, and then scale each data value to unit 

standard deviation as follows; 

A I
. d D [Amplitude Data- Mean (Amplitude Data)] mp 1tu e ata = ------------'--....:....._ ___ _ 

Standard Deviation (Amplitude Data) 
(4.5) 

Once the waveform is normalised from amplitude values that are instantaneously too 

large or too small, the application of statistical formulas can be considered. 

The following statistical parameters are computed from a bearing vibration time 

waveform: 

(1) Rectified average, RA, is a computation of a positive valued average, which avoids 

having a negative sign on the average. Symmetry of the time waveform about the time 

axis allows for the consideration of only the positive amplitudes. The number of 

samples taken for each waveform was set at N = 2048. With the amplitude values 

defined as, y, the rectified average is; 

N-1 

LlYn! 
RA=-"~_o __ 

N 
(4.6) 
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(2) The mean, mu, IS the average amplitude and the first central moment of 

distribution. 

(4.7) 

(3) The range, mg, IS the difference between the highest and lowest recorded 

amplitudes. 

mg = max(y)- min(y) (4.8) 

( 4) The median, med, IS the centre amplitude, if the amplitudes are placed m 

ascending order. 

(5) Variance, va, is the second central moment of distribution, and a measure of how 

much the data differ from the mean. The deviation (Yn - mu) is squared to avoid a 

negative sign value. 

va = -'--n=---'.0 ___ _ 

N 
(4.9) 

(6) The standard deviation, sigma, is a measure of the data spread, range or deviation 

from the mean. Standard deviation is the square root of the variance. 

sigma= n=O 

N 
( 4.1 0) 

(7) Root mean square, RMS, estimates the mean of the normal distribution. The root 

mean square is equivalent to the standard deviation, so RMS = sigma. 
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(8) The maximum peak, Pk, is the largest amplitude value in a waveform, and due to 

symmetry only the positive peak is considered. 

Pk = maxlyl ( 4.11) 

Bunch et al. ( 1995 :412) noted that RMS and Peak values can be applied to reflect the 

energy level of the vibration, however they cannot be used for single snapshot 

detection of bearing damage as the expected values generally exhibit a wide range 

depending on the operating conditions such as shaft speed and bearing load. 

(9) Crest factor, Cf, is a ratio between the peak amplitude and the root mean square or 

standard deviation. The crest factor is used to evaluate the sharp peaks in the vibration 

waveform, like those generated from rolling element bearing defects. The crest factor 

can be trended for evaluation purposes. Akedson et al. (1985: 1) highlighted that the 

crest factor is relatively insensitive to changes in bearing speed and load. This enables 

direct assessment of bearing conditions with minimal knowledge of its history. 

Cf = ____!!__ 
RMS 

( 4.12) 

(1 0) Skewness, Skw, is the ratio between the third central moment of distribution and 

the cube of the standard deviation. The third central moment of distribution, which is 

related to skewness, is used to identify lack of symmetry in the data distribution due to 

bearing defect impulses. Akedson et al. (1985:265) noted that for a theoretically 

perfect normal distribution that follows the Gaussian function , all the odd moments 

will be zero and the even moments take on finite values. Rectifying the third central 

moment by the standard deviation, results in the odd moments taking on finite values 

and no longer the value of zero. Hence, the third central moment can be used to 

monitor the bearing condition in the form of a variable of skewness. 
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n=O 

Skw= __ N __ _ 
sigma 3 

( 4.13) 

( 11) Kurtosis, K, is the ratio between the fourth central moment of distribution and the 

fourth power of the standard deviation. The fourth central moment is rectified by the 

standard deviation to enable odd moments taking on finite values. Akedson et a!. 

(1985:270) showed that an undamaged bearing has a kurtosis value of 3.0, indicating 

a Gaussian probability density function. Applying the high frequency detection 

technique, a value as high as 10.0 signals incipient bearing damage. 

N K=-----
sigma4 

( 4.14) 

(12) Dyer et a!. (1978:232) and Alfredson et a/.(1985b:4) expressed the amplitude 

characteristics of a vibration waveform x(t) in terms of a probability density function 

(PDF), P(x). This is estimated by determining the time duration for which a signal 

remains in a set of amplitude windows, that are equal to the total samples, N, of the 

waveform. 

N ~t 
P[x::; x(t)::; (x+~ x)]= I-" 

n=l T 
( 4.15) 

Where, ~tn, is the time duration of a single sample, n, that falls in a single sample 

amplitude window ~x of the vibration waveform x(t). Here, T, is the window time. 
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4.9 Data Acquisition and Signal Processing Software 

The data acquisition instrumentation used in the test rig is configured to the Lab VIEW 

version 7.1 signal processing software. LabVIEW was used to perform online signal 

processing because it is applicable to continuous condition monitoring. The graphic 

user interface in lab VIEW provides a suitable environment for online signal 

processing. Lab VIEW operates through the creation ofvirtual instruments. 

Gani et al. (2004:64) referred to a virtual instrument as an instrument based on a 

graphical concept of data flow programming. The layout of the signal processing path 

in a virtual instrument begins with acquiring an electrical signal from a data 

acquisition card device. Then the signal is linked to a signal processing function such 

as the time domain and frequency domain functions, and through the application of 

signal controls and calibration factors, the signal can then be displayed in a graphical 

window spectrum or stored in a digital storage device. Signal windowing, anti

aliasing, averaging and amplification are automatically performed before the signal is 

displayed in the time and frequency domain. The frequency domain function 

implements the Cooley-Tukey algorithm for the Fast Fourier Transform. 

A virtual instrument for the rolling element bearing condition monitoring rig was 

created, of which the construction flow diagram can be seen in figure 4.4. From the 

diagram it can be seen that the vibration signal and the load cell signal were acquired 

from different data acquisition cards and processed through different paths. The 

complete virtual instrument display window shows; a time domain and frequency 

domain vibration spectrum, a statistical probability density distribution histogram and 

the variation of statistical parameters concerned, a tachometer and load cell time 

domain window together with the digital speed and load scale display. The load scale 

was calibrated manually using a standard 5kg weight. 
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Figure 4.4: Virtual Instrument Construction Flow Diagram 

The virtual instrument display window can be seen in figure 4.5. Matlab version 7.1 

was used for offline signal processing which is suitable for periodic condition 

monitoring. Matlab was however most effective in experimental computations and 

neural network applications. The self-organising feature map toolbox was accessible 

with classes of programs that perform the Kohonen Self-Organising Feature Map 

algorithm. 

The virtual instrument and signal processing tools were set for a waveform having 

2048 samples, the number of samples in the positive frequency spectrum k = 

2048/2.56 = 800. Frequency resolution = 20000/800 = 25 Hz. The resolution was 

estimated to have at least 3 times the resolution between the bearing frequencies. 

Therefore the bearing frequencies could be closer than 3x25 Hz= 75Hz. To improve 

the resolution, a narrower frequency bandwidth needed to be selected. 
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Figure 4.5: Online Signal Processing Virtual Instrwnent Display Window 

4.10 Filtering of the Bearing Vibration Measurements 

Figure 4.6: New Bearing Unfiltered Signal Time Response 
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Filtering reduces signal nOise or conditions a waveform. The Butterworth infinite 

impulse response filter was used to remove the low frequency bands or sinusoids that 

are not required so that only bearing frequencies are present for analysis . The filtered 

waveform in figure 4.7 shows more closely spaced high frequency pulses than the 
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unfiltered waveform in figure 4.6. Notice that the low frequencies up to 50Hz have 

been cut off in the frequency domain ofthe filtered waveform, (figure 4.9). 
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Figure 4.7: New Bearing Filtered Signal Time Response 
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Figure 4.8: New Bearing Figure 4.9: New Bearing Filtered Signal 

4.11 Induced Bearing Frequencies 

The monitoring test conditions were kept stationary. This means that the applied load 

was kept constant, and so was the test shaft speed. The was, however, the inevitable 

small dynamic load due to the uneven rotation motion of the ball elements in and out 

of the load zone even when all misalignment is removed. The monitoring test speeds 

were those considered to be safe for the rig thereby avoiding the natural resonance 

frequencies of the loading mechanism and belt drive. The condition monitoring test 

speeds are shown in table 4.1. Table 4.2 shows the induced bearing frequencies at 

25Hz shaft speed according to the program in annexure 3 (p138). 
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Table 4.1: Condition Monitoring Testing Speeds 

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5 

900 rpm 1200 rpm 1500 rpm 1800 rpm 2400 rpm 

15 Hz 20 Hz 25 Hz 30Hz 40 Hz 

Table 4.2: Experimentation Induced Bearing Frequencies 

Bearing Shaft BPFO Hz BPFIHz 2BSF Hz FTT Hz Bspeed 

6008ZZ3 25Hz 127.9444 172.0556 166.3493 10.6620 83.1746 

6010ZZ3 25Hz 151.4962 198.5038 182.7821 10.8212 91.3910 

6012ZZ3 25Hz 151 .6968 198.3032 184.4132 I 0.8355 92.2066 

4.12 Loading Configuration 

The bearing loads considered for experimentations had to be determined through 

bearing design calculations and rig configuration. The selection of the load was based 

on the minimum operating or static load that could be sustained by any one of the 

bearings considered, which would also be safe for the monitoring rig. 

The monitoring rig configurations refer to the structural component mass that is 

additional to the hydraulic induced load applied on the bearing. The configurations 

take into consideration the mass of the different size bearing seats for different bearing 

sizes and whether the accelerometer used is that of the magnetic type or stud mount 

type. The configurations are tabulated in table A4.1 of armexure 4 (p 139). The rated 

design static loads are in table A4.2 of armexure 4 (pl39), of which the lowest was 

61.16KG. The operational load was calculated for an operational period up to failure 

of three years, two years, and one year. 

4.12.1 Rolling Element Bearing Life 

To determine the testing loads, bearing life calculations had to be considered. The L1o 

bearing life is a prediction of the operational period of the bearing if the bearing is 

used under proper application conditions, lubrication, alignment and temperature. 
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The following formulas were used to show the relationship between load and bearing 

life. 

(4.16) 

Where L10 = Rating life in millions of revolutions, and the base of ten refers to the 

rating life in terms of powers of ten, C = Static load that will allow one million 

revolutions before bearing failure, and P = Applied static load on the bearing. The 

bearing life rating may be calculated in terms of hours as in equation 4.17. 

(4.17) 

Where N = Shaft rotational speed in revolutions per minute, Lhr 10 = Rating life in 

hours that are in powers of ten. The equations above for the design of bearing life hold 

true for operational conditions where the shaft rotational speed, N, is considered to be 

constant and not accelerating. 

The programmed calculations shown in annexure 4 (p139), indicated that for the three 

years operational period the bearings would have to be subjected to the lowest loads. 

With the highest load being 31.7KG and the lowest being 18.03KG. Thus, the highest 

rig monitoring load was chosen to be 20KG. 20KG was safe for the rig and could be 

achieved by the hydraulic system. Monitoring tests were performed at the 

configuration load, that is when the hydraulic system is not activated. For the 

6012ZZ3C bearing the configuration load was 4kg. The other loads considered for 

monitoring tests were 5, 10, 15 and 20 kilograms. 
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4.13 Vibration Measurement Acquisition 

4.13.1 Natural Responses of the RoJling Element Bearings 

Vinh (1997:269) used impact testing with a manual harmner in experimental structural 

dynamics. Usually the test is applied at the beginning of a testing campaign to create 

an overall view of natural frequencies of a mechanical structure. The ability to overlay 

fault frequencies helps to accurately identify a particular bearing fault. Bearing faults 

cause the bearing and other machine parts to respond at their natural frequencies. So 

knowledge of the bearing and machine's natural frequencies assist in detecting bearing 

faults. Dominant frequencies are the bearing's natural frequencies. Figure 4.10 and 

figure 4.11 show the impact test, time and frequency response of the 6012ZZ3C deep

groove ball bearing. 
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Figure 4.10: Bearing 6012ZZ3C Impact Time Response 
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Figure 4.11: Bearing 6012ZZ3C Impact Frequency Response 

The time domain displays an instantaneous impact response, and the frequency 

response displays a bearing component frequency at 500Hz this is most likely that of 

the cage in contact with ball elements since the overall bearing frequency is at 

1200Hz. The natural frequencies of bearing 6008ZZ3C and bearing 601 OZZ3C, 
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were also determined through the impact test method, and their frequency responses 

are displayed in annexure 5(p 140). 

4.13.2 Natural Responses of the Condition Monitoring Rig 

Impact test method was used to determine the natural response of the critical 

structural component of the rig, the loading mechanism, because the accelerometer is 

located in this structure and the load is transmitted through the structure. Figure 4.12 

and figure 4.13 show the time and frequency response of the loading mechanism. 
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Figure 4.12: Loading Mechanism Impact Time Response 
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Figure 4.13: Loading Mechanism Impact Frequency Response 

The time domain shows a broad impact response, while the frequency domain reveals 

that the first mode of the load mechanism's natural frequency at 1OHz and the second 

at 36Hz. Rotational testing shaft speeds of 1OHz and 35Hz were avoided. The 

frequency response of the electric motor casing [shown in annexure 5 (p140)], 

indicates a response at 200Hz, and that of the base-plate at 350Hz. 
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4.14 Bearing Vibration Defect Pattern Measurements 

The bearing vibrations presented below were acquired at 25Hz with the 6012ZZ3C 

bearing subjected to an operating load of 5kg. For this reason the induced bearing 

frequencies are presented for a shaft speed of 25 Hz, whereas the other induced 

bearing frequencies are determined from annexure 3 (p 138). The purpose here is to 

show that there are differences in the vibration pattern depending on where the spall is 

located on the bearing. The raceways were slightly oiled but not excessively 

lubricated, just enough to prevent metal to metal contact and excessive noise, but also 

to ensure that only bearing defects are measured and not the effects of lubrication on 

measurements. Since all machine malfunctions were corrected, it was practically 

assumed that the vibration measurements were of bearing defects only. 

