

COMPARATIVE STUDY OF OPEN SOURCE AND DOT NET

ENVIRONMENTS FOR ONTOLOGY DEVELOPMENT

Dissertation Submitted in Fulfillment of the Requirements for the Degree of

MAGISTER TECHNOLOGIAE:

In the

 Department of Information and Communication Technology, Faculty of

Applied and Computer Sciences, Vaal University of Technology

By

Leki Jovial Mahoro

216165393

Supervisor: Dr J.V. Fonou-Dombeu

Co-Supervisor: Mrs. Sihle Moyo

May, 2020

i

DECLARATION

I hereby declare that this dissertation, which I submit for the qualification of Magister Technologiae

in Information Technology to the Vaal University of Technology, Department of Information

and Communications Technology, Faculty of Applied and Computer Sciences, apart from the

recognized assistance of my supervisor and provided citations, is my own work and has not

previously been submitted to any other institution for any degree.

 Leki Jovial Mahoro on this day of
Candidate

 Dr. J.V. Fonou-Dombeu on this day of
Supervisor

ii

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my supervisor Dr J.V. Fonou-Dombeu for the useful

comments, remarks and full guidance through the entire process of this Master dissertation. I

would like to thank my mother for encouragement on the way and my brother Steven Manzi,

who have supported me throughout entire process of my studies, both by keeping me

harmonious and helping me putting pieces together. I owe my loving thanks to Guillaine and

Ngango’s family for their motivation and advice. I will forever be grateful for your support

iii

 ABSTRACT

Many studies have evaluated and compared the existing open-sources Semantic Web platforms for

ontologies development. However, none of these studies have included the dot NET-based

semantic web platforms in the empirical investigations. This study conducted a comparative

analysis of open-source and dot NET-based semantic web platforms for ontologies development.

Two popular dot NET-based semantic web platforms, namely, SemWeb.NET and dotNetRDF

were analyzed and compared against open-source environments including Jena Application

Programming Interface (API), Protégé and RDF4J also known as Sesame Software Development

Kit (SDK). Various metrics such as storage mode, query support, consistency checking,

interoperability with other tools, and many more were used to compare two categories of

platforms. Five ontologies of different sizes are used in the experiments.

The experimental results showed that the open-source platforms provide more facilities for

creating, storing and processing ontologies compared to the dot NET-based tools. Furthermore,

the experiments revealed that Protégé and RDF4J open-source and dotNetRDF platforms provide

both graphical user interface (GUI) and command line interface for ontologies processing,

whereas, Jena open-source and SemWeb.NET are command line platforms. Moreover, the results

showed that the open-source platforms are capable of processing multiple ontologies’ files formats

including Resource Description Framework (RDF) and Ontology Web Language (OWL) formats,

whereas, the dot NET-based tools only process RDF ontologies. Finally, the experiment results

indicate that the dot NET-based platforms have limited memory size as they failed to load and

query large ontologies compared to open-source environments.

iv

Table of Contents
DECLARATION ... i

ACKNOWLEDGEMENTS .. ii

ABSTRACT ... iii

Table of Figures .. vii

Table of Tables .. viii

CHAPTER 1. INTRODUCTION ... 1

1.1 Background ... 1

1.2 Rationale and Motivation .. 1

1.3 Problem Statement .. 2

1.4 Research Aim and Objectives ... 2

1.5 Methodology ... 3

1.5.1 Data Collection .. 3

1.5.2 Research Methods .. 3

1.5.3 Implementation .. 3

1.6 Dissertation Outline .. 4

1.7 Original Contributions .. 4

1.8 Publications ... 5

CHAPTER 2. LITERATURE REVIEW ... 6

2.1 Introduction ... 6

2.2 Semantic Web ... 6

2.3 Ontology ... 8

2.4 Languages for Representing Ontologies ... 10

2.4.1 Resource Description Framework (RDF) .. 10

2.4.2 Resource Description Framework Schema (RDFS) .. 11

2.4.3 Web Ontology Language (OWL) .. 12

2.5 dot NET-Based Semantic Web Libraries .. 12

2.5.1 SemWeb.NET .. 13

2.5.2 LinqToRdf.. 13

2.5.3 dotNetRDF ... 13

2.5.4 RDFSharp .. 13

2.5.5 OwlDotNetApi ... 14

v

2.5.6 dotSesame .. 14

2.5.7 BrightstarDB .. 14

2.5.8 TODE ... 15

2.6 Open Source Platforms for Ontologies Development .. 15

2.6.1 Protégé ... 15

2.6.2 Jena API ... 16

2.6.3 RDF4J .. 16

2.6.4 Ontostudio .. 16

2.6.5 Swoop .. 17

2.6.6 Neon Toolkit .. 17

2.6.7 Apollo .. 17

2.7 Related Work .. 17

2.9 Conclusion .. 20

CHAPTER 3. RESEARCH METHODOLOGY .. 22

3.1 Introduction ... 22

3.2 Data Collection ... 24

3.3 Types of Research Methodologies .. 22

3.4 Design Research process... 24

3.4.1 Awareness .. 26

3.4.2 Suggestion .. 27

3.4.3 Development .. 27

3.4.4 Evaluation .. 27

3.4.5 Conclusion ... 28

3.5 Application of Design Research on this study .. 28

3.5.1 Awareness .. 29

3.5.2 Suggestion .. 29

3.5.3 Development stage ... 29

3.4.4. Evaluation ... 33

3.4.6 Conclusion ... 34

CHAPTER 4. COMPARATIVE FRAMEWORK OF DOT NET-BASED AND OPEN

SOURCE TOOLS FOR ONTOLOGY DEVELOPMENT ... 35

4.1 Introduction ... 35

4.2 Framework Overview ... 35

vi

4.2.1 Development layer ... 36

4.2.2 Storage Media Layer .. 37

4.2.3 Retrieval Layer... 38

4.2.4 Comparison Layer .. 38

4.3 Related Work .. 40

4.4 Conclusion .. 42

CHAPTER 5. EXPERIMENTS ... 43

5.1 Introduction ... 43

5.2 Experiment Requirements ... 43

5.2.1 Dataset.. 43

5.3 Experimental Results .. 48

5.3.1 Comparison of dotNetRDF and SemWeb.NET Libraries ... 48

5.4 Comparison Analysis of Dot NET and Open Source Environments 53

5.4.1 Analysis Results on Loading, Executing and Querying Ontologies 53

5.5 Conclusion .. 59

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 61

6.1 Summary of the Study .. 61

6.2 Limitations and Recommendations for Future Work ... 61

6.3 Conclusion .. 62

BIBLIOGRAPHY .. Error! Bookmark not defined.

APPENDIX A: FULL CODE OF ONTOLOGY DEVELOPMENT IN DOT NET

ENVIRONMENT .. 71

APPENDIX B: FULL CODE OF ONTOLOGY DEVELOPMENT IN OPEN SOURCE

ENVIRONMENT .. 79

APPENDIX C: FULL TABLE ON COMPARISON OF DOT NET AND OPEN SOURCE

PLATFORMS FOR ONTOLOGY DEVELOPMENT ... 86

vii

List of Figures

FIGURE 2.1: THE SEMANTIC WEB ARCHITECTURE (TIM BERNERS LEE, 2001). 7

FIGURE 2.2:EXAMPLE OF RDFS ARCHITECTURE .. 11

FIGURE 3.1: DESIGN RESEARCH PROCESS (VAISHNAVI & KUECHLER, 2004) 26

FIGURE 3.2: THE CORE DOTNETRDF LIBRARY .. 30

FIGURE 3.3: DOTNETRDF LIBRARY OVERVIEW IN VISUAL STUDIO 2010 31

FIGURE 3.4: SEMWEB LIBRARY OVERVIEW IN VISUAL STUDIO 2010 ... 31

FIGURE 3.5: PROTÉGÉ LIBRARY OVERVIEW .. 32

FIGURE 3.6: JENA LIBRARY OVERVIEW IN ECLIPSE. ... 32

FIGURE 3.7: RDF4J SET UP OVERVIEW IN IN ECLIPSE .. 33

FIGURE 4.1: FRAMEWORK OF COMPARISON OF DOT NET-BASED AND OPEN SOURCE SEMANTIC WEB

PLATFORMS. .. 36

FIGURE 5.1: VIEW OF ONTODPM ONTOLOGY IN PROTÉGÉ ... 45

FIGURE 5.2: VIEW OF WIKIMOVIE ONTOLOGY IN PROTÉGÉ ... 45

FIGURE 5.3: VIEW OF TERO ONTOLOGY IN PROTÉGÉ .. 46

FIGURE 5.4: VIEW OF GENE ONTOLOGY IN PROTÉGÉ .. 46

FIGURE 5.5: VIEW OF AGRICULTURE & FORENSIC ONTOLOGY (AFO) IN PROTÉGÉ 47

FIGURE 5.6: VIEW OF DRUG ONTOLOGY IN PROTÉGÉ ... 47

FIGURE 5.7: LOADING TIMES OF ONTOLOGIES IN DOTNETRDF, SEMWEB, PROTÉGÉ, JENA, AND

RDF4J ... 54

FIGURE 5.8: QUERIES RESPONSE TIMES OF ONTOLOGIES IN DOTNETRDF, SEMWEB, PROTÉGÉ, JENA

AND RDF4J.. 56

FIGURE 5.9: QUERIES EXECUTION TIMES IN DOTNETRDF, SEMWEB, PROTÉGÉ, JENA AND RDF4J

... 57

file:///C:/Users/koech/Downloads/Thesis%20draft.docx%23_Toc34474637
file:///C:/Users/koech/Downloads/Thesis%20draft.docx%23_Toc34474638

viii

List of Tables

TABLE 5.1: CHARACTERISTICS OF ONTOLOGIES IN DATASET .. 44

TABLE 5.2: SAMPLE CODES USED TO IMPLEMENT RDF TRIPLES IN DOTNETRDF 49

TABLE 5.3: SAMPLE CODES USED TO IMPORT RDF TRIPLES IN DOTNETRDF 49

TABLE 5.4: SAMPLE CODES USED TO CONSTRUCT SUBJECT, PREDICATE AND OBJECT IN

SEMWEB.NET ... 50

TABLE 5.5: SAMPLE CODES USED TO IMPORT DIFFERENT RDF FORMATS IN SEMWEB.NET 50

TABLE 5.6: COMPARISON RESULTS OF SEMWEB.NET AND DOTNETRDF 52

TABLE 5.7: LOADING TIME IN DOTNETRDF, SEMWEB, PROTÉGÉ, JENA AND RDF4J 54

TABLE 5.8: MEANS OF QUERY RESPONSE TIME IN DOTNETRDF, SEMWEB, PROTEGE, JENA AND

RDF4J ... 55

TABLE 5.9: QUERY EXECUTION TIME IN DOTNETRDF, SEMWEB, PROTÉGÉ, JENA AND RDF4J ... 57

TABLE 5.10: SUMMARY OF COMPARISON OF DOT NET AND OPEN SOURCE SEMANTIC WEB

PLATFORMS ... 58

ix

List of Acronyms

AI : Artificial Intelligence

AJAX : Asynchronous JavaScript and XML

API : Application Programming Interface

ASP .NET : Active Server Page (Microsoft script engine)

C# : C Sharp

CERN : European Organization for Nuclear Research

DAML : DARPA Agent Markup Language

DL : Description Logic

DOI : Digital Object Identifier

GUI : Graphical User Interface

HTML: HyperText Markup Language

ICT: Information and Communication Technology

icABCD: International Conference on Advances in Big Data, Computing and Data

Communication Systems

IDE: Integrated Development Environment

LINQ: Language Integrated Query (Microsoft)

MVC: Model View Controller

MS SQL: Microsoft Structured Query Language

NS: Name Spaces

N3: Notation 3

OIL: Ontology Interchange Language (XML)

OKBC: Open Knowledge Base Connectivity

OntoDPM: Ontology of Development Project Monitoring

x

OWL: Web Ontology Language

RDBMS: Relational Database Management System

RDF: Resource Description Framework

RDFS: Resource Description Framework Schema

RDQL: RDF Data Query Language

SPARQL: SPARQL Protocol and RDF Query Language

SQL: Structured Query Language

SW: Semantic Web

TODE: Tool for Ontology Development and Editing

URI: Uniform Resource Indicator

URL: Uniform Resource Locator

URN: Universal Resource Name

W3C: World Wide Web Consortium

WWW: World Wide Web

XML: Extensible Markup Language

1

CHAPTER 1. INTRODUCTION

1.1 Background

The amount of data created each day on the web has led to the creation of a new technology that

enables integrated information to be understood and processed by machines. This technology is

called semantic web and it is an extension of the current World Wide Web (Fluit et al., 2003).

Semantic web depends strongly on the development of ontologies which play a significant role in

the engineering and transport of machine-readable information. The main advantage of the

semantic web is the presentation of information to humans and machines in the same way (Taye,

2010). Ontology is based on information-sharing concepts that allow users and software programs

to reuse the content of information from other ontologies (d’Aquin et al., 2002; Ochs et al., 2017).

Also, it enables users to extract and easily choose information based on the domain of interest (Sun

et al., 2011). Hence, Ontology-based systems have been adopted in various domains including e-

commerce, e-learning and e-government (Lu et al., 2007).

To develop ontologies, several platforms including open source and dot NET environments have

been created. Some commonly used platforms include Protégé, Jena and RDF4J known as Sesame

for open source environment (Broekstra et al., 2002; Buranarachi et al., 2016) and dotNetRDF,

SemWeb.NET and RDFSharp for dot NET users (Mazilu et al., 2009). These platforms enable

Semantic web developers to build, use and maintain ontologies (Lambrix et al., 2003). In general,

dot NET environments are rarely used in Ontology creation and management (Islam et al., 2010).

The purpose of this study was to empirically analyze and compare the use of open source and dot

NET environments for Ontology development.

1.2 Rationale and Motivation

Ontology development for the Semantic web has made a substantial contribution in handling and

processing data of the current World Wide Web (Horroks, 2008; Ruta et al., 2017). Semantic web

enables the sharing and reuse of information among people, organizations and computer-based

software (Santos et al., 2016). The increase of web users has led to the development of customized

platforms with enhanced querying capacity and therefore allowing the extraction of information

according to the users’ needs (Konstantinidis et al., 2017). Hence, semantic web has been adopted

2

in data management for public databases such as government, business and health organizations

(Zenuni et al., 2015; Amato et al., 2016). These institutions generate a massive amount of data

which need to be integrated and automatically processed by computers and displayed in simple

formats for consumers (Aoki-Kinoshita et al., 2017; Kaur et al., 2017). Currently, there is a

constant development of new tools for Ontology development as well as the improvement of

existing ones to expand the application of semantic web (Rio, et al., 2017; Temourika et al., 2017).

Due to the increasing popularity of semantic web, there is a need to evaluate different environments

and their respective platforms for efficient application in Ontology development.

1.3 Problem Statement

Ontology-based systems are currently used in different fields such as medicine, education and

finance (Vegetti et al., 2016). Ontologies play a significant role in accessing and processing huge

data generated by different web activities and provide quick responses to users’ (Adrian et al.,

2014; Slater et al., 2016). Although there are several tools for Ontology development, there is a

lack of guidelines that allow developers to choose a suitable tool for any given application (Noy

et al., 2002). Previous studies conducted on ontologies have focused on the application of semantic

web using open source platforms (Slimani, 2015) but little has been done under licensed

environments such as dot NET. Furthermore, there is no empirical research on the comparative

use of open source and dot NET environments in constructing ontologies. Therefore, there is a

need to compare the effectiveness of Ontology development in both open source and dot NET

environments.

1.4 Research Aim and Objectives

The aim of this research is to compare the use of open source and dot NET environments for

developing ontologies. The objectives are:

1. To investigate existing open source and dot NET platforms for Ontology development.

2. To investigate ontologies on the Semantic Web.

3. To implement selected ontologies in both open source and dot NET environments

4. To compare and discuss the strengths and weaknesses of open source and dot NET

environments for Ontology development.

3

 1.5 Methodology

1.5.1 Data Collection

A literature search provided the data for this study. Journal articles, conference papers and books

that focus on the use of open source and dot NET environments for Ontology development were

used as the primary sources of information.

1.5.2 Research Methods

This study applied a design research method to meet the research objectives. Design research

consists of five processes (steps) including awareness of the problem, suggestions, development,

evaluation and conclusion (Kuechler et al., 2011). In this study, the awareness stage identifies the

gap between dot NET and open source environments in terms of creating, storing and querying

ontologies and many more. Therefore, this stage clarifies the need of comparison framework of

dot net and open source environments in developing ontologies. In the second stage of design

research i.e. the suggestion stage, we proposed a framework that evaluates and compares two dot

net-based tools, namely, SemWeb.NET and dotNetRDF, and three open source platforms

including Protégé, Jena API and RDF4J. In the development stage, all five platforms were used to

create an existing Ontology, namely, OntoDPM (Fonou-Dombeu et al., 2010) as well as processing

other ontologies imported from the internet. The evaluation stage uses a set of metrics to evaluate

the proposed framework. These metrics include Ontology loading time, query execution time,

query response time, tool’s architecture, query support, storage mode, import/export capabilities,

built in or external reasoners and many more (García-Castro et al., 2005; Mazilu et al., 2009).

Finally, the conclusion stage presents the results of the performance evaluation of the framework

and also discusses its limitations.

1.5.3 Implementation

This research developed ontologies in the development stage of the framework. The

implementation was done in two environments including dot NET framework and open source.

