
i

THE USE OF PAIR-PROGRAMMING TO ENHANCE THE ACADEMIC

PERFORMANCE OF TERTIARY LEVEL SOFTWARE DEVELOPMENT

STUDENTS

Kindu Wa Mulumba Kafilongo

 Baccalaureus Technologiae in Information Technology

Dissertation submitted in fulfilment of the requirements for the degree Magister

Technologiae in Information Technology, Faculty of Applied and Computer Sciences,

Vaal University of Technology

Supervisor: Prof A Jordaan

Co- Supervisor: Mr R Baxter

April 2016

ii

1. DECLARATION

I, Kindu Wa Mulumba Kafilongo, hereby declare that the work which is submitted

here is the product of my own independent research and that all the sources I have

used and quoted have been pointed out and acknowledged by means of complete

references. In addition I declare that the work is submitted for the first time at this

university/faculty towards the Masters Technologiae (MTech) degree in the

Information Technology department and that it has never been submitted to any

other university/faculty for the purpose of obtaining a degree.

Signature Date

iii

2. ACKNOWLEDGEMENTS

I hereby express my heartfelt gratitude to:

 The Almighty God, for His protection, wisdom and strength bestowed upon me

to complete this research. Glory to the Holy Trinity.

 To my family, thank you for walking this road with me, sharing your valued

opinions and suggestions from an educationist point of view.

 To my wife to be, Martha Mathethe, for her unconditional support, love, kisses

and sitting by my side during this research project. It gave me strength to carry

on.

 My supervisor, Prof Annelie Jordaan and my co-supervisor, Mr Roger Baxter

who I was fortunate to have been able to work with, many thanks for their

patience, support, guidance and assistance throughout the research.

 Dr Pieter Conradie, who assisted me with my first article by encouraging me

and being supportive.

 Ms Christa van Wyk, for the technical editing and proofreading, thank you.

 The Vaal University of Technology (VUT) main campus students that took part

in the research and the institution for enabling me to conduct this study.

iv

3. DEDICATION

This dissertation is dedicated to my whole family.

v

4. ABSTRACT

The number of students passing computer programming modules at Higher

Education Institutions (HEIs) in South Africa at first year level is low. Only with the

second attempt do most students pass. This delay results in students completing

their three-year undergraduate qualification in four or even five years. One potential

contribution towards addressing this problem is the introduction of a collaborative

(cooperative) pedagogical approach where students develop software in teams,

known in the Information Technology (IT) sector as pair-programming. This study

endeavoured to investigate the impact of pair-programming on the academic

progress of students registered for the Information Technology qualification at HEIs

in South Africa.

The study warranted the selection of action research as the most appropriate

research strategy. Multi-methods data collection was carried out over two

consecutive semesters. The data collection methods included a semi-structured

interview, observations and empirical assessment. The participants were students

registered for the Information Systems module, which focuses on software

development. Pair-programming was introduced to one group of software

development students, while a second group continued with the normal solo-

programming approach. Semi-structured interviews were held with the students

before commencement and after completion of the pair-programming intervention, to

establish a change, if any, in the academic performance, attitude and enjoyment level

of students introduced to pair-programming compared to those who continued with

solo-programming. Observations were conducted throughout the course of the

practical sessions over both semesters. Empirical assessments were done by means

of tests given to both groups of students during the practical sessions, three tests per

semester. Data analysis techniques included t-tests and thematic analysis.

The findings concluded that pair-programming had a significant positive impact on

the academic progress of IT students, including an increase in the enjoyment level

and a more positive attitude towards software development.

Keywords: Pair-programming, eXtreme Programming (XP), collaborative learning,

agile approach, academic progress, research methodology, action research.

vi

TABLE OF CONTENTS

DECLARATION .. ii

ACKNOWLEDGEMENTS .. iii

DEDICATION ... iv

ABSTRACT ... v

LIST OF FIGURES .. x

LIST OF TABLES .. xi

CHAPTER 1: INTRODUCTION, PROBLEM STATEMENT AND OBJECTIVES 1

1.1 INTRODUCTION .. 2

1.2 BACKGROUND .. 2

1.2.1 Traditional systems development ... 5

1.2.1.1 Waterfall methodology ... 5

1.2.1.2 Spiral methodology .. 6

1.2.2 Agile systems development .. 8

1.3 RESEARCH PROBLEM.. 10

1.4 RESEARCH QUESTIONS .. 10

1.4.1 Primary Research Question (PRQ) .. 10

1.4.2 Secondary Research Questions (SRQs) .. 11

1.5 RESEARCH OBJECTIVES ... 11

1.5.1 Primary objective .. 11

1.5.2 Secondary objectives ... 11

1.6 RESEARCH DESIGN ... 12

1.6.1 Research philosophy .. 12

1.6.2 Research methodology... 14

1.6.2.1 Qualitative research methodology ... 15

1.6.2.2 Quantitative research methodology ... 15

1.6.2.3 Mixed methods research methodology 15

1.6.3 Research strategy .. 15

1.6.4 Data collection .. 16

1.6.4.1 Unit of observation ... 16

1.6.4.2 Unit of analysis .. 16

1.6.4.3 Data collection techniques ... 16

1.6.5 Data analysis .. 17

vii

1.7 DELINEATION .. 17

1.8 ETHICAL CONSIDERATIONS .. 17

1.9 CHAPTER OUTLINE .. 18

1.10 SUMMARY ... 19

CHAPTER 2: LITERATURE REVIEW .. 21

2.1 INTRODUCTION .. 22

2.2 IT STUDENTS IN A SOFTWARE DEVELOPMENT ENVIRONMENT 22

2.2.1 Enjoyment of software development .. 22

2.2.2 Attitude towards software development .. 23

2.3 INNOVATIVE AGILE SOFTWARE DEVELOPMENT METHODS 23

2.3.1 Agile Unified Process (AUP) ... 26

2.3.2 Adaptive Software Development (ASD).. 27

2.3.3 Dynamic Systems Development Method (DSDM) 27

2.3.4 eXtreme Programming (XP) ... 28

2.4 PAIR-PROGRAMMING... 30

2.4.1 How does pair-programming work? .. 33

2.4.2 Pair-programming as collaborative learning approach 35

2.4.3 Advantages of pair-programming ... 37

2.4.3.1 Enjoyment .. 37

2.4.3.2 Confidence .. 38

2.4.3.3 Program quality.. 38

2.4.3.4 Student academic performance ... 38

2.4.3.5 Attitude .. 38

2.4.3.6 Communication .. 39

2.5 CONCLUSION .. 39

2.6 SUMMARY.. 39

CHAPTER 3: RESEARCH METHODOLOGY .. 42

3.1 INTRODUCTION .. 43

3.2 MEANING OF RESEARCH .. 43

3.3 RESEARCH PROBLEM.. 44

3.4 RESEARCH DESIGN ... 45

3.4.1 Research philosophy .. 46

viii

3.4.1.1 Ontology .. 46

3.4.1.2 Epistemology ... 47

3.4.2 Research paradigm .. 49

3.4.3 Research approach .. 51

3.4.4 Research strategy .. 51

3.4.5 Research methodology... 53

3.4.5.1 Qualitative research methodology ... 53

3.4.5.2 Quantitative research methodology ... 54

3.4.5.3 Mixed methods research methodology 55

3.4.6 Data collection .. 55

3.4.6.1 Interviews .. 55

3.4.6.2 Observations and assessments ... 57

3.4.7 Unit of analysis ... 58

3.4.8 Unit of observation ... 58

3.4.8.1 Population .. 58

3.4.8.2 Sample techniques .. 59

3.4.8.3 Sample size ... 61

3.4.9 Data analysis .. 61

3.4.9.1 Quantitative data analysis .. 61

3.4.9.2 Qualitative data analysis .. 62

3.5 APPOSITE RESEARCH DESIGN SUMMARISED ... 64

3.8 CONCLUSION .. 65

CHAPTER 4: ANALYSIS AND DISCUSSION .. 67

4.1 INTRODUCTION .. 67

4.2 RESEARCH DESIGN ... 68

4.3 DATA ANALYSIS .. 69

4.3.1 Quantitative data analysis .. 70

4.3.2 Qualitative data analysis... 70

4.4 DISCUSSION OF RESULTS .. 70

4.4.1 Enjoyment level .. 70

4.4.2 Academic progress ... 74

4.4.3 Attitude ... 77

4.5 CONCLUSION .. 79

ix

CHAPTER 5: FINDINGS AND RECOMMENDATIONS .. 80

5.1 INTRODUCTION .. 80

5.2 RESEARCH QUESTIONS .. 81

5.2.1 Secondary Research Question 1 .. 81

5.2.2 Secondary Research Question 2 .. 82

5.2.3 Secondary Research Question 3 .. 83

5.2.4 Secondary Research Question 4 .. 84

5.2.5 Secondary Research Question 5 .. 85

5.2.6 Secondary Research Question 6 .. 90

5.3 SUMMARY OF FINDINGS.. 92

5.4 PRACTICAL CONTRIBUTION .. 95

5.5 LIMITATIONS ... 95

5.6 FUTURE RESEARCH... 95

5.7 SUMMARY.. 96

REFERENCES .. 98

ANNEXURE A: Interview guide .. 109

ANNEXURE B: Interview responses from participants (before and after) 110

ANNEXURE C: Feedback from students - objectives... 118

ANNEXURE D: Published journal article ... 121

ANNEXURE E: Language editing certificate ... 122

x

5. LIST OF FIGURES

Figure 1.1: Graphical representation of dissertation framework 1

Figure 1.2: Graphical representation of Chapter 1 .. 1

Figure 1.3: Waterfall phases during development process .. 6

Figure 1.4: Spiral Model .. 7

Figure 2.1: Graphical representation of Chapter 2 .. 21

Figure 2.2: Agile Unified Process phases .. 27

Figure 2.3: DSDM phases ... 28

Figure 2.4: Student performance in pair-programming assignments 31

Figure 2.5: Elapsed time spent on the project ... 33

Figure 3.1: Graphical representation of Chapter 3 .. 42

Figure 3.2: Meaning of research .. 43

Figure 3.3: Research onion ... 45

Figure 3.4: A framework for research philosophy .. 46

Figure 3.5: Social theory analysis using four paradigms ... 49

Figure 3.6: Deductive approach versus Inductive research approach 51

Figure 3.7: Action research cycle .. 52

Figure 3.8: Example of sample .. 59

Figure 3.9: Methods of sampling ... 60

Figure 3.10: Streamlined Codes-to-Theory model for qualitative inquiry 62

Figure 3.11: Stages of coding in thematic analysis to theory..................................... 64

Figure 4.1: Graphical representation of Chapter 4 .. 67

Figure 4.2: Group A: Students using pair-programming .. 74

Figure 4.3: Group B: Individual programming .. 75

Figure 4.4: Students’ attitude towards programming ... 78

Figure 5.1: Graphical representation of Chapter 5 .. 80

Figure 5.2: Proposed Pair-programming Framework... 86

xi

6. LIST OF TABLES

Table 1.1: Boehm-Spiral Methodology stages ... 7

Table 1.2: Agile vs. Traditional Methodologies .. 9

Table 1.3: Summary overview of research questions and objectives 20

Table 2.1: Summary of Beck’s (2000) twelve principles of agility 24

Table 2.2: Profile of agile development models ... 25

Table 2.3: Students’ views towards pair-programming (Summary) 32

Table 2.4: Percentage of test cases passed.. 32

Table 3.1: Positivism and Interpretivism .. 48

Table 3.2: Qualitative vs Quantitative research methods .. 54

Table 3.3: Apposite research design for pair-programming research at HEIs 65

Table 4.1: Enjoyment level: Before pair-programming .. 71

Table 4.2: Enjoyment level: After pair-programming ... 72

Table 4.3: Paired t-test results for solo-programming .. 76

Table 4.4: Paired t-test results for agile programming (pair-programming) 76

Table 4.5: Attitude: Before pair-programming .. 77

Table 4.6: Attitude: After pair-programming... 78

1

1. CHAPTER 1: INTRODUCTION, PROBLEM STATEMENT AND OBJECTIVES

Figure 1.1: Graphical representation of dissertation framework

Figure 1.2: Graphical representation of Chapter 1

CHAPTER 1: INTRODUCTION, PROBLEM
STATEMENT AND OBJECTIVES

CHAPTER 2: LITERATURE REVIEW

CHAPTER 4: ANALYSIS AND DISCUSSION

CHAPTER 3: RESEARCH METHODOLOGY

CHAPTER 5: FINDINGS AND RECOMMENDATIONS

Introduction

Research problem

Background

Research questions

Research objectives

Research design

CHAPTER 1: INTRODUCTION, PROBLEM

STATEMENT AND OBJECTIVES

Delimitation

Summary

Chapter outline

Ethical considerations

2

1.1 INTRODUCTION

According to the previous Minister of Education, the honourable Naledi Pandor

(2006), science, mathematics and information and communications technology(ies)

(ICT) play a vital role in social and economic development. Developing countries

need to advance their human and institutional capacity in mathematics, science and

technology if they are to succeed in their developmental goals. Pandor (2006) further

states that the performance of South African students, as indicated in the Trends in

International Mathematics and Science Study (TIMMS) in 2003, 1995 and 1999,

confirm that South Africa's most important educational priority is to expand the

mathematical and scientific capacity of students.

The current Minister of Higher Education and Training, Dr Blade Nzimande, in his

keynote address at the Conference of the South African Heads of Mission

(Nzimande, 2014), builds upon the promptings of Ms Pandor. Dr Nzimande (2014)

lists the higher education objectives of the National Development Plan (NDP) of

South Africa, which include:

“In higher education, the objectives are to increase university enrolments by

at least 70% to about 1.6 million; increasing the number of students eligible

to study towards maths- and science-based degrees to 450 000…”

1.2 BACKGROUND

In South Africa, provision is made for students to prepare for a career in Information

Technology (IT) by offering them this qualification in the Further Education and

Training (FET) and Higher Education (HE) bands of the National Qualifications

Framework (NQF). One of the four learning outcomes of IT offered in these HE

bands focuses on the design and development of appropriate computer-based

solutions to specific problems using programming (i.e. software development).

A historical perspective shows that Software Development Methodologies (SDMs)

came into being to address deficiencies in existing techniques of software

development and introduce rigour into the software development process (Avison &

Fitzgerald 2003).

In this study, Software Development refers to a course where the students learn how

to design and/or develop appropriate and effective computer-based solutions to

3

specified problems by using programming languages such as VB, PHP, Java, C++

and C#, offered by higher education institutions in South Africa.

The systems (or software) development life cycle (SDLC) was one of the first

software development methodologies to be introduced into the academic community

and it subsequently became the SDM for the 1970s (Lee 1987). It was designed in

an attempt to deliver information systems on time, within budget, and more aligned to

the requirements of the user, analogous to the goals of present day SDMs.

“A software development life cycle (SDLC) is a process of building and/or

maintaining software systems” (Bender 2003).

The process includes many phases, from prerequisites to the development of the

software system, including testing and evaluation. SDLC also consists of the

methodologies used by the systems development teams to develop the systems.

These methodologies are essential because they constitute the framework for the

whole development process. A software system is designed to perform a particular

task based on the requirements of the users. Often, the tasks that the system will

perform involve complex phases or methodologies; it needs a high level of

understanding the requirements of the users in order to develop a successful system

(Bender 2003). Figure 1.2 describes the various steps and activities in the SDLC

and its associated purpose (Hoffer, George & Valachic 2010).

Therefore, defining the term Systems Development Methodology is not a clear-cut

task. Definitions range from the simple to the complex and there is no generally

accepted, exact and concise definition of an Information Systems Development

Methodology (ISDM) (Avison & Fitzgerald 2003; Livari, Hirscheim & Klein 1999;

Wynekoop & Russo 1997).

Avison and Fitzgerald (2003) define SDM as follows:

“A systems development methodology is a collection of procedures,

techniques, tools and documentation aids that assists systems developers in

their efforts to implement a new information system… A methodology is

based on a philosophical view” (Avison & Fitzgerald 2003).

4

Figure 1.2: Development activities during the systems development life cycle (SDLC)

(Source: Hoffer et al. 2010)

Avison and Fitzgerald (2003) continue by stating that a methodology contains a

number of phases and sub-phases which direct the developers towards selecting

relevant techniques for each project stage. These phases assist developers with

planning, managing, control, and evaluation of information systems projects.

Brinkkemper (1996) equates a method to an approach used to carry out a systems

development project. This approach is founded upon:

“…a specific way of thinking, consisting of directions and rules, structured in

a systematic way in development activities, with corresponding development

products” (Brinkkemper 1996).

5

Livari et al. (1999) parallels a systems development methodology to a systematic

procedure applied to finalise a system or one of several phases of the SDLC, and it

consists of “goals, principles, and specific methods and tools, which are selected on

the basis of an underlying rationale…” (Livari et al. 1999). Wynekoop and Russo

(1997) indicate that methods for developing systems include both process models

and methodologies.

From the definitions above it can be concluded that a systems development

methodology is a set of phases that must be followed to develop information

systems, and it includes specific methods, tools and documentation aids.

The two SDLC methodologies mostly used by system developers are traditional

systems development and agile systems development.

1.2.1 Traditional systems development

The most commonly known traditional systems development methods include the

Waterfall method and the Spiral method which are classified into the heavyweight

methodologies (Nikiforova, Nikulsins & Sukovskis 2009). Traditional systems

development methodologies define and document all the requirements at the

beginning of a project.

According to Leau (2012), typical traditional systems development consists of four

steps: i) Define the project specifications and establish the duration it will take to

implement the different stages of the development process; ii) design the

architectural plan where a technical infrastructure is generated in the form of

diagrams. This phase outlines the map used by the system developers to implement

the system; iii) the system developers code until they reach the requirements defined

by users. This phase is often subdivided into smaller activities which are

disseminated among different developers based on their skills; and iv) provide

feedback to the customers and deliver the system once the customers are satisfied.

1.2.1.1 Waterfall methodology

The Waterfall methodology (figure 1.3) is the oldest technique for developing

systems and some companies are still using it. It divides the development process

into formal steps which have to take place sequentially. Thus, the tasks in each step

6

have to be fully completed before progressing to the next step. The emphasis of the

waterfall method is on the formal specifications (Hughes & Cotterell 2009). The main

drawback of the Waterfall method is that too many documents are produced during

the development process.

Figure 1.3: Waterfall phases during development process

(Source: Hughes & Cotterell 2009)

1.2.1.2 Spiral methodology

The Spiral methodology (figure 1.4) was introduced by Boehm (2000) to address

problems with the Waterfall Method. As mentioned in Section 1.2.1.1, the emphasis

of the Waterfall method is on developing formal documentation—which is extremely

time consuming. The Spiral method echoes the relationship of tasks with rapid

prototyping for faster completion. This reduces the time and increases the

concurrency in designing and building activities. The Spiral methodology develops

the system through the layers of the development process and releases in each layer

a prototype to users to establish whether the project is on track.

7

Figure 1.4: Spiral Model

(Source: Boehm 2000)

Table 1.1 explains in detail the activities of each of the four cycles as indicated in

figure 1.4.