4.14.1 Outer Race Incipient Defect Bearing Noise 

The time domain in figure 4.14 is of a new bearing that was not lubricated with oil, to 

illustrate how the earliest incipient damage would occur. Although the noise 

amplitudes were not high the noise peaks appear close together because of the metal to 

metal contact. On the frequency domain, the metal to metal contacts excited the 1OHz 

frequency of the loading mechanism. At twice the shaft frequency, 50Hz, the contacts 

triggered the belt resonance frequency. 
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Figure 4.14: Noisy Bearing Time Response 
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Figure 4.15: Noisy Bearing Frequency Response 
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The sidebands of the belt resonance are very low, indicating that the problem is not 

with the belt but that excitation is emanating from the bearing. The amplitudes at the 

induced bearing frequencies were low indicating that there are no definite bearing 

defects, and that the electric motor casing and the base-plate are responding at 200Hz 

and 300Hz frequency range respectively. The fundamental train frequency (FTF) 

might have influenced the response of the loading mechanism because they are of 

equal frequencies. The important feature is the rise in amplitude at the natural 

frequency of the bearing, in the range 1OOOHz to 1200Hz. This rise in amplitude at 

1OOOHz - 1200Hz, may be referred to as the haystack, and indicates the most earliest 

incipient bearing damage occurring. Another indication is that machine malfunctions, 

such as misalignment, were minimum if not completely removed. 

4.14.2 New Bearing Noise 

Figure 4.16 and figure 4.17 are the time and frequency responses of a new bearing 

however this time adequate lubrication had been provided. In the time domain the 

noise amplitude was low, the noise peaks are within a low frequency carrier waveform 

as displayed. Due to the low frequency carrier the amplitude is slightly higher than 

that shown in figure 4.14. 
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Figure 4.16: New Bearing Time Response 

The frequency domain shows that the low carrier frequency is I OHz, which was that 

of the loading mechanism. The peak in the frequency domain is an indication of the 

energy of the I OHz waveform. This I OHz response was the result of the inevitable 

dynamic load from the bearing. The shaft frequency, 25Hz, and belt resonance 

frequency, 50Hz, have very low amplitudes due to the dynamic loading only. Without 

dynamic loading these amplitudes would be similar to signal noise. The induced 

bearing frequencies are between the 50Hz and 200Hz frequency band cause by the 

dynamic load and slight metal to metal contact. Electric motor casing frequencies are 

also responding. This is a baseline measurement to which incipient bearing damage 

can be compared. There were no machine faults and bearing faults present. 
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Figure 4.I7: New Bearing Frequency Response 
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4.14.3 Ball Bearing Defect 

A vibration measurement of a spall defect on the ball element is shown on the time 

domain in figure 4.18, and the frequency domain in figure 4.19. Two definite quick 

impulses can be seen at the ball speed or ball spin frequency. The uneven rotation of 

the ball is the reason the pulses are not evenly repetitive. 
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Figure 4.18: Ball Cut Time Response 

On the frequency domain, there is a peak at the ball speed, or ball spin frequency 

(BSF) of 92.2Hz, and at the frequency at which the ball excites the inner and outer 

race, twice ball spin frequency (2xBSF), of 184.4Hz. The whole frequency band 50Hz 

- 200Hz responds with visible side bands. The impulse energy is high, at 30mg's 

(Amplitude is in milli-gravitational acceleration, lmg = 0.00981 rnls2
) . The amplitude 

in the bearing resonance range 1OOOHz - 1500Hz is high. The bearing component 

frequencies of the contacting cage and ball elements is high at 500Hz, 700Hz. 
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Figure 4.19: Ball Cut Frequency Response 
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4.14.4 Inner Race Spall Defect 
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Figure 4.20: ±lmm Inner Race Defect Time Response 

Figure 4.20, reveals a pulse train of a ±lmm inner race spall. There were four 

distinctive pulses created when the spall passed through the load zone, at the ball pass 

frequency of the inner ring (BPFI). The pulses out of the load zone generated low 

amplitudes. 

In figure 4.21 the ball pass frequency of the inner race (BPFI) at 198.3Hz has a visible 

peak indicating an inner race defect. The bearing component frequencies are low 

indicating that the defect is at a specific location. The amplitude at the bearing 

resonance frequency (1200Hz) which means that there is a bearing fault. There are 

visible harmonics of the induced frequencies at 2000Hz. 
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Figure 4.21: ±lmm Inner Race Defect Frequency Response 
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4.14.5 Outer Race Crack Defect 

With the outer race defect, a pulse train through out the whole time domain is visible, 

since the defect was in the load zone. Figure 4.22 shows the pulses with similar, but 

not equal amplitudes because of the dynamic load in the bearing and the uneven 

rotation of the ball elements. The pulses occurred at the ball pass frequency on the 

outer ring spall (BPFO). 
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Figure 4.22: Outer Ring Cut Time Response 
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Figure 4.23: Outer Ring Cut Frequency Response 

On the frequency domain there is a definite peak at the (BPFO) of 151 ,67Hz, 

indicating a defect on the outer ring. The frequency band of the bearing response is 

wider due to induced harmonics (700Hz - 1600Hz) and higher frequency harmonics 

are visible. The high amplitudes at the bearing resonance frequencies and at the BPFO 

indicate an outer race fault on the bearing. 

80 



Chapter 4 Signal Pre-processing Techniques 

4.15 Bearing Vibration Defect Severity Measurements 

The purpose here is to show that the are differences in the vibration pattern depending 

on the severity of the bearing defect, as the bearing damage progressively passes 

through the four stages of failure. A single location for all the defects was chosen on 

the outer race. The testing operational conditions were not changed. Since all machine 

malfunctions were corrected, it is assumed that the vibration measurement was of the 

bearing defect only. 

4.15.1 Stage one Bearing Defect 

Stage one is represented by a new bearing. The amplitude values from the time 

domain can be represented by a histogram. A lubricated new bearing has a steeper 

histogram than a bearing that is not lubricated, because there is less noise peaks in the 

lubricated bearing. Both histograms follow the Gaussian curve, although the variances 

differ. 
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Figure 4.24: Stage One New Bearing Figure 4.25: Stage One Noisy Bearing 

4.15.2 Stage Two Bearing Defect 

Stage two of incipient bearing damage is represented by a ± 1 mm spall on the outer 

ring. The time domain of this defect is shown in figure 4.26, where a pulse train can 

be seen through out the whole domain. The spall was small enough for the pulse to be 

sharp because only the outer ring responded. 
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Figure 4.26: Stage Two Outer Race Defect Time Response 

The histogram (figure 4.27) indicates that the majority of the amplitudes represent 

noise. The steepness or low variance of the histogram indicates that only the outer ring 

pass frequency (BPFO) responded. 
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Figure 4.27: Stage Two Outer Race Defect Probability Density Distribution 

Figure 4.28: Stage Two Outer Race Defect Frequency Response 

The frequencies (figure 4.28) are a combination of side bands from 700Hz to 1500Hz 

and have high amplitudes, and only a bearing defect is present. 
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4.15.3 Stage Three Bearing Defect 
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Figure 4.29: Stage Three Outer Race Defect Time Response 

The pulses of a stage three defect were broader and uneven (figure 4.29). This is 

indicates that the spall is larger and more time is spent as the ball element passes over 

the spall. The histogram indicates definite pulses of a bearing defect (figure 4.30). In 

the frequency domain (figure 4.31) the contact ball elements respond at 800Hz. 
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Figure 4.30: Stage Three Outer Race Defect Probability Density Distribution 
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Figure 4.31: Stage Three Outer Race Defect Frequency Response 
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4.15.4 Stage Four Bearing Defect 
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Figure 4.32: Stage Four Outer Race Defect Time Response 

Here the pulse train is made up of a combination of sharp and broad pulses (figure 

4.32). The histogram is steep but has a larger variance due to the combination of 

pulses (figure 4.33). This stage is characterised by BPFO harmonics in the frequency 

domain (figure 4.34). 

Figure 4.33: Stage Four Outer Race Defect Probability Density Distribution 

Figure 4.34: Stage Four Outer Race Defect Frequency Response 
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4.16 Summary 

The explanation and relevance of Fourier theory enabled a better understanding of the 

time domain and frequency domain layouts. The statistical parameters used in the 

analysis were highlighted. A virtual instrument for signal processing was developed in 

LabVIEW. The relevance of filtering was discussed. Vibration data acquisition was 

performed. The natural responses of the monitoring rig and tested bearings were 

acquired through the impact hammer test. To highlight the difference in bearing 

defects and defect severity, the bearing defect vibration measurements were illustrated 

in the time domain and frequency domain. A data set of statistical parameters of 

different bearing defects can be created as an input data set for the neural networks. 
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Chapter 5 

Application of Self-Organising Feature Maps 

5.1 Introduction 

Chapter 5 concentrates on the operational principles of Kohonen's Self-Organising 

Map neural network. Kohonen's Neural Network (KJ\fl'J) may be referred to as a Self

Organising Map (SOM), or Self-Organising Feature Map (SOFM). The Self

Organising Feature Map enables good cluster visualisation of a data set and is the 

main reason why this network was chosen, i.e. to create cluster visualisation of 

bearing defects. The computations that lead to the visualisation of data clusters are 

governed by the learning algorithm of the Self-Organising Feature Map network. The 

Self-Organising Feature Map algorithm and architecture of the network are discussed 

in detail, creating a better understanding of how bearing defect data can be clustered 

and visualised for analysis. 

Architecture is the layout of the components that make up a Self-Organising Feature 

Map. A comparison of the learning algorithms of unsupervised networks, such as 

Hebbian an Kohonen algorithms, is performed to enable better understanding of the 

competition concept that takes place between neurons. An explanation of the Self

Organising algorithm and its training procedure is given, followed by an explanation 

of data clustering and classification. Analysing the classified clusters enables the 

identification of bearing defects. 
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5.2 Self-Organising Feature Map Architecture 

Demuth (2001 :5) and Dorf (1993 :420) described the architecture of a Self-Organising 

Feature Map neural network as having one output layer and no hidden layers. A layer 

consisting of elements, or neurons, or processing units, that are arranged in a 

geometric lattice such that each neuron has a set of neighbouring neurons. The output 

layer is in the form of a rectangular or hexagonal geometric lattice structure, where 

neighbouring neurons are connected by lateral connection weights ~- Each neuron is 

connected to all input data values through input connection weights W. Each neuron 

has a competitive transfer function linked to the operations of all connection weights 

to provide an output for the output layer. The input vector p is not a layer. There are S 

number of neurons in the output layer. Figure 5.1 shows the described architecture. 

Included in the figure is the winning neuron, which is created when the self-organising 

feature map learning algorithm is applied. 

Output Layer 

Wm mg 

S- Neurons 

Figure 5.1: Symbolic Architecture of Kohonen's Self-organising Feature Map 

87 



Chapter 5 Application of Self-Organising Feature Maps 

The input data is numerical, which enables the network to perform learning and 

training algorithms. Learning and training in a neural network is the manipulation of 

the input data with other numerical vectors or matrices to achieve an output. The 

output of a Self-Organising Feature Map is characterised by the input, and does not 

have to be a desired output. In the case of Self-Organising Feature Maps, the output is 

a cluster mapping of the input data. An input column vector p consist of a number of 

data values R. R, is the size or dimension of the input vector. The number of 

neurons S in an output layer and the size or dimension of the input vector R, are 

different. The input data may also be represented in a matrix form, where each column 

with R data values in the matrix represents a single input vector or a single 

considered feature. The number of input vectors Q depends on the number of 

features considered in the data set. An input data matrix is therefore an R-by-Q 

matrix. The input data matrix p of input vectors can be shown as follows; 

P, ,, p,,2 

p= 
P2,1 P2.2 (5.1) 

PR,l PR,z 

Each neuron, j, is part of all the neurons in the output layer, so that there are, j = 1, 

2, 3, ... , S neurons. Each neuron, j, is connected to all the input data values in each 

input vector, through numerical input connection weights or input synaptic weights, 

W. The number of numeric connection weights for neuron j is therefore equal to the 

dimension R of each input vector. For one input vector, an input connection weight 

vector w 1 can be represented in a matrix where each column is a vector of input 

connection weights for neuron j. 
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The matrix of input connection weight vectors can be shown as follows; 

I 
wi ,j 

[ 

w, .2 
I 

w,,s 
I I I 

WI= 
w2,j w 2,2 w2.s (5.2) 

I 
W R,j 

I 
W R,2 

I 
WR,S 

Each input vector in the matrix of equation 5.1 has its own input connection weight 

matrix similar to the one in equation 5.2. The number of sets of input connection 

weight matrices is equal to the number of input vectors Q. So an input connection 

weight vector matrix w 1 may be shown in terms of the different input vectors as 

follows; 

W I =[WI
1 

I WI] w2 ... Q (5.3) 

Equation 5.3 is a complete representation of all the input connection weights in a Self

Organising Feature Map neural network according to the number of input features 

considered. 

Willshaw and von der Malsburrg (1976:431) referred to the geometric lattice structure 

of the output layer as its topology. The neurons in the output layer are arranged in a 

one or two-dimensional lattice structure, a topology that ensures that each neuron has 

a set of neighbouring neurons. The two-dimensional topology enables better analysis 

of large data sets than the one dimensional topology. A three, four or more 

dimensional topology can be created, however since analysis is performed on a two

dimensional surface, a two-dimensional output layer topology is used. With correct 

computer equipment visualisation and analysis can be done in two and three 

dimensions, which allows for the creation of a three dimensional topological map. 
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Two-dimensional topologies can be either rectangular or hexagonal, the hexagonal 

topology was chosen. The Kohonen topological model is used in this research for its 

data compression capabilities whereby the number of neurons S in an output layer is 

much less than the size or dimension R of the input vector. 

The size of an input vector R determines the number of coordinates required to plot 

the vector. A Cartesian plane is a plane in Euclidian space of two coordinates. The 

size or dimension of an input vector R is equal to the coordinates in Euclidean space. 

The input connection weights W are adjustable parameters of the neural network. 

Through training, a network algoritlun adjusts the connection weight parameters. 

Neural networks whose desired output is known use supervised learning algoritluns, 

and those whose output is unknown and depends on the input data, use unsupervised 

learning algoritluns. The Self-Organising Feature Maps use an unsupervised learning 

algoritlun. 

5.3 Unsupervised Learning Algorithms 

5.3.1 Hebbian Algorithm 

Hebb (1949:5) developed the original unsupervised learning algoritlun. Hebbian 

learning extracts correlated information from the input space and creates a topological 

mapping of the input where data neighbours in the input space are mapped to neuron 

neighbours in the output space. 