Java IDE (Integrated Development Environment) such as Eclipse was used as an open source while

Visual Studio was used as an IDE that support dot NET framework. Application Programming

Interfaces (API) including Jena and Protégé, RDF4J as well as SemWeb.NET and dotNetRDF dot

NET libraries are configured in open source and dot NET platforms, respectively. The

4

abovementioned platforms were used to create ontologies and store them in file system in various

formats such as N3, Tuttle, RDF/XML etc. Also, these platforms were used to load ontologies of

different formats and sizes in their internal memories. The stored RDF(S) and OWL Ontology files

are queried using SPARQL a Semantic web query language.

1.6 Dissertation Outline

The rest of chapters are structured as follows:

Chapter 2 presents the literature review that has been conducted on the use of semantic web

technology, ontologies and Ontology languages in different domains. Also, this chapter discusses

various studies on comparison and evaluation of Ontology development tools. Chapter 3 outlines

the materials and methods applied in this study by investigating existing methodologies in the

information technology domain and explains in detail the design research method adopted for this

study.

Chapter 4 presents the proposed framework of comparing open source and dot NET platforms for

Ontology development.

Chapter 5 implements the proposed framework and analyses the results of the study. Chapter 6

concludes the study, provides recommendations and outlines the limitations and future research.

1.7 Original Contributions

The main contributions of this research are as follow:

• A comparison framework of dot NET and open source platforms for Ontology

development is presented in Chapter 4. The proposed framework aims to serve as

a guideline to Semantic Web developers who wish to use either open sources or dot

NET environments.

• In Chapter 5 Subsection 5.4 implemented the proposed framework and analyzed

the results of the performance in processing ontologies in both dot NET and open

sources environments

• In Chapter 5, an empirical evaluation of dot NET tools in terms of storing and

querying RDF/OWL ontologies in presented. This work was published in Mahoro

& Fonou-Dombeu (2019).

5

• Chapter 5 reports a comparative study of two dot NET Semantic Web libraries,

namely, dotNetRDF and SemWeb.NET. This work was published in Mahoro &

Fonou-Dombeu (2020).

• A comparative analysis of dot Net-Based and Open Source Platforms for

Ontologies Development is described in Chapter 5. This work was published in

Mahoro & Fonou-Dombeu (2020).

1.8 Publications

The following publications were extracted from this study:

• L.J. Mahoro, and J.V. Fonou-Dombeu, (2019) An Empirical Evaluation of dot NET-Based

Tools for OWL/RDF Ontologies Processing, In Proceedings of the 2019 International

Conference on Advances in Big Data, Computing and Data Communication Systems

(icABCD), 5-6 August 2019, Winterton, South Africa, ISBN: 978-1-5386-9236-3, pp. 280-

284.

• L. J. Mahoro and J. V. Fonou-Dombeu, "A Comparative Analysis of dot NET-Based and

Open Source Platforms for Ontologies Development," In Proceedings of 2020

International Conference on Artificial Intelligence, Big Data, Computing and Data

Communication Systems (icABCD), Durban, KwaZulu-Natal South Africa, 6-7 August

2020, pp.1-7, DOI: 10.1109/icABCD49160.2020.9183887.

• L. J. Mahoro and J. V. Fonou-Dombeu, "A Comparative Study of dotNetRDF And

Semweb.NET Semantic Web Libraries," In Proceedings of 2020 International Conference

on Artificial Intelligence, Big Data, Computing and Data Communication Systems

(icABCD), Durban, KwaZulu-Natal, South Africa, 6-7 August 2020, pp.1-6, DOI:

10.1109/icABCD49160.2020.9183808.

6

CHAPTER 2. LITERATURE REVIEW

 2.1 Introduction

The use of semantic web improves reusability and integrity of data on the web. For this reason,

many platforms from different environments including open sources and licensed ones such as dot

NET have emerged to facilitate programmers to build, maintain and reuse ontologies

(Konstantinidis et al., 2017). This chapter presents the introduction and the structure of semantic

web, the use of ontologies and languages recommended by W3C to represent ontologies in

development of Semantic web applications. Furthermore, in this chapter we provide existing open

source and dot NET platforms for developing ontologies. Also, works related to this study are

presented and discussed in this chapter.

 2.2 Semantic Web

The term “Semantic Web” was coined by Tim Berners-Lee the inventor of the first generation of

web referred to World Wide Web (WWW) also known as Web1.0 created at CERN Laboratories

in 1989 (Hiremath & Kenchakkanavar, 2016). This web was created for nothing other than

displaying information from the web creator to the end users.

As technology improved, the second generation of World Wide Web also referred as web2.0 has

emerged as an extension of web1.0. This Web enables people to share information among them in

many ways such as social media networks (Facebook, twitter, Instagram, LinkedIn….) or other

web activities where users can create their own contents (Darwish, 2011; Choudhury, 2014).

The huge amount of data on this web include text documents, games and multimedia files are

written in HTML and other markup languages that display information in the way that can be

manipulated only by humans via web browsers such as Firefox, Chrome etc. (Taye, 2010).

The current web is significantly important in our daily lives by providing the useful links of

document pages for easier communication between people (Berners-Lee, Handler & Lassila,

2002). However, this web does not answer the question of knowledge sharing and data integration

on the web without human intervention. Hence, Tim Berners-Lee had a vision to move from web

of information to the web of knowledge so-called semantic web, with the purpose of not replace

but by extending the current World Wide Web (Zhang, 2007).

7

 In Semantic web technology, data are represented based on their meaning rather than its content

documents and their links, to be understood by both humans and computers (Berners-Lee et al.,

2001).

Tim Berners-Lee and his colleague (2001) defined Semantic web as an extension of the current

web in which information is given well-defined meaning, better enabling computers and people to

work in cooperation. This succeeded by adding meta-data i.e. data to describe the meaning of web

pages in machine-readable formats.

The implementation of semantic web application was based strongly on various technologies that

automate data processing on the web. Refer to the Figure 2.1 shows these technologies and

explains the building block of semantic web layers.

Figure 2.1: The Semantic Web Architecture (Tim Berners Lee, 2001).

Unicode and URI layers, Universal Resource Identifiers (URIs) including Universal Resource

Locator (URL), Universal Resource Name (URN) are used in semantic web technology to give

8

names and locate resources to be identified over the web. Unicode is a standard level of machine

language that gives a unique computer number to every character of all languages of the world to

be identified (Berners-Lee et al., 2001).

The extensible Markup Language (XML) refers to data representation model which is in machine-

readable format that enable describing exchanging data on the web; it also facilitates the creation

of interoperability of metadata. NS are name spaces which can be identified via URIs to enable

semantic interoperability among metadata (Berners-Lee et al., 2001).

Resource Description Framework (RDF) is the beginning of semantic web technology. RDF

provides a framework to represent and describe data with semantics in the way that machine can

access those data; RDF Schema defined as an extension of RDF where data are defined with rich

semantics by adding more vocabularies so that agents can logically infer metadata to perform their

tasks (Berners-Lee et al., 2001).

Ontology vocabulary layer is a knowledge representation that defines concepts and relation

between them. In this layer, simple descriptions and complex classifications are created to enable

a software agent to interpret data intelligently (Berners-Lee et al., 2001).

The logic layer rules are expressed with logic based on First Order Logic where agents can draw

logical conclusion from semantic encoded data (Berners-Lee et al., 2001). The proof layer

validates the evidence from inference logic activities, and finally the last semantic web layer Trust

will execute the rules generated in the logic layer.

 2.3 Ontology

The term “Ontology” borrowed from the realm of philosophy is the study of nature of being

(Gruber, 1993). Ontology is the transportation channel of meaning data to be used by semantic

web applications (Fernandez-Lopez & Gomez-Perez, 2003; Uthayan & Anandha Mala, 2015). It

allows knowledge to be represented, shared and reused across different people, organizations and

application systems (Slimani, 2015; Zenuni et al., 2015).

In computer sciences, many artificial intelligence researchers define ntology in different ways.

Gruber (1993) defined Ontology as a formal, explicit specification of a shared conceptualization

for a given domain.

9

• Formal: means that Ontology should be in machine-readable format so that machines can

process the provided semantic information.

• Explicit: means that concepts and constraints within Ontology must be clearly defined.

• Specification: Ontology domain must be determined.

• Conceptualization: concepts with the same semantics must be in the same class.

• Shared: reflects the notion that an Ontology captures consensual knowledge, that is, it is

not private for some individuals, but a large community can make a common agreement.

Chandrasekaran (1999) described Ontology as a content theory about the sorts of objects,

properties of objects and the relations between objects within a specific domain of knowledge

which lead Ontology technology to be adopted in different domains to help people to share their

knowledge. It also plays a great role in solving issues of data integration and provides common

vocabularies for different applications. Hence, Ontology is considered as the backbone of semantic

web (Splendianiet al., 2011).

The main Ontology components are Concepts, Individuals, Relationships, Attributes and Axioms.

These components provide knowledge models that can be used by software agents to browse the

web contents on the humans’ behalf (Heidari, 2009). The use of ontologies has become successful

in several activities such as searching and retrieving information from files and databases built for

semantic web applications (Uthayan et al., 2015). This has found applications in different fields

such as health, education and e-government as well as e-commerce (Khozoie, 2012; Almeida,

Santos & Monteiro, 2013).

 For example, the clinic website with contents published in the form of Ontology where a software

agent retrieves information from the doctor’s page and schedules the appointments for patients

according to the Doctor’s working days and his availability (Berners-Lee et al., 2001).

In e-government, ontologies are applied to help users to find appropriate information and help

them to solve problems related to interoperability and heterogeneity of data. In addition, concepts,

rules and regulations used within government domains are presented with semantic annotation

with a meaningful representation of civic events such as marriage, birth and death records

(Klischewski & Jeenicke, 2004).

10

 2.4 Languages for Representing Ontologies

To achieve the semantic web vision various researcher’s suggested different languages, standards,

Application Programming Interfaces, platforms and other W3C recommendations for easy

development of ontologies. In this section we provide a brief overview of common and popular

languages used in Ontology development processes.

Ontologies can be expressed using knowledge representation languages that provide semantics in

Ontology concepts. These languages include but are not limited to Resource Description

Framework (RDF), Resource Description Framework Schema (RDFS), DARPA Agent Markup

Language (DAML), Ontology Interchange Language (OIL), and Ontology Web Language (OWL)

(Maniraj & Sivakumar, 2010)

 2.4.1 Resource Description Framework (RDF)

RDF is the first layer of Semantic web technology recommended by W3C as the building block of

the semantic web. It is defined as a graph- oriented data model designed to represent and exchange

semantic data of any resources using meta-data i.e. data that describe other data; a resource can be

anything such as web page identified by Uniform Resource Identifiers (URIs) on the web (Sanjay

et al, 2010). RDF is used to process metadata which enables interoperability between application

systems and transform information in machine-readable form on the web; furthermore, it is used

to improve searching and navigation on the semantic web search engines (Taye, 2010).

RDF defines resources and their properties using simple statements, subject, predicate and object

also known as triples, <S, P, O >. The Subject defines the thing (the resource) of what a statement

is all about, the predicate identifies information or property that express about the subject and the

object defines the value of the predicate (Kalyanpur, 2006). Subject, Predicate are Universal

Resource Identifiers (URIs) and Object should be a URI or a literal value (Chakraborty et al.,

2013). RDF statements can also be represented as a graph with two nodes and one arc where the

arc represents resources property that link two nodes and nodes represent the resources Subject

and Object, respectively (Fagbola et al., 2012).

11

 2.4.2 Resource Description Framework Schema (RDFS)

RDF(S) Resource Description Framework Schema is an Ontology language that enables users to

add basic vocabulary while describing RDF resources of interest domains and define relationship

between classes and properties.

Figure 2.1: Example of RDFS Architecture

The top blue ellipses represent RDFS primitive modeling classes built in RDFS which are rdfs:

Class, rdfs: Resource and rdfs: Property, the rest is simple student Ontology. This Ontology has

two classes; Student class is an rdfs: SubPropertyOf class Person. Study with is the Property whose

rdfs: domain and rdfs: range are both class Student. John and Mary objects are instance of class

Student. Also, rdf: type link the objects and Ontology classes and between Ontology classes with

rdfs:

Resource

rdfs:

Property

rdfs:

Class

Person

Student
Study

with

John Mary

rdf:

Type

rdfs:

SubClassOf

rdfs:

SubClassOf

rdfs:

SubClassOf rdfs:

SubClassOf rdf:

Type

rdf:

Type

rdf:

Type

rdfs:

domain
rdfs:

range

rdf:

Type

Study

with

12

RDFS classes, rdfs: SubClassOf is used between Ontology classes (Student and Person) and

among RDFS classes (rdfs: Class, rdfs: Resource and rdfs: Property).

 2.4.3 Web Ontology Language (OWL)

In additional to RDF and RDFS languages, Web Ontology Language (OWL) emerged to add

vocabulary for high description of properties and classes (Sabou, 2006). OWL is an Ontology

language based on description logic used for describing classes, properties and individuals. OWL

is based on RDF/RDFS and provides knowledge representation, vocabulary sharing, advanced

search and knowledge management (Kyeungshun et al., 2006).

OWL is a combination result of DAML+OIL, it has been standardized by W3C as a tool that build

infrastructures to realize the semantic web vision. It comprises three sub languages which are OWL

DL, OWL Lite and OWL Full (Kyeungshun et al., 2006).

1. OWL-Lite. This is easier to implement and expand the functionality of RDFS by

supporting a classification hierarchy and simple features like cardinality constraints which

is restricted to 0, 1. It attempts to provide more functionality than RDFS, which is important

in order to support web applications.

2. OWL-DL. Includes all OWL language construct with restrictions. It contains the whole

OWL vocabulary that is interpreted under a number of simple constraints. Primary among

these can be found by the type separation. Class identifiers cannot simultaneously be

properties or individuals. Similarly, properties cannot be individuals.

3. OWL-Full. Supports all expressiveness and the syntactic freedom of RDF. This is

composed of the complete vocabulary but interpreted more broadly than in OWL DL. A

class can be treated simultaneously as a collection of individuals and can have properties

of their own.

 2.5 dot NET-Based Semantic Web Libraries

Although dot NET environment is slow to react on developing tools for editing, storing and

querying ontologies (Islam, Siddiqui & Shaikh, 2010), many efforts have been made to develop

Semantic Web tools compatible with the Microsoft dot NET platform such as TODE,

Knowledge.NET, SemWeb.NET, dotNetRDF, LinqToRdf, RDFSharp, OwlDotNetApi,

13

dotSesame, BrightstarDB. These platforms facilitate developers to easily conduct the entire

development process of ontologies in Microsoft .NET environment.

2.5.1 SemWeb.NET

Tauberer (2005) released SemWeb.NET a dot NET library for developing ontologies for RDF

level. It provides features like reading and writing RDF data encoded with different notation such

as RDF/ XML, N3, Turtle etc. SemWeb.NET provides two persistent RDF storage mode, namely,

in-memory store for storing small amounts of data and SQL store for storing large amounts of data.

However, this library does not provide any tool for reading and writing OWL ontologies (Tauberer

2010). The core classes in the SemWeb.NET library is found in the SemWeb namespace. In

SemWeb namespace, four classes provide the fundamentals for all aspects of the library: Resource,

Statement, StatementSource and StatementSink.

2.5.2 LinqToRdf

SemWeb.NET has been extended by Mathews (2007) to make a new tool called LinqToRdf. The

author presents LinqToRdf as a framework that represents and query the RDF data model in dot

net environment. It uses the RdfDataContext which is the source of all entities from triple store.

LinqToRdf provides Tools such as LinqToRdf Designer, a visual tool to edit ontologies, and

LinqToRdf Metal a command line for querying semantic web applications. LinqToRdf comes with

two parts namely, LinqToRdf MSI which is the installer that installs the core assemblies needed

to conduct Semantic queries and LinqToRdf Designer which integrates with visual studio.

2.5.3 dotNetRDF

Robe (2009) developed a library written in C# compatible with dot NET framework called

dotNetRDF. It provides an easy but strong API for reading and writing RDF data. dotNetRDF is

an extensible library which means that any user can contribute by adding features. Also,

dotNetRDF provides a built in rdfEditor tool for editing RDF data and rdfConveter tool which

provides a Graphic User Interface (GUI) to manipulate the contents of triples stores. It supports

triple store platforms such as Allegro graph, 4stores, Sesame and Virtuoso.

2.5.4 RDFSharp

Another dot net platform called RDF Sharp was developed in C# designed to create applications

based on RDF model. RDF Sharp is composed by three layers, namely, RDF Sharp Model, RDF

14

Sharp Store and RDF Sharp Query. The first layer RDF Model provides core classes which create

and manage RDF model such as resources, literals, triples, graphs and namespaces. The second

layer i.e. RDF Sharp Store While RDF Sharp query enables modeling, storing and querying RDF

data of applications developed in dot NET environment (Mdesalvo, 2010).

2.5.5 OwlDotNetApi

The OwlDotNetApi is an OWL (Ontology Language) API written in C# for the .NET environment

based on RDF model. It is fully compliant with the W3C OWL syntax specifications and can be

used within any dot NET language. The API uses the underlying data model from Drive to build

a directed linked graph from the OWL Ontology. The RDF parser which is based on the dot NET

platform has been modified to parse OWL ontologies instead (Owldotnet, 2009).

2.5.6 dotSesame

The dotSesame project is a cross platform library developed in C# a dot NET language. Initially

dotSesame was derived from the Sesame project, which is originally written in Java. It is an open

source RDF database with supports for RDF Schema inferencing and querying Ontology files

(Openrdf, 2010).