Table 1.1: Boehm-Spiral Methodology stages

(Source: Boehm 2000)

“CYCLE STEP

Cycle 1: Early Analysis Step 1: Objectives, alternatives and constraints

 Step 2: Risks analysis and prototype

 Step 3: Concept of operation

 Step 4: Requirement and life cycle plan

 Step 5: Objectives, alternatives and constraints

 Step 6: Risks analysis and prototype

Cycle 2: Final Analysis Step 7: Simulation, models and benchmarks

 Step 8: Software requirements and validation

 Step 9: Development plan

 Step 10: Objectives, alternatives and constraints

 Step 11: Risks analysis and prototype

8

1.2.2 Agile systems development

Agile systems development uses iterative and incremental development wherein the

steps within the development process are revised continuously. The iterative method

enhances the development of the system by using the feedback from customers to

optimise on solutions (Szalvay 2004, Ambysoft, 2012).

The most important characteristic for a methodology to be viewed as being agile is its

capability to adjust rapidly to change. This flexibility is obtained through the tools and

techniques of the particular methodology. The most generally known agile

methodologies are eXtreme Programming (XP); Agile Unified Process (AUP);

Adaptive Software Development (ASD); Dynamic Systems Development Method

(DSDM); and Lean Software Development (LSD). Of these, eXtreme Programming

(XP) is considered the most popular.

Created by Kent Beck in 1996, the purpose of XP was to fulfil a need for a faster,

simpler and cheaper way to design software. Beck (2000) argued that the use of XP

in industry has been claimed to provide significant benefits and there seems to be

potential in the use of the methodology for student projects. In addition, the use of XP

is common in most fields of software development (Adams, Goold, Lynch, Daniels,

Hazzan & Newman 2003).

In a study done by Zhang (2010), it was found for example that the manufacturing

industry widely accepts agility as a new competitive concept. The three elementary

types of the agility strategies have been suggested by the taxonomy, namely quick,

“CYCLE STEP

Cycle 3: Design Step 12: Simulation, models and benchmarks

 Step 13: Software product design, validation and verification

 Step 14: Integration and test plan

 Step 15: Objectives, alternatives and constraints

 Step 16: Risks analysis and operational prototype

Cycle 4:
Implementation and
Testing

 Step 17: Simulation, models and benchmarks

 Step 18: Detailed design

 Step 19: Code

 Step 20: Unit, integration and acceptance testing

 Step 21: Implementation (deployment)”

9

responsive, and proactive. In relation to software development, all three agile

strategies are relevant. In a study performed by Baskerville, Pries-Heje and Madsen

(2010), it was found that most software companies are combining agile and plan-

driven approaches to achieve the benefits of both during software development.

But, can agile software development methods also play a role in education, and more

specifically, can pair-programming, a practice used in XP, be of benefit to IT students

who are required to develop software?

Williams et al. (2007, 2008) state that it does, but highlight that this premise must be

further tested in different educational environments with different levels of students

before this hypothesis can be considered valid. According to Cho (2008), “agile

software development methods were developed to provide more customer

satisfaction, shorten the development process and allow changing the business

requirements during the development process without starting afresh”.

Table 1.2 shows the various differences between agile and traditional methodologies.

Table 1.2: Agile vs. Traditional Methodologies

 (Source: Martin 2002)

“ASPECTS AGILE TRADITIONAL

User requirements Iterative acquisition In-depth user specifications are properly
defined before implementation

 Cost of rework Low High

Direction of development Changeable Fixed

Testing On every iteration Upon completion of the coding phase

Involvement of customers High Low

Suitable Project (size) Small to medium Large”

Based on Table 1.2, agile systems development is an extremely useful methodology

to adopt at tertiary level and used by IT students to develop software or systems.

However, it still faces several barriers in putting it into practice.

Various authors suggest that pair-programming, which is an important technique of

the eXtreme Programming (XP) Agile Systems Software Development Methodology

(SDM), whereby two programmers work at one computer on the same programming

task, shows several promising properties for educational purposes (Ambysoft, 2012;

10

Williams & Upchurch 2001; Williams & Kessler 2001; Williams, Wiebe, Yang, Ferzli &

Miller 2002; Williams, Layman, Osborne & Katira 2006; Williams, Layman, Slaten,

Berenson & Seaman 2007; Williams, McCrickard, Layman & Hussein 2008).

Pair-programming seems to have a positive effect in general on computer science

students at universities abroad (Ho, Slaten, Williams & Berenson 2004; Werner,

Denner & Bean 2004), specifically in terms of enjoyment (McDowell, Werner, Bullock

& Fernald 2006; Werner et al. 2004; Ho et al. 2004), and on their view of the

importance or usefulness of the subject (McDowell et al. 2006; Werner et al. 2004).

1.3 RESEARCH PROBLEM

Students in general display a lack of knowledge in solving problems involving various

programming languages and technologies (Henson 2002; McMahon 2009). This

often results in students dropping out of IT courses because they are struggling on

their own without any individual attention or guidance (University World News 2015).

Software Development Methodologies (SDMs) came into being to address

deficiencies in existing techniques of software development and introduce rigour into

the software development process (Avison & Fitzgerald 2003). This research

endeavours to build on the statement of Williams et al. (2007, 2008) that although

agile software development methods have been proven to play a role in education,

the premise needs be tested in different educational environments with different

levels of students before the hypothesis can be considered valid.

The main aim of this research is therefore to determine whether the general findings

mentioned in section 1.2.2 on agile software development, with the emphasis on pair-

programming, are applicable to Information Technology (IT) students at a higher

education institution (HEI) in South Africa where diversity in terms of culture,

language and upbringing has a major impact on the progress and success of

students.

1.4 RESEARCH QUESTIONS

1.4.1 Primary Research Question (PRQ)

The primary research question (PRQ) of this study is stated as follows:

11

PRQ: How does pair-programming as agile software development method

shape the experience of tertiary level IT students with regard to their

academic performance in developing software?

1.4.2 Secondary Research Questions (SRQs)

The secondary research questions (SRQs) based on the primary research question,

are stated as follows:

SRQ1: How prominent is eXtreme Programming, specifically pair-programming, as

educational tool at Higher Education Institutions (HEIs) in general?

SRQ2: What is the impact of pair-programming on IT students’ enjoyment level of

software development?

SRQ3: How does pair-programming impact the academic progress of IT students

at HEIs in South Africa with regard to software development?

SRQ4: How does pair-programming impact the attitude of IT students towards

software development?

SRQ5: What model can be proposed to shape the experience of tertiary level IT

students with regard to their academic performance in developing software?

SRQ6: How can pair-programming be implemented optimally in a controlled

learning environment?

1.5 RESEARCH OBJECTIVES

1.5.1 Primary objective

The primary objective is to establish how pair-programming can shape the

experience of tertiary level IT students in South Africa with regard to their academic

performance in developing software.

1.5.2 Secondary objectives

Six secondary objectives have been defined:

12

i) To determine if eXtreme Programming (XP), specifically pair-programming, is

used as educational tool at Higher Education Institutions (HEIs) in general,

and if so, how prominent XP is.

ii) To determine the impact of pair-programming on IT students’ enjoyment level

of software development.

iii) To determine how pair-programming impacts the academic progress of IT

students at HEIs in South Africa with regard to software development.

iv) To determine the impact of pair-programming on the attitude of IT students

towards software development.

v) To propose a model that can be used to shape the experience of tertiary level

IT students with regard to their academic performance in developing software.

vi) To determine if and how pair-programming can be optimally implemented in a

controlled learning environment.

1.6 RESEARCH DESIGN

The research design, also referred to in literature as the research approach,

comprises the research philosophy, methodology, strategy, unit of analysis, unit of

observation, and data analysis, each outlined in the sub-sections below.

1.6.1 Research philosophy

Academic research is generally classified into the following research philosophies:

positivism, interpretivism/constructivism, transformativism, pragmatism, realism,

objectivism and subjectivism (Mackenzie & Knipe 2006; Saunders, Lewis & Thornhill

2009). A study must therefore specify which philosophy will be adopted as each

philosophy is constrained to specific ontological, epistemological and methodological

prerequisites.

According to Saunders et al. (2009), research is underpinned by the philosophical

assumptions which show the particular way in which the world is viewed and

understood. Hence, it is important to understand those philosophical assumptions in

13

order to choose the appropriate approach and to ensure that the researcher adopts

the appropriate method to conduct the research.

Each of the research philosophies as indicated by Mackenzie and Knipe (2006) and

Saunders et al. (2009), are briefly discussed next.

i) Positivism

Researchers supporting positivism strive to attain generalisations that are based on a

recurring fact or event (Neuman 2011) by carrying out objective research to quantify

social phenomena. Positivists believe that different researchers who measure the

same verifiable problem will generate the same or a similar result by cautiously

applying statistical tests and following an equivalent research process when

exploring a large sample (Creswell 2009). Positivists make use of “observation and

measurement in order to predict and control forces that surround us” (O’Leary 2004)

to test theories or describe a particular experience.

Positivism was replaced by post-positivism after World War II (Mertens 2005), which

focused on the assumption that research is shaped by a number of well-developed

theories, including the theory that is being tested. Khun (1962) also held that new

understandings may challenge the theoretical framework as a whole. Positivist and

post-positivist research is generally aligned with quantitative methods of data

collection and analysis (Mackenzie & Knipe 2006).

ii) Interpretivism/Constructivism

“Interpretive methods of research start from the position that our knowledge of reality,

including the domain of human action, is a social construction by human actors and

that this applies equally to researchers” (Walsham 1993). Interpretivists support the

idea that the reality is constructed by social actors and that researchers are included

in this reality, thus, social phenomena is subjective in nature.

iii) Transformativism

Transformative methods recognise that knowledge is constructed in a complex

cultural context of power and privilege. Evaluators have to understand realities of

communities and social groups they work with (Mertens 2009).

14

iv) Pragmatism

Pragmatism is a subdivision of research philosophy which does not want to join the

positivism and interpretivism research philosophies (Tashakkori & Teddlie 1998).

Pragmatists start with the research question to ascertain their research framework,

thus, they do not question ontology and epistemology as step one.

v) Realism

Realism stems from both positivism and interpretivism. Realists believe that the real

structure exists separate from human being consciousness and our knowledge is the

result of social conditioning (Saunders et al. 2009). According to Blaikie (1993),

realists admit the possibility of the existence of reality despite science or observation,

thus, “there is validity in recognising realities that are simply claimed to exist or act,

whether proven or not”.

vi) Objectivism

According to Blaikie (1993), objectivism depicts the position that “social entities exist

in reality external to social actors concerned with their existence”. Thus, the

objectivists support the idea that the social entities exist independently of human

influence or manipulation.

vii) Subjectivism

 Subjectivism holds that “social phenomena are created from the perceptions and

consequent actions of those social actors concerned with their existence” (Blaikie

1993). Subjectivists accept that social phenomena are derived from the activities of

social entities that interact.

This research study is based on interpretivism as an approach towards social

sciences, and opposed to positivism which is based on natural science.

1.6.2 Research methodology

Research methodologies are mainly categorised into three types, namely

quantitative, qualitative and mixed methods (Saunders et al. 2009).

15

1.6.2.1 Qualitative research methodology

Researchers assign various definitions to qualitative research methodology, ranging

from basic to complex. According to Myers (1997), a qualitative research

methodology aims to assist researchers in understanding the behaviour of people

inside the social, economic and cultural environment where they belong. With a

qualitative research methodology the researcher collects, analyses and interprets

data in a non-numerical manner.

1.6.2.2 Quantitative research methodology

As with qualitative research, researchers assign various definitions to quantitative

research methodology. Saunders et al. (2009) captures the essence by stating that a

quantitative research methodology uses numbers to collect data by means of

questionnaires, and data is represented using graphs or statistics. It is thus an

empirical research method.

1.6.2.3 Mixed methods research methodology

With mixed methods research methodology, a qualitative or quantitative approach is

selected as the initial research methodology; the second approach is adopted along

the way of the research due to the inadequacy of the first approach (Creswell 2009).

Saunders et al. (2009) argue that a research method can consist of both quantitative

and qualitative approaches to source both primary and secondary data regarding a

mutual subject in the same study.

The nature of this study warrants the use of mixed methods research methodology.

1.6.3 Research strategy

“Research strategy is a methodology that helps the researcher to investigate

the research issue… An effective research strategy helps the researcher to

…employ a particular research strategy to conduct the research study in an

effective manner” (dissertationhelpservice.com).

Sagor (2000, as cited by ASCD 2015) defines action research as “a disciplined

process of inquiry conducted by and for those taking the action. The primary reason

for engaging in action research is to assist the ‘actor’ in improving and/or refining his

16

or her actions”. One main aspect of action research is that it assists educators to be

more efficient with what they care most about—their teaching and the development

and progress of their students (Sagor 2000, as cited by ASCD 2015).

“Action research demands some form of intervention” (Herr & Anderson 2015). For

this study, action based research been selected as the most appropriate strategy.

1.6.4 Data collection

1.6.4.1 Unit of observation

The research participants, also known as the unit of observation, are the students

who were selected through non-random purposive sampling to partake in this study.

With non-random sampling, the probability of choosing any one individual or sample

cannot be determined (Coloss Institute 2015). With purposive sampling, the

researcher is able to select unit(s) of observation that best meets the research aims

(Bless, Higson-Smith & Sithole, 2013). Also, purposive sampling techniques work

well with case study research (Neuman, 2005, 2011). The researcher used

judgemental or purposive sampling to select a sample which is representative of

what he thought is a suitable mix of participants for the study (Coloss Institute 2015).

The thoughts of the researcher were informed by the literature review in which similar

types of case studies were conducted.

1.6.4.2 Unit of analysis

A unit of analysis is representative of the targeted population (Saunders et al. 2009).

For this research study, the unit of analysis is the pair-programming technique

administered to students during their practical software development sessions.

1.6.4.3 Data collection techniques

The multi-methods data collection technique was selected for this research study.

Semi-structured interviews were held with the participants before commencement

and after completion of the pair-programming intervention, to establish a change, if

any, in the academic performance, attitude and enjoyment level of students

introduced to pair-programming compared to those who continued with solo-

programming. Observations were conducted by the researcher throughout the course

17

of the practical sessions over both semesters. Empirical assessments were done by

means of tests administered to both groups of students during the practical sessions,

three tests per semester.

1.6.5 Data analysis

The types of data collected during the research warranted the use of both

quantitative and qualitative data analysis techniques.

Qualitative data collected and recorded through semi-structured interviews was

methodically transcribed into text (MSWord). The interviews were conducted in

English. The researcher used a coding framework developed by Saldana (2009) to

transform key words/concepts into themes and categories. Qualitative thematic

coding and hermeneutics were combined to form a meaningful, interpretative,

descriptive tool to analyse the data collected from interviews and transcribe into text.

For quantitative data collected (assessment of tests written by the students), the

researcher conducted two t-tests, one for the pair-programming and one for solo-

programming groups respectively, and compiled graphs and tables to draw relevant

conclusions from the analysed data.

1.7 DELINEATION

For the purpose of this study, the research participants were delineated to

Information technology students registered at a purposively selected university of

technology in Gauteng. The students were enrolled for the Information Systems

software development module in both semesters of 2013.

1.8 ETHICAL CONSIDERATIONS

All the students at the selected HEI in Gauteng who were registered for the

Information Systems module in 2013 partook in this research study. The HEI was

selected through convenience sampling due to the researcher’s affiliation to the HEI.

The researcher was the lecturer for the Information Systems students at this HEI in

2013. Pair-programming was introduced to one group of the Information Systems

18

students, while the second group continued with the normal solo-programming

approach. The groups were selected through purposive sampling.

The researcher was actively involved throughout the research project in his capacity

as observer and lecturer for both groups. Both groups worked from the same learning

material and received the same projects, assignments and tests. The only difference

was that the students in one group worked individually on their assignments and

projects while the second group worked in pairs. The purpose of the study was

explained to all participants before commencement of the research, and anonymity

was guaranteed. In addition, participants were assured that the information gathered

would be for research purposes only and could not be used against them. The

researcher ensured that no names were mentioned while recording the interviews.

The names were also blocked out in the transcripts.

1.9 CHAPTER OUTLINE

Chapter 1: Introduction, problem statement and objectives

Chapter 1 provides a background on systems development methodologies and an

introduction to pair-programming. A brief investigation into how this technique has

been used in tertiary institutions is undertaken. The primary and secondary research

questions, translated into primary and secondary objectives, are discussed. A

summary of the research design selected for this research project is provided.

Chapter 2: Literature Review

The aim of Chapter 2 is to address SRQ1, SRQ2, SRQ3 and SRQ4 through

conducting a literature review. The literature review was compiled from sources

including academic books and journals (hard copy and online); published and

unpublished dissertations and theses; reports; conference proceedings; and scientific

databases such as EbscoHost, AJOL, BASE, Google Scholar, among others.

Innovative methods to systems development are discussed, with the focus on Agile

Systems Development Methods (ASDMs). Pair-programming, which is categorised

under the eXtreme Programming ASDM, is elaborated on. Case studies on the

successful use of pair-programming in a teaching and learning environment are

discussed.

19

Chapter 3: Research Methodology

Chapter 3 outlines the research methodology, based on the ‘Research Onion’

concept of Saunders et al. (2009). It includes the research philosophy, paradigm,

approach and strategy. The research participants, data collection and analysis

techniques are discussed. The chapter closes with a summarised table outlining an

apposite research methodology that can be used to explore the effect of pair-

programming on the academic progress of software development students at HEIs in

South Africa.

Chapter 4: Analysis and discussion

The aim of Chapter 4 is to explore the impact of implementing an agile programming

approach, specifically pair-programming, on the enjoyment level, attitude and

academic performance of IT students at HEIs in South Africa. It addresses SRQ2,

SRQ3 and SRQ4, and secondary objectives ii), iii) and iv) by implementing the

research design and discussing the research analysis. After having analysed the

data gathered through interviews, observations and assessments, the results indicate

that an innovative agile programming approach has a positive impact on the

academic progress of software development students at HEIs in South Africa.

Chapter 5: Findings and recommendations

Recommendations and findings are stated in this chapter. The viability of using pair-

programming in the teaching and learning process of software development students

at HEIs in South Africa is compared to that of using the single-student (solo)

programming approach. Conclusions are drawn on whether the use of pair-

programming has an effect on the students’ enjoyment level of programming and an

improvement in the academic performance of students. A model for pair-

programming at HEIs in SA is proposed, thus addressing SRQ5 and objective v), and

recommendations are made, which addresses SRQ6 and objective vi).

1.10 SUMMARY

Table 1.3 provides a summary overview of the research questions and objectives, as

well as the chapters containing and addressing these questions and objectives.

20

Table 1.3: Summary overview of research questions and objectives

PRIMARY RESEARCH QUESTION

PRQ: How does pair-programming as agile software development method shape the experience
of tertiary level IT students with regard to their academic performance in developing software?

PRIMARY RESEARCH OBJECTIVE

The primary objective is to establish whether the use of pair-programming contributes
significantly towards improving the academic performance of tertiary level IT students in SA.