For an, n = 1, 2, ... , R, dimensional input vector x, connected to neurons through 

input connection weights w , the output y of neuron j is computed in the following 

manner; 

R 

y j = al +I w ;n xn (5.4) 
n=l 
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where a1 is a fixed bias value and w1jn is the connection weight of neuron j to the n1
h 

input. 

5.3.2 Oja's Rule 

Considering relevant constants, the change in connection weight for Hebbian learning 

as the weights vary with each input, results in a new weight Wj (n + 1) computed as 

follows: 

w ~ (n+ 1) = w ~ (n) + l1 y j (n) x o (n) (5.5) 

where the variables are the same as for Hebbian learning and l1 is the learning rate 

parameter. However this learning rule leads to unlimited growth of the connection Wj. 

This problem is overcome by normalising the learning rule. Oja (1982:267) introduced 

the normalisation of the Hebbian learning rule, and is as follows: 

w] (n) + T) Y/n) X 0 (n) 
w] (n+ 1) = -----;========::::::::::===== 

I(w](n)+TJY/n)x"(n) / 

(5.6) 

n=l 

5.3.3 Competitive Learning Algorithm 

Haykin (1994:403) noted that in competitive learning, neuron j, can be the winning 

neuron, if the neuron's internal activity level vj is the largest among all the neurons in 

the network. The output Yj, which is the sum of the input connection weights to the 

winning neuron j, is set equal to one. The output of all the neurons that lose the 

competition are set equal to zero. A neuron learns by shifting connection weights from 

inactive to active input nodes at the winning neuron. A neuron that does not respond 

to a particular input pattern, means that no learning takes place in that neuron. The 

winning neurons connection weights give up some amount of weight value which is 

equally distributed among the active input connection weights, that is 
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the winning neuron' s connection weights, so that neuron j, the winning neuron, 

moves towards the input data pattern. Taking 11 as the learning rate parameter, the 

standard competitive learning algorithm defines the change in input connection weight 

as follows: 

neuron j wins 

(5.7) 

neuron j loses 

Grossberg (1976a: 187) divided competition into two basic types: hard and soft. Hard 

competition means that only one neuron wins the input resources, as in the 

competitive algorithm. Soft competition means that there is a clear wiJUling neuron, 

but its neighbours also share a small percentage of the inputs resources, as in 

Kohonen's algorithm. 

5.3.4 The Learning Vector Quantisation Algorithm 

Kangas et al. (1990:93) observed that the best results for pattern classification were 

achieved through the combined use of an unsupervised Kohonen Self-Organising Map 

with a supervised learning algorithm or neural network such as the Learning Vector 

Quantisation neural network (LVQ). 

However, Hay kin ( 1994:427) noted that the learning vector quantisation neural 

network (L VQ) is a supervised network, but has a non-linear competitive layer with a 

competitive transfer function, and a linear output layer with a linear transfer function. 

This linear transfer function enables the output to be placed in groups or classes. 

With the input connection weight vector w1i of neuron j identified to belong to some 

predefined class label, and the input connection weights Wjn also labelled to the 

predefined classes, then, according to Kangas et a!. (1990:94 ), a supervised learning 

algorithm can be used to fine tune the coJUlection weights. With an input vector x, 
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and for each iteration t, the learning vector quantisation algorithm can be written in a 

compressed form as: 

where s(t) = + 1 if x and w~ belong to the same class, 

But s(t) = -1 if x and w1
j belong to different classes, 

(5.8) 

Here 11(t) is the learning rate factor, O<ll(t)< 1, and Ocj is the class delta function (8cj 

= 1 for c = j; and Ocj = 0 for c-:~:- j) where c is the defined class of the winning neuron. 

The neighbourhood set around the winning neuron is the winning neuron itself 

because of the class delta function. 

5.3.5 The k-means Clustering Algorithm 

In order to differentiate definite clusters the k-means clustering algorithm is used, as 

opposed to just classifying any particular cluster using the Self-Organising Map. 

MacQueen (1967:281) adopted the k-means clustering algorithm as a vector 

quantisation method. The algorithm minimises the sum of squared errors among a 

number of k clusters. The cluster centre coordinates are iteratively located. To 

estimate the validity of the k number of clusters, a validity criterion such as the 

Davies-Bouldin index, is used. Bouldin (1979:226) defined the Davies Bouldin index 

(DB) as a measure of the validity of the number of clusters obtained with the k -means 

method. This index is a function of the ratio of the sum of vector-cluster distance and 

centre-cluster distance, (equation 5.9), With eb h as the average Euclidean distance of 

the vectors in class b to the centre vector of class h and dbh as the distance between 

the centre vectors of clusters band h: 

1 ~ { e bh + e hb } DB=- L..max 
k b=l d bh 

(5.9) 
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5.4 The Self-Organising Feature Map Algorithm 

Kohonen (1982a:59) developed and modified the self-organising feature map 

algorithm. The self-organising feature map algorithm consists of three processes: 

competition, cooperation and adaptation. 

5.4.1 Competitive Transfer Function 

Let x 1, x2, x3, • .. , xR be the input data values of an, n = 1, 2, ... , R dimensional input 

vector x. For an output layer with j = 1, 2, 3, ... , S neurons, the input connection 

weight vector w\ has w'i, , w'i2 , w'i 3, , w'iR as the corresponding input connection 

weights to neuronj. Let the lateral connection weight vector wL have ~j,-K , . . . , ~j,-I 

, ~j,o , w\ 1 , ••• , w\K as lateral connection weights to neuron j, where K is the 

radius of neighbouring neurons for lateral or layer interaction. Individual neuron 

outputs Yi, y2, y3, ... ,Ys make up the output vector y of the network, where S is the 

number of neurons in the output layer. Let the net input to neuron j, be Ii then; 

R 

lj = IwJnxn (5.10) 
n=l 

The output of neuron j at time or iteration t, may be expressed as follows; 

(5.11) 

where f(·) is a non-linear function that limits the value ofyi (t + 1) and ensures that 

Yi (t + 1) ~ 0. Thus, Yi (t + 1) is the output of neuron j at iteration t + 1, and Yi+k (t) is 

the output of neuron U + k) at the previous iteration t. p controls the rate of 

convergence of the iteration process. The non-linear function f(-) causes the output 

Yi (t + 1) to stabilise in a certain fashion depending on the convergence rate p. The 

outputs stabilise in a cluster where the initial output Yi (0 + 1) is maximum. 
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5.4.2 Competition 

Competition takes place between output layer neurons, to find the neuron that best 

matches the input vector x. In accordance with the competitive transfer function, a 

neuron with a response similar to the stimulus Ij wins the competition and determines 

where a cluster is to be formed. The stimulus is the inner product [w1
j]Tx of the 

transposed input connection weights vector [w1
j]T and the input vector x. The largest 

inner product [ w1
j]T x, when comparing the inner products of all the neurons, shows 

where the winning neuron and the centre of a cluster is to be located. 

The neuron with the shortest Euclidean distance is the winning or best-matching 

neuron and becomes the centre of a cluster. For computing positive Euclidean 

distance, the norm of the vector difference of input and input connection weights is 

shown as follows; 

JJx-w]JJ = ~(x - w I )2 + ... + (x - w r )2 
I J I n Jn 

(5.12) 

JJx-w ~ JJ = f(x -WI )2 + ... + (x -WI )2 '\j I S I n Sn 

5.4.2.1 Vector Quantisation 

Euliano et al. (2000:315) showed that vector quantisation reduces the amount of data 

during the execution of the learning algorithm. A vector quantiser with minimum 

encoding distortion is a Voronoi quantiser. A reproduction vector defined and 

encoded by the Voronoi quantiser is a Voronoi vector and the region in input space 

represented by the Voronoi vector is a Voronoi cell. A V oronoi cell is created using 

the nearest-neighbour rule based on grouping data with a code that reduces the 

distortion measure. The Kohonen self-organising feature map is an approximate 

vector quantisation algorithm, since the output layer has neurons that act similar to 

Voronoi vectors by representing clusters of the input data set. 
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Consider an input data set of statistical parameters obtained from bearing vibration 

measurements. The program used to determine the statistical parameters is shown in 

annexure 6 (p 142). The measurements were obtained from damaged 6008ZZ3C deep-

groove ball bearings subjected to a static load of 4kg and a running speed of 15Hz. 

The statistical parameters investigated were: RA - rectified average, RMS - root mean 

square, Pk - peak value, Cf - crest factor, Skw - skewness, K - kurtosis and Std -

standard deviation. The testing parameters were: Spd- speed and Load - Kg. Table 5.1 

shows the input data set with five bearing vibration measurements taken for each 

defect condition of the bearing. Each statistical vector has a dimensional SIZe, R, 

equal to 40. The label column indicates the bearing defect concerned. 

RA Rl-1S Pk Cf Skw K Spd Kg 
0 . 00330 7 6 0 . 00 42 144 0.017741 4 . 2097 - 0 . 048539 3.364 0 . 9 4 newia 
0.003203 0 . 00 41633 0.02668 6.4084 0 . 11518 4. 79 4 0 . 9 4 new i a 
0 . 00341 15 0 . 00 42945 0.01726 3 4.0 1 98 -0.012241 3 .1 932 0 . 9 4 new I a 
0 . 0033473 0 . 00 4 3 095 0.0168 35 3.9064 0.03 7 124 3 . 3999 0 . 9 4 new I a 
0 . 0033 5 57 0 . 0043 4 0.021 973 5.063 - 0.0313 12 4 . 0867 0.9 4 new I a 
0 . 02 1 337 0.032589 0.3534 10.844 0 . 4 11 38 1 6 . 33 0 . 9 4 Ballc u ti a 
0 . 023885 0 . 03927 0 . 3 1283 7 .9663 0.03697 4 13.2 57 0.9 4 Ba llc utia 
0 . 023 1 07 0 . 031858 0. 1 59 1 3 4 . 9949 0. 1 05 5 . 32 5 0.9 4 Ba llc ut i a 
0 . 021326 0.031123 0 . 20823 6.6905 - 0.002 420 1 8.7968 0 . 9 4 Ballcutia 
0.024 7 16 0.039949 0 . 2672 6.6886 0. 1067 4 1 3 . 932 0 . 9 4 Ballcutia 
0 . 080 7 45 0. 13172 0 . 83 4 5 6 . 33 5 4 - 0 . 008 78 18 10 .1 87 0 . 9 4 Ou ter1rrun ia 
0 . 07 42 5 8 0. 10957 0.52632 4.8036 - 0 . 065 1 4 1 5 . 8 923 0 . 9 4 Outer 1rrunia 
0.08 111 8 0.13534 0.70434 5. 2 042 - 0.0 72013 8 .3707 0.9 4 Ou ter1rruni a 
0.093437 0 . 14872 0 . 79 124 5 . 3203 - 0.021828 8 .1492 0.9 4 Ou ter 1rruni a 
0.081343 0. 12447 0 . 70632 5 . 6747 0.0 2 6185 7.8233 0.9 4 Ou ter 1rrunia 
0. 1 4772 0 .1 9959 0 . 8 1394 4 . 078 0 . 0044037 4.5498 0.9 4 InnerCrackia 
0 .1 17 34 0. 15644 0 .84745 5 . 4 1 73 0.0 42 1 08 4.8325 0.9 4 InnerCra c kia 
0 .1 2528 0.16982 0 .73235 4 . 3 124 0.04 1 41 7 4.4982 0.9 4 InnerCra c kia 
0 . 12628 0. 17435 0.86378 4. 95 43 - 0.0 5 4 576 5 .4489 0.9 4 InnerCrac kia 
0 . 13729 0. 185 7 1.1084 5. 9689 0 . 0206 51 6 . 422 0 . 9 4 InnerCrac kia 
0 . 088943 0. 1501 4 0.93155 6. 2044 - 0 . 022703 10 . 998 0 . 9 4 Ou ter2rruni a 
0.1 0684 0. 182 52 1.0575 5 . 7937 0.1096 10 . 082 0.9 4 Ou te r 2rrun ia 
0.10 202 0. 17 88 7 1.1447 6 . 3998 0.16724 12.7 1 6 0.9 4 Ou ter2rruni a 
0.085 84 0. 1584 1 . 01 88 6.4318 0 . 1 30 1 1 5.094 0.9 4 Ou te r 2rruni a 
0.1047 0. 18294 1 . 1 308 6 .1 8 1 0 .1 217 6 12 .88 1 0.9 4 Ou te r 2rruni a 
0.0 33446 0.058388 0. 64237 11. 002 - 0.3496 31.173 0 . 9 4 I nne r 1rruni a 
0. 030 1 32 0.0445 1 8 0 . 4 1866 9.4045 - 0.35882 1 9 . 311 0.9 4 Inner1rrun i a 
0.026551 0.03496 1 0 .1 96 5 5.6206 - 0. 17199 4.49 18 0.9 4 Inner1rrunia 
0 . 031549 0.04762 1 0.42024 8.8247 - 0. 1 78 1 4 1 5 . 789 0 . 9 4 Inner 1rrunia 
0 . 028083 0.04 1 529 0.37 1 43 8 . 944 - 0.0 1 6777 14 . 39 0 .9 4 Inn e r 1rrunia 
0 . 043322 0.067 7 5 2 0 . 42 186 6.2265 -0.13226 11 . 49 1 0.9 4 OuterCrac kia 
0 . 037536 0 . 06009 0.4065 6 . 7 64 8 - 0.16357 12 . 9 4 8 0.9 4 Out erCrackia 
0 . 04 2 54 1 0 . 066 1 4 0 . 48427 7 . 3219 - 0 . 20626 11. 612 0.9 4 Oute rCrackia 
0 . 039268 0 . 06 1238 0.4274 1 6 . 9795 - 0 . 038607 12 . 956 0.9 4 Oute rCrackia 
0 . 039657 0.063378 0 . 403 75 6.3 7 0 5 - 0.0 1 2928 1 2 .689 0.9 4 OuterCrackia 
0.025859 0 . 040126 0 . 269 7 6. 7 2 12 0.3256 4 1 0 . 88 6 0.9 4 Inner2rrunia 
0 . 033583 0 . 0 5 4 77 5 0 . 289 69 5.2888 0.038474 8 . 2877 0.9 4 Inner2rrunia 
0 . 02 5 439 0.037356 0 . 22 586 6.0461 - 0 . 20454 7.3008 0 . 9 4 Inner2rruni a 
0.03 0203 0 . 048433 0 .4 3286 8.937 2 -0 . 0 41 369 19 . 822 0 . 9 4 I nner2 rrun ia 
0.034608 0 . 0 5 9899 0 . 5 33 05 8.899 2 0 . 46059 16 . 4 97 0 . 9 4 Inne r2 rrunia 

Table 5.1: Input Data Set of a 6008ZZ3C Deep-Groove Ball Bearing 
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For a three-dimensional input vector x = (1, -2, 2) and two output neurons A and B. 