2.5.7 BrightstarDB

BrightstarDB is a dot net library which provides three levels of API that store processes and

maintain ontologies (Brightstardb, 2006). It provides several layers of API that are involved in the

development of ontologies; the three main API’s level in BrightstarDB are described as:

1. Entity Framework API is a powerful and simple technology to construct dot NET domains

model by simply creating a set of interfaces compatible with dot NET framework to define the

data model.

2. Data Object API which provide a generic object layer on top of RDF data. This layer

provides abstract classes that allow the developer to manipulate collections of triples into data

objects.

15

3. RDF Client API provides a simple set of methods for creating and deleting execution

queries. It enables Visual Studio integration that takes Interface definitions and generated a

strongly typed dot NET domain model that stores its data as RDF in a BrightstarDB instance.

2.5.8 TODE

Islam et al. (2010) presented a Tool for Ontology Development and Editing based on dot NET

framework called TODE. Its interface is easy to use and provides a good environment to create

and edit ontologies and supports an Ontology development methodology called methOntology.

The architecture of TODE is composed of three main parts, namely, Model, View and Controller.

These parts facilitate any modification from users without changing its business logic. TODE has

been implemented in C# a dot NET programming language and MS SQL Server have been used

to create database for storing ontologies. ASP.NET and AJAX also used to create its interface

(Islam et al, 2010). However, this tool is still in the development phase.

 2.6 Open Source Platforms for Ontologies Development

Several Ontology development platforms have been developed in the past (Rastogi et al., 2017).

Most of these platforms are open source which gives the right to Semantic web users to

customize such tools based on the requirements to accomplish their tasks. This section discusses,

in detail, some of these tools including Protégé, Jena API, RDF4J, Ontostudio, Swoop, Neon

Toolkit and Apollo.

2.6.1 Protégé

Protégé is an open source and free Ontology development tool, developed at Stanford Medical

Informatics (Alatrish, 2013). Its architecture is separated by two parts, namely, model and view.

The Model part is used for ontologies and knowledge representation. Based on the structure of the

metamodel the constituent ontologies can be represented as classes, properties (slots), property

characteristics and instances. On the other hand, the view part displays interface and manipulate

the underlying model. Protégé can edit or build ontologies of different formats such as XML, RDF,

RDF (S) and OWL (Fonou –Dombeu & Magda Huisman, 2011). As protégé provides a Graphic

User Interface, using this view part Designers can create classes, instances (individuals) and give

properties to those classes and restriction on the properties of facet. Also, it provides API for

16

querying and manipulating models and has a library withhold tabs to edit, visualize and manage

ontologies (Jambhulkar and Karale, 2016).

2.6.2 Jena API

Jena is another popular open source framework which has been developed in HP labs. It provides

an Application Programming Interface (API) which enables the creation and manipulation of RDF

graphs. Jena provides RDF API which enables reading and writing RDF data in the form of XML,

Turtle, N3 etc. The query languages supported by Jena API are SPARQL and RDQL. Jena uses

RDQL and SPARQL as query languages to query out RDF data in Jena persistence store or in-

memory storage for storing temporary or permanently RDF data (Wang, Ding, Xiang & Xun,

2005). The Jena API supports three storage modes, namely, in-memory RDF storage, native

storage and database storage of RDF graphs. There are several databases currently supported by

Jena such as MySQL, Oracle, PostgreSQL, and many others (McBride, 2010). Also, Jena can be

used as application by using the Jena Fuseki or as an API configured in Eclipse Integrated

Development Environment (IDE) (Stegmaier et al., 2009)

2.6.3 RDF4J

RDF4J, formerly known as Sesame SDK, is an open source platform for persistence storage of

RDF data and provides mechanisms of querying those data. It provides Storage and Inference

Layer (SAIL) which is an application programming interface (API) that gives special methods to

RDF and use these methods to store RDF data in DBMS (Broekstra, Kampman and Harmelen,

2002). The SAIL API has three major parts including RQL which supports two query languages

namely, SPARQL and SeRQL. RQL query engine is used to query the repository through the SAIL

API. The second part is RDF admin module which allows data from the file to be loaded into the

RDF4J repository and the final part the RDF export module allows data to be exported from the

repository into a file (Ye, Ouyang &Dong, 2010). RDF4J can visually process RDF data using a

Graphical User Interface (GUI) or using a Command Line Interface (CLI).

2.6.4 Ontostudio

Ontostudio is a Semantic Web tool developed by OntoPrise which provides full support of all W3C

standards like RDF(S), OWL, and RIF etc. It also offers extra features such as collaborative

17

Ontology development using collaborative server, drag and drop conversion between different

languages, and easy integration of database information to the Ontology (Kapoor & Sharma,

2010).

2.6.5 Swoop

Swoop is also an open source tool for Ontology editing/constructing. Swoop tool allows the

comparison between entities and the relationship of different ontologies. Swoop, enables the

import of ontologies from text formats, XML, OWL and RDF. Swoop supports reasoned like

RDFS, PELLET etc. (Kapoor & Sharma, 2010).

2.6.6 Neon Toolkit

Neon is an open source and multi-platform environment tool for Ontology editing construction. It

is mainly based on the eclipse platform. It can be extended by using plugins (Erdmann &Waterfeld,

2012). These plugins have the capacity to cover the whole life cycle of the Ontology engineering.

The main features are visualization, XML editing, import to F-Logic, export to F-Logic etc.

2.6.7 Apollo

Apollo is a user-friendly knowledge modeling application. It allows a user to model Ontology with

basic primitives, such as classes, instances, functions, relations and so on. The internal model is a

frame system based on the OKBC protocol. The knowledge base of Apollo consists of a

hierarchical organization of ontologies. Ontologies can be inherited from other ontologies and can

be used as if they were their own ontologies (Kapoor & Sharma, 2010). Each Ontology is the

default Ontology, which includes all primitive classes. Each class can create a number of instances,

and an instance inherits all slots. The summary of dot NET and open sources platforms discussed

above is presented in Appendix C.

 2.7 Related Work

Choosing the right tool is the first step to begin Ontology development. Developers are required

to choose appropriate metrics to evaluate the performance of various tools. For example, Iacob

(2009) compared the performance of SemWeb and dotNetRDF APIs for dot Net environment with

different criteria including IDE integration, triple storage, SPARQL integration support,

performance level of documentation and licensing.

18

Over the past years, many ontologies have been developed by researchers for different purposes.

In the e-government domain Fonou-Dombeu (2010) presented a conceptual Ontology for e-

government monitoring of development projects in Sub Saharan Africa (OntoDPM). Protégé, an

open source knowledge base editor tool was used to create OntoDPM Ontology.

Another study on OntoDPM (Fonou-Dombeu & Huisman, 2011) was done in the e-government

field by combining Ontology building methodology using a framework adopted from the Uschold

and King and two semantic web platforms namely Protégé and Jena. Furthermore, the OntoDPM

written in UML formalism and implemented in web Ontology language (OWL) with protégé using

its semi-formal representation. Jena Ontology was employed to create the resource description

framework (RDF) in formal representation of OntoDPM.

Kiong et al. (2009) presented a Health Ontology Generator (HOG) using a health database such as

Microsoft Access and SQL Server. The development of the Ontology generator involves building

methods for creating and reading the Ontology. The Health Ontology Generator performs both

these tasks. In generating the Ontology, database tables are treated as classes, fields as functional

properties, and records as instances. The Ontology generated can be read using third-party software

such as Microsoft Word, Excel and Internet Explorer. HOG is implemented on the Windows

platform using C#.NET.

A popular and mature Ontology in biology domain, Gene Ontology, has been created in GO project

developed using OBO-Edit tool. This project combines three subprojects, namely, FlyBase, Mouse

Genome informatics and Saccharomyces Genome database. The GO Ontology covers three main

biology domains including molecular function, cellular components and biological process. The

GO Ontology contains the vocabulary used in the biology field and relationship between those

terms (Taha, 2013).

Also, in the biology domain, Raffat et al. (2012) proposed a human biological viruses (HBVO)

Ontology for classification of viruses that belongs to the human community. Human biological

viruses’ Ontology intends to support an integrated conceptual framework of open biology

Ontology with a structure and controlled vocabulary to describe and categorized biological viruses.

This Ontology was created using Open Biological Ontology (OBO) principles in OBO- Edit tool.

19

Yeong et al. (2013) proposed a system based on Ontology called Learner-centered Smart E-

learning System (OLSES). The system creates profiles for learners after registration to OLSES

and store the track of study program of learners. The Ontology learner centered smart E-learning

has been developed using protégé editor. Also, many studies have been carried out on the

comparison and performance evaluation of Ontology development tools. Therefore, this section

discusses completed studies on the comparison and evaluation of Ontology development tools as

reported in the literature.

Alatrish (2013) conducted a survey on five Ontology editors including Protégé, Apollo,

Ontostudio, Swoop and free edition of TopBraid Composer. The survey classifies evaluated tools

according to the general description of the tool, how it interoperates with other tools, the

architecture and usability of the tool.

The exploration and analysis on Ontology development tools was presented in Singh & Anand

(2013). The authors categorized Ontology construction tools in two categories, namely, Ontology

development tools and tools for mapping, alignment and merging tools. The evaluation and

comparison were conducted using eight Ontology development tools which were selected based

on various criteria such as general issues, software architecture, interoperability, inference services

and usability.

One of the recent studies on the survey and comparison of Ontology development tools including

Ontostudio 3.1, Protégé 5.0, Swoop, TODE, OWLGrEd as well as Odese have been published in

Rastogi et al. (2017). This survey focused on a small number of features provided by tools such as

architecture, interoperability, storage, library and GUI design. However, the authors did not clarify

the availability of these tools, i.e., whether being open source or commercial. A similar survey was

conducted by Kapoor and Sharma (2010). Their survey consists of four open source tools (Protégé

3.4, IsaViz, SWOOP and Apollo). They also described the tool by presenting the developer, and

their features and functionalities. These tools were categorized based on their architecture,

interoperability, inference services, usability, and overview of their versioning and collaborative

work support. Another study by Duineveld et al. (2000) presented a comparison framework on

different development tools including Ontolinguia, Webonto, Protégé win, Ontosaurus, ODE and

KADS22. The authors concluded the paper by arguing that Webonto, Protégé win and ODE were

the best suited for conceptualization and formalization phase in Ontology development.

20

Rahamatullah et al. (2010), conducted an online survey in which users were asked some questions

on the usability of the tools. They evaluated Ontology tools using Questionnaire methodology. The

questions were formulated in four categories including tools, task, environment, and user

friendliness.

Islam and Abbasi (2010), also provided a comparison of different Ontology development tools

based on some criteria like availability, architecture, imports/exports and supporting tools etc. In

Denny (2002), Ontology development tools were compared based on different features like

modeling limitations, base language, web support and use, import and export format, graph user

view, consistency checking, multi-user support, merging, lexical support, and information

extraction.

The authors in Norta et al. (2010) did a comparison of different Ontology development tools based

on functional and non-functional requirements for developing a good Ontology editor. In the

functional requirements they focused on features like collaboration, multilingual and natural

language support and verification, whereas in the non-functional requirements, they addressed

features such as modifiability, inerrability and portability.

A similar study in Rastogi et al. (2017), a survey was conducted based on a number of features of

tools including architecture, interoperability, storage, library and graphic user interface design.

In García & García-Peñalvo (2011), the authors evaluated a visual modelling tool for OWL

ontologies. The evaluation was mainly focused on user-centered approach and questionnaires. Noy

& Musen (2002) did another comparison study, where they evaluated Ontology mapping tools.

The evaluation criteria included the interoperability of a tool with other tools, the ability to import

and export ontologies, the scalability, extensibility and usability of the tool. However, none of

above-mentioned studies evaluated and compared Semantic Web libraries for building and

processing ontologies in the dot NET environment.

2.9 Conclusion

In this chapter, the overview of Semantic Web Technology, the use of Ontologies and languages

used to represent ontologies were discussed. We also presented existing comparison metrics in

object-oriented programming reported in literature, Ontologies developed within open source such

as Protégé, Jena API, RDF4J, Ontostudio, Swoop, Neon Toolkit and Apollo and dot net platforms

21

including TODE, Knowledge.NET, SemWeb.NET, dotNetRDF, LinqToRdf, RDFSharp,

OwlDotNetApi, dotSesame, BrightstarDB were presented.

22

CHAPTER 3. RESEARCH METHODOLOGY

3.1 Introduction

This chapter aims to outline and explain in detail the research methods used in this study. The

presentation of the chapter starts with data collection techniques used to gather relevant

information and the domain Ontologies used for this study. Also, this chapter presents existing

research methodologies in scientific research as well as in Information Technology domain such

as experimental research, creative research, design research, descriptive research, explanatory

research etc. The description of each research methodology is provided and the methodology used

for this study namely, design research is presented. Furthermore, all stages of design science

research including Awareness, Suggestion, Development, Evaluation and Conclusion are

explained in more details. Finally, the application of design research in this study is provided and

discussed.

3.2 Types of Research Methodologies

The characteristic of good research strongly depends on appropriate and efficient methodology

that meets the research objectives (James et al., 2012). Using the correct methodology increases

the accuracy of results, and makes these results more credible (Oates, 2005). Several research

methodologies exist and are identified by Goddard and Melville (2004), and Oates (2005):

• Experimental research: here, the value of an independent variable is varied whilst

another variable known as the dependent variable is analysed every time there is a change

in the independent variable. Other variables that are neither independent nor dependent

may still be used in the experiment.

• Creative research: this type of research deals with the discovery of new models,

theorems, algorithms etc. It is less structured and may not always be planned. Trials and

errors are the main methods used in this type of research.

• Descriptive research: this type of research is also called the “case-study” research, and

involves the studying of a precise situation to ascertain whether it is a blueprint of any

existing general theories.

23

• Ex post facto research: this type of research works by analysing the effects and tries to

deduce the relevant and related causes. It is different from experimental research since the

directional flow of research is from effects to causes.

• Action research: this is a stepwise research which entails the following steps; identifying

a problem, gathering comprehensive data, agreements made between the researcher and

the stakeholders; implementation of the remedial action, and after a period of time, an

evaluation is performed to see if the problem has been resolved.

• Historical research: this method involves studying past events to identify effects-causes

patterns. Current situations are examined using past effect-cause patterns in order to

predict future events.

• Expository Research: this research methodology is based entirely on existing

information. Researchers widely read, compare, contrast, analyse and synthesize all points

of view on a specific subject; new important insights can be developed as a result of that

deep analysis and comparison (Goddard et al. 2004).

• Qualitative Research: is a type of scientific research which consists of an investigation

process that seeks answers to a question, systematically uses a predefined set of procedures

to answer the question, collects evidence, produces findings that were not determined in

advance and produces findings that are applicable beyond the immediate boundaries of the

study (Marshall, 2003).

• Quantitative Research: is a study involving the use and analyses of numerical data using

statistical techniques. They pose questions of who, what, when, where, how much, how

many, and how is an inquiry into an identified problem, based on testing a theory,

measured with numbers, and analyzed using statistical techniques. The goal of quantitative

methods is to determine whether the predictive generalizations of a theory hold true

hypothesis (Apuke, 2017)

• Design Science Research: it consists of following a set of predefined steps in order to

solve a problem or create new knowledge. The steps consist of seven activities, namely:

awareness, suggestion, development, evaluation, and conclusion.

24

3.3 Data Collection

Data collection for this study was conducted out through the use of a qualitative and quantitative

research approaches. Qualitative in the sense that all comparison criteria used were learned from

the literature and quantitative in that the experiments were carried out to analyse and compare two

environments including dot NET-based and open source semantic web platforms for developing

ontologies. The dataset used consist of six ontologies, five of them were downloaded from the

internet while OntoDPM Ontology which is available in description logic was developed in

Protégé platform.

The next section describes the methodology used in this research which is design science research.

3.4 Design Science Research (DSR) Process

According to Friedman (2009), design is a set out procedure that is followed when solving a

problem, improving on something that already is in existence or when creating something new

altogether. The concept of design is applicable in several domains including engineering and

architecture (Hevner & Chatterjee, 2009). Oates (2005), defines research as a practice that is done

in order to create new knowledge or make some contribution to the field of knowledge. Oates

(2005) goes on to describe six core elements of research known as (6P’s) that must be considered

in any research area of interest. The elements are: purpose, product, process, paradigm, participants

and presentation.

• Purpose specifies the main reason of undertaking the research study.

• The product represents the outcome of the research; it represents the contribution to the

body of knowledge.

• The process represents the sequence of tasks or activities undertaken for the research.

• Participants include people directly or indirectly involved in the research. They could be

people that you interviewed, people editing the research report and more. Involving people

must be done ethically and legally.

• Paradigm represents a pattern or shared model of thinking. The paradigms which can be

used by researcher are positivism, interpretivism, and critical research (Friedman, 2003).

The positivism paradigm defines the reality as anything that can be perceived by human

25

senses. With interpretivism, the researchers interpret elements of the study or the society;

the reality exists only in their mind. It is experienced through social interaction with several

actors. In critical research, the reality is created by people who tend to manipulate others

and drive them to perceive things according to their belief.

• Presentation is the mean by which the research is disseminated to the public or stakeholder.

It may be presented as a written paper, thesis and computer-based product.

Design science research can be summarized as a process followed to develop or create new

knowledge. Knowledge consists of artefacts that solves a problem or improves a situation. Simon

(1996), defined artefacts as things that do not occur naturally but instead, are produced by humans.

Hevner et al. (2010) provides some guidelines to follow when performing design science research,

which are:

• The output of the research must be an artefact used in the field of computer science. It does

not have to be a completed product or artefact; enough knowledge can be gained in the

analysis and the design; thus, the artefact does need to be completed for knowledge to be

gained.

• The goal of the research must solve an identified and relevant problem.