Secondary Research
Questions

Secondary Research
Objectives

Chapters

SRQ1: How prominent is

eXtreme Programming (XP),
specifically pair-programming,
as educational tool at Higher
Education Institutions (HEIs) in
general?

i) To determine if eXtreme
Programming (XP), specifically
pair-programming, is used as
educational tool at Higher
Education Institutions (HEIs) in
general, and if so, how
prominent XP is.

Defined in Chapter 1

Addressed in Chapter 2
(theory)

Summarised in Chapter 5

SRQ2: What is the impact of

pair-programming on IT
students’ enjoyment level of
software development?

ii) To determine the impact of
pair-programming on IT
students’ enjoyment level of
software development.

Defined in Chapter 1

Addressed in Chapter 2
(Theory)

Addressed in Chapter 4
(Research Design)

Summarised in Chapter 5

SRQ3: How does pair-
programming impact the
academic progress of IT
students at HEIs in South
Africa with regard to software
development?

iii) To determine how pair-
programming impacts the
academic progress of IT
students at HEIs in South
Africa with regard to software
development.

Defined in Chapter 1

Addressed in Chapter 2
(Theory)

Addressed in Chapter 4
(Research Design)

Summarised in Chapter 5

SRQ4: How does pair-
programming impact the
attitude of IT students towards
software development?

iv) To determine the impact of
pair-programming on the
attitude of IT students towards
software development.

Defined in Chapter 1

Addressed in Chapter 2
(Theory)

Addressed in Chapter 4
(Research Design)

Summarised in Chapter 5

SRQ5: What model can be
proposed to shape the
experience of tertiary level IT
students with regard to their
academic performance in
developing software?

v) To propose a model that can
be used to shape the
experience of tertiary level IT
students with regard to their
academic performance in
developing software.

Defined in Chapter 1

Addressed in Chapter 5

SRQ6: How can pair-
programming be implemented
optimally in a controlled
learning environment?

vi) To determine if and how pair-
programming can be optimally
implemented in a controlled
learning environment.

Defined in Chapter 1

Addressed in Chapter 5

21

2. CHAPTER 2: LITERATURE REVIEW

Figure 2.1: Graphical representation of Chapter 2

IT students in a software
development environment

Introduction

Summary

Innovative agile software
development methods

Pair-programming

Advantages of pair-

programming

Conclusion

CHAPTER 2: LITERATURE REVIEW

How does pair-

programming work?

Pair-programming as

collaborative learning

approach

22

2.1 INTRODUCTION

The aim of Chapter 2 is to address SRQ1, SRQ2, SRQ3 and SRQ4 (see section

1.4.2) through conducting a literature review. The chapter is broadly divided into two

sections. The first part of the literature review focuses on IT students’ attitudes,

perceptions and enjoyment of development software. The second half of the chapter

provides a background of the learning outcomes for an IT qualification at HEIs in

South Africa, the rapid changes in technology, and the skills set IT students need to

keep up with the advances in technology. Innovative methods for systems

development are discussed, with the emphasis on pair-programming.

A case study conducted by Chigona and Pollock (2008) on students’ attitude towards

pair-programming, are elaborated on. The outcomes of a case study conducted by

Williams (1999) on the effect of pair-programming on the academic performance of

students are discussed. The advantages of pair-programming are indicated, and the

chapter closes with a summary of the outcomes obtained through literature.

2.2 IT STUDENTS IN A SOFTWARE DEVELOPMENT ENVIRONMENT

The primary learning outcomes for an IT qualification focus on the design and

development of feasible computer-based solutions to specified problems using

programming (i.e. software development) (Conradie 2013).

According to Zoghbi and Kumar (2009) software development is often regarded as a

course that students should know and understand by themselves. The most

significant barrier to software development, especially with first year students, is the

fact that most students have never written a single code before entering a HEI

(Zoghbi & Kumar, 2009). Because the traditional way of teaching students how to

program is not sufficient, it leads to students not always enjoying the course.

2.2.1 Enjoyment of software development

Many students display feelings of fear towards programming. According to Gomes

and Mendes (2007), the origin of these feelings could be attributed to the fact that

most first year students are exposed to software development for the first time at

tertiary level, having no programming experience at all. Furthermore, those who do

23

have prior experience of programming may be confronted with a high level of

expectation without sufficient supervision by the lecturer. Gomes and Mendes (2007)

argue that the instability and change experienced by students in tertiary institutions

probably give rise to a negative feeling towards software development.

2.2.2 Attitude towards software development

Howard (2006) found that as programming becomes more complex during a software

development course, more students tend to become frustrated. This frustration

results in a snowball effect where students develop a negative attitude towards

programming and traditional ways of teaching programming because they are not

afforded the opportunity of a collaborative approach where they have enough time to

discuss and share code under the supervision of the instructor.

2.3 INNOVATIVE AGILE SOFTWARE DEVELOPMENT METHODS

Defining the term Systems Development Methodology is not a clear-cut task.

Definitions range from simple to complex, without a universally accepted and concise

definition (Conradie & Huisman, 2012; Livari, Hirscheim & Klein 1999). An often

used definition is:

“Systems development methodology is a collection of procedures,

techniques, tools and documentation aids that assist systems developers in

their efforts to implement a new information system” (Conradie & Huisman

2012).

The term Agile Software Development Methodology (ASDM) refers to specified

methodologies that share the standards and norms as stated in the Agile Manifesto

(Beck 2000), which highlights twelve principles through which methodologies can be

ascertained to be agile.

“In order for a methodology to be deemed agile, the most important

characteristic is the ability to adapt quickly to change. This adaptability is

achieved through the techniques and tools of the particular methodology”

(Beck 2000).

Agile programming is based on the premise that more advanced software can be

developed by iterative and incremental software development methodologies which

24

include eXtreme Programming (XP), Dynamic Systems Development Method

(DSDM) and Feature-Driven Development (FDD).

According to Beck (2000), the use of XP in Industry has been claimed to provide

significant benefits and there seems to be potential in the use of this methodology for

student projects. Furthermore, the use of XP is common in most fields of innovative

software development (Adams et al. 2003). In a study done by Zhang (2010), it was

found that the manufacturing industry widely accepts agility as a new and competitive

concept. Beck (2000) identifies twelve principles through which an agile methodology

can be recognised. These principles are summarised in Table 2.1:

Table 2.1: Summary of Beck’s (2000) twelve principles of agility

PRINCIPLES FOR AGILE METHODOLOGY

i) The ultimate priority is customer satisfaction with early and continuous software.

ii) Amended requirements are always welcomed. Change through agility equals
competitive advantage for customers.

iii) Frequent delivery with a shorter time scale of working software.

iv) It is essential that developers and business people work together throughout the
entire project.

v) Motivated developers should be afforded the backing and setting they need, and
then trusted to get the work done.

vi) The most effective method of information transfer to and within a development team
is face-to-face dialog.

vii) The most important measure of progress is working software.

viii) Agile processes advance maintainable innovative development. It is essential for
developers, sponsors and end-users to sustain a persistent pace for as long as it
takes.

ix) By steadfastly concentrating on technical excellence and sound design, agility is
enhanced.

x) Simplicity has to be maintained always.

xi) For the design, development and delivering of the best prerequisites and
architectures, self-organisation is essential.

xii) The development team regularly has to reconsider their efficiency and then adjust
their performance accordingly.

The agile manifesto of Beck (2000) expresses many of the defining characteristics of

agile systems development methodology as seen in the table 2.2.

25

Table 2.2: Profile of agile development models

(Source: Beck 2000) “

Category Specifics

Evolution of goals
Increase responsiveness and decrease turnaround time
on development decisions

Methodology
Cumulative development of operational software; pair-
programming

Technology UML tools

Critical factors Individual capability and reciprocal trust

Interdisciplinary effects Human interactions and management practices

Behavioural considerations Intense and close people relations required

Nature of the problem General

Application domain Smaller projects”

According to Johnson, Johnson and Smith (1998), one of the most important reasons

for using an agile approach in innovative programming is grouping students together

in teams whereby collaborative or cooperative learning is applied. Collaborative

learning used in agile programming is an approach to group work that maximises the

learning and satisfaction resulting from working as part of a high-performance

innovative team. Relative to students being taught traditionally with instructor-led

lectures, individual assignments focus on concepts which have limited opportunities

for students to practice programming skills (Johnson et al. 1998).

Johnson et al. (1998) continue by explaining that for many students, especially

beginners and those without the relevant background, it is not easy to learn

programming concepts and languages. Students who are taught through the use of

agile programming tend to learn collaboratively because they are working in a group.

Cooperatively taught students tend to have lower levels of stress and anxiety, a

higher self-esteem, a more in-depth understanding of learning material, and greater

inherent motivation to learn and achieve. They also display higher academic

achievement, advanced high-level thinking and analytical skills, with a more positive

attitude toward programming subjects.

Agile development is dominated by two objectives which make the development

team more effective (Cockburn & Highsmith 2001). The two objectives are to reduce

the expenses contained in transferring the information between people involved, and

to reduce the time it takes between making decisions. Dagnino (2002) observes that

26

the characteristics making a development methodology more agile include methods

to reduce risk, interfacing or collaboration with clients, participation of people,

interactive and real-time development, a team that is able to adjust and adapt,

thorough emphasis on developing software that works, and continuous testing.

Beck (2000) identifies four of the most generally known agile methodologies as

i) Agile Unified Process (AUP); ii) Adaptive Software Development (ASD); iii)

Dynamic Systems Development Method (DSDM); and iv) eXtreme Programming

(XP). Of these, XP is considered the most popular. The purpose of XP was to fulfil a

need for a faster, simpler and cheaper way to design software). Each of the four agile

methodologies is discussed next.

2.3.1 Agile Unified Process (AUP)

“The Agile Unified Process is a hybrid modeling approach created by Scott

Ambler when he combined the Rational Unified Process (RUP) and agile

methods” (Christou, Ponis & Palaiologou 2010).

According to Ambler (2005), AUP is a process that is repetitive and cumulative. It

consists of workflows, and all the projects have to follow four phases. During the

Inception phase, the developers and customers meet for a discussion on the scope

of the project where initial requirements are collected and divided into separate tasks.

The elaboration phase is where the development plan is compiled and the team is

formed. The developers and customers work together to compile this plan. The team

dissects each task and establishes an estimated time frame for each task to be

implemented. The construction phase is ushered in when the work commences and

continues until all the tasks are successfully completed. This phase is filled with

iterations, i.e. a series of steps performed over a short period of time to complete the

tasks. This development phase will continue until the customer is satisfied with the

product. During the transition phase, the end-product is delivered and ready for use

by the customer, and moved to the support phase. If the customer wants to add

some requirements, the process has to be restarted afresh.

Ambler (2005) explains that the phases include identifying the stakeholders,

understanding the problem of the users and outlining the user interface for the

system. AUP contains seven workflows and each of these has four phases. The AUP

27

workflows consist of “model, implementation, test, deployment, configuration

management, project management, and environment” (Ambler 2005) (figure 2.2).

Figure 2.2: Agile Unified Process phases

 (Source: Ambler 2005)

2.3.2 Adaptive Software Development (ASD)

Jim Highsmith and Sam Bayer formally defined Adaptive Software Development

(ASD) in 2000. ASD focuses on rapid creation and evolution of software systems

(Highsmith 2000). It offers solutions for the development of large and complex

software systems through an iterative development process, with constant

prototyping. The development process involves “product initiation, adaptive cycle

planning, quality review and final quality assurance” (Highsmith 2000).

Pressman (2009) attributes the following characteristics to ASD: purpose-directed

planning; component-centredness; purposive risk consideration; emphasis on

‘learning within the process and cooperation for requirement gathering; and the

employing a technique called time-boxing where a task is divided according to a

specific time slot and each task has its own budget.

2.3.3 Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) aligns each project to clear

strategic objectives and focus on early delivery. DSDM has eight guiding principles

which distinguish it from XP and ASD (Pressman 2009).

28

These principles are: i) active user involvement is essential; ii) empower DSDM

teams to make informed decisions; iii) focus on regular product delivery; iv) fitness for

business purpose is a crucial benchmark norm for acceptance of deliverables;

v) apply iterative and incremental development in order to deliver accurate business

solutions; vi) reversibility of all changes encountered during development; vii)

requisites are base-lined at a high level; and viii) incorporation of testing throughout

the life-cycle (Pressman 2009).

According to Voigt (2004), The DSDM development process consists of seven

phases, namely pre-project, feasibility study, business study, functional model

Iteration, design and build iteration, implementation, and post-project. Each phase

has several tasks. However, a phase can be modified to include more tasks, which

might be required during the development process as shown in figure 2.3.

Figure 2.3: DSDM phases

(Source: Voigt 2004)

2.3.4 eXtreme Programming (XP)

A systems development methodology consists of phases and sub-phases which

direct the systems developer in technique choices suitable for systems development.

It also helps developers with the planning, managing, controlling and assessment of

29

information systems projects (Avison & Fitzgerald 2003). Pair-programming is a

technique used in eXtreme Programming (XP). Munro (2003) identifies the following

five practices or techniques that make XP uniquely different from other

methodologies:

i) Continuous integration: Minor changes in the code are regularly integrated into

the common source base on a daily basis. Incorporation of changes, one set at a

time, streamlines the integration process and makes it evident who is

accountable for correcting the code when integration tests are unsuccessful.

ii) Collective ownership: The code and all development documents are owned by

the entire team. Any member is free to modify any part of the documentation or

code at any time. This method differs from the traditional one where a single

developer owns a set of code. XP supporters claim that the number of bugs will

decrease as the number of people who are working on a piece of code,

increases.

iii) Small releases: The system is planned with short release cycles containing the

most valuable business requirements. Typically, one cycle is less than three

months and this allows the user to view and touch the working product frequently.

iv) Testing: Two types of tests are conducted continuously. First, unit tests ensure

that classes do what developers expect them to do. These tests are typically

written by the developer. Second, acceptance tests, written before the code that

they will test, ensure that the system functions accordingly. These tests are

derived from the customer ‘stories’ or scenarios. “All code has an associated test

and new tests are added to old ones in a testing framework, creating a

comprehensive test suite” (Munro 2003).

v) Pair-programming: Two developers program at one workstation together.

Programmers switch seats periodically and regularly deliberate on each other’s

code. This increases the number of people that are familiar with the source code

and results in a collaborative (cooperative) learning environment.

The five principles discussed need not be followed to the letter; instead, they act as

guidelines to developers during the development of systems. As a consequence,

these core practices can be adapted and modified by developers to accommodate

30

systems development in their organisation. According to Beck (2000), the use of XP

in industry has been claimed to provide significant benefits and there seems to be

potential in the use of the methodology for student projects. In addition, according to

Adams et al. (2003), the use of XP is common in most fields of software

development. In a study done by Zhang (2010), it was found for example that agility

is commonly acknowledged and recognised in the manufacturing industry as a new

competitive concept.

In educational institutions, traditional programming as a rule is conducted in a

computer laboratory where the lecturer focuses on syntax, reasoning, concepts and

exploration of program codes through teaching and discussions. Such methods of

instruction limit learning efficiency as students have restricted opportunities to

practice programming skills, and lecturers are not certain if the learning context

brings out the best academic performance in each student (Williams et al. 2007,

2008). For many students it is difficult to learn programming, especially those who

have not been introduced to computers and programming before. The use of shared

programming activities into a teaching and learning environment may contribute to

addressing this problem. Furthermore, possible benefits include students benefiting

from one another’s resources and skills, assessing one another’s ideas and

monitoring one another’s work. However, Williams et al. (2007, 2008) highlight that

these premises must be further tested in different educational environments with

different levels of students.

2.4 PAIR-PROGRAMMING

XP is a systems development methodology that was developed to fulfil a need for a

faster, simpler and cheaper way to design software (Beck 2000). One of the twelve

techniques, also referred to as practices, as stipulated by Beck, is pair-programming.

Pair-programming is a technique used in XP where two developers—in reference to

this study, two students—program together at one workstation. The students switch

seats periodically, generally every 10-15 minutes, one being the coder and the other

being the quality controller or advisor. Discussion, collaboration and cooperation

between coder and advisor are encouraged.

31

A study conducted by Chigona and Pollock (2008) shows positive reactions of

students towards pair-programming. The average scores of the pair-programmers

were higher than the average scores of the solo-students for both the first and

second assignment. In the first pair-programming assignment the pair-programmers

obtained an average score of 94.86% while the solo-students scored an average of

82.46%. In the second pair-programming assignment the pair-programmers

averaged a score of 90% while the solo-students scored a 77.38% average (Chigona

& Pollock 2008), as shown in figure 2.4.

Figure 2.4: Student performance in pair-programming assignments

(Source: Chigona & Pollock 2008)

Based on the results in figure 2.4, it is clear that the students in pairs submitted

higher quality work and received higher marks. This indicates that pair-programming

indeed contributed to improved work of students who took part in the study. It is

therefore reasonable to propose that pair-programming is likely to assist in improving

the academic performance and quality of the work of tertiary level IT students.

The students also confirmed that pair-programming contributed to improving the

quality of their work by developing better projects of higher quality with fewer errors,

as shown in table 2.3 (Chigona & Pollock 2008).

32

Table 2.3: Students’ views towards pair-programming (Summary)

(Source: Chigona & Pollock 2008) “

Likert Scale: 1 = Agree, 3 = Neutral, 5 = Disagree

Quality

I find that pair-programming develops better projects than programming by myself 2.00

The quality of the work we produced was better because we pair-programmed 1.90

More errors were found and fixed when we pair-programmed 1.95

Productivity

The pair-pressure helped me work better; I could not let my partner down 1.76

The work was finished quicker because of the pair-programming 1.86

Enjoyment

I was more confident in the work when we pair-programmed 2.14

I enjoy working in a pair-programming team 2.00

I find pair-programming to be more successful than programming by myself 2.33

I enjoyed the work more because of the pair-programming 2.24

If I had the choice I would work in a pair-programming team again 2.14

Knowledge

I learnt more from doing the work because of the pair-programming 2.29

Between my pair-programming partner and I, we can figure everything out 2.33”

Based on the results in table 2.3, it is reasonable to propose that pair-programming

positively influences the attitude and enjoyment level of students towards

programming.

A study conducted by Williams (1999) shows that pair-programming enhances the

academic performance of the student. In his experimental classes, the students

completed four assignments. Thirteen individuals (solo-programming) and fourteen

collaborative pairs (pair-programming) completed each assignment. Williams (1999)

states that the paired students continuously passed more of the automated post-

development test cases run by an impartial teaching assistant as shown in table 2.4.

Table 2.4: Percentage of test cases passed

(Source: Williams 1999)

“Programmers Individuals Pair-programming

Program 1 73.4% 86.4%

Program 2 78.1% 88.6%

Program 3 70.4% 87.1%

Program 4 78.1% 94.4%”

33

Williams (1999) indicates that in the competitive markets of today, producing quality

software as fast as possible is a competitive advantage; it can even signify survival.

In order to produce quality software fast, pair-programming seems a viable option to

pursue, as indicated in figure 2.5. Based on the results in table 2.4 and figure 2.5, it is

clear that pair-programming increases the pass rate of students and enable paired

students to deliver a high quality project in a short time.