The input connection weight vector of neuron A was w 1
A = (2, -1, 3) and that of 

neuron B was w 1s = (-2, 0, 1). For a learning rate coefficient 11 = 0.5 and a 

neighbourhood function h;j( d;j) = 1. The difference in Euclidean distance: 

llx-w~ll=~(t-2Y+(-2+tY+(2-3Y =F3 

llx-w~II=~(I+2r+(-2-0)2 +(2-IY =M 

gives the winning neuron as, neuron A because 3 112 < 14 112
• Now from table 5.1, the 

input vector RA has a dimension of 40. The map to be trained is a [6 , 5] hexagonal 

map, this means there are 30 output neurons in the topology. Each neuron has an 

initialised input connection weight to input vector RA. The winning neuron IS 

determined as in the example above with constants 11 = 0.5 and h;j(d;j) = 1. 

5.4.3 Cooperation 

Letting the winning neuron be neuron i, then the amount of help to neuron j is 

calculated using the neighbourhood function hu( d;j) , where d;.i is the distance between 

neuron i and neuron j in the output layer. The winning neuron also helps itself more 

than others because d;.i = 0. The topology defines which neurons in the two

dimensional layer are neighbours. The first neighbouring neurons including the winner 

neuron are located within the fust neighbourhood radius K 1, and are immediately 

connected to the winner neuron by lateral connection weights w\K· Doubling the 

neighbourhood radius increases the number of neighbouring neurons. The second 

neighbouring neurons are immediately connected to the first neighbouring neurons 

and all these neurons are within the second neighbourhood radius. A hexagonal 

topology was used, so the neighbourhood function hij( d;_i) takes the form of the 

hexagonal topology. 
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This way, all the neighbourhoods are represented by the neighbourhood function 

hij(dij). Since hij(dij) is a function of the distances between neurons dij, and the 

hexagonal topology was used, the neighbourhood function applied was that of a 

Gaussian function. Taking K1 as the neighbourhood radius at iteration t, the 

Gaussian neighbourhood function is represented as follows; 

d;/ 
( r;;-)-1 -21<' 

h (d ) = K -v 2n e ' IJ IJ I 
(5.13) 

The neighbourhood function begins by considering all the neurons in the output layer, 

and then correlates the directions of the weight adjustments according to the winning 

neurons of different clusters. The neighbourhood function then sluinks with each 

iteration, because of the decreasing number of neurons whose direction of weight 

adjustments are correlated. So there is lateral feedback between neurons with each 

iteration. 

5.4.4 Adaptation 

After a winning neuron has been located, the weights of the network are adjusted so 

that a better representation of the input data is established. The change in layer 

connection weight vector wL is dependent on the neighbourhood function hij( dij) 

through cooperation. Also, the change in input connection weight vector w1 is 

dependent on the initial output y and the rate at which the weights change TJ . Then 

the change in input connection weights for neuron j , after receiving input vector x, 

can be shown as follows: 

(5 .14) 

For an input vector x that changes at a rate that is extremely slow compared to the 

input connection weight vector w1 for all neurons, a justifiable assumption is that 
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due to the clustering effect, the output Yj of neuron j is either at low or high 

saturation depending on whether neuron J ts m the first, second or third 

neighbourhood of the winning neuron. A low saturation means neuron j is in a 

neighbourhood far away from the winning neuron and the output yj is allocated a 

null value. A high saturation means neuron j is in a neighbourhood close to the 

winning neuron and the output yj is allocated a value of one. 

In terms of iterations t, the input connection weight vector w~ (t) for neuron j at 

iteration t, is combined with the change in the input connection weight vector 

~w'i (t + 1) after iteration (t + 1) to give an updated input connection weight vector 

w1
i (t + 1). The learning rate function YJ(t) can be linear, inverted or quadratic, but the 

form is not critical. A linear learning rate function was used with Y]o as the initial 

learning rate, and the total number of iterations performed as T. After iteration t, the 

linear learning rate function YJ(t) is defined as follows: 

ll(t) = 110 ( 1- ~) (5 .15) 

With the learning rate coefficient defined by YJ(t) and the neighbourhood function 

hij(d;j) as a function of d;j, the updated input connection weight vector after iteration 

t, can be found as follows: 

(5 .16) 

To adapt neurons A and neurons B for the first iteration, in the example considered, 

equation 5.16 was used with constants Y] = 0.5 and hij(d;j) = 1. 
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w~(l) = [ ~~J + 0.5 ·I l[ -:2 J-[ ~~Jj 

1.5 J 1.5 

2.5 

The input connection weight vector for neuron A is adapted to w1A(l) = (1.5, -1.5, 

2.5) which is closer, in terms of Euclidean distance, to the input vector x = (1, -2, 2) 

in comparison to the initial connection weight vector of w 1A(O) = (2, -1, 3). 

5.5 Training Procedure 

Kohonen (1996: 11) described two methods of training a network: (1) incremental 

sequential, nonparametric training, (2) batch, parametric training. An unsupervised 

network such as a self-organizing feature map depends on the layout of input data in 

the 'R' dimensional space representing the input data, and thus the training is guided 

by this layout. 

In incremental training, the input connection weights are adjusted every time an input 

is introduced to the network, or every time an output is determined. Incremental 

training works well for supervised networks, where the target output is compared to a 

simulated output, every time an output is simulated. This is a continuous procedure in 

training until the difference between the simulated output and the targeted output is at 

am1rumum. 

Batch training involves the adjustment of weights when all the vectors in the input 

matrix have all been introduced to the network. In supervised networks the outputs of 

each vector input are still compared to the target output. 
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The differences for each vector input to its target output are combined for all the input 

vectors and an averaged difference is determined. This averaged difference determines 

the amount by which the weights are adjusted. Batch training works well for 

unsupervised networks with large input data sets. In batch training for unsupervised 

networks, the amount of change in input connection weight value ~w 1j for all winning 

neurons and neighbouring neurons are combined, and an average change in input 

connection weight value Avg(~w 1j ) is determined, and used to adjust all the weights. 

Batch training is the fastest of the two training methods. 

The training procedure for both types of training methods comprises five steps: 

• 

• 

• 

• 

• 

The input connection weights are initialised to arbitrary linear or random values . 

The input data is then presented to the self-organising feature map . 

The winning neurons of different clusters are established through competition . 

The connection weights of all winning neurons and their neighbours are adjusted . 

The input data is repeatedly presented until the network stabilises . 

5.5.1 Normalisation 

Normalisation is input data pre-processing. Normalisation reduces input data values 

that are much larger than or much smaller than the average input data value. An input 

space will present very large input data values or very small input data values far 

away from other data values. These values are outliers from the majority of values in 

input space. To reduce the number of outliers, normalisation is performed. 

A way to normalise data is to find the difference between a data value and the mean 

of the data set, and then scale each data value to unit standard deviation as follows: 

I D V 1 
[Data Value- Mean (Data Set)] 

nput ata a ue = -----------'----'--
Standard Deviation (Data Set) 

The input data set in table 5.1 was normalised in this manner. 
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5.5.2 Initialisation 

Random initialisation sets input connection weights that are uniformly distributed in 

the input range between minimum and maximum input data values. 

Linear initialisation is done by first calculating the eigenvalues and eigenvectors of the 

an input data vector x. Then the input connection weights are set to the middle of the 

range between the maximum and minimum eigenvectors. The input connection 

weights may also be set to the middle of the input range between the maximum and 

minimum input data values. 

Map Topology Map introduced to input data set 
0 6 I • • I • 

• • • • • 
2 • • • • • 5 • • • • • 
·:> 
..J • • • • • 

4 • • • • • 4 • • • • • 
5 • • • • • 

3 • • • • • 
6 • • • • • 
7 

2 • • • • • 
8 

9 • • • • 
10 

11 
0 2 4 6 8 10 2 4 6 

Figurer 5.2: Map Topology 

For the input data set in table 5.1, the [6, 5] topological map is shown on the left in 

figure 5.2. The map on the right has been initialised linearly, to the input data set 

shown by 40 red crosses. 
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In initialisation, the input data set is introduced to the map. The location of the input 

data set is controlled by the initial input connection weights. Batch training was used. 

The stabilised trained map can be seen in figure 5.3. The 40 black crosses are the 

location of each input element in Euclidean space for all 8 vectors considered. 

Map Projection 

1.5 . + 

+ 

+ 

-3 -2 -1 

Figure 5.3: Trained Map in Euclidean Space 

The 9th vector represents data labels. Each of the 40 input elements has a label 

according to a bearing defect. The colours on each neuron in figure 5.3 is a 

classification used to differentiate data clusters. Each cluster is labelled with a bearing 

condition or defect as can be seen in figure 5.4. These labels follow the layout of the 

trained map. Blue clusters of neurons represent an outer ring 2mm spall. The purple 

cluster neurons represent an inner race crack, the green cluster an inner ring lmm spall 

and the yellow cluster a new bearing. The tones in colour of the other neurons 

represent the additional bearing defects considered. 
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Labels 

Figure 5.4: Labelled Classification ofTrained Map 

5.5.3 Adaptive Adjustments 

Vesanto et al. (2000:26) performed the neural network training procedure in two 

phases. The first phase is the ordering phase and the second phase is the tuning or 

convergence phase. 

In the ordering phase, the neighbourhood function hij(dij) includes all the neurons in 

the output layer, and the distance dii between the winning neuron and nearest 

neighbouring neuron j is at a maximum. Through weight adjustments, the distance 

and number of neurons included in the neighbourhood function decreases. The initial 

learning rate coefficient YJo is close to unity, and there after the linear leaning rate 

function YJ(t) controls the learning rate coefficient YJ, keeping the rate above 0.1. 

In the fine tuning phase, the neighbourhood function hij( dij) includes only the nearest 

neighbours of the winning neuron i, which may eventually be 1 or 0 neurons. The 

neighbourhood function ensures that the output layer is not under-utilised in 

representing the input data. The learning rate coefficient YJ, is below 0.1 and in the 

range of0.01 or less for many iterations, enabling a good accuracy to be attained. 
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5.5.3.1 Quantisation Error 

With the correct number of architectural parameters, training of a self-organising 

feature map continues until an accuracy limit is reached. Otherwise, architectural 

parameters, such as the number of neurons, may be changed. The accuracy limits used 

are the quantisation error and topological error. Villmann et al. (1997:4) identified the 

quantisation error, as the percentage error of the Euclidean distance between the 

connection weights of only the winning neuron and the represented input data vector. 

The quality of the self-organising feature map is determined by the mean quantisation 

error, QE, which is computed as follows: 

Q [i)i/di) jjw;-pJI L ,.!.:;r=~l -----

1 R 

QE=~~--------~ 
Q 

(5 .18) 

Where hij(dij) is the Gaussian neighbourhood function, Wr is the input connection 

weight to data r and Pr is input data r. R is the number of elements in each data 

vector, and Q is the number of different data vectors used in the self-organising map. 

The lower the value of QE, the more closely the winning connection weight vector 

matches the input data vector. QE can be analysed in terms of fraction or percentage. 

The quantisation error is determined after every epoch, and kept under the error limit. 

5.5.3.2 Topological error 

Topological error is the percentage difference in the shape of the hexagonal output 

layer before and after the map is trained. Before training the shape is fixed, but after 

training the shape is irregular. Villmann et al. (1997:261) proposed the topographic 

function <DAm, which evaluates the topology preservation of the mapping in self

organising feature maps. The original untrained map is, m, and the trained map is A. 
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The neighbourhood preservation of the mappings \fJ m~A and \fJ A~m are denoted by 

fj(w0
1
) and fj(- W 0

1
); respectively, with j being the index of the neuron in the map and 

n = 1; ... ; R. The topographic function <I> Am of map MA is then defined by: 

I_L)j (w ~ ) W
1 < 0 

R jeA 
n 

<I>~ (w:,) = <1>~(1)+<1>~(-1) W
1 =0 n (5.19) 

I_ 2))w~) W
1 > 0 

R ieA 
0 

The topographic function <I> Am (0) = 0 if and only if the map topology at neuron j is 

perfectly preserved. The trained map in figure 5.3 had a quantisation error of 0.783 

and a zero topological error, which means the topology of the untrained map was 

preserved. 

5.6 Parameter Classification 

The Self-Organising Feature Map is a visualisation neural network for data clusters. 

This is illustrated for all the input vectors, that is all the statistical parameters 

considered, in figure 5.5. The parameter maps are also classified with colour coding 

and defect labels. The first matrix is the U-matrix or unit matrix, which indicates the 

Euclidean distances between neighbouring neurons and clusters. The parameter 

matrices indicate the different representation of the statistical value allocated to a 

cluster or neuron. This enables visualisation of the distribution of the statistical values 

over the trained map. The speed matrix is constant, the dark clusters indicate neurons 

that do not represent a speed value. In the load matrix all the neurons represent the 

load. The label matrix classifies each neuron and each cluster according to bearing 

defect, for all the parameter maps. The location of a neuron is the same for all 

matrices displayed. 
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Spd 0.9 

1 o.9 

Jog 
Labels 

SOM 23-May-2006 

Figure 5.5: Parameter Classification Maps 

5.7 Summary 

The neuron model and the architecture of the Self-Organising Feature Map were 

discussed in detail. The algorithms, with which the Self-Organising Feature Map 

approximates vector quantisation by reducing data dimension in the output layer, were 

discussed giving an example with one input data set. Large data sets and missing data 

in the data set are not problematic because of vector quantisation and normalisation. 

Cluster ordering and visualisation, can be achieved through unsupervised learning, 

enabling good analysis of the data. 
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Chapter 6 

Experimentation 

6.1 Introduction 

Different size input data sets are created to compare the performance of the Self

Organising Map to different sized sets of input data. At the same time, the 

visualisation capabilities of the Self-Organising Map are analysed. A program that 

automatically detects a bearing defect from one vibration measurement was created. 