• The resulting product or artefact must be evaluated using appropriate methods.

• The research process and creation of the artefact must add to the body of knowledge.

• A proper research process must be followed.

• A proper search and investigation into appropriate solutions must be done, the environment

in which the artefact is applied must be considered during the search.

• A report of the research outcome must be provided to all involved parties.

26

The guidelines mentioned above aims at increasing the value of design science research (Hevner

et al., 2010). The design science research process consists of five stages namely: Awareness,

Suggestion, Development, Evaluation and Conclusion (Vaishnavi & Kuechler, 2004). Figure 3.1

shows the five stages involved in design science research. The output of one process is used as the

input in the next process as shown

3.4.1 Awareness

The Awareness stage identifies and recognizes the existence of a problem then categorically states

the problem. Some of the methods used in identifying the existence of a problem are:

• Problems are identified in literature and future work by authors.

• Users have experienced a problem which need to be solved.

• New findings are made and,

• Technological developments are made.

This stage produces outputs to be used in the second stage, the suggestion stage. Outputs are

statements describing problems that need to be addressed. Nevertheless, no solutions need to be

found. But those statements will be of great help in proposing possible solutions and benefits. The

goal of the research will be identified by those statements. The statements will be of great help

during the development and the evaluation stages. In the development phase, they will be used as

guidelines to follow while in the evaluation phase they will be used as criteria to evaluate the

output.

Conclusion

Evaluation

Development

Suggestion

Awareness

Figure 3.1: Design Science Research Process (Vaishnavi & Kuechler, 2004)

27

3.4.2 Suggestion

This stage is also known as the proposition stage and here, all the available solutions to the

statements identified in the awareness stage are formulated. The solutions are obtained by checking

on the currently available knowledge base, and in related works. Some suggestions may be found

in the literature done by other researchers and in a scenario where no solutions have been

identified, new ideas as possible solutions are explored. The output of this stage is a proposal of

the possible solutions that can be applicable.

3.4.3 Development

Out of all the possible solutions obtained in the suggestion stage, one solution that is superior to

the rest of the solutions is implemented in the development stage. The implementation of the

solution is however either partially or fully implemented. Partial implementation of a solution is

considered when there are limitations such as time or resources. The output of the development

stage, as identified by Oates et al. (2005) must be an artefact; thus, traditional software life cycle

methodologies should be followed. Software life cycle typically consists of five phases namely:

requirements, design, implementation, testing and maintenance (Van Vliet, 1993; Kumar &

Bhatia, 2014).

The main purpose of the requirement phase is to get a complete description of the problem that

needs to be solved; also, it identifies all the conditions that should be met by the solution. The

design phase proposes a model which represents the solution to be implemented. The

implementation phase implements the model using a specific technology or programming

language; the solution is physically implemented. In the testing phase, the solution is tested. The

goal of the testing is to ensure that problems identified in the requirements phase are addressed.

The maintenance phase helps fix errors which have gone undetected in the testing phase and other

phases.

3.4.4 Evaluation

This stage evaluates the proposed solution. The evaluation stage finds out if the questions

identified in the awareness stages have been answered. Hevner et al. (2010) have identified three

reasons why the evaluation phase should take place. The first reason is that the solution is

28

applicable to the problem and that it adds value; the second reason is that the evaluation gives

credibility to the research and, thirdly, it helps determine the practical value of the development or

the experiment. Methods chosen to evaluate should be aligned with the research objectives (Oates

2005). Evaluating the proposed solution can result in suggestions to modify the solution. A

conclusion must be drawn.

3.4.5 Conclusion

This last stage presents the output of the research. This stage presents the research and its

contribution to the body of knowledge. The contribution must be clearly listed in such a way that

all questions identified in the awareness stage are identified. The result of the research must be

published, and knowledge gained must be identified. The result could lead to further

investigations.

The output of design research is to provide an artefact. Oates (2005) identified and listed several

artefact types which could be identified in computer sciences fields and they are:

• Constructs: these represent conceptual vocabulary of a specific domain which are

constructed in the initial stage of design.

• Models: these are representation of relationship between constructs

• Methods: a set of steps followed in order to perform some activities

• Instantiations: which is the practical implementation of construct, models and methods in

a predefined environment.

• Theory developments: this is the development of new theories and improvement of

existing theories in a knowledge domain.

3.5 Application of Design Science Research on this study

As Marco (2010) mentioned, a design science research is an approach and a set of useful methods

and guidelines used as a framework of conducting design research. The previous section presented

all phases of design science research and the different processes involved in each phase. Therefore,

the following section present the application of design research on this study.

29

3.5.1 Awareness

The advent of the internet has made technology a significant component of the modern world

lifestyle. Technology is used daily in different activities such as communication, banking,

healthcare and education systems. Many tools such as Protégé, WebODE, OntoEdit, Sesame, Jena,

Ontolingua, and so forth have been developed (Islam et al., 2010) to enable Ontology developers

to create and edit, store, query, maintain and integrate ontologies. Most of these tools are open-

source and can support several external plugins that perform the reasoning, visualization and

management of ontologies. Furthermore, many studies have been conducted to evaluate such tools

in the last few years. Although efforts have been made to develop Semantic Web tools for the

Microsoft .NET platform such as TODE (Islam et al., 2010), Knowledge.NET (Safonov, 2006)

SemWeb.NET (Tauberer, 2010) and dotNetRDF (Rob, 2009), for Ontology development.

However, not enough work has focused on the analysis and comparison of dot NET-based tools

against open source platforms to guide Semantic web developers on the choice of the appropriate

tool to use.

3.5.2 Suggestion

Ontology development activities have increased in numbers in recent years. Several tools have

been developed to support the Ontology development process. Many studies have been conducted

on the evaluation and comparison of such tools. This study conducts a comparative analysis of

open-source and dot NET-based semantic web platforms for ontologies development. Two popular

dot NET-based semantic web platforms, namely, SemWeb.NET and dotNetRDF are analyzed and

compared against open-source environments including Jena API, Protégé and RDF4J also known

as Sesame SDK.

3.5.3 Development stage

The implementation of the proposed framework was done by using two dot net libraries namely,

dotNetRDF and SemWeb.NET and three open source tools including Protégé, Jena and RDF4J.

The design of the framework is fully covered in Chapter 4. The next section presents the

development activities within the framework.

30

a) Hardware and Software environment

The experiments were carried out on a computer with the following specifications: Windows 7

operating system, 4.00 GB RAM, and Intel (R) Core (TM) i3-2350M CPU @2.30GHz processor.

The software utilized in the experiments include Microsoft Visual Studio 2010 and Eclipse IDEs,

two dot NET-based tools, namely, SemWeb.NET, dotNetRDF and three open source tools

including Protégé, Jena API and RDF4J.

b) Setup and Implementation

In the First stage, SemWeb.NET and dotNetRDF libraries were installed to run on Visual studio

2010 IDE and no specific configuration was required rather than importing these libraries in the

IDE. The set-up overview is depicted in Figures 3.3 and 3.4. The dotNetRDF is simple but

powerful semantic web library developed for dot NET developers who intend to create, process,

query and write RDF data. This library provides a command line interface (CLI) and a graphical

user interface which enables users to process and develop Ontology applications visually. The

library is available to be downloaded freely from https://github.com/dotnetrdf/dotnetrdf, followed

by unzipping the dotNetRDF folder which contain 5 subfolders as shown in Figure 3.2.

Figure 3.2: The Core dotNetRDF Library

31

Figure 3.3: dotNetRDF Library Overview in Visual Studio 2010

Before starting the Ontology development, after the addition of the dotNetRDF Library to the

project, the dotNetRDF Namespaces must be imported globally to the class program as shown in

Figure 3.3. The full code on Ontology processing in dotNetRDF library is provided in appendix

A.

SemWeb.NET library is freely available from https://github.com/JoshData/semweb-dotnet The

library is configured within Microsoft.NET framework and employed to develop an Ontology in

RDF/XML format. The SemWeb.NET library’s namespaces including: SemWeb, SemWeb.

MySQLStore, SemWeb.Sparql are added under references section in the OntoDev project within

Microsoft dot NET using C# language as shown in Figure 3.4.

Figure 3.4: SemWeb Library Overview in Visual Studio 2010

After adding the SemWeb.NET library to build RDF triples of OntoDPM Ontology, three main

classes were created including OntoSubject.cs, OntoProperty.cs and OntoObject.cs under

OntoDev_SemWeb solution in OntoDev project.

32

The Full code on Ontology development SemWeb.Net is presented in appendix A.

Like Dot Net Environmental Setup, Protégé, Jena, and RDF4J platforms were installed to run on

Java environment. Note that Only Jena library was imported in Eclipse while the remaining

platforms were installed as standalone applications. The set-up overview is depicted in Figures

below.

Figure 3.5: Protégé Library Overview

Figure 3.6: Jena Library Overview in Eclipse.

33

Firstly, an integrated development environment called Eclipse is downloaded from

https://org/downloads/www.eclipse. Eclipse IDE provides easy development of any application.

Thereafter, Jar files of Jena API is downloaded and configured in Eclipse IDE. Full codes on

implementation of Ontology using Jena API is provided in Appendix B.

Figure 3.7: RDF4J Set up Overview in in Eclipse

3.4.4. Evaluation

In the evaluation stage we checked the consistency and efficiency of developed and imported

ontologies. Also, the evaluation of proposed framework is undertaken at this stage. The evaluation

consists of three phases including: 1) Loading ontologies in Storage Media Layer (SML). In this

phase Loading Time (LT) metric is used to identify the platform that took a lesser time to load

ontologies in repositories. 2) Executing SPARQL Query against ontologies in dataset. This phase

use Query Execution Time (QET) as a metric to measure which platform is faster to execute and

process the query. 3) Query Response which use a metric called Query Response Time (QRT) to

provide which platform responded to the query faster than others and for how long the query took

to respond. More details on the evaluation of proposed framework is presented in chapter 5.

3.4.5 Research outcome and contribution

The main contributions of the research design are as follows:

• A comprehensive review and discussion of Semantic Web platforms for developing,

storing and querying ontologies presented in (Chapter 2 Section 2.5 and 2.6). This work

will serve as a guideline for Semantic Web developers who wish to use either dot net or

open source environments.

34

• The proposed framework for comparison of dot net and open source environments for

ontologies development (Chapter 4). The architecture of the framework is presented in

Chapter 4 and implemented in Chapter 5.

• The evaluation and comparison of ontologies storage and query under two popular

semantic libraries, namely, dotNetRDF and SemWeb.NET. This work was published in

International Conference on Advances in Big Data, Computing and Data Communication

Systems in Mahoro et al., (2019).

• The empirical analysis of the mechanisms used by Sesame and Jena to store ontologies in

relational database presented in Chapter 5.

3.4.6 Conclusion

This chapter introduces methodologies applied to research in computer sciences. Design research

which is the method used in this study is described and all stages involved are presented. Design

research is applied to this study and the results of each stage are discussed. The awareness stage

identified the need to have an architecture to test several storage types and mechanisms. The

suggestion stage proposed a framework for the comparison of dot net and open source environment

for Ontology development. In the development stage, the tools needed to implement the framework

are identified and presented. The evaluation stage presents the guidelines to test the framework.

These guidelines include the usage of metrics such as loading of ontologies, the test of storage and

query ontologies on dotNetRDF, Semweb.NET, Protégé, RDF4J known as Sesame and Jena.

Finally, the conclusion stage identified the outcome of the performance of the framework.

35

CHAPTER 4. COMPARATIVE FRAMEWORK

OF DOT NET-BASED AND OPEN SOURCE TOOLS

FOR ONTOLOGY DEVELOPMENT

4.1 Introduction

This chapter presents a proposed comparative framework of dot net based and open source

environments for Ontology development. The framework compares the facilities in developing,

storing and querying ontologies provided in both environments. The framework consists of four

phases (layers) namely, development layer, storage media layer, Ontology retrieval layer and

comparison layer. The first layer of the framework is the development layer. The purpose of this

layer is to create new or import existing ontologies which will served as an input for the other

layers in the framework. Furthermore, this layer is also used to check the consistency and

efficiency of created or imported ontologies and load the useful ontologies into the next phase for

further processing. The second layer is the storage media layer; the role of this layer is to create,

edit, search and delete Ontology graphs or repositories where ontologies are stored. The third layer

which is the Ontology retrieval layer is used as an interface for querying out the stored ontologies

from graphs or repositories created in the memory of local or remote computers. Finally, the last

layer of the framework is the comparison layer which uses several performance evaluation metrics

such as the programming construct, Ontology storage and querying supports, documentation level,

usability and scalability, loading time, query response time, disk space, and the storage efficiency

and many more to test and compare the state of Ontology development in both dot net and open

source environments.

4.2 Framework Overview

The framework consists of four layers as shown in Figure 4.1. The layers are development layer,

storage media layer, Ontology retrieval layer and comparison layer

36

Figure 4.1: Framework of Comparison of dot NET-based and Open Source Semantic Web

Platforms.

4.2.1 Development layer

This layer provides mechanisms for building a new Ontology from scratch or reusing existing

ontologies. The popular Ontology development tools used in this phase are dotNetRDF,

SemWeb.NET in dot NET environment, Jena API, Protégé and RDF4J open source platforms as

presented in Figure 4.1. Firstly, an existing Ontology called OntoDPM developed in Fonou-

Dombeu and Huisman (2011) is used as an input Ontology to test the framework. In fact,

OntoDPM represents the domain of monitor’s development projects monitoring in developing

countries. OntoDPM is presented in Description Logic language in Fonou-Dombeu and Huisman

(2011) and rewritten in machine readable format. This layer enables the user to create an Ontology

file de novo or importing existing ontologies from different sources on internet.

• dotNetRDF

The dotNetRDF is a free Library written in C# language for dot NET users. The dotNetRDF is

designed with a powerful API which provides methods to write and read the Resource Description

Framework (RDF) data and support SPARQL a Semantic web query language (Rob, 2009).

SemWeb.NET

Create

Ontology

Dot net-based

Tools
Open Source

Jena Protégé RDF4J dotNetRDF

Ontology Files

Development Layer

C
o
m

p
a
ri

so
n

L
a
y
er

C

o
m

p
ar

is
o

n
 m

e
tr

ic
s

C
o

m
p

ar
is

o
n

 R
e

su
lt

s

Storage Media

Layer Layer
File System

Databases

In-memory

Ontology Retrieval

Layer Query Ontology Files Display Query Results

37

• SemWeb.NET

SemWeb.NET is another Semantic Web library written in C# for Microsoft dot NET platform.

This library also provides classes for reading, writing, manipulating and querying ontologies.

However, SemWeb.NET only operates at the level of RDF (Tauberer, 2010).

• Protégé

Protégé is an open source Semantic Web editor developed at Stanford University. It provides

different interfaces to design models and knowledge-based systems using ontologies. Protégé also

provides a full support in creating and editing multiple ontologies (Rastogi et al., 2017). It can be

extended with many plugs-ins which performs extra functionalities such as visualization and

reasoning. An example of Visualization plug-in in Protégé is OntoViz, whereas, examples of

reasoners plug-ins are hermit and pellet. Protégé allows the definition of classes, class hierarchy’s,

restrictions and the relationships between classes and properties (Ochs et al., 2017).

• Jena

Jena is another open source Semantic Web platform developed in the HP labs. It is a java

Application Programming Interface (API) which enables the creation and manipulation of RDF

graphs. Jena provides API which enables the reading and writing of RDF data in the form of XML,

Turtle and N3. Jena uses RDQL as query language to query RDF data in Jena persistence store

and in-memory storage (Carroll et al., 2004).

• RDF4J

RDF4J formerly known as Sesame Software Development Kit (SDK) is an open source framework

written in java which enables Ontology creation, storage and management of repositories. Also,

RDF4J provides an Inference Layer (SAIL) which is an application programming interface (API)

that gives special methods to create RDF and use these methods to store RDF data in memory,

native or DBMS databases (Singh et al., 2015).

4.2.2 Storage Media Layer

This layer allows the ontologies developed or imported in the development layer to be stored either

in the in-memory, file system or database.

38

• In-memory Storage: This storage mode allows a small amount of OWL/RDF data to be

stored in the main memory of the computer for a short time. The disadvantages of this kind

of storage is that it takes long to process medium ontologies; furthermore, it failed to

process big ontologies (Zhou & Xing, 2013).

• File System Storage: This storage method uses files to store OWL/RDF data permanently

on the hard drive of the computer. Although this storage approach provides a high speed

in loading and querying ontologies (Zhou & Xing, 2013), it has some limitations such as

data redundancy, poor accessibility and limited data sharing.

• Database Storage: This approach is used to store ontologies permanently in relational

databases such as MySQL, SQL Server and Oracle or in No-SQL databases such as Mongo

DB, HBase and Cassandra (Zhou & Xing, 2013).

4.2.3 Retrieval Layer

This layer allows users to query and display useful information from the stored ontologies using

Semantic Web query languages such as SPARQL, RDQL, SeRQL, etc. The code below illustrated

the sample of SPARQL query that retrieve subject, property and object stored within an Ontology.

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT? Subject? Object

WHERE {? subject rdfs: subclassOf ? object}

The first line of code provides the namespace of querying ontologies at RDF level.

The second line of code provides the namespace while querying ontologies at RDF Schema level

and finally; the last part is the statement used to select RDF data in the form of subject, property

and object.

4.2.4 Comparison Layer

This layer is organized as of a set of comparison criteria used to compare the performance of the

dot NET and open source tools. These criteria are defined below:

39

• Tool’s Developers: This provides information about the creators of the tool.

• Last version: Indicates the latest version of the tool available.

• Availability: States the way of accessing the tool, that is, open source or commercial.