Figure 2.5: Elapsed time spent on the project

(Source: Williams 1999)

2.4.1 How does pair-programming work?

For this research study, pair-programming will be investigated by focusing on the

steps proposed by Williams and Kessler (2000). The researcher finds these steps

useful and seemingly easy to understand and implement in a programming class

situation. The steps are summarised as follow:

 Share everything: Both programmers share the entire application. Both are

responsible for the success of the application. One is typing code and another

one is reviewing, and they have to switch roles periodically.

 Play fair: Both programmers contribute to the success of the application. This

is possible because both programmers switch roles periodically. The person

34

who is reviewing the code should not be a passive reviewer, instead, s(he) is

always active and engaged by thinking strategically and checking if the coding

process is heading in the right direction.

 Do not be aggressive towards your learning partner: Both programmers

should be focused on the task without causing unnecessary difficulties. By

working in a team, both learning partners develop a collaborative environment

where they have to share their time in doing the required task rather than

spending most of the time communicating via email. Sharing their time on the

task increases their focus and leads to a higher quality application.

 Restore thoughts to where they belong: When performing solo-

programming, negative thoughts might cross one’s mind, for example, “I am a

bad programmer”, or “I cannot do it”. A major advantage of pair-programming

is the continuous discussion between the two learning partners to formulate

thoughts and encourage each other. Obtaining feedback from a peer restores

one’s thoughts to a positive state and increases confidence.

 Clean up your “mess”: Pair-programming assists to efficiently clean up the

mess. In this case “mess” means the mistakes in the coding. With pair-

programming, the unnoticed mistakes made by the driver become noticed by

the reviewer who is monitoring the coding process.

 Do not be overly serious: Pair-programming can work effectively if the self-

esteems of both programmers (learning partners) are curbed. For constructive

exchange of ideas or debate and reviewing of code to occur, both

programmers should have balanced egos.

 Be aware of the strength of two brains: Each programmer enters the team

with his or her own unique skills and knowledge. Both programmers combine

their unique skills to have a larger subset of skills and knowledge. This subset

of skills and knowledge will become common between the two programmers

and assist both to deliver a high quality task.

Pair-programming leads to a collaborative environment by creating effective

communication between the two programmers. Without much effort, learning partners

will have discussions and make combined decisions to improve their work. According

35

to Hargrove (1998), “collaborative people see others not as creatures who force them

to compromise, but as colleagues who can help them augmenting their talents and

skills”.

2.4.2 Pair-programming as collaborative learning approach

As already mentioned, the nature of software development has dramatically changed

over the last few years. To adapt to these rapid changes, there is a need for

educated lecturers and students who have a set of skills that go beyond simply using

IT as a tool. Learning how to develop computer-based solutions is a complex task

that requires more conceptual understanding and mastering than just memorising

and interacting with the computer.

These skills might be enhanced or developed by introducing a collaborative

pedagogical approach. Lovat (2003) defines a pedagogical approach as a framework

that specifies the teaching and learning processes between lecturers and students. A

collaborative pedagogical learning approach is viewed as a motivation for individual

cognitive development through a capability to enhance collaborative learning among

lecturers and students (Vygotsky 1978).

Collaborative (cooperative) learning is a pedagogical approach in which cooperation

between students are encouraged. Forming part of the constructivism paradigm, it is

postulated that students’ performance is improved when students work together to

obtain module outcomes. In a learning environment, module outcomes relate to

specific practical computer programming outcomes that students must obtain.

In pair-programming, a team can be formed at any time with two or more members

(students) working together towards a shared goal. Once a team has grown larger

than four members, it is recommended to divide the team into sub-teams where all

are working towards the same goal, although sub-teams will not necessarily be in

communication with the other sub-teams. Various limitations can however have an

influence on the size of the group. For effective team work, it is important to

recognise that there are specific steps to follow, and that the tasks and interpersonal

behaviours of the team might change over time (MacPherson 2000).

36

Dr. Bruce Tuckman developed a model on how teams advance and display

behaviours around their interpersonal interactions and the assignment being carried

out. The model consists of five stages, namely forming, storming, norming,

performing and adjourning (MacPherson 2000).

The forming stage is specifically for task organisation and orientation. The task(s) as

well as information about these tasks are ascertained. The question to be answered

is: “What is the assignment of the group and how will I be able to contribute to that

assignment?”

During the storming stage, individual team members display emotional reactions

towards their team. The assignment specifications will spark one part of this

response. The more complex the assignment appears relative to an individual’s self-

perceived capabilities, the greater the possibility of a ‘storm’. The question to be

answered is: “Am I emotionally ready to deal with this task?” A wide range of

understandings of the assignment and roles are voiced or become obvious.

During the norming stage, communication becomes more open and is progressing.

Exchange of information and sharing of ideas and views are happening. The focus is

on the assignment and members are answering the following question: “What do I

have that will help us accomplish this assignment?” Feasible and practical guidelines

are drafted. There is a feeling of accord and people are looking at, “how can I help

contribute to group unity?”

For the performing phase, the attention of all the team members is on positive and

productive action directed towards effective accomplishment of the assignment on

hand. Interactive and assignment behaviour with collective insight begin to emerge

and the focus is on functionality. Problem-solving is primarily directed towards the

assignment and deliverable(s).

Adjourning commences when teams have accomplished their assignments, they

conclude and then proceed to other teams elsewhere. It is essential that the team

take the time to view its process one last time. “What went well?” “What could we do

better in another situation so that the loose ends are wrapped?” The wrapping up of

the interpersonal behaviours includes an opportunity to say thank you and good-bye

to fellow team members.

37

According to MacPherson (2000), “closure is a final essential part of the team

process”. Thus, in order to have a positive result, it is necessary to realise that each

stage builds upon the previous one; each stage prepares for the performing stage.

Any attempt to bypass a stage influences accomplishment negatively; and with every

new challenge, the process repeats.

Collaborative learning is effective because it stimulates socio-cognitive conflicts due

to diverse views and approaches applied by the learning partners (Doise & Mugny

1984; Perret-Clermont 1991). Williams and Upchurch (2001), Williams and Kessler

(2001) and Williams et al. (2002, 2006, 2007, 2008) suggest that pair-programming,

as a strategy used in eXtreme Programming (XP) and classified as an Agile Systems

Software Development Methodology (SDM), displays several promising properties for

educational purposes. Pair-programming, whereby two programmers (i.e. students)

work at one computer on the same programming task, appears to have a positive

effect on students at universities (Ho et al. 2004; Werner et al. 2004), specifically in

terms of enjoyment (McDowell et al. 2006; Werner et al. 2004; Ho et al. 2004), and

on the students’ view of the importance or usefulness of the subject (McDowell et al.

2006; Werner et al. 2004).

2.4.3 Advantages of pair-programming

Researchers have proven that pair-programming displays benefits over traditional

programming in Higher Education. According to Williams et al. (2007), pair-

programming increases quality of product, reduces the time to complete the task, and

increases the academic performance of the students and the enjoyment of student

towards programming.

2.4.3.1 Enjoyment

Students who work in pairs enjoy programming more than those who do solo-

programming and therefore they are happier and less frustrated than solo

programmers (McDowell, Hanks & Werner 2003; McDowell et al. 2006; Williams &

Upchurch 2001; Bishop-Clark, Courte & Howard 2006; Cliburn 2003).

38

2.4.3.2 Confidence

Students who work in teams develop confidence in their programming team and get

more satisfaction than students who work alone (solo-programming) (McDowell et al.

2003; McDowell et al. 2006; Bishop-Clark et al. 2006; Hanks, McDowell, Draper &

Krnjajic 2004). According to Thomas, Ratcliffe and Robertson (2003), students who

develop confidence, enjoy programming.

2.4.3.3 Program quality

The quality of the applications delivered by paired students is distinctively higher than

the applications delivered by solo-programmers (McDowell et al. 2003). Students

working in teams are able to produce an application of a higher quality which is less

complex and easier to read (Bipp, Lepper & Schmedding 2008), and shorter and

easier to understand and extend (Williams & Kessler 2001; Thomas et al. 2003;

Jensen 2005; McDowell, Werner, Bullock & Fernald 2002).

2.4.3.4 Student academic performance

Working in pairs improves the academic performance of the student. It is consistent

with collaborative learning research which demonstrates that the academic

performance of the student is improved when an individual is learning with others

(Bevan, Werner & McDowell 2002; McDowell et al. 2002). Braught, Eby and Wahls

(2008) found that pair-programming seems to enhance the level of the individual

programming skills since lower achieving students are able to achieve higher scores

through pair-programming.

2.4.3.5 Attitude

Students working in pairs develop a positive attitude towards programming and show

positive responses to working with a learning partner in collaborative programming

(pair-programming) (Nagappan 2003; Howard 2006). Howard (2006) found that as

the programs become more complex during the course, the more the students'

attitudes and appreciation of pair-programming increased.

39

2.4.3.6 Communication

Students in pairs display a high level of interaction with each other. They discuss

aspects related to the programming project; they direct and guide each other to solve

the problem (Williams et al. 2002). The pair learns to discuss their ideas and work

together, which improves communication, teamwork and effectiveness (Williams &

Kessler 2001).

2.5 CONCLUSION

Programmers have generally been used to work alone to develop code due to the

educational system of individual performance. However, pair-programming breaks

down some personal barriers, such as developing code for software applications

alone by introducing collaborative learning through working in a team. This new

method of programming creates intercommunication between programmers by

sharing their work and accepting recommendations made by a teammate to improve

their own skills and produce high quality work.

2.6 SUMMARY

This chapter addressed the primary research objective through four secondary

research objectives.

The primary research objective of this literature research is to confirm from the

current body of knowledge whether pair-programming plays a significant role towards

improving the academic performance of IT students at HEIs in South Africa.

Secondary objectives

The theoretical outcomes (answers) to each of the four secondary research

objectives, based on the primary research objective, are stated below.

Objective i): To determine how prominent eXtreme Programming (XP),

specifically pair-programming, is as educational tool at Higher Education

Institutions (HEIs) in general

40

Outcome 1: Pair-programming is a systems development methodology created by

Kent Beck in 1996 (see Section 2.4).

Outcome 2: Pair-programming is a technique used in eXtreme Programming where

two students or two developers program at one workstation (see

Section 2.3.4).

Outcome 3: In a study conducted by Chigona and Pollock (2008), students in pairs

submitted higher quality work and received higher marks than solo-

programming students (see Section 2.4).

Outcome 4: With pair-programming, both programmers share the entire application,

both contribute to the success of the application through switching roles

periodically, and both should be focused on the task without causing

unnecessary difficulties (see Section 2.4.1).

Outcome 5: For effective team work in pair-programming, it is important to recognise

that there are specific steps to follow, and that the tasks and

interpersonal behaviours of the team might change over time (See

Section 2.4.2).

Objective ii): To determine the impact of pair-programming on IT students’

enjoyment level of software development

Outcome 6: Paired students enjoy programming more than solo students and paired

students are more confident and less frustrated (see Section 2.4 and

table 2.3).

Outcome 7: Pair-programming develops communication skills between both learning

partners and enables students to socialise (see Sections 2.4.3 and

2.4.1).

Objective iii): To determine if there is a significant distinction between the

academic progress of students who use pair-programming and those who do

not

41

Outcome 8: On average, paired students achieve significantly higher results than

those working alone (solo-programming) (see Section 2.4.3.4).

Outcome 9: Paired students develop programs with high functionality and more

readable programming code (see Section 2.4 and figure 2.5).

Outcome 10: Programs or code compiled by paired students are significantly more

descriptive than programs compiled by solo students for the same

projects, and the paired students received higher marks than solo

students (see Sections 2.4; 2.4.3.3 and figure 2.4).

Outcome 11: The quality of the applications delivered by paired students is

distinctively higher than the applications delivered by solo-

programmers (See Section 2.4.3.3).

Objective iv): To establish whether pair-programming positively influences the

attitude of software development students, thereby influencing a future career

path in programming

Outcome 12: Paired students develop a positive attitude towards programming and

working in a team (See Section 2.4.3.5).

Outcome 13: Paired students are more confident in programming than solo students

(see Section 2.4.3.2).

42

3. CHAPTER 3: RESEARCH METHODOLOGY

Figure 3.1: Graphical representation of Chapter 3

Introduction

Research problem

Meaning of research

Research paradigm

Data collection

Research design

Research philosophy

CHAPTER 3: RESEARCH METHODOLOGY

Research approach

Research strategy

Research methodology

Data analysis

Apposite research design

summary

Conclusion

Unit of analysis

Unit of observation

43

3.1 INTRODUCTION

This chapter discusses the research philosophy, paradigm, approach and strategy

which form the core for selecting an appropriate research design and methodology to

explore the effect of pair-programming as educational tool on the academic

performance of Information Technology students at Higher Education Institutions

(HEIs) in South Africa, and whether this tool is able to contribute towards enhancing

the academic performance of these students.

The methods used to collect data as well as the sampling techniques used to select

the participants, are elaborated on. The methods used in analysing and presenting

the findings, are also discussed.

3.2 MEANING OF RESEARCH

Defining the term research is not a clear-cut task. Definitions range from the simple to

the complex and it varies according to the authors. According to Singh (2006), the

term “research” is composed of two words: Re + Search. “Re” means repetitively

(again and again) and “Search” means to find out something.

Figure 3.2: Meaning of research

(Source: Singh 2006)

By applying common sense, research can simply be defined as the search for

answers to certain questions or problems or phenomena through a planned process

which includes the collection, analysis and interpretation of data and drawing

conclusions. Definitions of research include:

“Research is the systematic and scholarly application of the scientific method

interpreted in its broader sense, to the solution of social studies problems;

conversely, any systematic study designed to promote the development of

social studies as a science can be considered research” (Mouly 1970).

44

“Research is considered to be the more formal, systematic, intensive process

of carrying on the scientific methods of analysis. It involves a more

systematic structure of investigation, usually resulting in some sort of formal

record of procedures and a report of results or conclusions” (Best 1977).

“Research comprises defining and redefining problems, formulating

hypotheses or suggested solutions; collecting, organising and evaluating

data; making deductions and reaching conclusions; and at last carefully

testing the conclusions to determine whether they fit the formulating

hypothesis” (Best 1977).

Thus, research is the logical process which assists the researcher to answer to the

following questions: what, why, how, who and when:

 What = Research problem

 What, Why = Research questions and objectives

 Who, When = Sample of the study and duration of the study

 How = Methodology, collection of data

 Why = Interpretation of the results

3.3 RESEARCH PROBLEM

Students tend to be frustrated when they are introduced to programming courses due

to lack of knowledge in solving problems involving various programming languages

and technologies (Henson 2002; McMahon 2009). This often results in students

dropping out of the course because they are struggling on their own without any

individual attention or guidance (University World News 2015).

One proposed solution to address this problem in South African higher education

institutes is the introduction of a collaborative pedagogical agile approach in the form

of a pair-programming model, in which students develop software in teams in a

controlled learning environment according to a structured format.

The study endeavours to establish how pair-programming can shape the experience

of tertiary level IT students in South Africa with regard to their academic performance

in developing software.

45

3.4 RESEARCH DESIGN

Research design is the logical map of the research process or an architectural

framework that outlines how the study is to be carried out (Mouton 1996). It provides

a plan of how all of the main aspects of the research such as research philosophy,

paradigm, methodology, strategy, technique, participants and data analysis work

together to respond to the research questions or to a research problem. Figure 3.3

shows the layers of research design as indicated by Saunders et al. (2009).

Figure 3.3: Research onion

(Source: Saunders et al. 2009)

According to Mouton (1996), the purpose of research design is to plan, construct and

conduct the research so that the validity of the findings is maximised. Yin (2003)

adds to this by stating that:

“…colloquially a research design is an action plan for getting from here to

there, where ‘here’ may be defined as the initial set of questions to be

answered and ‘there’ is some set of answers”.

Research design gives direction from the underlying philosophical assumptions

throughout data collection to results.

46

3.4.1 Research philosophy

Research is underpinned by the philosophical assumptions which show the particular

way in which the world is viewed and understood (Saunders et al. 2009). When

conducting research, it is imperative to reflect on the two parameters that constitute

the research philosophy, namely ontology and epistemology. These parameters

shape the manner in which the research is conducted, from design to conclusion. It is

therefore important to understand the parameters in order to select the correct

approach and to ensure that the researcher adopts a suitable method to conduct the

research. Figure 3.4 describes the framework of the research philosophy as indicated

by Slife and Williams (1995).

Figure 3.4: A framework for research philosophy
(Source: Slife & Williams 1995)

Raddon (2015) agrees with Saunders et al. (2009) that, when conducting research, it

is important to consider the two components that constitute the research philosophy,

namely ontology (“what constitutes valid knowledge and how can we obtain it?”) and

epistemology (“what constitutes reality and how can we understand existence?”).

3.4.1.1 Ontology

According to Blaikie (1993), the core definition of ontology is:

47

“…the science or study of being and develops this description for the social

sciences to encompass claims about what exists, what it looks like, what

units make it up and how these units interact with each other”.

In short, “ontology is concerned with the nature of reality” (Saunders et al. 2009). It

questions the assumptions the researcher makes regarding the manner in which the

world operates. Ontology is influenced by two stances, namely objectivism and

subjectivism.

“Objectivism portrays the position that social entities exist in reality external

to social actors concerned with their existence, while subjectivism holds that

social phenomena are created from the perceptions and consequent actions

of those social actors concerned with their existence” (Blaikie 1993).

This research study is aligned with a subjectivist ontological stance which implies that

a situation observed can only come into existence through the action of humans in

creating and recreating the phenomena observed (Orlikowski & Baroudi 1991).

3.4.1.2 Epistemology

Epistemology is concerned with views on the most apposite ways of “probing into the

nature of the world” (Easterby-Smith, Thorpe & Jackson 2008) as well as “what is

knowledge and what the sources and limits of knowledge are” (Eriksson &

Kovalainen 2008). Chia (2002) describes epistemology as “what to know and how it

is possible to know, and the need to reflect on methods and standards through which

reliable and verifiable knowledge is produced”. Hatch and Cunliffe (2006) defines

epistemology as “knowing how you can know”. They expand this by asking: “How is

knowledge generated, what criteria discriminate good knowledge from bad

knowledge, and how should reality be represented or described?”

According to Orlikowski and Baroudi (1991), epistemology can be aligned with three

possible research philosophies, namely positivism, interpretivism and critical realism.

i) Positivism

Positivists believe the validity of the knowledge is formed by empirical and verifiable

proof. With positivism the researcher is not included in the process of the research

(Burrell & Morgan 1979).

48

ii) Interpretivism

“Interpretive methods of research start from the position that our knowledge

of reality, including the domain of human action, is a social construction by

human actors and that this applies equally to researchers” (Walsham 1993).

The interpretivists support the idea that the reality is constructed by social actors.

Interpretivism promotes the idea that the researcher needs to understand variances

between humans in our role as social actors. This highlights the difference between

performing research among people and conducting research on objects such as cars

and computers. The aim of interpretivism is not to generalise the population, but to

provide a better understanding of how people obtain knowledge in a particular social

setting (Neuman 2011).