Defect vibration measurements were taken and a data set of feature parameters of the 

input data was formed. The data set was large enough to give an option of applying a 

400, 2000 or I 0000 dimensional data set to Kohonen's self-organising map. 

Classification of rolling element bearing defects on a Self-Organising Map enabled a 

guiding prognosis on the type and extent of bearing damage. A detailed analysis of 

each matrix was performed with reference to cluster representation of statistical 

parameters. 

6.2 Creation of an Inclusive Parameters Input Data Set 

The condition monitoring testing conditions were limited to operational bearing loads 

of five different weights and five different shaft speeds. There were eight bearing 

defect conditions considered. Fifty vibration measurements of the same bearing defect 

were taken, under the same shaft speed and bearing load conditions. With fifty 

vibration measurements, a distinct cluster of the defect can be represented by many 

neurons, providing better detection of a defect. 
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For single speed and loading conditions, 400 bearing vibration measurements were 

taken. Seven statistical parameters were determined from each measurement. These 

were the: RA - rectified average, RMS - root mean square, Pk - peak, Cf- crest factor, 

Skw - skewness, K - kurtosis and Std - standard deviation. The program that created 

the input data through determining statistical parameters is shown in annexure 6 

(p 142). However, this is a shortened form of the program as it determines the 

statistical feature parameters for one measurement and the complete program 

determines the parameters for 10000 measurements. 

Combining the statistical parameters determined for all five shaft speeds and five 

loading conditions considered in the monitoring tests, a total input data set from 

10000 vibration measurements was created. The input data set is shown in table 6.1. 

For each bearing size, a 10000 dimensional input data set of feature parameters was 

created. Three different bearing sizes were used for testing. 

The input data set in table 6.1 gives the format of the input data set, and is not the data 

set that was used to train a Self-Organising Map. The input data set used was too large 

to be included in the dissertation. 

Testing parameters included in the input data set, were speed in revolutions per 

minute and load in kilograms. Each parameter is an input vector, therefore there were 

10 input vectors including the labels vector. The pattern used to label statistical values 

that were determined under the same load and speed conditions, was the same pattern 

used for all the considered load and speed testing conditions. The labels could have 

been numerical. For densely clustered maps, such as for the 10000 dimensional input 

data set, the classification label will also be dense and it will not be clear whether the 

labelling is numerical or alphabetical. Although zooming may be applied, only a 

display is provided here. 
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Table 6.1: Statistical Parameters Input Training Data 

Row RA RMS Pk Cf Skw K Std Spd Load Defect 

1 - 50 T T T T T T T T T Tested 

I I) • Oo f - - 6 0.!1' ~ 0.6 J'iHz 11\.(J cwl . -
: 

1 ""' 
4KC. : 

50 l) ~ I) (I ( I. l I ~ 06 
I 

I 'i It ~i((j N1!\\5ll 

51 0.2 I 0.6 6 0.08 12 I 15Hz 4KG Balli 

15Hz 4KG 

100 0.3 2 0.8 7.8 0.2 18 2 15Hz 4KG Ball 50 

101 0.6 2.1 1.1 9.1 0.7 22 2 15Hz 4KG lmm Outer I 

15Hz 4KG 

!50 0.7 3.2 0.9 6.6 0.8 30 3 15Hz 4KG 1mm Outer50 

151 0.4 0.9 0.8 9.3 -0.1 28 0.9 15Hz 4KG Inner cut I 

15Hz 4KG 

200 0.5 0.6 0.7 8 -0.3 26 0.5 15Hz 4KG Inner cut 50 

201 0.7 0.2 1.3 6.6 -0.4 40 0.2 15Hz 4KG 2mm Outer J 

15Hz 4KG 

250 0.8 0.4 1.5 7 -0.6 35 0.3 15Hz 4KG 2mm Outer 

251 0.4 0.7 0.8 9.2 -0.7 19 0.7 15Hz 4KG 50 

15Hz 4KG lmm Inner I 

300 0.5 0.8 1.1 8.8 -0.8 21 0.8 15Hz 4KG 

301 0.3 0.5 0.5 6.5 -0.2 17 0.6 151-Iz 4KG lmm Inner 50 

15Hz 4KG Outer cut I 

350 0.4 0.7 0.5 7 -0.1 15 0.7 15Hz 4KG 

351 0.3 0.1 1.3 9 0.2 25 0.1 15Hz 4KG Outer cut 50 

15Hz 4KG 2mm Inner 1 

400 0.4 0.2 1.6 7 0.4 17 0.2 15Hz 4KG 

2mm Inner 50 

800 " " " " " " " 20Hz 4KG " 

1200 " " " " " " " 25Hz 4KG " 

1600 " " " " " " " 30Hz 4KG " 

2000 " " " " " " " 40Hz 4KG " 

4000 " " " " " " " " " {. " 

6000 " " " " " " " " IOK " 

8000 " " " " " " " " J'\KG " 
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6.3 Compared Error Performances 

The Self-Organising Map was trained with input data sets of different dimensions, and 

its performances were recorded. This was done in order to recommend specific 

dimensions of input data sets so that the best analysis and visualisation can be 

obtained from a Self-Organising Map. Eleven input data sets of different dimensions 

were used, and are given in table 6.2. The topological map sizes, the errors obtained, 

and the training times are given for all three bearings tested. The results of bearing 

6008ZZ3C, 6010ZZ3C and bearing 6012ZZ3C are in table 6.3 , 6.4, and 6.5, 

respectively. 

Table 6.2: Dimension Size oflnput Data Sets 

Input Data Set I 2 3 4 5 6 7 8 9 10 l l 

Dimension 40 100 400 800 1200 1600 2000 4000 6000 8000 1000 

0 

Table 6.3: Training Errors for Bearing 6008 Input Data Sets 

Input Data Set Matrix Map Size Quantisation Topological Training 
Error Error Time (s) 

I [ 6, 5 l 0. 783 0 0 

2 [ 12, 4] 0. 505 0 0 

3 [ 13 , 8 l 0.483 0. 052 0 

4 [ 14 , 10 l 0.6 0. 026 0 

5 [ 15 , II ] 0.653 0. 027 0 

6 [ 16 , 12] 0.458 0.054 I 

7 [ 17 ' 13 l 0.449 0.046 I 

8 [ 22 ' 15] 0. 569 0.067 2 

9 [ 24 ' 16] 0. 532 0.079 2 

10 [ 26 ' 17 ] 0. 543 0.048 4 

II [27 , 19] 0. 557 0. 065 5 

Figure 6.1 illustrates that for large data sets, data set 6 up to data set 11 , the 

quantisation error is between 0.449 and 0.557 as compared to 0.783 - 0.6 for the 

smaller data sets. Therefore, the topological error is relatively low for small data sets. 
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Tramlng Errors as Compared to S ize of Input Data Set 
(Beanng 6008ZZ3C) 
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Figure 6.1: Bearing 6008ZZ3C Error vs. Dimension 

Table 6.4: Training Errors for Bearing 6010 Input Data Sets 

Input Data Set Matrix Map Size Quantisation Topological Training 
Error Error Time (s) 

I [ 8 ' 4] 0. 714 0. 05 0 
2 r 'o 5 1 0. 628 0. 01 0 
3 r 13 81 0.482 0. 028 0 
4 [ 16 '9] 0. 591 0. 04 0 

5 [17,10] 0.641 0. 048 I 

6 [18,11] 0. 632 0. 051 I 

7 [ 19' 12] 0.622 0. 058 I 

8 [23,14] 0. 726 0. 05 2 

9 [ 24 ' 16 ] 0.659 0. 05 2 

IO [ 26, 17] 0. 683 0. 087 4 

I I [ 28, 18] 0.670 0.062 5 

The errors for Bearing 6010 are illustrated in figure 6.2. The statistical values for 

bearing 6010ZZ3C were slightly larger than those for bearing 6008ZZ3C. For large 

data sets, data set 6 up to data set 11 , the quantisation error is between 0.622 and 

0.726 which is high in comparison to that for bearing 6008ZZ3C. The topological 

error is relatively low and lowest for a dimension of 100. 

112 



Chapter 6 

0.8 -

0.7 ' 

0 6[ 

05 r 

0.4 

OJ 

0.2 -

0.1 

~ 

Training Errors as Compared to Size of Input Data Set 
(Bearing 60 10ZZlC) 

----

lnpu Data Set 

Figure 6.2: Bearing 6010ZZ3C Error vs. Dimension 

Table 6.5 : Training Errors for Bearing 6012 Input Data Sets 

Experimentation 

-~ Quant isat io~ -E~~ 
- Topological Error 

I 
~ 

_j 
10 11 

Input Data Set Matrix Map Size Quantisation Topological Training 
Error Error Time (s) 

I [ 8 '4] 0. 817 0.05 0 

2 r 10, 51 0.551 0 0 
3 [ 14 '7] 0.593 0. 03 0 

4 [ 16 '9] 0. 712 0. 04 0 
5 [ 17 ' 10 l 0. 739 0. 043 I 

6 [ 18 , I I ] 0. 735 0. 039 I 

7 [ 19 ' 12 ] 0. 701 0. 035 1 

8 [ 23, 14] 0. 843 0. 056 2 

9 [ 24, 16] 0. 573 0. 05 2 

10 [ 26' 17] 0.593 0.059 4 

II [ 30 , 17 l 0. 523 0.075 5 
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Figure 6.3: Bearing 6012ZZ3C Error vs. Dimension 

The statistical values for bearing 601 OZZ3C and bearing 60 12ZZ3C were similar, 

which is the reason why the error patterns are similar. The topological error is 

relatively low and zero for a dimension of 100. In data set 2 only two defect types are 

included, whereas in data set 3 all defects are included and it has a low topological 

error and moderately low quantisation error compared to the others for all bearings 

considered. Therefore, this all inclusive data set (which is data set 11 with a 

dimension of 1 0000) is the recommended data set. It takes the longest to train, and can 

have a moderate quantisation error and one the highest topological errors. However, 

for its inclusiveness of all the testing and defect conditions, data set 11 is 

recommended as the first training data set for any analysis of a bearing defect. 

6.4 Kohonen's Feature Map in Parameters Input Data 

The input data set of the 60 12ZZ3C deep-groove ball bearing were used in this 

section. A self-organising feature map program was developed, (annexure 7, p143). 
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Here, two self-organising maps were trained, therefore two input data sets were used. 

The first input data set was the complete I 0000 dimension input data set. The second 

was the 400 dimension data set representing all the bearing defects at 15Hz and 5kg 

testing conditions. The program automatically determines the number of neurons and 

size of the map that best represents the input data by evaluating the dimension of the 

input data. The map is trained through an evaluation of the quantisation error and 

topological error. 

A training report of the two data sets is shown in annexure 8 (p 148). The size of the 

map for the complete B 12 input data is a 30 by 17 hexagonal map, this means that the 

map has 51 0 neurons. The rough training phase was performed in two epochs and 

took two seconds. The fine tuning phase was performed in twelve epochs and took 16 

seconds. The final quantisation error was reduced to 0.523 and the final topographic 

error was reduced to 0.075. 

For the 400 dimension, B12_15Hz_5kg input data, the size of the map is a 13 by 8 

hexagonal map, with 104 neurons. The rough training phase was achieved within the 

first epoch and so was the fine tuning phase. The final quantisation error was reduced 

to 0.486 and the final topographic error was reduced to 0.035. The errors can also be 

viewed in terms of percentages. The quantisation error may also be used as an 

indicator of data outliers. Figure 6.4 shows a trained map of the B 12 input data. 

The black crosses are the input data, and the green dots are the neurons. The tone of 

green indicates the dimension differences between clusters. Green is the majority 

colour which indicates that the clusters are very close to each other. There is an outlier 

cluster shown in yellow. The quantisation error also indicates this. The clusters are 

labelled according to the bearing defects shown in figure 6.5. 
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Figure 6.4: Trained Map Projection in B12 Input Data Euclidean Space 
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Figure 6.5: B 12 Trained Map Cluster Distributions and Defect Labelling 
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The trained map of the B1 2_15Hz_5kg input data is illustrated in figure 6.41. The 

clusters are more distinct as indicated by the colouring. The green coloured clusters 

are outliers with a quantisation error of 0.486. The topology of the map is more 

conserved as opposed to the B 12 topology, as indicated by the topological error. The 

representation of the map clusters is shown in figure 6. 7. 
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Figure 6.6: Trained Map Projection in B12_15Hz_5kg Input Data Euclidean Space 
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Figure 6.7: B12_15Hz_5kg Trained Map Cluster Distributions and Defect Labelling 
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6.5 Prognosis and Visualisation of Rolling Element Bearing Defects 

Figure 6.8: Bl2 Nine Parameters Self-Organising Feature Maps 
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Figure 6.8 illustrates nine parameters on the self-organising feature map for the B 12 

input data. Each map is referred to as a matrix. The U-matrix shows how far each 

neuron is from its neighbours in terms of Euclidean distance, reflected by colour 

coding. The neurons are closely placed since the majority of the map is toned in blue. 

The matrices are very dense because of the large 10000 data dimensionality, so 

identifying the exact bearing defects is difficult. The speed and load matrix indicates 

the conditions under which the bearing defects were measured. Once the conditions 

under which a defect is located are known, then a small dimension input data can be 

selected and analysed separately. 

This is the case with the B12_15Hz_5kg data set. The nine parameter self-organising 

map of the Bl2_15Hz_5kg input data is illustrated in figure 6.9. The B12_15Hz_5kg 

data set has a dimension of 400, and has larger hexagons. The variation of the 

parameter values are now clearly visible. Notice the single colour for the load matrix 

of 5kg. The speed matrix shows definite clusters for one speed condition, and neurons 

that are non representative because of the separation in clusters. In the U-matrix the 

red indicates clusters and neighbouring neurons that are far apart thus indicating a 

separation in clusters. The blue indicates a dense data cluster. The label matrix is to be 

used in conjunction with the parameter matrices, so that the classification of the 

cluster can be identified. 

In the B12_15Hz_5kg Self-Organising map, the patterns of the RA, RMS and Std 

matrices are similar. With the top blue cluster classified as ball defect, and the darker 

blue on the top right classified as new bearings. The ball defect can resemble other 

defects and its clusters are spread on the left and towards the bottom of the matrix. 