• Tool’s Architecture: this criterion indicates the type of the tool i.e., standalone,

client/server or n-tier.

• Interoperability with Other Tools: this criterion indicates if the tool can offer any

collaboration with other tools during the Ontology development process.

• Query Support: This tells whether the tool supports any of semantic web query languages

such as SPARQL, RDQL, SeRQL, etc.

• Ontology Storage Mode: This specifies the back-end systems supported by the tool such

as Relational databases, no Sql databases, etc.

• Import/Export Format: This provides information on which Ontology format can be

imported or exported.

• Build-in Inference Engine: This shows the type of inference engine used by the tool.

• Consistency Checking: This tells whether the tool includes features that checks the

validity of created Ontology.

• Stability: This criterion indicates if the tool is still active or is no longer in use.

• Extendibility: This refers to the possibility of customizing the tool by developing plug-ins

or other class libraries to work with the tool.

• Multiple Users Support: This provides information on whether the tool can support more

than one user at the same time.

• Ontology Library: This indicates if the tool has an ontologies repository for further reuse.

• Graphical User Interface: This determines if the tool has any support that help users to

create or edit ontologies graphically.

• Web Support: This criterion refers to the availability of web-based component in the tool.

40

• OWL Editor: This specifies if the tool can process and develop ontologies in OWL format.

• Reasoners: This tells whether the tool includes software components that enable inferring

new information from Ontology axioms.

• Implemented in: This indicates the programming language used to develop the tool.

• Backup Management: This shows the mechanism provided by the tool to support the

backup of data.

• Exception Handling: This gives information about the tool’s capabilities of catching logic

and runtime errors and throws exceptions.

• Operating System Support: This indicates the operating systems that can support the tool

such as, Linux, Macintosh or Windows.

4.3 Related Work

For Semantic web developers it is very important to have a good understanding on tools and

languages to use in development process. Moreover, there have been several studies conducted on

comparison and evaluation of Ontology editors based on various features provided by these tools.

Singh et al. (2013) provided an evaluation and comparison on Ontology development tools that

were selected based on various criteria such as general issues, software architecture,

interoperability, inference services and usability of the tool. Rahamatullah et al. (2010) conducted

an online survey in which users were asked some questions on usability of the tools and evaluated

Ontology tools using the Questionnaire methodology. The questions were formulated in four

categories including tools, task, environment, and user friendliness. Kapoor & Sharma (2010)

conducted a comparative study of Ontology editing tools based on four types of metrics including

tool’s architecture, interoperability, inferencing services and usability from users. Islam & Abbis

(2010) also provides a comparison of different Ontology development tools based on some criteria

like availability, architecture, imports/exports and supporting tools etc. Denny’s (2002) Ontology

development tools were compared based on different features like modeling limitations, base

language, web support and use, import and export format, graph user view, consistency checking,

multi-user support, merging, lexical support, and information extraction. The authors in Norta et

al. (2010) did a comparison of different Ontology development tools based on functional and non-

41

functional requirements for a good Ontology editor. In the functional requirements they focused

on features like collaboration, multilingual and natural language support and verification whereas,

in the non-functional requirements they addressed features such as modifiability, inerrability and

portability. Five Ontology editors Apollo, Onto Edit, Protégé, Swoop and TopBraid Composer

were analysed and compared Alatrish (2010). Evaluation comprised qualitative evaluation of tools

based on many features such as architecture, interoperability, knowledge representation, inference

support and usability of tools. Garcia et al. (2011) evaluated a visual modelling tool for OWL

ontologies. The evaluation was mainly focused on a user-centered approach and questionnaires.

(Noy et al., 2002) did another comparative study, where they evaluated Ontology mapping tools.

The evaluation criteria included the interoperability of a tool with other tools, the ability to import

and export ontologies, the scalability, extensibility and usability of the tool. However, none of

above-mentioned studies has evaluated and compared Semantic Web libraries for building and

processing ontologies in the dot NET environment. Slimani (2015) conducted a comparative study

on Ontology development tools, languages and formalisms. The main criteria in this comparison

was the users’ interest and their ability to solve real world problems. A similar study is presented

in Kapoor et al. (2010). The authors performed a comparison of Ontology editing tools including

Protégé 3.4, IsaViz, SWOOP and Apollo. This comparison was done based on four metrics

including tool’s architecture, interoperability, inferencing services and usability. Also, in

Zhdanova et al. (2005) provided useful information to assist developers to choose the appropriate

Ontology language while developing semantic web application.

A study by Mizoguchi (2003) on the evaluation of different Ontology development tools based on

criteria like development process support, collaboration with other tools, tool’s architecture,

interoperability, Ontology model, instance definition and inference support. Islam et al. (2010)

also provides a comparison of different Ontology development tools based on their availability,

architecture, imports/exports and supporting tools. Rastogi et al. (2017) an analysis and

comparison of Ontology editing tools including TODE, OWLGrEd, Odase and Ontostudio was

undertaken. This comparison was done based on features like architecture, storage, interoperability

and design of graphical user interface.

The authors in Duineveld et al. (2000) presented a comparison framework for the evaluation of

Ontology editors based on three dimensions. The general dimension investigated the features of

42

the tools that are also found in other programs. The Ontology dimension analyzed the features that

are specific for Ontology development. Finally, the third dimension dealt with the features required

to support collaborative Ontology development, interoperability, storage, library and GUI design.

Alatrish (2013), developed a comparative framework on Ontology development tools. Five

Ontology editors, namely, Apollo, Ontostudio, Protégé, Swoop and TopBraid Composer were

analysed and compered. The evaluation was based on user friendliness and the applicability of the

tool in different applications.

4.4 Conclusion

In this chapter, the proposed comparative framework of dot net and open source environments in

developing, storing and querying ontologies was presented. The architecture of the framework

which consist of four phases (layers) including development layer, storage media layer, Ontology

retrieval layer and comparison layer were discussed. Five Ontology tools used to evaluate the

framework such as Semweb.NET, dotNetRDF, Protégé, Jena and RDF4J were provided and

discussed. All metrics used to compare the performance of tools from both dot net and open source

environments were discussed in this chapter. Furthermore, the related studies on comparison of

Ontology development tools were discussed. Unlike these studies which only compare Ontology

development tools in open source environment; this study brings in some difference by

investigating tools from dot net environment.

43

CHAPTER 5. EXPERIMENTS

5.1 Introduction

This chapter focuses on implementation of the experiments conducted in this study. Firstly, the

characteristics of the dataset are provided. Secondly, the experimental results on a comparative

study of two dot net based semantic web libraries namely, SemWeb.NET and dotNetRDF are

presented and discussed. Finally, the facilities in terms of creating, storing and processing

ontologies in both open source and dot net environments are identified and discussed.

The experiments in this study consists of six ontologies with different sizes which were parsed and

processed in dot net and open source environments using platforms such as dotNetRDF and

SemWeb.NET for dot net users; Protégé, Jena and RDF4J known as sesame in open source

environment. Thereafter, various metrics such as Loading Time, Query Execution Time, Query

Response Time and Storage Capacity were empirically measured and used to determine the

performance of each tool.

5.2 Experiment Requirements

This section presents the characteristics of the dataset, hardware and software environments used

to perform the experiments in this study.

5.2.1 Dataset

The dataset used in this study constitutes of six ontologies from different domains which were

selected based on their format i.e. RDF, RDFS, OWL and their sizes i.e. small, medium, large

ontologies. These ontologies are OntoDPM developed for e-government domain; WikiMovie

which was developed for cinema industry; Gene Ontology used in biotechnology domain;

Agriculture and Forestry Ontology (AFO) vocabularies and terms for agriculture and forest

domains; Tero, an Ontology of health and welfare for medicine and pharmacy domains and Drug

Ontology (Dron) an Ontology for drugs in pharmacy field. The OntoDPM was created using

Protégé 5.2.0 an open source tool that create and edit ontologies while the other five were searched

using semantic web search engines such as Swoogle and downloaded from internet in different

repositories. The OntoDPM Ontology consists of 214 statements, 30 classes, 19 properties and 18

individuals; The WikiMovie Ontology consists of 504 statements, 35 classes, 2 properties and 104

individuals; The Tero Ontology consists of 412742 statements, 7 classes, 4 data properties, 4 object

44

properties and 27625 individuals. The Gene Ontology consists of 40675 classes, 5 object properties

and 17 individuals; The Agriculture and Forestry Ontology consists of 372054 statements, 12

classes, 3 object properties, 26 data properties and 31776 individuals while Drug Ontology consists

of 344385 statements, 85552 classes, 1 data property, 19 object properties and 19 individuals. The

OntoDPM Ontology is a knowledge-based model that monitors and evaluates the development

government’s projects management and NGOs in developing countries and Sub Sahara Africa

(Fonou-Dombeu & Huisman, 2011). In fact, the axioms of concepts, class hierarchy and class

instances use description logic to represent the Semi-formal of OntoDPM model. Description

Logic is a formal language for knowledge representation that has a syntax that uses basic

mathematical logic symbols to represent the relationships that exist between the vocabularies and

concepts that constituents a domain (Horroks, 2007).

Table 5.1: Characteristics of Ontologies in Dataset

Ontology Name No. of C No. of S No. of P No. of I Size in byte Format

OntoDPM 30 87 19 18 26000 RDF

WikiMovie 35 505 14 104 60000 RDF

Tero 7 412743 4 27625 168942000 RDF

Gene 49761 1405520 9 - 157692000 OWL

AFO 10 372078 3 31776 30800000 RDF

Dron 434,663 547360 20 19 473000000 RDF/XML

The characteristics of the ontologies used in the experiments in this study such as the number of

classes, number of statements properties and individuals as well as their sizes in bytes and formats

are presented in Table 5.1 where the letters C, S, P and I in the headings of Table 5.1, represent

the words classes, statements, properties and instances, respectively. The figures below indicate

the view of each Ontology used in the dataset in Protégé 5.2.0 an Ontology editing tool.

45

Figure 5.1: View of OntoDPM Ontology in Protégé

Figure 5.2: View of WikiMovie Ontology in Protégé

46

Figure 5.3: View of Tero Ontology in Protégé

Figure 5.4: View of Gene Ontology in Protégé

47

Figure 5.5: View of Agriculture & Forensic Ontology (AFO) in Protégé

Figure 5.6: View of Drug Ontology in Protégé

48

5.2.2 Computer Hardware and Software Environments

The experiments were carried out on a computer with the following specifications: Windows 7

operating system, 4.00 GB RAM, and Intel (R) Core (TM) i3-2350M CPU @2.30GHz processor.

The software utilized in the experiments include Microsoft Visual Studio 2010 Integrated

Development Environment (IDE) and C Sharp (C#), an object oriented programming language

compatible with dot net environment were used to write programs that process selected ontologies

in two dot NET-based tools, namely, SemWeb.NET, dotNetRDF; Eclipse IDE and three open

source tools for Java developers using Protégé, Jena API and RDF4J platforms.

5.3 Experimental Results

This section presents and discusses the results from experiments conducted in this study. The

experiments started by implementation of Ontology development in SemWeb.NET and

dotNetRDF semantic web libraries. Furthermore, their capabilities in terms of programming

construct, Ontology storage and querying supports, documentation level, usability and scalability

are evaluated and compared. Thereafter all six ontologies from the dataset were loaded to be

processed into five semantic web platforms including dotNetRDF, SemWeb.NET, Protégé, Jena

and RDF4J. Also, the comparative results of these tools based on different criteria such as loading

time; query execution time and query response time are experimented and presented in this section.

5.3.1 Comparison of dotNetRDF and SemWeb.NET Libraries

 a) Creation of RDF Ontology Graphs in dotNetRDF

To develop any Ontology-based application with the dotNetRDF library, a dot NET Framework

version 3.5 or higher is required; it provides a Common Language Runtime (CLR) to support

application development in the dot NET environment as well as the Visual Studio Integrated

Development Environment (IDE). The dotNetRDF is a Semantic Web library compatible with

Microsoft Visual C# .NET which is freely available to download. The core classes for Ontology

development in dotNetRDF are included in the VDS.RDF namespace. These core classes are based

either on interfaces or abstract classes. These interfaces are INode, IGraph and ITripleStore. The

codes used to implement RDF triples are presented in Table 5.2:

49

Table 5.2: Sample Codes Used to implement RDF triples in dotNetRDF

1. Graph g = new Graph ();

2. foreach (Triple t in g.Triples)

3. {

4. Console.WriteLine(t.ToString());

5. }

6. TurtleWriter turtle = new TurtleWriter ();

7. turtle.Save (g, “OntoDPM.ttl");

8. NTriplesWriter ntriple = new NtriplesWriter ();

9. ntriple.Save (g, “OntoDPM.nt");

10. RdfXmlWriter rdfxml = new RdfXmlWriter();

11. rdfxml.Save (g, “OntoDPM. rdf");

12. Console.ReadLine ();

Although, dotNetRDF can create RDF triples, it has also capabilities of importing other Ontology

files from different sources as illustrated in Table 5.3.

Table 5.3: Sample Codes Used to Import RDF Triples in dotNetRDF

1. Graph g = new Graph ();

2. FileLoader.Load (g, "OntoDPM.rdf");

3. foreach (Triple t in g.Triples) {

4. Console.WriteLine (t.ToString ());

5. }

The above lines of codes illustrate the importation of multiple formats of RDF files and their

storage into the dotNetRDF library. In these codes, g is an instance of the Graph class, it stores all

Ontology triples. The FileLoader.Load() method is used to load Ontology in g and a loop is used

to read the triples of the g object line by line and display them of the console with the

Console.WriteLine() method.

b) Creation of RDF Ontology Triples in SemWeb.NET

SemWeb.NET is a Semantic Web library written in C# for processing and manipulating RDF data

in Microsoft .NET platform. The SemWeb.Net library provides useful classes for reading, writing

and querying ontologies. The latest version used in this study is 1.0.7 released in 2010; since then,

no updated version has been released. The core classes for handling ontologies in the

50

SemWeb.NET library include SemWeb, SemWeb.MySQLStore, and SemWeb.Sparql. The

SemWeb namespace consist of four subclasses which provide the functionalities for all aspects of

ontologies development in SemWeb.NET including Resource, Statement, StatementSource and

StatementSink. To construct a triple in SemWeb.NET, the constructor of the Statement class is

used to define the Subject, Predicate and Object as shown in sample code presented in table 5.4.

Table 5.4: Sample Codes Used to Construct Subject, Predicate and Object in SemWeb.NET

1. …Add new Statement (

2. new Entity ("http://OntoDPM/Person"),

3. new Entity ("http://OntoDPM/isA"),

4. new Literal ("Project Manager")

5.);

SemWeb.NET can import other Ontology files of different format (Ntriples, Turtle, Notation 3,

RDF/XML etc.) as shown in Table 5.5.

Table 5.5: Sample Codes Used to Import different RDF Formats in SemWeb.NET

1. MemoryStore mem = new MemoryStore ();

2. mem.Import (new RDFReader ("OntoDPM.rdf"));

3. foreach (Statement stmt in mem) {

4. Console.WriteLine (stmt.ToString ());

5. }

6. MemoryStore data = new MemoryStore ();

7. data.Import (new N3Reader (OntoDPM.rdf));

In the above lines of codes an object of MemoryStore class called mem is created to store all RDF

statements using RDF Reader parser to read RDF/XML files. Thereafter a loop is used to read all

the statements in the files and display them on the console with the Console.WriteLine function.

 The above analysis of the implementation and import of ontologies shows that both SemWeb.NET

and dotNetRDF uses the same approach to store RDF triples. In SemWeb.NET, RDF triple is

definied as a statement while in dotNetRDF RDF triple is defined as a graph. Furthermore, the two

libraries provide many methods to read RDF data either from the file system or from repositories.

However, with SemWeb.NET the user must determine which method can be used to parse RDF

51

files in different formats such as Ntriple, Turtle, Notation 3, RDF/XML etc., unlike dotNetRDF

which provide an automatic parser based on the type of the file to be processed.

The availability criterion shows that the two platforms are open-sources and can be downloaded

free of charge from the internet. The comparative results reveal that the two platforms are

standalone and can only be used on local computers. However, both libraries also have some

dissimilarities in their functionalities such as the reasoning system where dotNetRDF use the

inference engine while SemWeb use Euler. SemWeb runs on Windows, Macintosh and Linux

while dotNetRDF runs only on Windows system. Also, dotNetRDF is an ongoing project while

SemWeb seems to have been discontinued. The full comparative results of analysis of SemWeb

and dotNetRDF libraries is provided in Table 5.6.