Pizam and Mansfeld (2009:1, as cited by Dudovskiy 2015) differentiate between

positivism and interpretivism in Table 3.1.

Table 3.1: Positivism and Interpretivism

Assumptions Positivism Interpretivism

Nature of reality Objective, tangible, single Socially constructed, multiple

Goal of research Explanation, strong prediction Understanding, weak prediction

Focus of interest What is general, average and
representative

What is specific, unique, and
deviant

Knowledge generated Laws Absolute (time, context,
and value free)

Meanings Relative (time, context,
culture, value bound)

Subject/Researcher
relationship

Rigid separation Interactive, cooperative,
participative

Desired information How many people think and do
a specific thing, or have a

specific problem

What some people think and do,
what kind of problems they are
confronted with, and how they deal

with them

49

iii) Critical Realism

The essence of realism is captured in the philosophy of “what the senses show us as

reality, is the truth; that objects have an existence independent of the human mind.

The theory of realism is that there is a reality quite independent of the mind”

(Orlikowski & Baroudi 1991). Critical realists debate that we are all actually

experiencing sensations, images of objects in the real world, rather than experiencing

the objects directly (Neuman 2011).

It is clear that the pair-programming study is not based on critical realism because,

according to Neuman (2011), critical researchers focus on the basis of

disagreements, conflicts and paradoxes occurring in society to seek emancipation of

the people in society. This research study is aligned with an interpretivist

epistemological stance where the researcher acknowledges the different views of

interviewees in a social setting.

3.4.2 Research paradigm

A research paradigm is often applied in the social sciences. The term paradigm can

cause misunderstandings because it has several meanings. According to Burrell and

Morgan (1979), “a paradigm is a way of examining social phenomena from which

particular understandings of these phenomena can be gained and explanations

attempted”.

Figure 3.5: Social theory analysis using four paradigms

(Source: Burrell & Morgan 1979)

50

Burrell and Morgan (1979) divide a research paradigm into four views: interpretive,

functionalist, radical humanist and radical structuralist, which are illustrated in figure

3.5.

 Radical Humanism: This paradigm visualises the current reality as separating

people from their truth, and is concerned with emancipating the social reality

from social constraints by using radical change. It is aligned with a subjective

ontological stance with radical change (Burrell & Morgan 1979).

 Interpretivism: This paradigm seeks to explain the nature of behaviour as it

occurs in the individual‘s point of view. It is aligned with a subjective,

regulatory ontological stance (Burrell & Morgan 1979).

 Radical Structuralism: This paradigm recognises intrinsic structural

differences within a society that causes constant change through economic

and political crises. It is aligned with an objective ontological stance with

radical change (Burrell & Morgan 1979).

 Functionalism: This paradigm assumes rational human action on the premise

that behaviours can be understood by the use of hypotheses and testing. It is

aligned with an objective, regulatory ontological stance (Burrell & Morgan

1979).

The four paradigms serve the following purposes: (i) to assist researchers in

explaining their assumptions of their interpretation of the nature of science and

society; (ii) to provide an understandable manner in which other researchers consider

their work; and to assist researchers in plotting their own path through their research

and to comprehend the possibilities of where they are going (Burrell & Morgan 1979).

The primary research paradigm for this study is interpretive as the research is on how

knowledge can be obtained based on earlier conceived assumptions such as:

(i) There are sufficient workstations to implement pair-programming; (ii) the time slots

allocated for pair-programming are the same for all groups taking part in the

research; (iii) a controlled environment (computer laboratory) is available for each

group; and there is sufficient time for the students to consult with the lecturer.

51

3.4.3 Research approach

According to Beiske (2007), there are two types of approaches in research which

indicate the route to follow when conducting scientific research, namely deductive

and inductive. A deductive approach involves developing a hypothesis based on

existing theory and validity testing, while an inductive approach is concerned with

collecting empirical evidence and building a theory (Beiske 2007).

Figure 3.6: Deductive approach versus Inductive research approach

(Source: Beiske 2007)

According to Burney and Mahmood (2006) “a deductive approach works from the

more general to the more specific” while an inductive approach moves from specific

observations to broader generalisations and theories.

This study adopts an inductive research approach. The aim of the researcher is to

observe patterns derived from empirical evidence and infer the findings to the theory

which is called theory building research (Bhattacherjee 2012). In the study, the

researcher uses the analysis of the data collected through interviews, observations

and assessments to confirm the theory that “pair-programming positively enhances

the academic performance of tertiary level IT students”.

3.4.4 Research strategy

The research strategy selected for this pair-programming study is action research.

52

Action research is an important option for lecturers to consider in a higher education

environment as it links both “action” and “research” (Mills, 2011). Action research in

higher education is defined as a systematic process of analysing a tertiary situation

to understand and improve the quality of teaching and learning processes (Johnson,

2012). Action research provides researchers (lecturers and stakeholders) with new

knowledge and understanding on how to improve educational environment (Mills,

2011; Stringer, 2008).

According to Stringer (2008), the action research process is a cycle of five stages:

designing the study, collecting data, analysing data, communicating outcomes, and

taking actions as shown in figure 3.7.

Figure 3.7: Action research cycle
 (Source: Stringer 2008)

During the first stage (designing the study) the researcher carefully points out the

problems to be investigated by following the ethics and validity of the study. During

the second stage (collecting data), the researcher collects information from a variety

of sources related to the study. The information collected in stage two is analysed in

stage three (analysing data) to determine key features of the problems under

investigation. During the fourth stage (communicating outcomes), the results and/or

outcomes of the study are known and communicated to relevant audiences. The

53

researcher takes action toward finding solutions of the problems investigated during

the final and most critical stage (taking action).

In this study, action research—single iteration—assists the researcher to understand

the problems faced by students in programming, while pair-programming is the action

taken to solve the problems. The research study is based on a pair-programming

intervention. Before the intervention, assessment is conducted on both the solo- and

pair-programming groups. Next the intervention is actioned. Finally both the solo- and

pair-programming groups are assessed again. The data collected during this single

iteration of the action research processed is analysed.

3.4.5 Research methodology

Research methodologies are mainly categorised into three types, namely

quantitative, qualitative and mixed methods (Saunders et al. 2009).

3.4.5.1 Qualitative research methodology

Different researchers assign different definitions to qualitative research methodology.

Definitions range from the simple to the complex and include:

“Qualitative research methodology is the research using methods such as

participant observation or case studies which result in a narrative, descriptive

account of a setting or practice” (Parkinson & Drislane 2011).

“Qualitative researchers are interested in understanding the meaning people

have constructed, that is, how people make sense of their world and the

experiences they have in the world” (Merriam 2009).

“Qualitative researchers study things in their natural settings, attempting to

make sense of, or to interpret, phenomena in terms of the meanings people

bring to them” (Denzin & Lincoln 2005).

Thus, a qualitative research methodology involves a direct experience and feelings to

identify the phenomena and proposes possible relationships between causes and

effects.

54

3.4.5.2 Quantitative research methodology

Different researchers assign different definitions to quantitative research

methodology. Some of the definitions are:

“Quantitative research is the numerical representation and manipulation of

observations for the purpose of describing and explaining the phenomena

that those observations reflect” (Creswell 2009).

“Quantitative research is defined as social research that employs empirical

methods and empirical statements. An empirical statement is defined as a

descriptive statement about what ‘is’ the case in the ‘real world’ rather than

what ‘ought’ to be the case” (Cohen & Manion 1980).

Therefore, a quantitative research methodology deals with numbers to measure the

reliability and validity of the data. Quantitative research elucidates phenomena

through the collection of numerical data which are then analysed by means of

mathematically based techniques (Creswell 1994). Table 3.2 illustrates the

differences between the qualitative and quantitative research methods.

Table 3.2: Qualitative vs Quantitative research methods

(Source: Genise 2002)

Orientation Quantitative Qualitative

Assumption about the
world

A single reality can be
measured by an instrument

Multiple realities

Research Purpose Establish relationships between
measured variables

Understanding a social situation
from participants’ perspectives

Research methods and
Processes

 Processes are established
before study commences

 A hypothesis is formulated
before study commences

 Deductive in nature

 Flexible, changing strategies

 Design materialised as data
are gathered

 A hypothesis is not needed to
commence with study

 Inductive in nature

Researcher’s role The researcher is ideally an
objective observer who does not
take part or effects what is being
explored.

The researcher takes part and
becomes absorbed in the
research/social setting.

Generalisability Worldwide context-free
generalisations

In-depth context-based
generalisations

55

3.4.5.3 Mixed methods research methodology

A mixed methods research methodology is adopted when either a qualitative or

quantitative approach is selected as the original method of research, and where the

second approach is adopted during the course of the research due to shortcomings

in the initial approach (Creswell 2009). Saunders et al. (2009) argue that a research

method can use both a quantitative and qualitative approach for secondary and

primary data to source for appropriate information concerning a mutual theme in the

same study. Creswell (2009) further affirms that research can be planned in such a

way that the results and interpretation of the initial quantitative phase lead to the

emergence of the qualitative phase.

This pair-programming study warrants the use of a mixed-methods research

methodology with both quantitative and qualitative data collection and analysis on the

effect of pair-programming on the academic progress and learning of software

development students at HEIs.

3.4.6 Data collection

Multi-methods data collection has been adopted for this study. The three methods

used were semi-structured interviews, observations, and assessments.

3.4.6.1 Interviews

Interviews are techniques of data collection through verbal questioning using a set of

prepared questions.

“Interviews can be very productive since the interviewer can pursue specific

issues of concern that may lead to focused and constructive suggestions”

(Shneiderman & Plaisant 2005).

The main advantages of the interview method are: (i) direct contact with the users

often leads to specific, constructive suggestions; (ii) interviews are good at obtaining

detailed information; and (iii) only a few participants are needed to gather rich and

detailed data (Genise 2002; Shneiderman & Plaisant 2005).

The different types of interviews are unstructured, structured and semi-structured.

56

i) Unstructured interviews

The unstructured interview enables the interviewer to ask open-ended questions and

the interviewee to express his or her own opinion freely. According to Preece, Rogers

and Sharp (2002), it is not easy to standardise the interview across different

interviewees as each interview has a unique structure. It is however possible to

generate rich data, information and ideas during interview sessions because the level

of questioning can be varied to suit the context, but it is time consuming and difficult

to analyse the data.

ii) Structured interviews

With structured interviews, the interviewer uses a set of prepared questions which

are short and clearly worded and require precise answers. The structured interview is

easy to conduct and it is easily standardised because the same questions are asked

to all participants. According to Preece et al. (2002), “structured interviews are most

appropriate when the goals of the study are clearly understood and specific

questions can be identified”.

iii) Semi-structured interviews

May (2001) is of the view that a semi-structured interview is an ideal technique to

collect data because it contributes to ‘easy’ analysis and comparison of data. Burns

(2000) describes a semi-structured interview as taking the form of a conversation

between the participant and the researcher. Semi-structured interviews combine the

advantages of both structured and unstructured interviews (Preece et al. 2002). In

order to be consistent, the interviewer has a set of prepared questions to guide him

during the interview. As the interview progresses, the interviewee can be given an

opportunity to provide more relevant information if he or she wishes to.

For the pair-programming research study, a semi-structured interview approach to

collect data from the participants is selected, where data is collected from

participants before and after the introduction of pair-programming.

57

Before commencement of pair-programming, at the beginning of semester 1, the

participants are interviewed to determine (in their view):

 Whether they possess any agile programming skills and are knowledgeable in

pair-programming

 If they enjoy programming

 If they enjoy traditional programming (solo-programming)

 Their academic performance with solo-programming

Upon completion of the pair-programming intervention, at the end of semester 2, the

participants are interviewed to:

 Verify whether they understand agile programming, especially pair-

programming

 Determine whether they enjoy agile programming over solo-programming

 Determine their view on whether their academic performance has improved

after implementation of pair-programming

Between 10 and 15 minutes per interview provides sufficient time for discussing any

issues raised. Tape-recordings (with the approval of the participants) for later use

and referral form an integral part of qualitative data collection. It offers the researcher

the opportunity time to engage in discussions with the participants without having to

take notes.

3.4.6.2 Observations and assessments

The main purpose of selecting assessments for this research is to measure the

progress (if any) of the students after implementation of pair-programming.

Students who are registered for the Information Systems module are randomly

divided into two groups. The students in group A are introduced to pair-programming,

while the students in group B continue with the normal single-student programming

approach (solo-programming or traditional programming) over two semesters. For

both groups, the same materials are covered and activities conducted. The

researcher uses two activities to measure the progress of the students in both

groups.

58

Observations: The researcher assigns different software development projects, all

on the same standard, to the students. In group A, the students work in teams (pair-

programming) to implement the database while in group B, the students carry out the

projects individually. Throughout the sessions, across two semesters, the lecturer

(researcher) closely observes the paired and solo students in their respective classes

in terms of behaviour, group work (where applicable), timely submission of completed

projects, and quality of completed projects.

Assessments: The researcher assesses both groups to measure the academic

performance of each student. The assessment consists of three practical tests per

semester, thus six practical tests in total. The tests are similar, but not identical, to

the projects assigned to the students. During these tests, all the students work

individually. Both groups (paired and solo) receive the same tests to complete each

time.

3.4.7 Unit of analysis

According to Saunders et al. (2009), a unit of analysis is representative of the

targeted population. For this research study, the unit of analysis is the pair-

programming technique administered to students during their practical software

development sessions.

3.4.8 Unit of observation

The research participants, also known as the units of observation, are the students

who were selected through non-random purposive sampling to partake in this study.

3.4.8.1 Population

Population is regarded as any complete group of people and communities where

they share mutual characteristics (Zikmund, Babin, Carr & Griffin 2010). In this

research, the population consists of all the students registered for the Information

Technology qualification, specifically those enrolled for the Information systems

module, at the selected HEI in Gauteng. Of the 23 HEIs in South Africa (at the time of

this research project) it was convenient to select the specific HEI in Gauteng as the

population since the researcher had also been the lecturer there for the units of

observation, i.e. convenience sampling was applied.

59

3.4.8.2 Sample techniques

Sampling is a crucial technique of behavioural research; a research study cannot be

undertaken without the use of sampling (Singh 2006). In any research study, it is

usually impossible and impractical to collect data from the total population. The

collection of data will be made very difficult by factors such as high cost and too

much time needed. The main purpose of sampling is to make the research findings

cost-effective and precise (Singh 2006).

Cochran (1963) justifies the use of sampling by the following statement:

“In every branch of science we lack the resources to study more than a

fragment of the phenomena that might advance our knowledge”.

In his definition, a “fragment” is the sample and “phenomena” is the population.

Population means “the entire mass of observations, which is the parent group from

which a sample is to be formed. The sample observations provide only an estimate of

the population characteristics” (Singh 2006) as shown in figure 3.7.

Figure 3.8 represents the different types of sampling techniques under the probability

and non-probability sampling methods.

Figure 3.8: Example of sample
(Source: Singh 2006)

60

Figure 3.9: Methods of sampling
(Source: Singh 2006)

Any sampling method where some elements of the population have no chance of

selection, or where the probability of selection cannot be accurately determined, is

called non-random (UBOS, 2015).

Purposive sampling is a process of selecting a sample based on the researcher’s

knowledge of the population and the nature of the objectives of the study (Babbie

2007).

The sampling technique selected for this study is non-random purposive sampling.

The participants were divided into two groups (A and B). The students in group A

61

were introduced to pair-programming while the students in group B continued with

the normal solo-programming approach. For both groups, the same materials were

covered. Both groups had the same number practical sessions per week, and the

lecturer gave the same attention to both. Both groups were observed in the same

manner by the lecturer.

3.4.8.3 Sample size

As indicated in section 3.4.8.1, the population in this research are students registered

for the Information Systems module, which forms part of the Information Technology

qualification at the identified HEI in South Africa. The Information Systems module

requires the students to develop software. The number of students selected from the

population is 50 (fifty), thus the selected sample size is 50.

3.4.9 Data analysis

Data analysis begins by going back to the aim of study (Greeff 2002) which, in this

research, is to investigate the perceptions of students regarding the use of pair-

programming in a software development module at HEIs in South Africa. The

analysis of raw data is defined as the application of reasoning to understand the data

that had been gathered (Zikmund, Babin, Carr & Griffin 2010).

To align the analysis and interpretation with the various types of data, both

quantitative and qualitative data analysis techniques are required.

3.4.9.1 Quantitative data analysis

The quantitative data is constituted of the assessment results of the students from

both groups, six assessments in total, three per semester. The analysis method

selected for this empirical data is twofold:

 A t-test to measure the difference, if any, between the semester 1 and

semester 2 results of the paired students. The pair-programming intervention

is measured on the impact it has on the students’ academic performance over

two semesters.

62

 A second t-test to measure the difference, if any, between the semester 1 and

semester 2 results of the solo students. This t-test measures the change (if

any) of the students’ academic performance over two semesters.

Graphs and tables are used to draw relevant conclusions from the analysed data.

3.4.9.2 Qualitative data analysis

According to Flick (2010), qualitative data analysis searches for the meaningful

content of data among the vast amounts of qualitative data collected. To analyse

data using a qualitative method, the data first needs to be represented in written

format (Saunders et al. 2009). Saldana (2009) developed a coding framework to

assist researchers in understanding the coding process and concepts, and how they

are transformed into themes and categories (figure 3.9). Quinlan (2011) supports the

use of a coding framework by stating that a qualitative thematic method will assist

any researcher to classify themes into codes. For the pair-programming research

study, the qualitative thematic coding framework of Saldana (2009) (figure 3.9) and

the principles of hermeneutics (figure 3.10) are combined as interpretive, descriptive

tool for analysing data collected from the semi-structured interviews.

Figure 3.10: Streamlined Codes-to-Theory model for qualitative inquiry

(Source: Saldana 2009)

63

Myers (1997) defines hermeneutics as:

“Interpretation, in the sense relevant to hermeneutics, is an attempt to make

clear, to make sense of an object of study. This object must, therefore, be a

text, or a text analogue, which in some way is confused, incomplete. The

interpretation aims to bring to light an underlying coherence or sense”.

Hermeneutics are concerned with the meaning of text from the interviews which has

to be linked to a code through an analysis process (Flick, 2010). Hermeneutic units

are utilised in qualitative data analysis software to group sentences of data which

have parallel meanings.

The combined thematic coding framework and principles of hermeneutics as method

of analysis selected for the pair-programming study (without the use of qualitative

data analysis software), is summarised as follows:

 Read through all the transcripts of the recorded interviews

 Summarise the data

 Identify all existing similarities

 Group the data according to a coding structure

 From the meaningful relationships detected, identify patterns and concepts

 Transform these patterns and concepts into a theme (figure 3.10)

64

Figure 3.11: Stages of coding in thematic analysis to theory

(Source: Strauss & Corbin 1990)

3.5 APPOSITE RESEARCH DESIGN SUMMARISED

Table 3.3 contains a summary of an apposite research methodology that can be

used to explore the effect of pair-programming on the academic progress of software

development students at HEIs in South Africa.