Green represent a majority of inner crack clusters. Yellow is classified as inner ring 

lmm spall, and the red towards brown as outer ring 1mm and 2mm spalls. Clusters 

can be differentiated. The patterns of the crest factor and kurtosis reflect the locations 

of the ball defect, on the right of the matrix, and a new bearing classified with low 

crest factors and kurtosis values. Visual analysis of bearing defects is now possible. 
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Figure 6.9: B12_15Hz_5kg Nine Parameters Self-Organising Feature Maps 

The pattern of the skewness matrix is the opposite to that of the crest and kurtosis 

matrices. The type and severity of the defect can also be analysed, by combining an 

analysis on different sizes of input data sets. The problem now is to locate or detect 

the severity and defect type of an unknown bearing vibration measurement. 
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The solution to locating an unknown bearing vibration measurement is to project the 

neuron or unit that best represents the parameters of the measured vibration. This 

means that the measured vibration parameters are included in the input data, as is the 

case in figures 6.10 and 6.11 which project a ±lrnm inner race spall. 
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Figure 6.10: B12 Nine Parameters Defect Projections, SOM 
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Figure 6.11: B12_15Hz_5kg Nine Parameters Defect Projections, SOM 
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Here, figures 6.12 and 6.13 were created from the B 12 data input. On the speed 

matrix, the projection appears in the blue colour zone indicating that the measurement 

was taken at a low speed testing condition of 15Hz. On the load matrix the projection 

also appears in the blue colour zone indicating that the measurement was taken at a 

low load testing condition of 5kg. This is done to establish the conditions under which 

the tested bearing is operating. 
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Figure 6.12: B12 Speed Clustering and Defect Projection 
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Figure 6.13: B 12 Load Clustering Defect Projection 
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The defect projection utilises three circular black projections. The largest circle 

indicates the neuron that best represents the defect. The medium and smallest circles 

indicate the degree of defect representation by the respective projected neurons. Since 

the input data is represented by neurons on a hexagonal topological map, there are 

neurons that best resemble the different clusters. These are the winning neurons, and 

are shown with projected white hexagons in the U-matrix of figures 6.14 and 6.15. 

The largest projected hexagon is the neuron that wins the most representation. 
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Figure 6.14: B12 Unit Matrix Clusters with Best Matching Units 
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Figure 6.15: B12_15Hz_5kg Unit-Matrix Clusters with Best Matching Units 
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The k-means cluster using the Davies Bouldin index are displayed in figure 6.16. For 

the B12 input data, 30 k clusters were generated, and figure 6.17 for the 

B12_15Hz_5kg input data, 17 k clusters were generated. These are the major clusters 

that represents the input data. A cluster is indicated by a distinct colour that does not 

tone into neighbouring clusters. The k-means clustering assists in relating defect 

representation on the self-organising map. 

Oa\<les-B o uldmg lnde>t C lus le ring 

Figure 6.16: B 12 Davies Bouldin Clustering 
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Figure 6.17: B12_15Hz_5kg Davies Bouldin Clustering 
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Figures 6.18 and 6.19 depict the learning vector quantisation classification maps. 

Clusters are automatically classified according to bearing defect. The inner race spall 

is automatically projected into the definite defect cluster. The colour coding indicates 

cluster separation as in the U-matrix. The defect projection in the learning vector 

quantisation map is used to support the analysis in the self-organising map. 
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Figure 6.18: B 12 Learning Vector Quantisation Defect Clustering 
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Figure 6.19: B12_15Hz_5kg Learning Vector Quantisation Defect Clustering 
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Taylor et al. (2004:83) stated that diagnosis and prognosis of rolling element bearing 

damage has received less attention and is considerably more involved than detection. 

The self-organising feature maps provide assistance in effective prognosis of rolling 

element bearing defects, because the defect is not only detected according to its 

location in the bearing but also its severity is indicated. 

The nature of the bearing damage, for example spalling, fluting ,etching etc. can be 

detected as a spall defect in the self-organising map. Visual inspection gives more 

information on the nature of bearing damage. Therefore, a bearing needs to be 

replaced if a Self-Organising Map projects a severely damaged bearing and any of the 

following types of damage are visible: fatigue spalling, heat discoloration, water stains 

or rust, severe wear from contamination, damaged cage, brinelling. 
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6.6 Summary 

A new practical dimension to condition monitoring of rolling element bearings has 

been developed. The use of signal processing time domain and frequency domain 

analysis of bearing vibration has been combined with a visual analysis of distinct 

bearing defects through the application of the Self-Organising Feature Map. 

The significance of the time domain and frequency domain analysis was illustrated 

with a display of signal patterns of different bearing defects. It was clear that each 

defect provides its own unique statistical parameters. The input data set was structured 

in a format that enabled adequate classification of the self organising map. The 

analysis of a ±lmm inner race spall was performed using both high and low 

dimension input data sets, for better analysis of the parameters. Other visualisation 

methods were used, such as the k-means clustering with the Davies Bouldin index, the 

winning neuron projections, and the Learning Vector Quantisation Map. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Summary and Conclusions 

Accuracy and reliability of vibration analysis on rolling element bearings was found to 

be lacking in industry. To provide assistance to the highly skilled personnel in 

performing condition assessments on rolling element bearings, a condition monitoring 

system based on artificial intelligence was proposed. To develop the system, an 

understanding of the characteristics and operating fundamentals of rolling element 

bearings was required. The deep-groove ball bearing was considered for the research. 

So a study on the characteristics and behaviour of rolling element bearings, without 

and with damage, was the initial task of the research in the form of a literature review. 

The literature review pointed to a neural network analysis using Kohohnen's Self

Organising Maps. 

The next task was to obtain a vibration measuring system in the form of a data 

acquisition and signal processing system using commercially available software. The 

software used was Lab View 7. A rig was designed and constructed to test the 

condition monitoring system. The rig was designed to be rigid with the aim of 

acquiring vibrations from bearing faults only, as these occur at frequencies much 

lower than the natural frequency of the rig. The various types of damage that may 

occur were artificially created by a corrosive technique on the raceways as well as cuts 

to the ball element and rings of the bearings to simulate spalls and cracks. The 

identification of incipient bearing faults were done using Kohonen's Self-Organising 

Map neural network. The network could display bearing faults on a two-dimensional 

map. A program was developed in Matlab 7 that automatically applies Kohonen's 

Self-Organising Maps to identify bearing faults after acquiring the bearing's vibration 

128 



Chapter 7 Conclusions and Recommendations 

measurements. For a new bearing, a projection of neurons is made in the 'new' 

bearing classified cluster. Kohonen's Self-Organising Map neural network could 

achieve the detection of a bearing fault with a low topological error of about ± 0.04, 

but a moderate quantisation error of ± 0.5. 

Kohonen's Self-Organising Map was used together with the learning vector 

quantisation map, and the k-means clustering to achieve good visualisation and 

classification when analysing rolling element bearing faults. A prognosis, on the 

severity of bearing damage and the stage of failure of the bearing, could be made. The 

main achievement was that the high frequency detection technique by means of time 

domain and frequency domain analysis can be combined with the bearing fault 

visualisation analysis of Kohonen' s Self-Organising Map, to make informed decisions 

possible. Adequate maintenance schedules can then be planned resulting in lower 

maintenance costs. 

7.2 Recommendations 

When a fast Fourier transformation is performed, the signal representation is moved 

from the time domain to the frequency domain and this change of domain can lead to 

loss of information and to interpretation difficulties. This disadvantage is overcome 

through wavelet analysis, which enables the examination of the frequency information 

of the signal as it evolves with time, by using shifted and scaled versions of a wavelet. 

Wavelet transform makes it possible to work in the time frequency domain and to 

perform good time resolution at high frequencies allowing the identification of 

temporal instants at which transient phenomena take place. Here the presence of 

impulses in the vibration signals can be assessed by the high frequency part of the 

wavelet transform. Therefore, it is recommended that wavelets could be used in 

conjunction with the high frequency detection technique. Another technique that could 

be considered is spectrogram, that tracks the order of the frequencies in time. 
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In addition, statistical trending of vibration data in addition to the application of the 

self-organising map, could also be performed. 

A recommendation is to use more sensitive techniques in acqumng vibration 

measurements. Thus, a more sensitive analysis of incipient bearing damage would be 

achieved by the self-organising map. For example, measurements in the ultrasonic 

ranges of the bearing frequencies could be used to set up parameters that can be 

incorporated with the artificial intelligence neural network to detect incipient damage 

within the range of the chosen ultrasonic technique. 

Kohonen's neural networks could also be used together with a feed-forward multi

layer perceptron neural network for severe fault detection. The multi-layer perceptron 

indicates only two conditions, namely, that the bearing is either damaged or not 

damaged. 

7.3 Fields for Further Study 

The fields for further study reflect opportunities of improving the self-organising map 

in order to better monitor the conditions of rolling element bearings. 

The bearing faults of interest in the research focused on spalls, and cracks, which were 

artificially created. The reason is that fatigue spalling is the predominant bearing 

failure mode, and a cracked bearing reflects a severely damaged condition. However 

further studies need to be conducted to include other bearing failure modes such as 

brinnelling, electric arch fluting, lubrication, etc. The severity of ball defects were not 

acquired, since only one severe spall on the ball element was considered. This could 

also be studied further. 

Although the developed monitoring system recognises bearing conditions accurately, 

the results were obtained using experimental data obtained in a laboratory. In reality, 

bearing vibration measurements are acquired from bearings that are mounted on 
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Chapter 7 Conclusions and Recommendations 

critical industrial machinery such as turbines and electric generators in power stations. 

Vibration signals obtained from this environment are expected to have different 

characteristics than those obtained from a testing rig in the laboratory. Future work 

will be directed towards investigating the reliability of the developed monitoring 

system method in diagnosis on bearings operating in an industrial environment. 

The Kohonen algorithm could also be modified in order to improve the generalisation 

capabilities, by introducing a pre-processor for a hidden Markov model classifier. This 

improvement would enable continuous classification that can be used for online 

monitoring by the self-organising map. Thus an online condition monitoring for 

rolling element bearings could be developed. 

Pseudomodal energies combined with muliti-layer perceptron network to identify 

multiple fault conditions could be used. However, instead of labelled classification on 

a topological map, a numeric output classification can be performed. The advantage 

here is that the quantisation error could be lower than the quantisation error achieved 

by the self-organising map. The limitation is that a fixed output would be achieved. 

Fuzzy logic in addition to neural networks could be used to improve the uncertainties 

or errors adapted by neural networks. 
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Derivation of Bearing Characteristic Equations 

Annexure 1: Derivation of Bearing Characteristic Equations 

The symbols and variables are tabulated in table 3.1 (p44) in chapter 3. The bearing 

frequencies are derived from determining the angular speed of the cage. 

Angular speed is: 

Angular speed of the cage is: 

v 
(() =-

r 

Vc 
W e = -

r, 

Asswning that there is no slip between the balls and roller race: 

V c = V;+V o 
2 

Linear velocities ofthe outer and inner races can be expressed as follows: 

Vi v· ((); = - ~ 1 = ((); 0 r; 
n 

Yo 
Wo =-~ Vo=Wo·ro 

ro 

(Al.l ) 

(A1.2 ) 

(A1.3 ) 

(Al.4 ) 

(Al.5 ) 

The radius of rotation is measured from the centre of rotation to the point of roller 

contact on each race: 

(Al.6) 
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Derivation of Bearing Characteristic Equations 

(A1.7) 

(A1.8) 

Substituting equations A1.3, A1.4, A1.5, A1.6, A1.7, and A1.8 into equation A1.2: 

•{~- BJ-c2o~a))+ro{~+ BJ·c;~a): 
2 

CU: = =-------------:-:------------=-

Pct 
(A1.9) 

2 

eu: =FTF (A1.10) 

Fundamental train frequency with reference to the number of ball elements: 

(A1.11) 

FTF = __!_. Ns . ( 1 - Bct · cos(a)) 
2 60 Pct 

(A1.12) 

FTF = __!__ Ns ·(1 + Bct ·cos(a)) 
2 60 Pct 

(A1.13) 

The ball pass frequency of the outer race is the number of ball multiplied by the 

rotational difference between the cage and the outer race. 

BPFO = Ziroc- mol (A1.14) 
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Derivation of Bearing Characteristic Equations 

BPFO = z[[ <Di _ <Di · Bd ·cos( a))+ [<Do + <Do· Bd ·cos( a))_ <Do] 
2 2Pd 2 2Pd 

BPFO = z(m-<Do{l- Ikco~a)) 
2 ~ Pd 

(Al.l5) 

BPFO = Z. Ns ·[l- Bd·cos(a)) 
2 60 Pd 

(Al.l6) 

The ball pass frequency of the inner race is the number of ball elements multiplied by 

the speed difference between the cage and the inner race. 

BPFI = ZI<Di - (i)cl (A 1.17) 
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Derivation of Bearing Characteristic Equations 

BPFI = z (ro;- <Do { 1 + Bct. cos(a)J 
2 ~ Pct 

(A1.18) 

BPFI = Z. Ns ·( l+ Bd·cos(a)) 
2 60 Pd 

(Al.l9) 

The linear speed of the ball surface may be described as at the point of contact with 

either the inner or outer race. 

V r 
BSF = ror =-

fr 
(A1.20) 

(Al.21) 

The linear speed of the ball surface can be defined in terms of the inner race and cage. 