52

Table 5.6: Comparison Results of SemWeb.NET and dotNetRDF

Ontology Metrics Names dotNetRDF SemWeb

Tool Architecture Standalone Standalone

Query Supports SPARQL SPARQL

Ontology Storage Files, DBMS Files, DBMS

Interoperability with Another Tool Yes Yes

Import/Export to/From RDF, Turtle, N-triples, N3 RDF, Turtle, N-triples, N3

Supporting Platform Windows (32 and 64 bit) Windows (32 and 64 bit)

Linux & Macintosh via

Mono

Supporting File Formats RDF, Turtle, N-Triple, Xml RDF, Turtle, N-Triple, xml

Graphical User Interface Available Not available

Reasoner Inference Engine Euler

Programming Languages interface Interface with C# program Interface with C# program

Availability Free Free

Multi user support Not Supported Not Supported

Consistency check Supported Supported

Language supported to define

Synonyms

English English

OWL format Not Supported Not Supported

RIF (Rule Interchange Format) Not Supported Not Supported

Report generation support Not Supported Not Supported

Chart Generation support Not Supported Not Supported

Graphical editor support Supported Not Supported

Scalability Small Small

Extensibility Supported Supported

53

Ontology version comparison facility Not Supported Not Supported

Database support Virtuoso, MySQL, Sesame

Fuseki, 4Store, AllegroGraph

Sql-backed Persistent

Stores, MySQL,

PostgreSQL, SQL Server,

SQLite

Back-up Management Not Supported Not Supported

Last stable version 2.1.0 1.07

Documentation Level Very Good Good

Dynamic help facility Not available Not available

Syntactic validation Not Supported Not Supported

Cloning of concepts Not Supported Not Supported

5.4 Comparison Analysis of Dot NET and Open Source Environments

5.4.1 Analysis Results on Loading, Executing and Querying Ontologies

Performance evaluation is the last layer of the framework. It provides metrics used to evaluate the

Ontology storage platform.

a) Loading Time:

Loading Time indicates the time taken by the tools to load an Ontology in their memory. This

metric was computed by loading each Ontology ten times in the memory of the tool and calculating

the average of all attempted loading times. The average was calculated using the formula below,

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑳𝒐𝒂𝒅𝒊𝒏𝒈 𝑻𝒊𝒎𝒆 =
𝟏

𝒏
∑ 𝒙𝒊 (𝟓. 𝟏)

𝒏

𝒊=𝟏

Where n = 10 which is the total number of times we loaded an Ontology in the tool’s memory and

xi is the loading time per Ontology.

Table 5.7 presents the captured loading time of all ontologies; the first column, presents the name

of Ontology; the second up to fifth column shows the average of loading time in milliseconds (ms)

used by dotNetRDF, SemWeb, Protégé, Jena and RDF4J, respectively.

54

Table 5.7: Loading Time in dotNetRDF, SemWeb, Protégé, Jena and RDF4J

Figure 5.7: Loading Times of Ontologies in dotNetRDF, SemWeb, Protégé, Jena, and RDF4J

Figure 5.7 depicts the chart of the data in Table 5.6. The loading times are converted from

hh:mm:ss.000 format to the standard unite of time, milliseconds. The chart shows the times taken

by the ontologies to be loaded into the tools.

Even though dotNetRDF took longer, it managed to load the RDF statements stored in gene

Ontology. Unlike SemWeb.NET that took less time to load small and medium ontologies. It failed

to load gene Ontology as the fatal error of unsupported format occurred. Protégé performs better

in terms of loading ontologies compared to other platforms even if it took more time to load gene

0

50000

100000

150000

200000

250000

300000

350000

400000

dotNetRDF SemWeb Protégé Jena RDF4J

Ontology Loading Time in Milliseconds

OntoDPM WikiMovie Gene Tero Afo Dron

Ontology

Name

Loading Time in dotNetRDF

(hh:mm: ss.000)

Loading Time in

SemWeb (hh:mm: ss.000)

Loading Time in Protégé

(hh:mm: ss.000)

Loading Time in Jena

(hh:mm: ss.000)

Loading Time in

RDF4J (hh:mm: ss.000)

OntoDPM 00:00:54. 957 00:00:23. 679 00:00:02.394 00:00:02. 291 00:00:02.170

WikiMovie 00:01:14.662 00:01:05. 944 00:00:04.113 00:00:03. 756 00:00:02.972

Gene 00:04:29.450 Unsupported format 00:01:12.945 00:00:37.362 00:01:57.619

Tero 00:05:09.948 00:03:23.359 00:00:40.323 00.:00:27.265 00:00:57.816

AFO 00:04:34.999 00:03:51.176 00:00:30.673 00.:00:22.380 00:00:51.410

Dron OutOfMemoryException 01:02:49.764 00:01:48.892 00:00:56.911 00:01:47.210

55

Ontology as well because of big size of Ontology. Also Jena and RDF4J performed well as their

loading times are not much different to the loading times used by Protégé. However, Jena took less

time to load Gene Ontology compared to Protégé and RDF4J.

b) Means of Query Response Time

Means of query response time refers to the time taken by the tools to return results of query. A

sample SPARQL query on the dataset is given below.

SELECT? Ancestor WHERE {? s rdfs: label "nucleus"@en;

 rdfs: subClassOf+? ancestor.}

This sample query retrieves all super classes of the nucleus class in the gene Ontology. The results

of the query response time on all the platforms are provided in Table 5.7. This was done by using

the calculations from the formula below.

𝑴𝒆𝒂𝒏 𝒐𝒇 𝑸𝒖𝒆𝒓𝒚 𝑹𝒆𝒔𝒑𝒐𝒏𝒔𝒆 𝑻𝒊𝒎𝒆 =
𝟏

𝒏
∑ 𝒙𝒊 (𝟓. 𝟐)

𝒏

𝒊=𝟏

Where n = 10 which is the total number of times an Ontology responded to the query and xi is

query response time per Ontology. Table 5.8 presents the captured query response time of all

ontologies; the first column, presents the name of Ontology; the second up to fifth column shows

the average of loading time in milliseconds (ms) used by dotNetRDF, SemWeb, Protégé, Jena

and RDF4J, respectively.

Table 5.8: Means of Query Response Time in dotNetRDF, SemWeb, Protégé, Jena and RDF4J

Ontology

Name

Query Response Time in

dotNetRDF (hh:mm: ss.000)

 Query Response Time in

SemWeb (hh:mm: ss.000)

Query Response Time in

Protégé (hh:mm: ss.000)

Query Response Time

in Jena (hh:mm: ss.000)

Query Response

Time in RDF4J

(hh:mm: ss.000)

OntoDPM 00:00:24.551 00:00:20.889 00:00:05.471 00:00:03.510 00:00:00.900

WikiMovie 00:00:59.517 00:00:42.394 00:00:07.321 00:00:02.747 00:00:01.150

Gene OutOfMemoryException Unsupported format 00:01:43.547 00:00:50.363 00:0:56.011

Tero 00:08:11.322 00:04:54.783 00:01:31.425 00:00:25.227 00:00:40.049

AFO 00:04:34.657 00:02:46.192 00:01:04.502 00:00:21.502 00:00:37.836

Dron OutOfMemoryException OutOfMemoryException 00:01:51.126 00:00:56.143 00:00:59.956

56

Figure 5.8: Queries Response Times of Ontologies in dotNetRDF, SemWeb, Protégé, Jena and

RDF4J

Fig. 5.8 Depicts the chart of query response time data recorded in Table 5.7. The results show that

Jena, RDF4J and Protégé took less time to respond to the query compared to SemWeb and

dotNetRDF. Furthermore, for dotNetRDF and SemWeb.NET no query respond time could be

reported for the gene Ontology. In fact, both platforms failed to execute queries against the gene

Ontology due to their limited memory sizes.

c) Means of Query Execution Time

Means of Query Execution Time: This refers as the average of the time taken by the tools to

execute a SPARQL query against ontologies in the dataset. A sample of such query is provided

below.

prefix xsd: http://www.w3.org/2001/XMLSchema#

SELECT ?s

WHERE { ?s oboInOwl:hasAlternativeId "GO:0050875"^^xsd:string }

The first line of query above declares the namespace and the remaining lines that constitute the

body of the query. The query selects the subject s, which has a property hasAlternativeId in gene

Ontology. The calculations were made by using the following formula.

𝑴𝒆𝒂𝒏 𝒐𝒇 𝑸𝒖𝒆𝒓𝒚 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 =
𝟏

𝒏
∑ 𝒙𝒊 (𝟓. 𝟑)

𝒏

𝒊=𝟏

0

100000

200000

300000

400000

500000

600000

dotNetRDF SemWeb Protégé Jena RDF4J

Query Response Time in Milliseconds

OntoDPM WikiMovie Gene Tero Afo Dron

http://www.w3.org/2001/XMLSchema

57

Where n = 10 which is the total number of times we executed an Ontology in the tool’s memory

and xi is execution time per Ontology. Table 5.9 presents the captured execution time of all

ontologies, the first column, presents the name of Ontology; the second up to fifth column shows

the average of loading time in milliseconds (ms) used by dotNetRDF, SemWeb, Protégé, Jena and

RDF4J, respectively.

Table 5.9: Query Execution Time in dotNetRDF, SemWeb, Protégé, Jena and RDF4J

Ontology

Name

Query Execution in

dotNetRDF (hh:mm: ss.000)

 Query Execution Time in

SemWeb.NET (hh:mm: ss.000)

Query Execution Time in

Protégé (hh:mm: ss.000)
Query Execution Time

in Jena (hh:mm: ss.000)
Query Execution Time in

RDF4J (hh:mm: ss.000)

OntoDPM 00:00:04.762 00:00:03.986 00:00:01.284 00:00:00.509 00:00:00.736

WikiMovie 00:00:09.457 00:00:06.270 00:00:02.336 00:00:01.781 00:00:01.400

Gene OutOfMemoryException Unsupported format 00:00:49.964 00:00:15.999 00:00:25.786

Tero 00:01:28.233 00:01:26.642 00:00:39.346 00:00:02.038 00:00:05.601

AFO 00:00:45.935 00:00:15.613 00:01:01.304 00:00:01.878 00:00:03.431

Dron OutOfMemoryException OutOfMemoryException 00:01:34:452 00:00:31.283 00:00:45.527

Figure 5.9: Queries Execution Times in dotNetRDF, SemWeb, Protégé, Jena and RDF4J

Fig. 5.9 represents the chart of query execution time in Jena, Protégé, RDF4J, dotNetRDF and

SemWeb as presented in Table 5.10. SemWeb.NET and dotNetRDF libraries took longer to

execute queries against ontologies in the datasets. Also, these libraries failed to execute queries on

0

20000

40000

60000

80000

100000

dotNetRDF SemWeb Protégé Jena RDF4J

Query Execution Time
OntoDPM WikiMovie Gene Tero Afo Dron

58

gene Ontology because of the insufficient memory of dotNetRDF and inability to support owl

format in SemWeb.NET library. Furthermore, RDF4J and Jena performed well in execution of

queries as they took three time fast than Protégé, dotNetRDF and SemWeb.NET platforms.

Table 5.10: Summary of Comparison of Dot Net and Open Source Semantic Web Platforms

Features Protégé Jena API RDF4J SemWeb.NET dotNetRDF

Developers Stanford

University

HP Labs Aduna Joshua Tauberer Rob Vess

Last version Protégé 5.5.0 Jena 3.12.0 rdf4j 2.5.4 SemWeb 1.07 dotNetRDF 2.2.0

Availability Free, open

source

Free, open

source

Free, open

source

Free to download Free to download

Semantic web

Architecture

Web based,

Standalone

&Client Server

Client/Server Client/Server Standalone Standalone

Interoperability with

other tools

Jena, Prompt,

OKBC, aCT

Yes Yes No Sesame, Allegro

Graph

Query Support SPARQL SPARQL,

RDQL

SPARQL,

SeRQL

SPARQL SPARQL

Ontology Storage

mode

Memory, Files,

DBMS

Memory, Files,

DBMS

Memory, Files,

DBMS

Memory, Files,

DBMS

Memory, Files,

DBMS

Import/Export

Format

RDF(S), OWL RDF(S), OWL RDF(S), OWL RDF, N3, TUTLE RDF, N3, TUTLE

Build-in inference

engine

Yes Yes Yes Yes Yes

Inference engine

attached to the tool

Yes Yes Yes No No

Consistency

checking

Yes Yes Yes Yes Yes

Stability Stable Stable Stable Abandoned Stable

Extendibility Yes, via plugs-in Yes Yes Yes Yes

Multiple users

Support

Yes No No No No

Ontology library Yes Yes Yes Yes Yes

Graphical User

Interface

Supported Not Supported Supported Not Supported Supported

Web Support Yes No No No No

OWL editor Yes Yes Yes No No

59

Reasoners Yes Yes Yes Yes Yes

Implemented in Java Java Java C# C#

Backup

management

No No No No No

Exception Handling No Yes Yes Yes Yes

Operating System

Support

Cross platform Cross platform Cross platform Cross platform Windows

5.5 Discussion

The comparative results of the evaluation of Protégé, Jena, RDF4J, SemWeb and dotNetRDF tools

based on various criteria such the architecture of the tool, interoperability with other tool, import

and export capabilities and many more.

It appears that the storage mode in Jena, Protégé and RDF4J are similar whereas SemWeb.NET

and dotNetRDF use statements and graphs to store Ontology. Except for Protégé, RDF4J and

dotNetRDF supports both command line and graphical user interfaces; this may help novice

programmers to create, store, edit and query ontologies, whereas, Jena and SemWeb.NET only

offer command line interface which requires skilled users who understand the syntax and the

semantics of those libraries. Protégé, Jena, RDF4J and dotNetRDF are stable as they are frequently

updated while SemWeb.NET seems to have been abandoned since it was last updated in 2010.

Except Protégé which offers a web based version, Jena and RDF4J are client/Server and standalone

applications while SemWeb and dotNetRDF are provided as desktop applications. All the open

source tools were able to import and export ontologies of different formats. However, dotNetRDF

and SemWeb can import and export only small ontologies of RDF format. Although all the five

tools can be extended, none of them provides a back up management feature. Jena and RDF4J use

less time to execute and respond to queries compared to Protégé, SemWeb and dotNetRDF.

Jena, RDF4J, SemWeb.NET and dotNetRDF uses build in reasoners while Protégé use build in

reasoners as well as other reasoners as plug-ins.

5.6 Conclusion

In this chapter, the dataset used in the experiments was presented. Various metrics including

loading time, query execution time and query response time were used in running our experiment

while recording the output values obtained. Thereafter, we conducted a comparative study on three

60

open source platforms, namely, Protégé, Jena, RDF4J and two dot NET libraries SemWeb.NET

and dotNetRDF. These tools were used to parse and process ontologies of different sizes and

format. Thereafter, the results were analyzed and used to compare the performance of the tools.

The experiment shows that SemWeb and dotNetRDF performs well on medium size ontologies

and can only process ontologies of RDF format. On the other hand, Protégé, Jena and RDF4J

performs better in terms of query execution time and query response time on small and large

ontologies. Therefore, there is much work to be done in the dot NET environment as they are still

behind compared to open source environments.

61

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Summary of the Study

This study compared and analysed existing Semantic Web platforms for developing, storing and

querying ontologies in both dot net and open source environments. In this chapter, Semantic Web

Technologies was applied to develop Ontology in Microsoft dot NET. SemWeb.NET and

dotNetRDF libraries are used to create RDF graphs of a selected Ontology. Thereafter, the features

of two platforms were compared based on a number of metrics or criteria.

The experimental results show that there is a lack of features that can support Graphic User

Interface in SemWeb.NET unlike dotNetRDF which provide rdfEditor a tool to edit ontologies

and SPARQL GUI that enables the visual query of ontologies. Both libraries do not process

ontologies of OWL format and their memory sizes are very small to store big ontologies. Also, in

this study we conducted a comparative study on three open source platforms, namely, Protégé,

Jena, RDF4J and two dot NET libraries SemWeb.NET and dotNetRDF. These tools were used to

parse and process ontologies of different sizes and format.

Various metrics such as loading time, Query Execution Time, Query Response Time and Storage

Capacity were empirically measured and used to determine the performance of each tool.

Thereafter, the results were analyzed and used to compare the performance of the tools. The

experiment shows that SemWeb and dotNetRDF performs well on medium size ontologies and

can only process ontologies of RDF format. On the other hand, Protégé, Jena and RDF4J performs

better in terms of query execution time and query response time on small and large ontologies.

Therefore, there is too much work to be done in dot NET environment as they are still behind

compared to open source environments.

6.2 Limitations and Recommendations for Future Work

While conducting this study many challenges and limitations were encountered including:

• Both dotNetRDF and SemWeb.NET were not able to process ontologies at OWL level and

their internal memory storage was very limited. However, small and medium ontologies

were parsed and processed in both tools.

• The study used only two dot net and three open source Semantic Web platforms, namely,

dotNetRDF, SemWeb.NET, Protégé, RDF4J and Jena API in the experiments. Further

62

research could focus on other existing Semantic Web platforms for storing and querying

ontologies and evaluate their performances at large scale.

Future ideas to consider to extend this study includes: (1) developing a Graphical User Interface

(GUI) to interact with ontologies in dot net environment , (2) developing plug-ins i.e. libraries in

dot net environment for storing and querying ontologies in relational databases and (3) Providing

a framework for developing, storing and querying OWL files in dot net environment.

6.3 Conclusion

In this chapter Semantic Web Technologies was applied to develop Ontology in Microsoft dot

NET and open source environments. SemWeb.NET and dotNetRDF libraries are used to create

RDF graphs of a selected Ontology. Thereafter, the features of two dot net and three open source

platforms were compared based on several metrics or criteria. The experimental results showed

that there is a lack of features that can support Graphic User Interface in SemWeb.NET unlike

dotNetRDF which provides rdfEditor as a tool to edit ontologies and SPARQL GUI that enables

the visual query of ontologies. Both libraries do not process ontologies of OWL format and their

memory sizes are very small to store big ontologies. Five ontologies of different sizes are used in

the experiments. The experimental results showed that the open-source platforms provided more

facilities for creating, storing and processing ontologies compared to the dot NET-based tools.

Furthermore, the experiments revealed that Protégé and RDF4J open-source and dotNetRDF

platforms provide both graphical user interface (GUI) and command line interface for Ontology

processing, whereas, Jena open-source and SemWeb.NET are command line platforms. Moreover,

the results showed that the open-source platforms are capable of processing multiple ontologies’

files formats including RDF and OWL formats, whereas, the dot NET-based tools only process

RDF ontologies. Finally, the experiments showed that the dot NET-based platforms have limited

memories size as they failed to load, and query larges ontologies compared to open-source

environments. Therefore, there is much work to be done in the dot NET environment as they are

still behind compared to open source environments. This work will serve as guidelines for dot net

and open source developers (Mahoro & Fonou-Dombeu, 2019; Mahoro & Fonou-Dombeu, 2020).