The research design components have been identified as the philosophy, paradigm,

approach, strategy, methodology, data collection, unit of analysis, unit of observation,

and data analysis.

For each of the components, a proposed action is recommended.

65

Table 3.3: Apposite research design for pair-programming research at HEIs

Research design components Proposed method

Research
Philosophy

Ontology Subjectivism

Epistemology Interpretivism

Research Paradigm Interpretive

Research Approach Inductive

Research Strategy Action Research

Research Methodology Mixed Methods (both qualitative and quantitative)

Data Collection Multi-Methods

Semi-structured Interviews

Observations

Assessments

Unit of Analysis Pair-programming

Unit of
Observation

 Students

Population

Students registered for the Information Systems module
at specified HEI in Gauteng

Sample technique Purposive (non-random)

Sample size 50 students

Data
analysis

Quantitative
T-tests

Graphs

Qualitative
Qualitative Thematic Coding

Hermeneutics

3.8 CONCLUSION

This chapter outlined the research philosophy, paradigm, approach, strategy,

methodology, participants, data collection and analysis methods of a study that

explores the effect of pair-programming on the academic progress of software

development students at HEIs in South Africa.

The ontological stance of the research philosophy is based on subjectivism, and the

epistemological stance is aligned with an interpretivist philosophy.

The primary research paradigm for this study is interpretive and the research

approach is inductive. This study warrants the use of a mixed methods research

methodology and a multi-method data collection strategy. The methods of data

collection include a semi-structured interview, observations and assessments.

66

The unit of observation is pair programming, and the units of analysis are the

students registered for the Information Systems module in IT at a specified HEI in

South Africa, and the sample size is fifty (50).

Given the types of data collected, both qualitative and quantitative data analysis

methods are needed. For the quantitative data, empirical analysis methods in the

form of t-tests and graphs are selected. The qualitative data are analysed using a

thematic coding framework and the hermeneutics principle.

A table which contains a summary of an apposite research design that can be used

to explore the effect off pair-programming on the academic performance of software

development students at HEIs in South Africa has been proposed.

67

4. CHAPTER 4: ANALYSIS AND DISCUSSION

Figure 4.1: Graphical representation of Chapter 4

4.1 INTRODUCTION

Williams and Upchurch (2001), Chigona and Pollock (2008) and Williams (1999) are

of the opinion that an agile systems approach towards education shows several

promising properties for educational purposes and could lead to retention in the

number of students enrolled for programming modules at higher educational

institutions (HEIs).

For the purpose of this research, pair-programming as agile approach is defined as

grouping students in teams whereby collaborative or cooperative learning is

implemented. Pair-programming is an approach to group work that maximises

learning and satisfaction resulting from working as part of an effective team. The

research is guided by determining how pair-programming, which is an agile

approach, shapes the experience of tertiary level IT students with regard to their

academic performance in developing software. Secondary to academic performance,

the research also looks at the attitude and software development enjoyment level of

students.

Introduction

Data analysis

Research design

 Discussion of results

 Conclusion

CHAPTER 4: ANALYSIS AND DISCUSSION

68

One of the learning outcomes of IT “…focuses on the design and development of

appropriate computer-based solutions to specific problems using programming”

(Conradie 2013). However, most of the students are not able to develop appropriate

computer-based solutions due to a lack of programming skills. Students do not

develop strong programming skills because they are taught traditionally with

individual programming assignments and competitive grading rather than in-depth

learning in teams in order to master programming languages and develop software

development skills (Williams & Upchurch 2001). Students face many obstacles when

attempting to develop computer-based solutions to specific problems through

developing software individually rather than in a team. These obstacles contribute to

a low pass rate of students enrolled for computer programming modules at

universities in South Africa at first year level. Research indicates that, in general,

teams have the capability to make more efficient decisions than individuals because

teams can combine knowledge and information, which assists in good decision

making (Russo & Schoemaker, 1989; Schmidt, Montoya-Weiss & Masse 2001;

Wheeler & Valacich 1996).

The main focus of this chapter is on the data analysis phase of the research study.

The research design provides summarised, core information relevant to the research

philosophy, paradigm, approach, strategy and data collection methods. The

remainder of the chapter concentrates on the data analysis.

4.2 RESEARCH DESIGN

Research design gives direction to the research process, from the underlying

philosophical assumptions throughout data collection to the analysis, findings and

recommendations. For this study, the ‘Research Onion’ design of Saunders et al.

(2009) has been adopted. The ontological stance of the research philosophy is based

on subjectivism and the epistemological stance is aligned with an interpretivist

philosophy (the quest for subjective knowledge through qualitative data) (Raddon

2015). The research paradigm is interpretive and the research approach inductive in

nature. An inductive research approach is concerned with the generation of new

theory emerging from the data (Gabriel 2015).

69

The study warrants the use of a mixed methods research methodology, action

research strategy and a multi-methods data collection technique. The methods of

data collection include a semi-structured interview, observations and assessments.

A non-random sample size of 50 students was purposively selected from a

population of IT students registered for the Information Systems module over two

semesters in 2013 at a university in Gauteng. The participants were divided into two

groups (A and B). The students in group A were introduced to pair-programming

while the students in group B continued with the normal solo-programming approach.

For both groups, the same materials were covered.

Data was collected from participants through a semi-structured interview before

commencing with pair-programming at the beginning of semester 1, and after

completion of the pair-programming intervention at the end of semester 2.

Throughout the sessions, across two semesters, the researcher closely observed

the paired and solo students in their respective classes in terms of behaviour, group

work (where applicable), timely submission of completed projects, and quality of

completed projects.

The researcher also assessed both groups during the intervention to measure the

academic performance of each student. The assessment consisted of three tests per

semester, thus six tests in total. The tests were similar, but not identical, to the

projects assigned to the students. During these assessments, all the students worked

individually. Both groups received the same tests to complete each time.

4.3 DATA ANALYSIS

Both qualitative and quantitative data analysis methods were applied to the data

collected. Empirical analysis methods in the form of t-tests and graphs were

performed on the quantitative data collected. The qualitative data were analysed

using a thematic coding framework and hermeneutics principles.

70

4.3.1 Quantitative data analysis

The quantitative data collected constitutes the six assessment results of the students

from both the pair-programming and solo-programming groups. Two t-tests were

performed.

The first t-test measured the difference between the semester 1 and semester 2

results of the paired students to determine the impact of the pair-programming

intervention on the students’ academic performance over two semesters.

The second t-test measured the difference between the semester 1 and semester 2

results of the solo-programming students to determine the impact of not

administering pair-programming on the students’ academic performance over two

semesters.

4.3.2 Qualitative data analysis

The qualitative data collected constitutes tape-recordings and the subsequent

transcripts of the semi-structured interviews conducted with the 50 participants

before commencement and after completion of the pair-programming intervention. As

data analysis method, a combined thematic coding framework and the principles of

hermeneutics were selected. The analysis steps included reading through all the

transcripts of the recorded interviews, summarising the data, identifying all existing

similarities, and grouping the data according to a coding structure. From the

meaningful relationships detected, patterns and concepts we identified and transform

into themes (Strauss & Corbin 1990).

4.4 DISCUSSION OF RESULTS

The secondary research objectives of the study have been stated in section 1.5. The

outcomes of secondary research objectives ii), iii) and iv) are discussed below.

4.4.1 Enjoyment level

Secondary research objective ii): To determine the impact of pair-

programming on IT students’ enjoyment level of software development

71

a) Interview analysis

Would you enjoy pair-programming more than solo-programming?

This question, derived as a theme (using thematic analysis) from Questions 5, 11, 15

and 16 in the Interview Guide (see Annexure A), assisted the researcher in

establishing the enjoyment level of students towards pair-programming. Some of the

participants’ answers are indicated below.

Table 4.1 indicates students’ answers before the pair-programming intervention.

Table 4.1: Enjoyment level: Before pair-programming

Questions
Answers

Student 1 Student 2 Student 3 Student 4 Student 5

Q5: Do you enjoy
programming?

Why?

No, I don’t enjoy
programming
because it is
very difficult for
me and I don’t
understand it.

Yes, it is a bit
challenging.

No, it is
boring and
very
confusing.

Yes, It
challenges me
and I find it
very
interesting.

No, it is
confusing for
me.

Q11: Are you
going to further
your career in IT?
Why?

Yes but in
networks.

Yes because
it is too late
for me to
change the
course.

No, IT is
difficult
because of
programming
.

Yes, it is very
broad and one
can choose
anything within
IT.

Yes, I love
computers
more than
anything.

Q15: Do you
think pair-
programming will
help students
enjoy
programming?

No idea. I don’t know
anything
about pair-
programming
.

Don’t know. Yes Yes,
programming
works better
with two
people.

Q16: Do you
think you will
enjoy a pair-
programming
experience more
than
programming
alone? Why?

I don’t know yet. I don’t know
yet.

I don’t know
yet because I
usually work
alone.

To be honest,
I don’t know.

Yes, I will need
the help
somewhere.

 Question 5: Do you enjoy programming? Why?

80% of the students did not enjoy programming because the found it difficult

and 20% of the students indicated that they enjoy programming.

72

 Question 11: Are you going to further your career in IT? Why?

84% of the students said no and 16% of the students said yes because they

enjoy IT.

 Question 15: Do you think pair-programming will help students enjoy

programming?

92% of the students said they don’t know and 8% agreed that pair-

programming can help students to enjoy programming.

 Question 16: Do you think you will enjoy pair-programming experience

more than programming alone? Why?

95 % of the student said they don’t know because they have never done it

before and 5% of students thought that pair-programming could be enjoyable.

Table 4.2 below indicates students’ answers after the pair-programming intervention.

Table 4.2: Enjoyment level: After pair-programming

Questions
Answers

Student 1 Student 2 Student 3 Student 4 Student 5

Q5: Do you enjoy
programming?

Why?

Yes, I do
because
programming
is challenging
and it is funny.

Yes, it is a bit
challenging.

Yes. Yes,
programming
increases my
skills of
thinking and
solving
problems.

Kind of. Now, I
start
understanding
it.

Q11: Are you
going to further
your career in IT?
Why?

Yes, I want to
go as far as
possible in
order to learn
as much as
possible.

I will think
about it.

Yes, I’m
enjoying
programming.

Yes, I love
computers and
programming.

Yes, I enjoy IT.

Q15: Do you
think pair-
programming will
help students
enjoy
programming?

Yes Yes
definitively.

Yes because
two heads are
better than
one head.

Yes. Obvious.

Q16: Do you
think you will
enjoy a pair-
programming
experience more
than
programming
alone? Why?

Yes, it helps
me to
understand
programming.

Yes, I do
enjoy pair-
programming
experience.

No, I want to
work alone.

Yes, my
partner helped
me a lot and
together
programming
becomes so
easy.

Yes, it was a
good
experience.

73

 Question 5: Do you enjoy programming? Why?

89% of the students enjoyed programming because they found it becomes

easy to find solutions with the help of a programming partner. 11% of the

participants indicated that they do not enjoy programming.

 Question 11: Are you going to further your career in IT? Why?

94% of the students indicated yes because they enjoy programming, and 6%

of the students indicated no.

 Question 15: Do you think pair-programming will help students enjoy

programming?

98% of the students were of the opinion that pair-programming can help

students enjoy programming and 2% were not sure.

 Question 16: Do you think you will enjoy pair-programming experience

more than programming alone? Why?

89% of students enjoyed pair-programming experience, 7% enjoyed working

alone and 4% did not enjoy the experience.

The qualitative thematic analysis and subsequent results signify that an agile

approach to programming has a positive impact on the students’ enjoyment level of

developing software.

b) Observation analysis

The researcher observed the following:

 Group A: The paired students enjoyed software development, were confident

in programming more than the solo group of students, and seemed less

frustrated. In addition, the paired students developed problem solving and

communication skills. The majority of paired students were eager and/or

willing to pursue a career in programming.

 Group B: The majority of solo-programming students were frustrated and

found programming to be very difficult. They did not seem to enjoy

programming at all.

74

4.4.2 Academic progress

a) Assessment analysis

Figure 4.3 shows the academic performance of the students introduced to pair-

programming over two semesters. In the first semester, the students started using

pair-programming without any experience of the technique and the overall average of

the three assessments for the group was 63.8%.

In the second semester, the same students continued using pair-programming to

cultivate their software development skills, which resulted in a 7.8% point increase in

the overall average of the group.

Figure 4.2: Group A: Students using pair-programming

Figure 4.4 shows the academic performance of the solo-programming students

during both semesters of the research study. In the first semester, the academic

performance of the students was poor with an average of 46.5% for the three

assessments. In the second semester, there was a 5.5% point increase.

The average of the academic performance of the individual (solo) programming

students increased to 52%, but it was still less than 71.6% of students using pair-

programming. This indicates the need for an intervention to improve the academic

performance of software development students.

Secondary research objective iii): To determine how pair-programming

impacts the academic progress of IT students at HEIs in South Africa with

regard to software development

75

Figure 4.3: Group B: Individual programming

The overall average of both groups increased with 15 points from semester 1 to

semester 2; however, Group A displayed higher average marks than Group B

throughout the intervention across both semesters. This indicates that the

intervention seems to have a positive impact on the academic performance of IT

students.

Analysis methodology followed on the empirical assessment data:

The researcher assessed the students introduced to pair-programming by marking

each student’s assessments, three per semester, and calculating the average. The

total group average was then calculated from the individual average mark of each

student in the group. This was done for both groups over two semesters.

Next, the researcher compared the results of the two groups—pair-programming vs.

solo-programming. The results obtained from the assessments were used to

determine the impact of pair-programming on the academic performance of the

students.

To perform a paired t-test in terms of statistical significance, it was decided to set the

value at a 95% confidence interval level (p < 0, 05). Effect sizes served to decide on

the practical significance of the findings. A cut-off point of 0, 30 (medium effect) was

set for the practical significance of correlation coefficients. A paired t-test was

performed to measure whether there was a significant difference between the results

of semester 1 and semester 2 for the solo-programming group (Table 4.3).

76

Table 4.3: Paired t-test results for solo-programming

 Variable 1 Variable 2

Mean 0.465 0.52

Variance 0.00239 0.0072

Observations 6 6

Pearson Correlation 0.824443517

Hypothesized Mean Diff. 0

Df 5

t Stat 2.569046516

P(T<=t) one-tail 0.025046626

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.050093252

t Critical two-tail 2.570581836

The p-value is 0.05 and tS=2.56 < tC=2.57, indicating no statistical significant

difference between semester 1 and semester 2. Thus, no change occurred with

regard to student performance from semester 1 to semester 2 for the solo-

programming students.

A paired t-test was also performed to measure whether there was a significant

difference between the results of semester 1 and semester 2 for the pair-

programming group (Table 4.4).

Table 4.4: Paired t-test results for agile programming (pair-programming)

 Variable 1 Variable 2

Mean 0.638333333 0.716666667

Variance 0.010616667 0.003666667

Observations 6 6

Pearson Correlation 0.93494699

Hypothesized Mean Diff. 0

Df 5

t Stat 3.751008357

P(T<=t) one-tail 0.006639958

t Critical one-tail 2.015048373

P(T<=t) two-tail 0.013279917

t Critical two-tail 2.570581836

77

The p-value is 0.01 < 0.05 and tS=3.75 > tC=2.57, indicating a significant statistical

difference between semester 1 and semester 2. The pair-programming intervention

had a positive impact on the academic performance of the students.

Analysis of the results indicates that the students who followed a pair-programming

approach to developing software obtained significantly higher results and mastered

programming skills on a higher level than those who followed a solo-programming

approach.

4.4.3 Attitude

a) Interview analysis

What can be done to attract more students to programming?

This question, derived as a theme (using thematic analysis) from Question 12 in the

Interview Guide (see Annexure A), assisted the researcher in establishing the

attitude of students towards programming. Some of the participants’ answers are

indicated below.

Table 4.5 below indicates students’ answers before the pair-programming

intervention.

Table 4.5: Attitude: Before pair-programming

Question 12
Answers

Student 1 Student 2 Student 3 Student 4 Student 5

What can be done
to attract more
students to
programming?

Working in
group.

By teaching and
making students
understood
programming.

Grouping
students.

Workshop. Write programs
for money.

Table 4.6 below indicates students’ answers after the pair-programming intervention.

Secondary research objective iv): To determine the impact of pair-

programming on the attitude of IT students towards software development

78

Table 4.6: Attitude: After pair-programming

Question 12
Answers

Student 1 Student 2 Student 3 Student 4 Student 5

What can be done
to attract more
students to
programming?

Introduction of
pair-
programming.

Pair-
programming is
the best.

Working in
team.

Introducing
pair-
programming.

Use of pair-
programming.

From the answers of students after the introduction of pair-programming, it is clear

that they are in agreement that working in a team will attract more students to

programming. Pair-programming made the students more positive, confident and

learning was made easier through sharing ideas.

The data analysis indicates that 98% of the students agreed that pair-programming

had positively influenced their attitude towards software development in their studies

and a future career (figure 4.2).

Figure 4.4: Students’ attitude towards programming

b) Observation analysis

The researcher observed the following:

 Group A: The paired students became increasingly familiar with coding as

they shared their thoughts, ideas and source code with one another. All

worked efficiently on their assignments. They were preparing well for work in

the software industry where employees develop software in teams.

79

 Group B: The majority of the solo-programming students displayed little or no

interest in programming. They worked alone on the assignments and seemed

to struggle.

4.5 CONCLUSION

The primary objective of this study has been formulated as exploring the impact of

pair-programming on the academic performance and perception of tertiary level

students regarding the use of an innovative agile approach in developing software.

After having analysed the data collected through interviews, observations and

assessments, it is clear that an innovative agile programming approach has a

positive effect on the academic progress of students, including increased high-level

reasoning and critical thinking skills; deeper understanding of learned material;

increased quality in time on task; lower levels of anxiety and stress; greater intrinsic

motivation to learn and achieve; a greater ability to view situations from others’

perspective; more positive and supportive relationships with peers; more positive

attitudes toward programming modules; and a higher self-esteem in terms of

creativeness, innovativeness and collaboration; and mastery of learning.

With an agile programming approach, positive interdependence is structured into the

team’s tasks and activities, and students are responsible for each other’s success.

Communication skills are taught and expected to be used by all team members. The

instructor observes and intervenes if necessary to ensure that the process is

followed.

 From the pair-programming research conducted, results signify that an agile

approach will contribute towards assisting students in mastering software

development concepts, logic and code, among others, and enhancing students’

programming skills, academic performance, enjoyment level and attitude towards

software development.

80

5. CHAPTER 5: FINDINGS AND RECOMMENDATIONS

Figure 5.1: Graphical representation of Chapter 5

5.1 INTRODUCTION

This chapter presents the findings derived from the objectives of the study. The

viability of using pair-programming in the teaching and training of software

development students at HEIs in South Africa is compared to that of using the solo-

programming approach. Conclusions are drawn on whether pair-programming has a

positive effect on the attitude and enjoyment level of developing software and an

improvement in the academic performance of students. A model for applying pair-

programming at HEIs in SA is proposed and recommendations for optimal

implementation of pair-programming in a controlled setting are made.