(ro; -roc)r. 
BSF= I (Al.22) 

fr 

(ro;- roc )r. 
BSF= I 

Bct 

2 

{'"' -H oo{l- B,·~:s(a) J +oo{l + B, ~:s(a)J ]}{~' _ BH;s(a)} 
BSF=I~---=--------------~--------~-----------1 

Bct 

2 

(!);- ffii _ (l); .Bct · cos(a) + ffio + ffio. Bct·cos(a)(Pct _ Bct·cos(a)) 

BSF = 2 2Pct 2 2Pct 2 2 
Bct 

2 
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Derivation of Bearing Characteristic Equations 

BSF = o:>i _ o:>i _ Wi · Bct ·cos( a)+ o:>o + o:>o. Bct ·cos( a) ( Pct- Bct ·cos( a)) 
2 2Pct 2 2Pct Bct 

BSF= o:>i-o:>o(l+ Bct·cos(a))( Pct -Bct ·cos(a)) 
2 Pct Bct 

BSF = -- - - cos( a)+ cos( a)------'---------'--o:>i-o:>o l Pct Bd·(cos(a)J ; 
2 Bct Pd 

{ 2J Pct Bd·cos(a) 
BSF = -(o:>i - o:>o 1- ( J 

2Bct Pd 
(Al.23) 

Pct Bd·cos(a) 
2x BSF ~ Bd (ro;-co, 1-( Pd J { 2] 

Pct Ns l ( Bct·cos(a)J

2

j 2 x BSF =-·-· 1-
Bct 60 Pct 

(Al.24) 

The bearing frequencies are not synchronous to the shaft rotational speed, because the 

shaft speed is multiplied by a fraction, due to changes of the angle of contact. The 

bearing frequency equations are tabulated in annexure 2. 
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Induced Bearing Frequencies Equations with Measurement and Applications 

Annexure 2: Induced Bearing Frequency Equations with 

Measurentent and Applications 

Table A2.1: Bearing Characteristic Equations 

2004:26) 

Label Formulas Race 
Rotation 

BPFO Z. Ns { 1- Bct·cos(a)J Inner or 
Outer race 

2 60 Pct Rotation 

BPFI Z. Ns { 1+ Bct·cos(a)J Inner or 
Outer race 

2 60 Pct Rotation 

2xBSF 

~-N.l{ Bd·Cos(a)n 
Inner or 
Outer race 
Rotation 

Bct 60 Pct 

FTF 
_!__ Ns { 1- Bct·cos(a)J Inner race 

Rotation 
2 60 Pct 

or 
or 

Outer race 

_!__ Ns { 1+ Bct·cos(a)J Rotation 

2 60 Pct 
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Measurement Application 

Discrete Indicates outer 
frequency with race defect. 
or without 
harmonics or 
sidebands of 
FTF or shaft 
speed. 

Discrete Indicates Inner 
frequency with race defect. 
or without 
harmonics or 
sidebands of 
FTF or shaft 
speed. 

Discrete Indicates 
frequency with defects on the 
or without balls. 
harmonics or 
sidebands of 
FTF or shaft 
speed. 

Discrete Indicates 
frequency, severe 
sidebands at looseness 
BPFO, BPFI, or severe 
2xBSF, or a bearing 
difference malfunction. 
frequency with 
wide band 
noise. 



Induced Bearing Frequencies 

Annexure 3: Induced Bearing Frequencies 

Table A3.1: Bearing Dimensions 

Bearing Bore Outer 
Diamete 

mm mm 

6008ZZJC 40 68 

6010ZZJC 50 80 

6012ZZJC 60 95 

PCD = Pitch Circle Diameter 

clear 
clc 

~' ... 

Thicknes 
s 

mm 

15 

16 

18 

* * .... ''" 

Internal 
Clearance 

Min Max 

J.! 

18 36 

23 43 

23 43 

--

PCD Ball Numbe 
Diamete r of 

mm mm 

54 7.94 12 

65 8.73 14 

77.5 10.32 14 

Ns [900;1200;1500;1800;2400]; · fS .~.r.J st. r. speeds Ul .r:pu 
0 95; .T:.r 1-.1 ,.:__rr_t~.: 

d 60; 8 r• cl ,rr. t r 
Pcd = 77.5; F ~ ·r 
Bd 10.32; ~ -L 
Z 14; N me 
alpha 0; 

8Pf, , 1t e 
8i"F~ 

B::f Ral:. 
t T'F I· .Hlddtn8'ltol 
EL ~ e,_. ELt 1 .::> 

B P FO ( Z I 2 ) * ( N s I 6 0 ) * ( 1 
BPFI (ZI2) * (Nsl60) * (1 + 

(HZ) 
(H.:) 
Hz) 

(H .. ) 
(ilz) 

( (Bd*cos(alpha) )IPcd)) ; 
( (Bd*cos(a l pha))IPcd)) ; 

zxBSF (PcdiBd) * (Nsl60) * (1 
FT F ( 1 I 2 ) * ( N s I 6 0 ) * ( 1 

- ( ( (Bd*cos(a lpha) )1Pcd)A2) ); 
( (Bd*cos(a l pha) )IPcd)); 

Bspeed= zxBSFI2; 

Freq l 2= [BPFO BPFI FTF zxBSF Bs peed] 

Freql 2 = 

N(rpm ) BPFO BPF I FTF 2xBSF Bspeed 
900 91.0181 118.9819 6.5013 110.6479 55.3240 
1200 121.3574 158.6426 8 . 6684 147.5306 73.7653 
1500 151.6968 1 98 . 3032 10 . 8355 184.4132 92.2066 
1800 182.0361 237.9639 13.0026 221.2959 110.6479 
2400 242 .714 8 317.2852 17.3368 295 . 0611 147.5306 
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Loading Configurations 

Annexure 4: Loading Configurations 

Table A4.1: Test Rig Loading Adjustments 
Load cell mess 1/3 of 248.5 g = 82 83 g 
S(lling masses 2 off 1/3 of 149.65 g = 49.88 g 

Case 1: Beaing slide mess + Magnetic accelerometer mass 
+ littings mass (\Mihoul the be<ling seat) 

1.92 Kg 

Case 2: Beating slide mess + ltreaded accelerometer mass 
+ fittings mass (IMthoul the be<ling seat) 

1.92 Kg 

Miss r:J cylinder arm and the top components 
is automatically measuted and OOe5 not need 
to be actild as a constant. 

Case 3: Beaing slide rrass + Magletic accelerometer rrass + .. 

Threaded acceleromeler mass + fittings mess 
22 Kg 

Miss r:J cylinder arm and the top components 
equals to a rounded off mass r:J 1. 2 Kg 

(\Mthoul be<ling seat) 

Total (Kg) mass to be added for case 1 : 2.05271 
Total (Kg) ma!ti to be added for case 2 : 2.05271 
Total (Kg) mass to be added for case 3: 2.33271 

VI con!lant change for 
Bearing Bearing seat mass every bearing seat in case 1 
Type (Kg) (Kg) 
60082ZlC 0. 81365 2. 93921 
6010ZZlC 

6012ZZlC 
0.8905 
0.8755 

2.94321 
2.92821 

VI con!lant change for 
every bearing seat In case 2 

(Kg) 

2.93921 
2.94321 
2.92821 

VI constant change for 
every bearing seat in case 3 

(Kg) 
3.0865 

3.0905 
3.0755 

Table A4.2: Bearing Design Load Ratings (from table page B-18 pg A-63 NTN 

catalogue) 

Bearing Rated Static Load 
'Co' 

6008ZZ3C 1009.17 

60JOZZ3C 1437.3 

6012ZZ3C 1997.96 

c = [12900 ;1 6800 ; 22700 ); 
N = 2400; 

(KG) 

Sworking_hrs = 24*365* 1; 
S f h = Sworking hrs/(500*3); 
Sfn = (33 . 3/N)A( 1 /3) ; 
SP_kg = ((Sfn/Sfh)*C)/9.8 1; 
Mwork i ng hrs = 24*365*2; 
Mfh = Mworking hrs/(500*3) ; 
Mfn = (33 . 3/N)A(1/3); 
MP_kg = ( (Mfn/Mfh)*C)/9 . 81; 
Lworking hrs = 24*365*3; 
Lfh = Lworking hrs/(500*3); 
Lfn = (33.3/N)A(1/3); 
LP kg ( (Lfn/Lfh) *C) /9. 81; 

Maximum Operating 1115 of Maximum Operating 
Static Load (KG) Safe Static Load (KG) 

917.4 

1306.6 

1816.3 

61.16 

87. 10 

121.08 

.~tc l ~F5 • .; lV:l C:HTI C' ] oad N) 
f :'J • t. Spe :i 1 r p ) 

WERATIC l 

spc ~-d 
Dyr,drrlr..; ' •ad \ r 1~ Fdil~..:: 
tOR 2 YEP1RS Of r;fERATICJt.' 
l!.fe l.d .L· r 
.· peed r: _ctor 
Llyr.am c l •ctd 1 n d Failur 
FOR 3 YEARS 'I~ OFERATION 
.. 1 f .La: •r 
t"peed f 3 'tor 
-'-.:: h q i ,,_ l n 1 i yn rr 1• • 

r l i l 1 1 f r- r r ::r t i n .I il f ilJr_ df~ r 3yr 

Load Matrix kg [LP kg MP kg SP kg ) 
Load- Matrix 

- -
kg 

Bearing 3-years 2-years 1-year 

6008ZZ3C 1R.C356 27 .0534 54. 1068 
6010ZZ3C 23.4_8 35.2324 70 .4 647 
6012ZZ3C :H.7'71 47.6056 95.2113 
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Natural Responses 

Annexure 5: Natural Responses 

f 

El .;o .!t rlng QOOfi.ZZ3C f:-ft>•.1•-• .. n ,;:y 8 D•-"clntm 

r ~-::~ ..... 1 1 
-~H¥ . 

"' ~~----~----~----~ 
Froquoncy (l-IZ) 

Figure A5.1: Bearing 6008ZZ3C Frequency Response 

·r 
....., __ 
Frequ.~noyi 

_?CIH:.r: .. 
f J i 
!( 

, I 

400 
Fr ... quoncy (H>o;) 

Figure A5.2: Bearing 6010ZZ3C Frequency Response 

Elea tric Motor F"r.,.qu ency S pec trum 

Oo-an"g 1::> y JO t ol!!c n ·• I 
1"1 M o rnlo 
t 20Cif-j z 

I 
1 
I 

l 
I 

taOO 10 UO 

----r-- ----r--------,-----~ l 
E IO(: trlc motor ~ng 

[ 
200

1-b:. l, R~..-.¢44 F rl!loqu•n~ 

00 .------------------

24~ 1 

' 0 -

0 o~--~wr---~--~.~wr---~,oo~--~,~oo~--~~~ 
Froquu ncy {Hz) 

Figure A5.3: Electric Motor Casing Frequency Response 

140 

1 
-I 

--~ 300 400 



Natural Responses 

B e .... J}ibfe riO'OQ\.fO!IIIl C')I S~lrvfll 

---~--

J 

0 0·~----~~--- ~~----~,•5o~----~~--~~,~oo~--~~~ 
F111tqu~oc y (H-=:) 

Figure A5.4: Base-plate Frequency Response 

j 00 -~ 
0.0 
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Figure A5 .5: Belt Resonance Frequency Response 
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Figure A5.6: Bearing Misalignment Frequency Response 
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Input Data Feature Parameters 

Annexure 6: Input Data Feature Parameters 
SH . ..,LE -I ·~.11.L ~ t. .Tl.'RE P,C\FAMF.'I FP.S [ • GRliA 

r •n de ~ .,Lm~r •·s s· .::~" 1 ~- cc.. p~-.r.:>:ne er:::; " a uno:: domairt 
series of _he 
<Jrar' :: lc' la · e~ 

wav-=f trr. Th -· p .:l<.jt ~n· u::;tl!> 'h i:li 31 ti~E" 
al_l;.~. .. e r · 'O 1 a.l ~Jr r <>r<> . h~. r 

ro n7. tlm'· \'.'tV·'torrr. 

c l ear 
c l c 
echo 1r 

".1. c: i gr u 1: 

data = x 1 srea d( ' 111 f>r t ac _ 1 mm2 ' ); 
y data ( :, 2) ; 
t = data ( : , 1 ) ; 

E ILTE! DESl N 

TL.:> .i ~1r.a 1 .L!" !::h a hl J -p .. LSS 

fr?.Juen y of 
d ·1ecre-"se 1. 

- - £ tYe< _uency :t 

rraqn_tLJdP, 2rB 

Wp 600/4096 ; Ws = 800/4096 ; 
[n , Wn ] = butto r d( Wp,Ws , 3 , 20) ; 
[d , c] = butte r (n, Wn, ' h _Jh ' ) ; 
SA = fi1 ter( d,c,y); 

y SA ; 
N 1 ength(t) ; 

~ 1 t t · • !)a r 1 • t. 1 s : , .. 
mu = mea n (y) ; 
rng = max(y) - mi n(y) ; 
med = med i an(y) ; 
va=var(y) ; 
s i gma = std (y) ; 
RA = ( 1 / N)*(s um(abs(y)) ) ; 
RM S = sqrt( (1 / N)*sum ( (y-mu) .A2) ) ; 
Pk = max(abs(y)) ; 
Cf = P k/RMS ; 
Skv< = ( ( 1 / N) *sum ( (y -mu ) . A3)) . I (s i gma . A3) ; 
K ( ( 1 /N)*sum( (y -mu ) . A4)) . /(s i gma . A4) ; 
P = [mu rng med va s i gma] 

PF = [RA RMS Pk Cf Skw K s i gma] 
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Automatic Bearing Defect Classification 

Annexure 7: Automatic Bearing Defect Classification 

*""'<r+:'llr~•**._ /l.w.'kkJ.4•* •~•6.11 .. · .••• .. A 

~_r·;:; rro]r•IT •l8t.=rmi f';'S "'ro 
11 · t ,. , w ·' v t cr . 2 

DL' Jr m. 

clear 
clc 
elf .:.·<::'" r- 1 ; 

figure(gcf) 
echo or 

l' ::-L .(ltvl..AI ; L · l'AL - ;~'AL: 

data = xl sread ( 1 nu Pr race i'I\111 • 1 ); 

y data(:,2); 
t = data (:, 1) ; 

T•ir* . ••&-* • .... 