63

REFERENCES

ADRIAN, W. T., LIGĘZA, A., NALEPA, G. J. & KACZOR, K. 2014. Distributed and

Collaborative Knowledge Management Using an Ontology-Based System. In Proceedings of 1st

IFIP International Workshop on Artificial Intelligence for knowledge Management (AI4KM).

Montpellier, France, 28 August, pp.112-130.

 ALATRISH, E. 2013, “Comparison some of Ontology Editors. Management Information

Systems,” Vol.8, No.2, pp.018-024.

AMATO, F., COLACE, F., GRECO, L., MOSCATO, V. & PICARIELLO, A. 2016. Semantic

Processing of Multimedia Data for E-government Applications. Journal of Visual Languages &

Computing, Vol.32, pp.35-41.

AOKI-KINOSHITA, K. F., AOKI, N. P., FUJITA, A., FUJITA, N., KAWASAKI, T.,

MATSUBARA, M., OKUDA, S., SHIKANAI, T., SHINMACHI, D., SOLOVIEVA, E.,

SUZUKI, Y., TSUCHIYA, S., YAMADA, I. & NARIMATSU, H. 2017. Latest Developments in

Semantic Web Technologies Applied to the Glycosciences. Perspectives in Science, Vol. 11,

pp.18-23.

APUKE, OBERIRI. (2017). Quantitative Research Methods: A Synopsis Approach. Arabian

Journal of Business and Management Review (kuwait Chapter). Vol. 6. 40-47. 10.12816/0040336.

 BASTIAN, E., MATTHIAS, J. & WERNER, Q. 2017, “Ontology-Based Big Data Management”

Journal System, Vol.5, No.45, pp.1-14.

BEISSWANGER, E. S., SCHULZ B., STENZHORN, H. & HAHN, U. 2008. “BIOTOP: An

upper domain Ontology for the life sciences: a description of its current structure, contents, and

interfaces to OBO ontologies”, Journal of Applied Ontology- Towards a meta Ontology for the

Biomedical Domain, Vol. 3, No. 4, pp.205-212.

BERNERS-LEE, T., HANDLER, J. & LASSILA, O. 2001. The Semantic Web. Scientific

American, May 2001, 29-37

BROEKSTRA, J., KAMPMAN, A. & VAN HARMELEN, F. 2002. Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema. In Proceedings of the First

International Semantic Web Conference (IWC2002), Sardinia, Italy, 9-12 June, pp. 1-16.

64

BURANARACH, M., SUPNITHI, T., THEIN, Y. M., RUANGRAJITPAKORN, T.,

RATTANASAWAD, T., WONGPATIKASEREE, K., LIM, A. O., TAN, Y. &

ASSAWAMAKIN, A. 2016: An Ontology Application Management Framework for Simplifying

Ontology-Based Semantic Web Application Development. International Journal of Software

Engineering and Knowledge Engineering, Vol.26, No.1, pp.115-145.

CARBON, S., DIETZE, H., LEWIS, S. E., MUNGALL, C. J. & MUNOZ-TORRES, M. C. 2017.

Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Research, 45,

D331-D338.

CHANDRASEKARAN, B., JOSEPHSON, J.R. BENJAMINS, V. R 1999.What are ontologies

and why do we need them? IEEE Intelligent Systems and their application. Vol.14 No.1, pp.20-

26.

CHANDRASEKARAN, B., JOSEPHSON, J.R., BENJAMINS, V.R. 1999. “What are ontologies

and why do we need them?” IEEE Intelligent Systems and their application, Vol.14 No.1, pp.20-

26.

D’AQUIN, M. & NOY, N. F. 2012. Where to publish and find ontologies? A survey of Ontology

libraries. Web Semantics: Science, Services and Agents on the World Wide Web, Vol.11, pp. 96-

111.

DARWISH, A. 2011. “The Impact of new Web2.0 Technologies in Communication, Development

and Revolutions of Societies,” Journal of Advances in Information Technology. Vol.2, No.4,

pp.204-216.

DUINEVELD, A. J., STOTER, R., WEIDEN, M. R., KENEPA, B. & BENJAMINS, V. R. 2000.

“Wondertools? A comparative study of ontological engineering tools,” International Journal of

Human-Computer Studies, Vol.52, No.6, pp.1111–1133.

FLUIT, C., SABOU, M. & VAN HARMELEN, F. 2003. Ontology-Based Information

Visualization. Visualizing the Semantic Web – XML – based International and Information

Visualization, Vladimir Geroimenko and Chaomei Chen (eds), Springer

65

FONOU-DOMBEU, J.V & HUISMAN, M. 2011. Combining Ontology Development

Methodologies and Semantic Web Platforms for E-government Domain Ontology Development.

International Journal of Web and Semantic Technology (IJWeST) Vol .2, No.2, pp .12-25.

FONOU-DOMBEU, J.V, 2010. A Conceptual Ontology for E-government Monitoring of

Development Projects in Sub Saharan Africa, In Proceedings of the Information Society

Technologies of Africa (IST-Africa) Durban, South Africa, 19-21 May, pp. 1-8.

GARCÍA-CASTRO, R. & GÓMEZ-PÉREZ, A. 2005. Guidelines for Benchmarking the

Performance of Ontology Management APIs. (ISWC) 4th International Semantic Web

Conference.

GKOUTOS, G. V., SCHOFIELD, P. N. & HOEHNDORF, R. 2017. The anatomy of phenotype

ontologies: principles, properties and applications Briefings in Bioinformatics 1-14.

GRUBER, T. 1993, “A translation Approach to Portable Ontology Specifications,” International

Journal of Knowledge Acquisition for Knowledge-based Systems, Vol.5, No.2, pp. 199-220.

GRUBER, T. 1993. A translation Approach to Portable Ontology Specifications. International

Journal of Knowledge Acquisition for Knowledge-based Systems, Vol.5, No.2, pp 199-220.

HIREMATH, B. K. & KENCHAKKANAVAR, A. Y. 2016 “An Alteration of the web 1.0, web

2.0 and web 3.0,” Imperial Journal of Interdisciplinary Research (IJIR), India, Vol. 2, No. 4, pp.

705-710.

HORROCKS, I. 2008. Ontologies and the Semantic Web. Communication of the ACM, Vol.51,

No.12, pp.58-67.

https://github.com/bpellens/owldotnetapi

https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Getting-Started, (Last Accessed May 30, 2016). J.

Tauberer, “SemWeb.NET: Semantic Web/RDF Library for C#.NET,” Available at:

https://github.com/JoshData/semweb-dotnet, (Last Accessed: Aug 12, 2014).

 https://github.com/mdesalvo/RDFSharp

https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Getting-Started

66

HUANG, Y. & DENG, G. 2010. Research on Storage of Geo-Ontology in Relational Database.

2nd International Symposium on Information Engineering and Electronic Commerce, 23-25 July

pp. 1-4.

IACOB, A. 2009. .Net Framework RDF APIs [Online]. Available:

https://www.slideshare.net/andrei_i/net-rdf-apis [Accessed 20/07 2017].

ISLAM, N., SIDDIQUI, M. S. & SHAIKH, A. Z. 2010. TODE: A Dot Net based Tool for

Ontology Development and Editing. 2nd International Conference on Computer Engineering and

Technology (ICCET), Chengdu, China. pp. 229-233.

JAMES R. EVANS, MATTHEW W. FORD, SUZANNE S. MASTERSON, HARRY S. HERTZ.

2012. beyond performance excellence: research insights from Baldrige recipient feedback. Total

Quality Management & Business Excellence Vol. 23, No.5-6, pp. 489-506.

JOVANOVIĆ, J., GAŠEVIĆ, D., KNIGHT, C. & RICHARDS, G. 2007. Ontologies for effective

use of context in e-learning settings. Educational Technology and Society 10, 47-59.

KAUR, L. & MISHRA, A. 2017. Software Component and the Semantic Web: An in-Depth

Content Analysis and Integration History. Journal of Systems and Software, Vol.125, pp.152-169.

KIONG, Y.C., PALANIAPPAN, S. & YAHAYA, N.A. 2009 Health Ontology Generator: Design

and Implementation. International Journal of Computer Science and Network Security, Vol.9,

No.2, pp.104–112.

KONSTANTINIDIS, S. T., WHARRAD, H., WINDLE, R. J. & BAMIDIS, P. D. 2017. Semantic

Web, Reusable Learning Objects, Personal Learning Networks in Health: Key Pieces for Digital

Health Literacy. Informatics Empowers Healthcare Transformation. Vol.238, pp.219-222.

LABIB, A. E., CANÓS, J. H. & PENADÉS, M. C. 2017. On the way to learning style models

integration: A Learner's Characteristics Ontology. Computers in Human Behavior, 73, 433-445.

LAMBRIX, P., HABBOUCHE, M. & PEREZ, M. 2003. Evaluation of Ontology Development

Tools for Bioinformatics. Bioinformatics, Vol.19, pp.1564-1571.

LIVINGSTONE, S. 2012. Critical Reflections on the Benefits of ICT. In Education. Oxford

Review of Education, Vol.38, No.1, pp. 9-24.

http://www.slideshare.net/andrei_i/net-rdf-apis
https://www.tandfonline.com/doi/abs/10.1080/14783363.2012.669547

67

LU, J., RUAN, D. & ZHANG, G. 2007. E-Service Intelligence: An Introduction, Studies in

Computational Intelligence (SCI), Vol.37, pp.1-33.

MARCO. L.C. “The Design Research Methodology as Framework for Development of a Tool for

Engineering Design Education. International Conference on Engineering and Product Design

Education 2&3, Norway September 2010

MARSHALL PA. Human subjects protections, institutional review boards, and cultural

anthropological research. Anthropol Q 2003;76(2):269-85.

MARTINS, C., OLIVEIRA, T. & POPOVIČ, A. 2014. Understanding the Internet Banking

Adoption: A unified theory of acceptance and use of technology and perceived risk application.

International Journal of Information Management, Vol.34, No.1, pp. 1-13.

MATTHEWS, A. 2007. Semantic web visual designer for visual studio.NET [Online]. Available:

https://aabs.wordpress.com/2007/10/24/semantic-web-visual-designer-for-visual-studio-net/

[Accessed 25/07 2018].

MAZILU, L.-A. & PINTILLIE, R. A.-S. 2009. RDF APIs Using .NET Framework SemWeb &

dotNetRDF [Online]. Available: https://www.slideshare.net/andreimazilu/net-rdf-apis-2618742

[Accessed 25/06/2017 2018].

 MEENACHI, N. M., & BABA, S. M. 2012. Web Ontology Editors for Semantic Web A Survey.

International Journal of Computer Applications. Vol.53, No.12, pp. 12-16.

NOY, N. F. & MUSEN, M. A. 2002. Evaluating Ontology-mapping tools: Requirements and

Experience. In Proceedings of the EKAW Workshop on Evaluation of Ontology Tools. Siguenza,

Spain, pp.1-14.

OATES, B.J. (2005). Researching information systems and computing. Sage.

OCHS, C., PERL, Y., GELLER, J., ARABANDI, S., TUDORACHE, T. & MUSEN, M. A. 2017.

“An empirical analysis of Ontology reuse in Bio Portal,” Journal of Biomedical Informatics

Vol.71, pp.165-177.

OCHS, C., PERL, Y., GELLER, J., ARABANDI, S., TUDORACHE, T. & MUSEN, M. A. 2017.

An empirical analysis of Ontology reuse in Bio Portal. Journal of Biomedical Informatics, Vol.71,

pp.165-177.

https://aabs.wordpress.com/2007/10/24/semantic-web-visual-designer-for-visual-studio-net/
http://www.slideshare.net/andreimazilu/net-rdf-apis-2618742

68

OPEN ANZO NOTES (2015), http://www.openanzo.org/projects/openanzo/wiki/DBLayout

[accessed 11-November -2015]

PAK, J. & ZHOU, L. 2011. A Framework for Ontology Evaluation. Exploring the Grand

Challenges for Next Generation E-Business: SHARMAN, R., RAO, H. R. & RAGHU, T. S. (eds.)

Springer

RAFFAT, S.K., SIDDIQUI, M.S, SHAIKH, Z.A. &MEMON, A.R., A. 2012 Scientific

Classification Technique. International Journal of Engineering Research and Applications.

Vol.44, pp.63-68.

RIO, M., RIEL, A. & BRISSAUD, D. 2017. Design to Environment: Information Model

Characteristics. Procedia CIRP, Vol.60, pp.494-499.

ROULEAU, G., GAGNON, M.-P. & CÔTÉ, J. 2015. Impacts of information and communication

technologies on nursing care: an overview of systematic reviews (protocol). Systematic Reviews,

Vol.4, No.1, pp.1-8.

RUTA, M., SCIOSCIA, F., PINTO, A., GRAMEGNA, F., IEVA, S., LOSETO, G. & SCIASCIO,

E. D. 2017. A CoAP-based framework for collaborative sensing in the Semantic Web of Things.

Procedia Computer Science, Vol.109, pp. 1047-1052.

SANTOS, P. M. & ROVER, A. J. 2016. Knowledge Representation through Ontologies: an

Application in the Electronic Democracy Field. Perspectivas em Ciência da Informação, Vol.21,

No.3, pp.22-49.

SINGH, A. & ANAND, P. 2013 “State of Art in Ontology Development Tools,” International

Journal of Advances in Computer Science and Technology, Vol.2, No.7, pp.96-101.

SLATER, L., GKOUTOS, G. V., SCHOFIELD, P. N. & HOEHNDORF, R. 2015. Using Aber-

OWL for Fast and Scalable Reasoning over BioPortal Ontologies. In Proceedings of International

Conference on Biomedical Ontologies (ICBO), July, pp.72-76.

SLIMANI, T. 2015. Ontology Development: A Comparing Study on Tools, Languages and

Formalisms. Indian Journal of Science and Technology, Vol.8, No.24, pp.1-12.

http://www.openanzo.org/projects/openanzo/wiki/DBLayout

69

SPLENDIANI, A., BURGER, A., PASCHKE, A., ROMANO, P. & MARSHALL, M. S. 2011.

Biomedical Semantics in the Semantic Web. Journal of Biomedical Semantics, Vol.2, No.1, pp.1-

9.

SUN, D., JUNG, H., HWANG, C. & KIM, H. 2011. Accessing Information Sources using

Ontologies. International Journal of Computers, Communications & Control, Vol.6, No.2, pp.

349-366.

STEGMAIER, F., GRÖBNER, U., DÖLLER, M., KOSCH, H. & BAESE, G. (2009), “Evaluation

of current RDF database solutions”, In Proceedings of the 10th International Workshop on

Semantic Multimedia Database Technologies (SeMuDaTe), 4th International Conference on

Semantics And Digital Media Technologies (SAMT), Graz, Austria, 2-4 December, pp. 39-55.

TAHA, K. 2013 “GOSeek: A Gene Ontology Search Engine using Enhanced Keywords” In

Proceedings of the 35th Annual International Conference of Engineering in Medicine and

Biology Society (EMBC), Osaka, Japan, 3-7 July, pp.1502 – 1505.

TAYE, M. 2010 “The State of the Art: Ontology Web-Based Languages: XML Based,” Journal

of Computing, NY, USA, June 2010, Vol. 2, No. 6, ISSN 2151-9617.

TAYE, M. M. 2010. Understanding Semantic Web and Ontologies: Theory and Applications.

Journal of Computing, Vol.2, No.6, pp.182-192.

TAUBERER, J. 2009 “SemWeb.NET: Semantic Web/RDF Library for C#.NET,” Available at:

https://github.com/JoshData/semweb-dotnet, (Last Accessed: Aug 12, 2019).

TEIMOURIKIA, M. & FUGINI, M. 2017. Ontology Development for Run-Time Safety

Management Methodology in Smart Work Environments Using Ambient Knowledge. Future

Generation Computer Systems, Vol.68, pp.428-441.

UTHAYAN, K. R. & ANANDHA MALA, G. S. 2015. Hybrid Ontology for Semantic Information

Retrieval Model Using Keyword Matching Indexing System. The Scientific World Journal.

VEGETTI, M., ROLDÁN, L., GONNET, S., LEONE, H. & HENNING, G. 2016. A Framework

to Represent, Capture, and Trace Ontology Development Processes. Engineering Applications of

Artificial Intelligence, vol.56, pp. 230-249.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Taha,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596169
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596169

70

VESSE, R. 2010 “dotNetRDF Documentation,” Available at:

https://github.com/dotnetrdf/dotnetrdf/wiki/UserGuide-Getting-Started, (Last Accessed May 30,

2019).

XIAO, Y., XIAO, M. & ZHAO, H. An Ontology for e-Government Knowledge Modeling and

Interoperability. 2007 International Conference on Wireless Communications, Networking and

Mobile Computing, 21-25 Sept. 3605-3608.

YOUN, S. & MCLEOD, D. 2006. Ontology development tools for Ontology-based knowledge

management Hershey, PA, USA: Idea group Inc.