Introduction

Summary of findings

Research questions

Practical contribution

Limitations

Future research

CHAPTER 5: FINDINGS AND RECOMMENDATIONS

Summary

81

5.2 RESEARCH QUESTIONS

This study endeavoured to investigate whether an agile systems approach has a

positive impact on IT students registered at HEIs in South Africa by answering the

primary research question through six secondary research questions.

The primary research question of this study is:

PRQ: How does pair-programming as agile software development

method shape the experience of tertiary level IT students with regard to

their academic performance in developing software?

The findings for each of the six secondary research questions are stated and

discussed below.

5.2.1 Secondary Research Question 1

SRQ1: How prominent is eXtreme Programming, specifically pair-

programming, as educational tool at Higher Education Institutions (HEIs) in

general?

Finding 1: Pair-programming is a systems development methodology created by

Kent Beck in 1996 (see Section 2.4)

Finding 2: Pair-programming is a technique used in eXtreme Programming where

two students or two developers program at one workstation (see

Section 2.4)

Finding 3: In a study conducted by Chigona and Pollock (2008), students in pairs

submitted higher quality work and received higher marks than solo-

programming students (see Section 2.4)

Finding 4: With pair-programming, both programmers share the entire application,

both contribute to the success of the application through switching roles

periodically, and both should be focused on the task without causing

unnecessary difficulties (see Section 2.4.1)

82

Finding 5: For effective team work in pair-programming, it is important to recognise

that there are specific steps to follow, and that the tasks and

interpersonal behaviours of the team might change over time (see

Section 2.4.2)

5.2.2 Secondary Research Question 2

SRQ2: What is the impact of pair-programming on IT students’ enjoyment

level of software development?

Pair-programming positively affects the enjoyment level of programming students. It

helps the students to interact, have team discussions and actively participate in team

work.

Finding 6: Paired students enjoy software development more than solo students

and paired students are more confident and less frustrated (see Section

2.4.3.1 and table 2.3)

Finding 7: Pair-programming improves learning and comprehension of software

development because each learning partner has knowledge and skills

to offer and both partners then learn from each other (see Section

2.4.1)

Finding 8: Students love pair-programming because it makes software

development easier (see Annexure C)

Finding 9: Paired students find that there are different methods to developing a

software development project (see Section 2.4.1)

Finding 10: Pair-programming develops communication skills between both learning

partners and enables students to socialise (see Sections 2.4.3.6; 2.4.1)

Finding 11: With pair-programming, students communicate and share the entire

application (i.e. programming code) (see Annexure C)

83

5.2.3 Secondary Research Question 3

SRQ3: How does pair-programming impact the academic progress of IT

students at HEIs in South Africa with regard to software development?

Pair-programming positively affects the academic performance of IT students by

helping them to interact and discuss possible solutions among themselves. With pair-

programming, both learning partners share the entire application and both are

responsible for the success of the application. The paired students combine their

unique skills to have a large subset of knowledge and skills to solve the problem.

Finding 12: On average, the academic performance of students introduced to pair-

programming, improved significantly. In semester 2, the same students

continued using pair-programming and this resulted in a 15% point

increase in terms of academic achievement (see Sections 2.4.3.4; 4.4

and figure 4.3)

Finding 13: Paired students passed the software development module after having

failed it twice before (see Annexure C)

Finding 14: Pair-programming assists students in understanding software

development, therefore students managed to pass the subject (see

Annexure C)

Finding 15: On average, paired students achieve significantly higher results than

those working alone (solo-programming) (see Section 2.4.3.4)

Finding 16: Pair-programming is indicated as the reason for a significant increase in

the software development marks of students and for passing the subject

with high marks (see Annexure C)

Finding 17: Paired students develop time management skills because both learning

partners feel responsible for and accountable to each other, therefore

they plan ahead to avoid letting each other down (see Section 2.4)

Finding 18: Paired students submitted all their projects on time (see Annexure C)

84

Finding 19: Paired students develop programs with high functionality and more

readable programming code (see Sections 2.4; 2.4.1 and figure 2.5)

Finding 20: The quality of the applications delivered by paired students is

distinctively higher than the applications delivered by solo-programmers

(see Section 2.4.3.3)

Finding 21: Pair-programming develops trust between learning partners (see

Section 2.4.1)

Finding 22: Programs or code developed by paired students are significantly more

descriptive than programs developed by solo students for the same

projects, and paired students received higher marks than solo students

for these programs (see Sections 2.4; 2.4.3.3 and figure 2.4)

Finding 23: Pair-programming increases the motivation among the paired students

because each learning partner wants to contribute to the success of the

joint programming project (see Section 4.1)

5.2.4 Secondary Research Question 4

SRQ4: How does pair-programming impact the attitude of IT students towards

software development?

Paired students submitted higher quality work which increased their confidence and

positively changed their attitude towards software development and a future career.

Finding 24: Paired students are more confident in programming than solo students

(see Section 2.4.3.2)

 Finding 25: Paired students become more accustomed to programming concepts

than solo students (see Section 2.4.3.2)

Finding 26: Paired students work more efficiently on their projects because pair-

programming reduces debugging time (see Sections 2.4.1 and 2.4.3.3)

85

Finding 27: Pair-programming develops the problem solving skills of students (see

Annexure C)

Finding 28: Pair-programming students are more willing to pursue a career in

programming than solo-programming students because they enjoy

software development in teams more than working on their own (see

Annexure C)

Finding 29: Pair-programming prepares students for the world of work where

employees often work in teams (see Sections 2.4.2; 2.4.3.5 and 2.4.3.6)

Finding 30: Paired students act positively towards working with their programming

partners using a collaborative programming approach (see Section 2.4

and table 2.3)

Finding 31: Programming code developed by paired students is simple, shorter, and

easier to understand (see Section 2.4 and figure 2.5)

Finding 32: Paired students develop a positive attitude towards programming and

working in a team (see Section 2.4.3.5)

5.2.5 Secondary Research Question 5

SRQ5: What model can be proposed to shape the experience of tertiary level

IT students with regard to their academic performance in developing software?

This study has shown that pair-programming contributes significantly towards

improving the academic performance of IT students in terms of software

development. However, the implementation of pair-programming in the classroom

can seem challenging due to the structure of the classroom or the lack of knowledge

of the lecturer/instructor on how to apply pair-programming. There are no

conventional guidelines to follow to implement pair-programming in the classroom.

The researcher proposes the following guidelines which a prospective pair-

programming lecturer/instructor can use as framework to implement pair-

programming in a practical classroom setting (see figure 5.2 for a graphical

representation of the proposed pair-programming framework).

86

Figure 5.2: Proposed Pair-programming Framework

i) Instructor training

Lecturers (also referred to as instructors or facilitators) play a vital role in the

successful implementation of pair-programming in the classroom. They need to be

PAIR-
PROGRAMMING

INSTRUCTOR

 Explaining and reinforcing the
principles of pair-programming

 Monitoring

 Observing

 Guiding

PARTICIPATION

 Strict attendance

 Weekly practical session

 Controlled environment

STUDENT

 Pairing by skills
level

EVALUATION

 Peer evaluation

 Individual
evaluation

GROUP COMPOSITION

 Two per group

 Three per group

 Four per group

 Five per group

INSTRUCTOR TRAINING

 Grouping per session
 Role switching

 Between two and five trainees per group

 Practical session in the computer laboratory

 One two-hour session per group

87

trained on how to use pair-programming in a controlled environment. It is important to

familiarise themselves with pair-programming to be able to accurately explain and

apply the principles of this agile programming method to students.

The instructors should frequently explain and reinforce the principles of pair-

programming to their students to clarify the roles and keep the students involved

during the entire process. Without this necessary reinforcement from the instructor,

students would be tempted to revert to solo-programming, a technique they are

familiar with (Williams et al. 2002). The instructor therefore has to ensure that the

principles of pair-programming are followed; for instance, the pairs must switch roles

periodically, and all the learning partners in a group have to be equally involved.

ii) Teaching students the principles of successful pair-programming

Instructors have to teach the students how to use pair-programming. It is a major

misconception to assume that students understand pair-programming. The students

may erroneously think pair-programming is simply about dividing the work into equal

parts and each partner has to concentrate on their section without taking into account

the work of the other learning partner(s) in the group. To avoid incorrect

implementation of pair-programming, students need to be taught that:

 They have to work together at the same workstation as a (program) coder,

controller or advisor

 They need to switch roles periodically

 Each student in the paired group needs to actively participate in the project

 Discussions and collaboration between coder, controller and advisor are

encouraged

When a paired group consists of two learning partners (the most preferable group

pairing for student training), they switch between coder and advisor.

For three learning partners in a paired group, the roles assigned are coder, advisor,

and controller (i.e. project manager).

A discussion on paired groups with four or five learning partners does not fall within

the parameters of this study and will therefore not be elaborated on.

88

iii) Pairing by skills level

The main objective of pair-programming is to ensure that all learning partners in a

paired group share the entire application and are equally responsible for the success

of the application. It is therefore advised to group the students according to their

programming skills level so that they can assist each other in a meaningful way. One

option is to pair the highly skilled student to a student with a lower programming

skillset. Both learning partners will then have to combine their unique skills to tap into

a larger subset of skills and knowledge.

iv) Strict attendance

The instructor has to ensure that the paired students attend class regularly. A student

who stays away from class, negatively impacts the quality of the paired group’s

project. A student is allowed to change his/her learning partner with the permission of

the instructor if the student feels the partner does not contribute positively and

equally to the project in terms of regular attendance.

v) Peer evaluation

The Instructor has to provide a mechanism to obtain feedback from the paired

students on their learning partners and must act immediately if any problem arises.

This will encourage the partners to work hard and contribute to the success of the

project. The learning partners are aware that they will evaluate each other and

submit the evaluation report to the instructor. Peer evaluation influences the

performance of the students and compels them to participate actively and fairly in the

project.

By using the following evaluation framework developed by Kaufman, Felder and

Fuller (1999), the student can easily rate the contribution of his/her learning

partner(s):

 “Excellent: Consistently displayed robust knowledge; tutored the learning

partner; well prepared and cooperative.

 Very good: Consistently did what s(he) was supposed to do; very well

prepared and cooperative.

89

 Satisfactory: Usually did what s(he) was supposed to do; acceptably

prepared and cooperative.

 Ordinary: Often did what s(he) was supposed to do; minimally prepared and

cooperative.

 Marginal: Sometimes failed to show up or complete the project; rarely

prepared.

 Deficient: Often failed to show up or complete the project; rarely prepared.

 Unsatisfactory: Consistently failed to show up or complete the project;

unprepared.

 Superficial: Practically no participation.

 No show: The learning partner never participated in the pair-programming

sessions.”

vi) Individual evaluation

The instructor has to ensure that learning takes place and that each student in the

group does not rely on his/her learning partner(s) to do all the work. Consequently,

the students should be evaluated individually to measure their performance.

Individual evaluation assists the instructor in verifying whether the students have

learned the course material and assisted each other within their respective groups.

vii) Composition of the group

The size of the group depends on the size of the class. Normally with pair-

programming, two students are paired into a group; however, if the number of

students is high, the instructor can pair up to four, maximum five, students into a

group. In cases when there is a student without a group (no one left to pair the

student with), the instructor can assign that student to any of the existing groups.

In addition to the framework, the following guidelines are proposed for the paired

students to optimise the pair-programming technique (Williams & Kessler 2001;

Werner, Denner & Bean 2004):

90

 The paired students are equal participants and all of them own and share the

project.

 The advisor in the paired group must always be actively guiding the coder. It is

therefore important that the learning partners switch roles so that each

learning partner has the opportunity to code and to advise respectively.

 ‘Ego-less programming’ is essential for establishing effective communication

between the learning partners. It is advised to use the words "we" and "us"

when groups present their work to the instructor.

 Taking a break periodically is important for maintaining the stamina and

refreshing the mind.

 The paired students should view and respect each other as co-learners,

colleagues or friends who assist one another to enhance their skills in order to

deliver quality work. They should not view one another as someone who

forces them into compromise.

5.2.6 Secondary Research Question 6

SRQ6: How can pair-programming be implemented optimally in a controlled

learning environment?

The researcher observed that a significant number of Information Systems students

do not have an adequate understanding of agile systems, especially pair-

programming. This is confirmed by Salo and Abrahamsson (2004) who state that a

tutorial on pair-programming must be held before the students start using an agile

method to familiarise themselves with the principles of pair-programming.

Recommendation 1: Higher education institutions should encourage the use of an

agile approach to programming, especially in software development where students

need to work in teams (collaborative learning) to develop applications.

Recommendation 2: Pair-programming should be correctly implemented from the

start of a programming module (see Section 5.2.5). Instructors and students will only

benefit from pair-programming if it is correctly implemented.

91

Recommendation 3: Instructors need to be trained on how to use pair-programming

in order to familiarise themselves with the principles of pair-programming.

Recommendation 4: Students must be taught on how to apply the principles of pair-

programming to avoid implementing this technique incorrectly, which will result in

ineffective learning.

Recommendation 5: Pair-programming does not simply mean grouping students in

pairs to write programs. However, the instructors need to facilitate and manage the

pair-programming experience and continuously apply the guidelines proposed in the

framework as well as the principles of collaborative learning.

Recommendation 6: Students must switch roles periodically, and discussion and

collaboration between the coder and advisor are encouraged.

Recommendation 7: The principles of collaborative learning must be followed and

respected during the pair-programming sessions.

Recommendation 8: The institution should have a controlled environment (computer

laboratory) with sufficient workstations available to students in order to implement

pair-programming.

Recommendation 9: The use of the guidelines proposed in the pair-programming

framework (see Section 5.2.5) will assist an instructor to successfully implement pair-

programming in a classroom environment.

Recommendation 10: A survey on the experiences of instructors concerning the use

and implementation of pair-programming in a software development module can be

conducted to further optimise the pair-programming model and guidelines.

Recommendation 11: Higher education institutions could consider developing

applications which provide support by means of a virtual community or e-learning,

where students interact and share knowledge with their lecturers and learning

partners through ‘virtual communication’ in a setting that simulates a class contact

session.

92

5.3 SUMMARY OF FINDINGS

Finding

No.

Findings References

Finding 1 Pair-programming is a systems development

methodology created by Kent Beck in 1996.

Chapter 2, Section 2.4

Finding 2 Pair-programming is a technique used in eXtreme

Programming where two students or two

developers program at one workstation.

Chapter 2, Section 2.4

Finding 3 In a study conducted by Chigona and Pollock

(2008), students in pairs submitted higher quality

work and received higher marks than solo-

programming students.

Chapter 2, Section 2.4

Finding 4 With pair-programming, both programmers share

the entire application, both contribute to the

success of the application through switching roles

periodically, and both should be focused on the

task without causing unnecessary difficulties.

Chapter 2, Section 2.4.1

Finding 5 For effective team work in pair-programming, it is

important to recognise that there are specific steps

to follow, and that the tasks and interpersonal

behaviours of the team might change over time.

Chapter 2, Section 2.4.2

Finding 6 Paired students enjoy software development more

than solo students and paired students are more

confident and less frustrated.

Chapter 2, Section 2.4.3.1

Finding 7 Pair-programming improves learning and

comprehension of software development because

each learning partner has knowledge and skills to

offer and both partners then learn from each other.

Chapter 2, Section 2.4.1

Finding 8 Students love pair-programming because it makes

software development easier.

Annexure C: Feedback from

students on enjoyment of

pair-programming

Finding 9 Paired students find that there are different

methods to developing a software development

project.

Chapter 2, Section 2.4.1

Finding 10 Pair-programming develops communication skills

between both learning partners and enables

students to socialise.

Chapter 2, Sections 2.4.3.6

and 2.4.1

93

Finding

No.

Findings References

Finding 11 With pair-programming, students communicate

and share the entire application (i.e. programming

code).

Annexure C: Feedback from

students on enjoyment of

pair-programming

Finding 12 On average, the academic performance of

students introduced to pair-programming,

improved significantly. In semester 2, the same

students continued using pair-programming and

this resulted in a 15% point increase in terms of

academic achievement.

Chapter 4, Section 4.4:

Figure 4.3

Chapter 2, Section 2.4.3.4

Finding 13 Paired students passed the software development

module after having failed it twice before.

Annexure C: Feedback from

students on academic

performance

Finding 14 Pair-programming assists students in

understanding software development, therefore

students managed to pass the subject.

Annexure C: Feedback from

students on academic

performance

Finding 15 On average, paired students achieve significantly

higher results than those working alone (solo-

programming).

Chapter 2, Section 2.4.3.4

Finding 16 Pair-programming is indicated as the reason for a

significant increase in the software development

marks of students and for passing the subject with

high marks.

Annexure C: Feedback from

students on academic

performance

Finding 17 Paired students develop time management skills

because both learning partners feel responsible for

and accountable to each other, therefore they plan

ahead to avoid letting each other down.

Chapter 2, Section 2.4

Finding 18 Paired students submitted all their projects on

time.

Annexure C: Feedback from

students on academic

performance

Finding 19 Paired students develop programs with high

functionality and more readable programming

code.

Chapter 2, Sections 2.4,

2.4.1 and Figure 2.5

Finding 20 The quality of the applications delivered by paired

students is distinctively higher than the

applications delivered by solo-programmers.

Chapter 2, Section 2.4.3.3

94

Finding

No.

Findings References

Finding 21 Pair-programming develops trust between learning

partners.

Chapter 2, Section 2.4.1

Finding 22 Programs or code developed by paired students

are significantly more descriptive than programs

developed by solo students for the same projects,

and the paired students received higher marks

than solo students for these programs.

Chapter 2, Sections 2.4.3.3,

and 2.4: Figure 2.4

Finding 23 Pair-programming increases the motivation among

the paired students because each learning partner

wants to contribute to the success of the joint

programming project.

Chapter 2, Section 4.1

Finding 24 Paired students are more confident in

programming than solo students.

Chapter 2, Section 2.4.3.2

Finding 25 Paired students become more accustomed to

programming concepts than solo students.

Chapter 2, Section 2.4.3.2

Finding 26 Paired students work more efficiently on their

projects because pair-programming reduces

debugging time.

Chapter 2, Section 2.4.3.3

Chapter 2, Section 2.4.1

Finding 27 Pair-programming develops the problem solving

skills of students.

Annexure C: Feedback from

students on attitude towards

software development

Finding 28 Pair-programming students are more willing to

pursue a career in programming than solo-

programming students because they enjoy

software development in teams more than working

on their own.

Annexure C: Feedback from

students on attitude towards

software development

Finding 29 Pair-programming prepares students for the world

of work where employees often work in teams.

Chapter 2, Sections 2.4.3.5,

2.4.3.6 and 2.4.2

Finding 30 Paired students act positively towards working with

their programming partners using a collaborative

programming approach.

Chapter 2, Sections 2.4.3.5

and 2.4: Table 2.3

Finding 31 Programming code developed by paired students

is simple, shorter, and easier to understand.

Chapter 2, Section 2.4:

Figure 2.5

Finding 32 Paired students develop a positive attitude towards

programming and working in a team.