Wp = 60014096 ; Ws = 80014096 ; 
[ n ,Wn ] = b u ttord (Wp ,Ws , 3 , 20) ; 
[d, c ] = b u tter(n , Wn , ' Iiq~ ' ); 

SA = filter(d,c,y ) ; 

y SA ; 
N length(t); 

3TAfi T AL PAkA TER 
* ' . * • ... 

mu = me an (y) ; 
rng = max(y) - mi n(y) ; 
med = median(y); 
va = var (y) ; 
sigma = std(y) ; 
RA = ( l i N)*(sum(abs(y))); 
RMS = sqrt( ( l iN) *sum( (y-mu) .A2)) ; 
Pk = max(abs(y)); 
Cf = PkiRMS; 
Skw = ((liN) *sum( (y-mu). A3)). I (sigma . A3) ; 
K ((liN) *sum( (y-mu). A4)) . I (sigma . A4) ; 
P = [mu rng med va sigma] 

PTEST 

pause 
clc 

[RA RMS Pk Cf Sbv K sigma] 
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Self-Organising Feature Map Program 

sOP som_data struct( [ PTEST]); 
sOP som_1abe1 (sO, ' "- i ! ' , [1: 1]', 'T,_st.' ); 

i 1. d , n ·~ r .r ; 
sD 

Y l. ""o 

'o m l .tt. L , • .:J. .Ji'{ ' ,[l:JO·',' -· ~t ' ); 

Dt 
Dtest 
sOt est 
sMtest 
sMtest 

som_read data( ' 81/ Sk -: 15F-c.·lC! L i1 '); 
[sDP;Dt.data]; [Jr.- r rr . .. nd IJ ·L l ta s-t -"'t lsl 
som_norma1ize(Dtest, ' ar ' ); 
som_make(sOtest); 
som auto1abe1(sMtest,sOtest, ' vote ' ); 

0 = som_read_data( ' r· ,-k:l 1-rtz . lat· ' ); 
sO som norma1ize(O, ' var ' ); 
sM = som_make(sO); 
sM = som auto1abe1(sM,sO, ' v~ e ' ); 
figure(1) 
som_show(sM, ' u:n.J.t ' , ' .:;.11 ' , ' ::cmp ' , [1:9 ] , 'ef"r;tv ' , ' L;>bels ' , ' r,orrn ' , ' a ' ); 
som shov-1 add( ' _a.De_ ' ,sM.1abe1s, ' r"":··· siz~ ' ,8, ' cxt~;ohr ' , ' r ' , . . 

'"' JL [:' l .. t ' , 11); 

pause 
c1c 

Feat= sMtest.codebook(73, :); 
Dtraj = [Feat]; 

bm = som_bmus(sM,Dtraj, [1:3]); 
T = bm'; 

figure(2) 
som shOY.I(SM, ' umat ' , ' al_ ', I omr' , [1:9], ' · rr·pty ' , ' "abels ' , l r,_,rm • , · ~1 1 ); 
som-show add( ' :.rr t ' ,T, ' ~1"'-~~r· :::'.::r ' , ' r ; ' , 'su~p l ·t ' , ' a- 1 ' ); 
som-show-add( ' -ar.=-:.. ' ,sM.1abe1s, ' t"'x s-~"' ' ,8, ' ext-c.lor ' , ' r' , 

I s Jbf; L::·t I , 1 1) ; 

pause 
c1c 
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Self-Organising Feature Map Program 

r Mf NE 1T EFEC1 r O'E~ O~S 

figure (3) 
som_show(sM, ' c:;mr: ' , [2] , '_mpLf' , 'L '1 P-1 'ncrm 1

, 
1 J ' ); 

som show add ( 1 :;om 1 ' , T , ' !• "':.: .Kcr .Jlc:.: ' , 1 k ' , ' subc I · t 1 
, ' a 11 ' ) ; 

som -show=:add ( ' a _ ' , sM.labels, 't ._;.; S.l- 1, 8, 1 ~xt ·nlo'"' ' , 11 1
, 

I ' _tl - - I I 2 ) ; 

pause 
clc 

DEF E m PRrJ lf r r II\]. 

figure ( 4) 

som_show(sM, 1C:Jffif' 1 , [8], 'empty ' , 
som show add( ' ~ o~_t ' ,T, · ~ark~
som-show-add( 1~uL ~_ ' ,sM.labels, 

- I c J t.p L Yt ' I 2 ) ; 

pause 
clc 

£tl 

figure(S) 

['FE .'I f<' fr'rirN::; .. . ~ •. 

' -.~ab;::_~ ... ' , ' Lo:::m ' , • u ' ); 

~ -~-: r ' ' ' ·~ • ' • ,:) u ,...~F- ... t • ' ' c 1 
't ;:-.:-: si-~ 1 ,8, 1 ::_:- t ·ol"'' 

L ~ 1"' I , I r , . 1"1• ' , I jl ) ; 

' ) ; 
, r, 

som _show ( sM, 1 l.'C"rnr ' , 
som_shmv_add ( 1 ·' !tl I 

som_ show_ add( 'lat 

[ 9], I::;; ~ t 't I I I L 
I IT I I M~ L 1 
1

, sM. labels, ' I 

I I I f· I I I ' IJ t r: l ~ I I I a 11 I ) ; 

yr;,; · .. 1 ,8, ' _extcc.!..or 1 ,' r 1
, 

1 sur::>_c• ' ,2); 

pause 
clc 

figure(6) 
subplot(l,2,1) 
[c,p,err,ind] kmeans clusters(sM, 40); 
[dummy,i] = min(ind); 
cl = p{i}; 
som cplane(sM,cl) 
titie( ' Uavies- cul,ing Index C us er~n ' ) 

subplot(l,2,2) 
som_cplane(sM, ·~ore ' ) 

hold · ,r 

J" 

som_grid (sM, ' ~ol;('' 1 , sM.labe l s, 1 ,_,a · -~l 'i" ' , 8, 
• L r· e ' , ' 1 a .,..Lt.: ' , ' rv --::;; v ' ' , ' r·1 1 :· r-1 c ' , ' 1 . J. , t 1 ..... J ~- r ' , ' r • ) 

hold ,, . t 
title ( ' :..-,n ... ~ 1 ) 
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pause 
clc 

E.f1CLTLEP-.N P~ll.NE FR f:. 'T:' .. s 
....- • • ..... 'Y ... .,. 

figure (7) 
[Pd, V,me, 1] = pcaproj (sO, 2); Pm = pcap roj (sM, V,me); t -pr._j c art 
Code = som _ colorcode ( Pm) ; -, J 1 
hits= som hits(sM,sO); tl ~ 

U = som_umat(sM); r -
Om U(1:2:size(lJ,l),1:2:size(U,2)); i . - · ' '" " matr!x 
Om = 1-0m(:)/max(Om(:)); Om(find(hits==O)) = 0; lust_rLr••J u.f 

subplot(l,3,1) 
som_cplane(sM,Code,Om); 
hold •ll 

som g rid ( sM, ' La be_ ', cellstr ( int2str (hits) ) , 
-

1 L r. .:-_ ' , ' n~.:>r i r • , • ~:::~-<8r ' , • n n~ ' ,'~.l-l t -lc-, __ )r ' , ' k ' ); 
hold 
title( 'i""lu~t r,D:J~~ D_st-ritu.:. n ' ) 

subplot(l,3,2) 
som_grid(sM, 'i:c ::._ ' ,Pm, ' M:; -L- e" rl' JlO% ' ,Code, ':=_i n.=-~n_or ' , ' •· ' ); 
hold 0n , plot(Pd(:,l),Pd(:,2), ' .:1- ' ), hold <It , axis ·:.:.1h:: , axis ~qual 

title ( 1 :.Ja~; Fr::.-i '=''-- i11, 1
) 

rotate3d ~ r p_•_~t " dXl ·' ;_t,n~ L ;-n· ftd+.tY 

subplot(l,3,3) 
som _ cp l ane ( sM, ' e ' ) 
hold "Jn 
som grid(sM, 1 Label ', s~1.labels, 1 L ·.,h .. st;:: •_ ' , 8, . . . 

, -, , ,, ' , ' 1 ,_ ' , ' M,_rf_r ' , ' n.T'l_ ' , ' Lab_lc_· l r ' , ' r ' ); 
hold ' 1 r 
title ( ' Lab(~la ' ) 

pause 
clc 

figure(S) 
[Pd,V,me,l] = p caproj (s 0 , 2 ); Pm = pcapro j (sM,V,me); 
som_grid(sM, ' Cact • ' ,Pm, ' . srke~··,. · r ' ,Code, ' Li•.cvlo_ ' , ' f ' ); 
hold .·: , plot( Pd(:,l),Pd(:,2), • t..+ ' ), hold .=£ , axis fi 1 , axis P::;:ual 
title( 'M~0 P~::tertir ~ ' ) 

rotate3d ~n R-•a·=~ ax1s 

pause 
clc 
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fig ure ( 9) 
som_show(sM, 1 l.lllat ' , 'al '..:mp . y ' , ' ~db.;o--s ' ) ; 

som show add( ' c:~:n t::. ' , T , ''··Jar~-=-~··-:;_. r ' , · ~. ' , ' 'Oub~lct ' , 2) ; 
som-show-add( ' ~ 3L• _ ' ,sM.labels, •-n~x"'s i ~e ' , 8 , ' 1'ex C;::,lo~ · , 

- , S.lbp l :=: t ', 2) ; 
h = som hits(sM , sD); 
som show add( ' l-i ::' ,h, ' '1drkP!:rc· ., • , ' ':J ' , • .::ubpl•Jr ' ,1 ) 

f- ~ r ~- , i '; "' ~ B' :1 I 

[qe ] = som bmus (sM, Dtraj, · ~ll ' ) ; 

qe ( 1, [ 1, 2 , end ] ) i r ~- - s •.c r 

pause 
clc 

-Bt-l cnj ;vMU: 

.,.,~_,. .... ··- .... .~.. _~! _., .... .. ,._ .. . _ ,. _,_ ..... 

figure (10) 
som show ( sM , ' ~omp 1

, [ 2], ' ~"mp t y ' , ' L -h._ ' , 1 n JL •1 ' , 1 r\ 1
) ; 

som show a dd( ' comE" ' ,T, ' •"ark€t~olo , ' }: ' , ' subpJo ' , 2) ; 
som- show::::add( ' 1or"'l 1 ,SM.label s , ' T xts1 • 1 , 8, ' Te:· '1" 1 1 

' ':.' .Jht l t- ' , 2) ; 
h = som_ hits(sM ,sD) 
som show_ add ( 1 1- :_· ' , h, ' ·a r ~:e1 ':.:oi.o:::- ' , ' vi ' , 1 

• • ub')JOt ' , 1 ) ; 

pause 
clc 

LE.n. N ~/', 

rtr 

'fLA'TI\JN 

sM = som superv i sed(sD , ' s~d:l ' ) 

bm = som::::bmus(sM , Dtraj , [ 1: 3 ] ) ; 
T = bm '; 

f i gure (l1 ) 
som show(sM , ' ..1mat ' , ' a~~ ' ) ; 

.... ' - , 

I r I 
I • • • 

som:::: show _ add ( I ·~ trT1 t I , T, I Mar .er ;_ -,1 •I: ' , I k I , I ~ ur l •t ' , I all ' ) i 
som show_ add( 1 J.'-bfl. ' ,sM.labels, ' TP};tS.:..ze ' , 8 , ' T~-tru · or ' , ' r ') 

sDLv som 1 abe 1 (sD , ' ~ 1p;:~r ' , ' "~ll ' ); 

sDLv som_ a uto1abel(s DLv ,sM); 
ok = strcmp(sDLv .1 abels , sD .labels) ; 
100*(1-sum( ok)/ 1 e ngth(ok)) 

echo (_ ·:r: 
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SOM Training Report 

Annexure 8: SOM Training Report 

elf 1eset ; 
figure(gcf) 
echo c•n 

Complete Input Data Set 

Dtest = som_read_dat a(' Bl~ . da a ' ); 

data ~-a tl , !<. 

sDtest = som normalize(Dtest , ' vaL ' ); 
sMtest = som_ make(sDtest); 
Determining r'"' ~· <: 

m:::~p . .,i:.-" _;r1 , 11 ' 
I nitialization . . . 
Training using t d c: i:!lgor i- hm ... 
R ·.ugt· "'11 in. r-rdse .. . 

Training : 2/ 2 s 
Finetuning fh=Js• 

Training : 2/ 5 s 
Training: 4 / 5 s 
Training: 6/ 6 s 
Final !u :--t iz~ Ll< E:r • r : 0 .. u.3 
Final '::op:J :;rar,hic err .. I: ! . [J / 5 

T PA ~LNG . HE D IA N0. I!J >OJ'oll 

D = som_read data( ' Bl? . dc -~ ' ); 

data . _.:;~d. ok 
sO = som_normalize(D , ' 7ar ' ) ; 
sM = som_make(sD); 
Determining ~~r s ~e . .. 

me:~;. s;z::: j(} , -' · 
Ini t i alizat i on ... 
Training using a ... ~; :::~~ry .!.-" hm .•. 
;:cuc•h r ,,1r,1n1 b.s .. . .. 

Training : 2/ 2 s 
Finetuni ng p h ase . . . 

Training: 2 I 5 s 
Tra i ning: 4/ 6 s 
Train i ng : 6/ 6 s 
Final :u.::.r i ~ 10: :--• •• 0 . ";2~ 

Final to og~a.phi-:: .:: or : ll . 07 :J 
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15Hz- SKG Input Data Set 

TES1 E EE.r.RH ' 
• !' . • 

Dtest = som_read data( ' :312 '!r:.H :: 5·\G . "' :-t ') ; 

data r a J -~ ~ 

sDtest = som normalize(Dtest, ' u-~-·) ; 

sMtest = som make(sDtest); 
Determining ~or 3 ~ ..• 

r ! ) size [13 , p·l 
Init ia lization . . . 
Tra ining using oat ~h algoL : thm . .. 
RL q ':t:..ir~~-J r.-n::it:: ••. 

Train ing : 0/ 0 s 
Finetuning 

Tra ining: 0/ 0 s 
Tra ining: 0/ 0 s 
Final ~ ·· r·ti~ ~i.n <::>r._·-,r : 11 . ..1' 6 
Final . crographi.: "!rror : (i,(J ·_, 'i 

lRAliiiN .HE :IA !· ,_LN, S01•l 

D = som_read data (' Bl2_:SHz 5KG.dat~ ' ); 

data r..:>a · : I· 
sO= som_normalize(D, •,:az: ' ); 
sM = som make(sD); 
Determining ~ap ~ ·~ ... 

nl':!f:- ·.:.::-e fl"' , 8] 
Initialization .. . 
Training using )ZJ.~Ctl a:i..g:Jrithrn . .. 
Rcc.~g, • "'irJn • Jll <Se ..• 

Training: 0/ 0 s 
Finetuning ~hase ... 

Training: 0/ 
Training: 0/ 
Final '.u-rtlzati<" 
Final -o~:J~~aphic 

0 s 
0 s 

er 
. rror: ) & j ' j J 
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