ZANG, J. 2007, “Ontology and the Semantic Web. Proceedings of the North American

Symposium on Knowledge Organization,” Vol.1, Available: http://dlist.sir.arizona.edu/1897/

ZENUNI, X., RAUFI, B., ISMAILI, F. & AJDARI, J. 2015. State of the Art of Semantic Web for

Healthcare. Procedia - Social and Behavioral Sciences.Vol.195, pp.1990-1998.

http://dlist.sir.arizona.edu/1897/

71

APPENDIX A: FULL CODE OF ONTOLOGY DEVELOPMENT

IN DOT NET ENVIRONMENT

a) Creating RDF/XML file in dotNetRDF Library

We created a blank project called “MyProject_ontoDPM_dotNetRDF”, the Project is created

under the Visual C# 4.0 framework (Client Profile) created by default once you open Visual

Studio2010. After the creation of a project, dotNetRDF, the library to manipulate Ontology is

added to the projects. After the library is added to the solution of the project, it appears under

the Solution Explorer tab which is under the References folder as demonstrated in – Figure

A.1

Figure A. 1: Adding dotNetRDF Library to the Project

The table presented below shows the full code of creation of a graph object where the

Ontology triples will be stored. All necessary namespaces such as “VDS.RDF, VDS.RDF.

Writing and VDS.RDF. Ontology” have to be imported in class Program as they contain all

classes used to create graphs, triples (subjects, predicates and objects) and RDF instances

(Individuals).

The following table is a sample of RDF/XML format, the output from the Semantic Web

OntoDPM application generated by dotNetRDF Library.

Table A.1: RDF/XML file output of OntoDPM Ontology in dotNetRDF

<? Xml version="1.0" encoding="utf-8"?>

<!DOCTYPE rdf:RDF [

72

 <!ENTITY rdf 'http://www.w3.org/1999/02/22-rdf-syntax-ns#'>

 <!ENTITY rdfs 'http://www.w3.org/2000/01/rdf-schema#'>

 <!ENTITY xsd 'http://www.w3.org/2001/XMLSchema#'>

 <!ENTITY owl 'http://www.w3.org/2002/07/owl#'>

]>

<rdf:RDF xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#" xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns="http://www.ontodpm_Ontology.org/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/AcademicInstitution">

 <isA rdf:resource="http://www.ontodpm_Ontology.org/Stakeholder" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/CivilSociety">

 <isA rdf:resource="http://www.ontodpm_Ontology.org/Stakeholder" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/CommunityBaseOrganization">

 <isA rdf:resource="http://www.ontodpm_Ontology.org/Stakeholder" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/CommunityBasedOrganization">

 <owns rdf:resource="http://www.ontodpm_Ontology.org/Community" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/CommunityLeader">

 <resides rdf:resource="http://www.ontodpm_Ontology.org/Community" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/CommunityWorker">

 <affiliates rdf:resource="http://www.ontodpm_Ontology.org/Community" />

 <isA rdf:resource="http://www.ontodpm_Ontology.org/Person" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/Consultant">

 <isA rdf:resource="http://www.ontodpm_Ontology.org/PrivateCompany" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/Contractor">

 <isA rdf:resource="http://www.ontodpm_Ontology.org/PrivateCompany" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/DataCollection">

 <isIndividualOf rdf:resource="http://www.ontodpm_Ontology.org/FocusGroup" />

 <isIndividualOf rdf:resource="http://www.ontodpm_Ontology.org/SiteObservation" />

 <isIndividualOf rdf:resource="http://www.ontodpm_Ontology.org/Survey" />

 </rdf:Description>

 <rdf:Description rdf:about="http://www.ontodpm_Ontology.org/DeliveryActivity">

 <isIndividualOf rdf:resource="http://www.ontodpm_Ontology.org/Discussion" />

b) Querying RDF/XML file in dotNetRDF Library

• Command Line Interface

The full code of querying RDF/XML file of OntoDPM model from application generated by

dotNetRDF Library is presented in table A.3.

Table A.2: The full code of querying RDF file of Juho Ontology

73

using System;
using VDS.RDF;
using VDS.RDF.Parsing;

using VDS.RDF.Query;
using VDS.RDF.Storage;
using VDS.RDF.Writing;

using VDS.RDF.Query.Datasets;
using System.Diagnostics;
namespace TripleStoreOntoDPM
{

 class Program
 {
 static void Main(string[] args)
 { Stopwatch myTimer = new Stopwatch();

 myTimer.Start();
 TripleStore store = new TripleStore();
 store.LoadFromFile(@"C:\ontologies\juho.rdf");
 ISparqlDataset ds = new InMemoryDataset(store);

 //Execute a raw SPARQL Query
 //Should get a SparqlResultSet back from a SELECT query
 Object results = store.ExecuteQuery("SELECT * WHERE { ?s ?p ?o }");
 if (results is SparqlResultSet)

 {
 //Print out the Results
 SparqlResultSet rset = (SparqlResultSet)results;

 foreach (SparqlResult result in rset)
 {
 Console.WriteLine(result.ToString());
 }

 }

 //Use the SparqlQueryParser to give us a SparqlQuery object
 //Should get a Graph back from a CONSTRUCT query

 SparqlQueryParser sparqlparser = new SparqlQueryParser();
 SparqlQuery query = sparqlparser.ParseFromString("CONSTRUCT { ?s ?p ?o } WHERE { ?s ?p ?o
}");
 results = store.ExecuteQuery(query);

 if (results is IGraph)
 {
 //Print out the Results

 IGraph g = (IGraph)results;
 foreach (Triple t in g.Triples)
 {
 Console.WriteLine(t.ToString());

 }
 myTimer.Stop();
 Console.WriteLine("Query Response Time taken " + myTimer.Elapsed);
 Console.WriteLine("Query Execution Time taken " + query.QueryExecutionTime.ToString());

 Console.ReadLine();

 TurtleWriter twriter = new TurtleWriter();
 twriter.Save(g, "Output.ttl");

 NTriplesWriter ntwriter = new NTriplesWriter();
 ntwriter.Save(g, "Output.nt");

 RdfXmlWriter rdfxmlwriter = new RdfXmlWriter();
 rdfxmlwriter.Save(g, "Output.rdf");
 }}}

74

Figure A. 2: Sample Code of Query Execution Time in dotNetRDF Library

• Graphical User Interface

Also dotNetRDF provides other option of querying Ontology using Graphic User Interface

(SPARQL GUI) which is the dotNetRDF build-in Tool to visually query ontologies. This

Graphical User Interface is simple to use and straightforward as the interface provides all necessary

information in terms of querying and display the query results in any format supported by

dotNetRDF library.

Figure A. 3: Querying WikiMovie Ontology in SPARQL GUI dotNetRDF

As shown in Figure 5.17 dotNetRDF provides the option of importing and exporting

ontologies to/from different formats such as NTriples, Turtle, Notation3, RDF/XML etc.

75

Figure A. 4: Export and Import features of dotNetRDF

dotNetRDF failed to load and query Drug and Gene Ontologies because of its original size

which was much bigger to be processed in dotNetRDF library as depicted in Figures A. 5 and

A. 6

76

Figure A. 5: Out of memory exception while loading drug Ontology in dotNetRDF

Figure A. 6: Failure occurred while querying Gene Ontology in dotNetRDF

c) Implementation of OntoDPM Ontology in SemWeb.NET

The SemWeb.NET library’s namespaces includes: SemWeb, SemWeb.MySQLStore,

SemWeb.Sparql are added under references section in the OntoDev project within Microsoft dot

NET using C# language as shown in Figure A .7.

77

Figure A. 7: Adding SemWeb Library to the OntoDev Project

After adding the SemWeb.NET library to build RDF triples of OntoDPM Ontology, we created

three main classes including OntoSubject.cs, OntoProperty.cs and OntoObject.cs were created

under OntoDev_SemWeb solution in OntoDev project as shown in Figure A. 8.

 Querying RDF/XML file in SemWeb.NET Library

 The Ontology have been queried out using Simple Protocol and RDF Query Language

(SPARQL). SPARQL is the standard query language for the Semantic Web which can be used to

query over large volumes of RDF data and is W3C Recommendation. The SemWeb.NET library

provides a great mechanism for querying Ontology files stored in MemoryStore using build-in

SPARQL language.

Table A. 3: Full code for querying Ontology in SemWeb.NET Library

using System;
using System.Collections.Generic;
using System.Text;

using System.IO;
using SemWeb;
using SemWeb.Query;
namespace QueryApp

{
 public class Example
 {
 public static void Main(string[] argv)

 {
 if (argv.Length < 3)
 {

 Console.WriteLine("Usage: query.exe format queryfile datafile");
 return;
 }

 string format = argv[0];
 string queryfile = argv[1];
 string datafile = argv[2];

78

 Query query;

 if (format == "rsquary")

 {
 // Create a simple-entailment "RSquary" query
 // from the N3 file.

 query = new GraphMatch(new N3Reader(queryfile));
 }
 else
 {

 // Create a SPARQL query by reading the file's
 // contents.
 query = new SparqlEngine(new StreamReader(queryfile));
 }

 // Load the data file from disk
 MemoryStore data = new MemoryStore();
 data.Import(new N3Reader(datafile));

 // First, print results in SPARQL XML Results format...

 // Create a result sink where results are written to.

 QueryResultSink sink = new SparqlXmlQuerySink(Console.Out);

 // Run the query.

 query.Run(data, sink);

 // Second, print the results via our own custom QueryResultSink...
 query.Run(data, new PrintQuerySink());

 }

 public class PrintQuerySink : QueryResultSink
 {

 public override bool Add(VariableBindings result)
 {
 foreach (Variable var in result.Variables)
 {

 if (var.LocalName != null && result[var] != null)
 {
 Console.WriteLine(var.LocalName + " ==> " + result[var].ToString());

}
 Console.WriteLine(); } return true;}}

The capacity in terms of querying large ontologies in SemWeb.NET library is very limited

as its fails to query out Drug Ontology file which has the size of 473 Mb as depicted in

Figure A. 11.

79

Figure A. 8: Fatal Error while Querying Drug Ontology in SemWeb.NET

APPENDIX B: FULL CODE OF ONTOLOGY DEVELOPMENT

IN OPEN SOURCE ENVIRONMENT

Figure B. 1: Screenshot of OntoDPM in Protégé

80

Figure B. 2: OntoDPM Graph generated by Protégé

Figure B. 3: SPARQL Query of OntoDPM in Protégé

The above result shows the output of SPARQL Query executed using Protégé which displays

“subject” and “object” and also showing the subclass and superclass relationships in OntoDPM

Ontology.

81

Figure B. 4: Screenshot of Jar Files in Jena API

Table B. 1: Full Code to Load and Query Ontologies in Jena API
package jena_ontodpm;

import java.io.InputStream;
import org.apache.jena.Ontology.OntDocumentManager;
import org.apache.jena.Ontology.OntModel;

import org.apache.jena.Ontology.OntModelSpec;
import org.apache.jena.query.Query;
import org.apache.jena.query.QueryExecution;
import org.apache.jena.query.QueryExecutionFactory;

import org.apache.jena.query.QueryFactory;
import org.apache.jena.query.ResultSetFormatter;
import org.apache.jena.rdf.model.ModelFactory;

import org.apache.jena.util.FileManager;

public class DevelopmentProject {

 public static void main (String args[]) {
 // Create an empty model to hold Ontology in-memory
 System.out.println("********************Creation of Empty

model************************************");
 long startTime = System.currentTimeMillis();
 OntDocumentManager mgr = new OntDocumentManager();
 OntModelSpec s = new OntModelSpec(OntModelSpec.RDFS_MEM);

 s.setDocumentManager(mgr);
 OntModel m = ModelFactory.createOntologyModel(s, null);
 System.out.println("***********Ontology Model has been successfully

Created*****************************");

 // open and loaded file Ontology in Jena memory
 String inputFileName="c://ontologies/ontoDPM.owl";

 InputStream in = FileManager.get().open(inputFileName);
 if (in == null) {
 throw new IllegalArgumentException("File: " + inputFileName + " not found"); }
 System.out.println("************************File successfully

loaded************************************");

82

 // load the Ontology into the memory repository
 m.read(in,"");

 System.out.println("===Ontology has been successfully loaded in the Memory
************************************");
 long estimatedTime = System.currentTimeMillis() - startTime;

 System.out.println("===============Estimate Loading Time is:"+ estimatedTime
+"************************************");

Table B.2: The Output Results of Loading and Querying Ontologies in Jena API

********************Creation of Empty model************************************

***********Ontology Model has been successfully Created*****************************
************************File successfully loaded************************************
===Ontology has been successfully loaded in the Memory ************************************
===============Estimate Loading Time is:3081************************************

===============reading a query: ============================

| subject |
object |
===
===

=====================
|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#DevelopmentPro

ject> | _:b0 |
|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#DeliveryActivi
ty> |

<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#DevelopmentPro
ject> |
|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#ProjectStaff>

| _:b1 |
| <http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#Donor>
| _:b2 |
|

<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#CommunityWorke
r> |
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#Person>

|
|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#CommunityBased
Organization> |

<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#Stakeholder>
|
|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#AcademicInstit

ution> |
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#Stakeholder>
|
|

<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#ContributionLe
vel> |
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#DevelopmentPro
ject> |

83

/**
****/

 // Create a new SPARQL Query
 String queryString =
 "PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#> " +

 "SELECT ?subject ?object " +
 "WHERE {" +
 " ?subject rdfs:subClassOf ?object " +
 " }" +

 " LIMIT 10" ;

 System.out.println("===============reading a query:
============================");

 long startTime2 = System.currentTimeMillis();

 Query query = QueryFactory.create(queryString);
 // Execution of the query and Display the results

 QueryExecution qe = QueryExecutionFactory.create(query, m);
 org.apache.jena.query.ResultSet results = qe.execSelect();
 // Output query results
 ResultSetFormatter.out(System.out, results, query);

 // Important -free up resources used running the query
 qe.close();
 long estimatedTime2 = System.currentTimeMillis() - startTime2;

 System.out.println("===============End time Time for querying: Query
Response Time is:"+ estimatedTime2 +"==================
}

|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#DevelopmentPro

ject> | _:b3 |
|
<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#PrivateCompany
> |

<http://www.semanticweb.org/user/ontologies/2018/5/MyProject_ontoDPM_ProtÃ©gÃ©_Version#Stakeholder>
|

===============Query Response Time is:924==================

84

Figure B. 5: Query Result of OntoDPM Ontology in RDF4J

Figure B. 6: Query Result of Individuals of OntoDPM Ontology in RDF4J

85

Figure B. 7: Fatal Error while Querying Gene Ontology in RDF4J (Sesame SDK)

86

APPENDIX C: FULL TABLE ON COMPARISON OF DOT NET

AND OPEN SOURCE PLATFORMS FOR ONTOLOGY

DEVELOPMENT

The first column presents the name of Ontology, in the second column named storage indicates

the mode used by those platforms to store Ontology files. A third column indicates tools which

are open source. The fourth column named extensibility, shows the capability of adding more

features supported by platforms. The fifth column provides the architecture type available for each

platform while last two columns shows if platforms support the import and export of ontologies

from different sources.

87

Tools Storage Availability Open source Extensibility Architecture Import Language Export Language

Protégé In-memory, Files&

DBMS

Free Yes Yes Standalone&

ClientServer

RDF(S), OWL RDF(S), OWL, CLIPS

Jena API In-memory, Files&

DBMS

Free Yes Yes Standalone&

ClientServer

RDF(S), OWL RDF(S), OWL

RDF4J In-memory, Files&

DBMS

Free Yes Yes Standalone&

ClientServer

RDF(S), OWL RDF(S), OWL

IsaViz Files Free Yes Yes Standalone RDF(S), N-Triple

RDF(S), N-Triple

OilEd Files Free Yes No Standalone RDF(S), DAML+ OIL RDF(S), DAML+ OWL

Swoop Files Free Yes Yes Standalone RDF(S), OWL RDF(S), OWL

OBO-Edit Files Free Yes Yes Standalone OBO File format,

OWL

OBO File format,

OWL

Hozo Files Free Yes No Standalone&

ClientServer

RDF(S), subset of OWL OWL, RDF(S)

OntoBuilder Files Free Yes Yes Standalone&

ClientServer

RDF(S), OWL WSDL RDF(S), Microsoft

Biz Talk

Ontosaurus Files Free Yes No ClientServer LOOM, IDL KIF, C++ LOOM, IDL KIF, C++

Apollo Files Free Yes Yes Standalone Apollo Meta-language OCML

Grafoo Files Free Yes Yes Standalone OWL2, Tutle

OWL/XML

OWL2, Tutle

OWL/XML

KAON DBMS Free Yes No Standalone RDF(S) RDF(S)

pOWL Files Free Yes Yes N-tier Architecture RDF(S), N-triple RDF(S), N-triple

WSMO Studio Files Free Yes Yes Standalone WSML-XML, RDF(S), OWL

WSML-XML, OWL-DL

Neon Toolkit Files Free Yes Yes Standalone RDF(S), OWL RDF(S), OWL

SemWeb.NET In-memory, Files&

DBMS

Free Yes Yes Standalone

RDF RDF

LinqToRdf In-memory, Files&

DBMS

Free Yes Yes Standalone

RDF(S), OWL RDF

dotNetRDF In-memory, Files&

DBMS

Free Yes Yes Standalone

RDF RDF(S), OWL

RDFSharp Files Free Yes Yes Standalone RDF(S), N-Triple

RDF(S), N-Triple

OwlDotNetApi Files& DBMS Free No Yes Standalone RDF(S), OWL RDF(S), OWL

dotSesame In-memory, Files&

DBMS

Free Yes Yes Standalone RDF(S), OWL RDF(S), OWL

BrightstarDB Files& DBMS Commercial No Yes Standalone RDF(S), OWL,

N-Triple

RDF(S), OWL

88

Rowlex Files& DBMS Commercial No Yes Standalone RDF(S), OWL RDF(S), OWL

TODE Files& DBMS - No Yes Standalone RDF(S), N-Triple,

OWL

RDF(S), N-Triple

OWL