Chapter 2, Section 2.4.3.5

95

5.4 PRACTICAL CONTRIBUTION

The main contribution of this study is collaborative learning as a pedagogical

approach in which cooperation between students who develop software, is

encouraged. The performance of students is improved when they work together to

obtain module outcomes. In this study, module outcomes relate to specific practical

computer programming outcomes students must obtain in order to pass.

The researcher assessed both groups (pair-programming and solo-programming) to

measure the academic performance of the students. The assessment consisted of

three practical tests. During the assessments, all the students worked individually.

The results obtained from the empirical analysis of the test marks indicate that the

students introduced to pair-programming obtained higher marks than the solo-

programming students.

5.5 LIMITATIONS

The focus of this research was on HEIs in South Africa, more specifically, the main

campus of a university in Gauteng, and did not include any satellite campuses.

The researcher acknowledges that the findings may not be generalised as the

population is relatively small (students registered for the Information Systems

module) and might differ from other higher education institutions in South Africa.

5.6 FUTURE RESEARCH

This research was delimited to HEI students in South Africa registered for the

Information Systems module of the Information Technology qualification. Follow-up

research on pair-programming could be conducted with programming students

across a number of universities and/or a number of programming modules.

A study which focuses on a larger sample size than 50 students could be conducted

to confirm the improvement of the academic performance, attitude and enjoyment

level of students taking part in pair-programming.

96

5.7 SUMMARY

The main objective of this study was to establish whether the use of pair-

programming would contribute significantly towards improving the academic

performance of tertiary level IT students in South Africa. An interpretive paradigm

with an inductive approach has been identified as a feasible research design for the

study.

Students registered for the Information Systems module were randomly divided into

two groups. The students in group A were introduced to an agile programming

approach called pair-programming, while the students in group B continued with the

traditional solo-programming approach.

The study warranted the use of both qualitative and quantitative research

methodologies, with a mixed-methods survey data collection strategy. Data was

collected through semi-structured interviews, observations and assessments over a

period of two consecutive semesters.

Both qualitative and quantitative data analysis methods were applied to the data

collected. Empirical analysis methods in the form of t-tests and graphs were

performed on the quantitative data collected. The qualitative data were analysed

using a thematic coding framework and hermeneutics principles.

The qualitative analysis results indicated that pair-programming has a significant

positive impact on the attitude and software development enjoyment level of

students. The statistical analysis results confirmed that the academic performance of

students introduced to pair-programming was significantly higher than students who

continued with a solo-programming approach.

The paired students displayed a higher level of reasoning and analytical skills, better

understanding of learned material, and a higher quality of time on task than the solo-

programming group. Paired students displayed lower levels of anxiety and stress,

higher motivation to learn and achieve, more supportive and positive relationships

with classmates, more positive attitudes toward programming, and higher self-esteem

expressed through creativeness, innovativeness, collaboration and mastery of

learning.

97

From the findings the researcher developed a Pair-programming Framework to

provide guidelines on how to implement pair-programming efficiently in a controlled

learning environment.

5.8 Conclusion

From the results of this study, pair-programming as an agile systems development

methodology contributes significantly towards enhancing the academic performance

and enjoyment level of software development students registered for the Information

Technology qualification at Higher Education Institutions in South Africa, and

changes their attitudes to be more positive towards software development.

98

REFERENCES

ADAMS, L., GOOLD, A., LYNCH, K., DANIELS, M., HAZZAN, O., & NEWMAN, I.

2003. Proceedings. Challenges in teaching capstone courses, ITiCSE'03,

Thessaloniki, 2003, Greece: ACM Press. [Online]. Available at:

http://www.academia.edu/2868129/Challenges_in_teaching_capstone_courses.

Accessed: 04/02/2015.

AMBLER, S. 2005. Agile modeling: effective practices for extreme programming and

the unified process. New York: John Wiley & Sons.

AMBYSOFT. 2012. The Agile System Development Life Cycle (SDLC). [Online].

Available at: http://www.ambysoft.com/essays/agileLifecycle.html. Accessed:

15/04/2015.

ASCD. 2015. Guiding school improvement with action research. Association for

Supervision and Curriculum Development. [Online]. Available at:

http://www.ascd.org/publications/books/100047/chapters/What-Is-Action-

Research%C2%A2.aspx. Accessed: 10/05/2015.

AVISON, D.E. & FITZGERALD, G. 2003. Information systems development:

methodologies, techniques and tools. 3rd ed. London: McGraw-Hill.

BASKERVILLE, R., PRIES-HEJE, J. & MADSEN, S. 2010. Post-agility: what follows

a decade of agility? Information and Software Technology, 53:543-555.

BECK, K. 2000. Extreme programming explained: embrace change. Reading, MA:

Addison-Wesley. [Online]. Available at: http://books.google.co.za/books.

Accessed: 12/03/2012.

BEISKE, B. 2007. Research methods: uses and limitations of questionnaires,

interviews and case studies. GRIN Verlag.

BENDER, R.P.T. 2003. Systems Development Lifecycle: objectives and

requirements. [Online]. Accessed at: http://books.google.co.za/books.

Accessed: 16/01/2015.

BEST, J.W. 1977. Research in education. Englewood Cliffs, New Jersey: Prentice

Hall. pp. 403.

BEVAN, J., WERNER, L. & MCDOWELL, C. 2002. Guidelines for the use of pair-

programming in a freshman programming class. Proceedings. The 15th

Conference on Software Engineering, Kentucky: 100-107.

http://www.ambysoft.com/essays/agileLifecycle.html
http://www.ascd.org/publications/books/100047/chapters/What-Is-Action-Research%C2%A2.aspx
http://www.ascd.org/publications/books/100047/chapters/What-Is-Action-Research%C2%A2.aspx
http://books.google.co.za/books
http://books.google.co.za/books

99

BHATTACHERJEE, A. 2012. Social science research: principles, methods, and

practices. South Florida: Open Access.

BIPP, T., LEPPER, A. & SCHMEDDING, D. 2008. Pair-programming in software

development teams: an empirical study of its benefits. Information & Software

Technology, 50(3):231-240.

BISHOP-CLARK, C., COURTE, J. & HOWARD, E.V. 2006. Programming in pairs

with Alice to improve confidence, enjoyment, and achievement. Journal of

Educational Computing Research, 34:213-228.

BLAIKIE, N. 1993. Approaches to Social Enquiry. 1st ed. Cambridge: Polity Press.

BLESS, C., HIGSON-SMITH, C. & SITHOLE, S.L. 2013. Fundamentals of social

research methods: an African perspective. 5th ed. Cape Town: Juta.

BOEHM, B. 2000. Spiral development: experience, principles and refinements.

Special report CMU/SEI-2000-SR-008, Carnegie Mellon Software Engineering

Institute.

BRAUGHT, G., EBY, L.M. & WAHLS, T. 2008. The effects of pair-programming on

individual programming skills. Proceedings. The 39th SIGCSE technical

symposium on computer science education, Portland, Oregon, USA: 200-204.

BRINKKEMPER, S. 1996. Method engineering: Engineering of information systems

development methods and tools. Information and Software Technology, 38:275-

280.

BURNEY, S.M. & MAHMOOD, N. 2006. A brief history of mathematical logic and

applications of logic in CS/IT. Karachi University Journal of Science, 34(1):61-

75.

BURNS, R. 2000. Introduction to research methods. New Delphi: Sage.

BURRELL, G. & MORGAN, G. 1979. Sociological paradigms and organisational

analysis. London: Heinemann: 22.

CHIA, R. 2002. The Production of management knowledge: philosophical

underpinnings of research design. In D. Partington (ed.). Essential Skills for

Management Research. 1st ed. London: Sage: 1-19.

CHIGONA, W. & POLLOCK, M. 2008. Pair-programming for Information Systems

students new to programming: students’ experiences and teachers’ challenges.

Proceedings. PICMET, Cape Town, South Africa.

100

CHO, J. 2008. Issues and challenges of agile software development with SCRUM.

Issues in Information Systems, 9(2):220-229.

CHRISTOU, I.T., PONIS, S.T. & PALAIOLOGOU, E. 2010. Using the agile unified

process in banking. [Online]. Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5232801. Accessed:

18/02/2015.

CLIBURN, D. 2003. Experiences with pair programming at a small college. Journal of

Computing in Small Colleges. [Online]. Available at:

http://books.google.co.za/books. Accessed: 23/02/2015.

COCHRAN, W.G. 1963. Sampling technique. Indian ed. Bombay: Asian Publishing

House: 413.

COCKBURN, A. & HIGHSMITH, J. 2001. Agile software development: the people

factor. IEEE Software, 131-133.

COLOSS INSTITUTE. 2015. Non-random methods. University of Bern, Switzerland.

[Online]. Available at: http://www.coloss.org/beebook/II/survey-methods/6/1/4.

Accessed: 15/04/2015.

CONRADIE, P. 2013. Information systems 1.2. VUT: Learner guide. Vaal University

of Technology, South Africa.

CONRADIE, P. & HUISMAN, M. 2012. The Advanced Research in Scientific Areas

(ARSA). Proceedings. The 1st Virtual International Conference. [Online].

Available at: www.arsa-conf.com/archive. Accessed: 13/10/2014.

CRESWELL, J.W. 2009. Research design: qualitative, quantitative, and mixed

methods approaches. 3rd ed. Thousand Oaks, California: Sage.

DAGNINO, A. 2002. An evolutionary life-cycle model with agile practices for software

development at ABB. Proceedings. The 8th IEEE International Conference,

Engineering, Complex Computer Systems (ICECCS’02): 215-223.

DENZIN, N. & LINCOLN, Y. 2005. Handbook of qualitative research. 3rd ed.

Thousand Oaks, CA: Sage.

DISSERTATIONHELPSERVICE.COM. 2015. Research strategy. [Online]. Available

at: http://dissertationhelponline.blogspot.co.za/2012/01/research-strategy.html.

Accessed: 12/02/2015.

DOISE W. & MUGNY G. 1984. The social development of the intellect. UK:

Pergamon Press, Oxford.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5232801
http://books.google.co.za/books
http://www.coloss.org/beebook/II/survey-methods/6/1/4
http://www.arsa-conf.com/archive
http://dissertationhelponline.blogspot.co.za/2012/01/research-strategy.html

101

DUDOVSKIY, J. 2015. An ultimate guide to writing a dissertation in business

studies: a step-by-step assistance. E-Book. [Online]. Available at:

http://research-methodology.net/about-us/ebook/. Accessed: 15/05/2015.

EASTERBY-SMITH, M., THORPE, R. & JACKSON, P. 2008. Management research.

3rd ed. London: Sage.

ERIKSSON, P. & KOVALAINEN, A. 2008. Qualitative methods in business research.

1st ed. London: Sage.

FLICK, U. 2010. An introduction to qualitative research. 4th ed. London: Sage

Publications.

GABRIEL, D. 2015. Inductive and deductive approaches to research. [Online].

Available: http://deborahgabriel.com/2013/03/17/inductive-and-deductive-

approaches-to-research/. Accessed: 11/05/2015.

GENISE, P. 2002. Usability evaluation: methods and techniques. [Online]. Available

at: http://www.cs.utexas.edu/users/almstrum/cs370. Accessed: 07/02/2015.

GOMES, A. & MENDES, A.J. 2007. An environment to improve programming

education. Proceedings. The 2007 International Conference on Computer

Systems and Technologies, Bulgaria: 14-15.

GREEFF, M. 2002. Information collection: interviewing. In A.S. de Vos (ed.), H.,

Strydom, C.B. Fouche & C.S.L. Delport. Research at grass roots for the social

sciences and human services professions. Pretoria: J.L. van Schaik.

HANKS, B., MCDOWELL, C., DRAPER, D. & KRNJAJIC, M. 2004. Program quality

with pair-programming in CS1. Proceedings. The 9th Annual Conference on

Innovation and Technology in Computer Science Education, United Kingdom:

176-180.

HARGROVE, R. 1998. Mastering the art of creative collaboration. New York:

McGraw-Hill.

HATCH, M.J. & CUNLIFFE, A. L. 2006. Organization Theory. 2nd ed. Oxford

University Press.

HENSON, V. 2002. How to encourage women in Linux. [Online]. Available at:

http://tldp.org/HOWTO/EncourageWomen-Linux-HOWTO/x106. Accessed:

07/02/2015.

HERR, K. & ANDERSON, G.J. 2015. The action research dissertation: a guide for

students and faculty. USA: Sage.

http://research-methodology.net/about-us/ebook/
http://deborahgabriel.com/2013/03/17/inductive-and-deductive-approaches-to-research/
http://deborahgabriel.com/2013/03/17/inductive-and-deductive-approaches-to-research/
http://www.cs.utexas.edu/users/almstrum/cs370
http://tldp.org/HOWTO/EncourageWomen-Linux-HOWTO/x106

102

HIGHSMITH, J. 2000. Adaptive software development: a collaborative approach to

managing complex systems. New York: Dorset House.

HO, C., SLATEN, K., WILLIAMS, L. & BERENSON, S. 2004. Examining the impact of

pair-programming on female students. NCSU CSC Technical Report. [Online].

Available at: ftp://ftp. ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2004rrR-

2004-20.pdf. Accessed: 12/03/2012.

HOFFER, J.A., GEORGE, J.F. & VALACICH, J.S. 2010. Modern systems analysis

and design. 6th ed. Upper Saddle River, NJ: Prentice Hall.

HOWARD, E.V. 2006. Attitudes on using pair-programming. Journal of Educational

Technology Systems, 35(1):89-103.

HUGHES, B. & COTTERELL, M. 2009. Software project management. 5th ed. UK:

McGraw-Hill Education.

JENSEN, R.W. 2005. A pair-programming experience. Overload, 65:22-25.

JOHNSON, A.P. 2012. A short guide to action research. 4th ed. New Jersey: Pearson

Education.

JOHNSON, D.W., JOHNSON, R.T. & SMITH, K.A. 1998. Active learning: cooperation

in the college classroom. 2nd ed. Edina, MN: Interaction Book.

KHUN, T. 1962. The structure of scientific revolution. University of Chicago.

KAUFMAN, D.B., FELDER, R.M. & FULLER, H. 1999. Peer ratings in cooperative

learning teams. American Society for Engineering Education, Charlotte, NC.

LATHAM, B. 2007. Quantitative research method. California: Wadsworth Publishing.

LEAU, Y.B. 2012. Software Development Life Cycle AGILE vs traditional

approaches. [Online]. Available at: http://books.google.co.za/books. Accessed:

16/01/2015.

LEE, D.T. 1987. Computer information system development methodologies: a

comparative analysis. Proceedings FIPS Conference, 56:683-692.

LIVARI, J., HIRSCHEIM, R. & KLEIN, H.K. 1999. Beyond methodologies: keeping up

with information systems development approaches and methodologies.

Information Systems Research, 9(2):164-193.

LOVAT, T.J. 2003.The Role of the Teacher’s coming of Age? Australian Council

Deans of Education.

ftp://ftp/
http://books.google.co.za/books

103

MACPHERSON, A. 2000. Cooperative learning group activities for college courses: a

Guide for Instructors. [Online]. Available at:

http://www.cooperation.org/pages/cl-methods.html. Accessed: 14/04/2014.

MACKENZIE, N. & KNIPE, S. 2006. Research dilemmas: paradigms, methods and

methodology. Issues in Education Research, 162:193-205.

MARTIN, R.C. 2002. Agile software development, principles, patterns and practice.

New York: Prentice Hall.

MAY, T. 2001. Social Research. Philadelphia: Open University Press.

MCDOWELL, C., HANKS, B. & WERNER, L. 2003. Experimenting with pair-

programming in the classroom. Proceedings. The 8th Annual Conference on

Innovation and Technology in Computer Science Education. New York: 60-64.

MCDOWELL, C., WERNER, L., BULLOCK, H.E. & FERNALD, J. 2002. The effects

of pair programming on performance in an introductory programming course.

Proceedings. The 33rd Technical Symposium on Computer Science Education:

42.

MCDOWELL, C., WERNER, L., BULLOCK, H.E. & FERNALD, J. 2006. Pair-

programming improves student retention, confidence and program quality.

Communications of the ACM, 49(8):90-95.

MCMAHON, G. 2009. Critical thinking and ICT integration in a Western Australian

secondary school. Educational Technology & Society, 12(4):269-281.

MERRIAM, S. 2009. Qualitative research: a guide to design and implementation. San

Francisco, CA: Jossey-Bass.

MERTENS, D.M. 2005. Research methods in education and psychology: integrating

diversity with quantitative and qualitative approaches. 2nd ed. Thousand Oakes:

Sage.

MERTENS, D. 2009. Transformative research and evaluation. New York: The

Guilford Press.

MILLS, G.E. 2011. Action research: A guide for the teacher researcher. 4th ed.

Boston: Pearson.

MOULY, G.J. 1970. The science of educational research methods. University of

London.pp.192.

MOUTON, J. 1996. Understanding social research. Pretoria: Van Schaik. pp.175.

http://www.cooperation.org/pages/cl-methods.html

104

MUNRO, J. 2003. Extreme Programming. PC Magazine, 22(3):68.

MYERS, M.D. 1997. Qualitative research in Information Systems. London: Sage.

NAGAPPAN, N. 2003. Pair learning: with an eye towards future success. [Online].

Available at: http://www.springerlink.com/contentlbv5gtav53uqmg8hk.

Accessed: 18/02/2015.

NEUMAN, W.L. 2005. Social research methods. 6th ed. London: Pearson.

NEUMAN, W.L. 2011. Social research methods: qualitative and quantitative

approaches. 7th ed. Boston: Pearson/Allyn and Bacon.

NIKIFOROVA, O., NIKULSINS, V. & SUKOVSKIS, U. 2009. Integration of MDA

Framework into the model of traditional software development. Frontiers in

Artificial Intelligence and Applications, Databases and Information Systems,

187:229-239. Amsterdam: IOS.

NZIMANDE, B. 2014. Address by the Minister of Higher Education and Training, Dr

Blade Nzimande, at the Conference of the South African Heads Of Mission, 28

August. [Online]. Available at:

http://www.dhet.gov.za/SiteAssets/Minister%20Speeches2014/Keynote%20add

ress%20by%20the%20Minister%20of%20Higher%20Education%20and%20Tra

ining%20.pdf. Accessed: 20/04/2015.

O'LEARY, Z. 2004. The essential guide to doing research. London: Sage.

ORLIKOWSKI, W.J. & BAROUDI, J.J. 1991. Studying Information Technology in

organizations: research approaches and assumptions. Information Systems

Research, 2(1):1-8.

PANDOR, N. 2006. Science, teachers, and textbooks. Address by the Minister of

Education, at a Maths and Science Professional Development Programme

Celebration Ceremony. [Online]. Available at: http://www.info.gov.za/.

Accessed: 12/03/2012.

PARKINSON, G. & DRISLANE, R. 2011. Qualitative research. Online Dictionary of

the Social Sciences. [Online]. Available at: http://bitbucket.icaap.org/dict.pl.

Accessed: 26/01/2015.

PERRET-CLERMONT, A.N. 1991. The social construction of meaning and cognitive

activity in elementary school children. In L.B. Resnick, J.M. Levine & S.D.

Teasley (eds.). Perspectives on socially shared cognition. Washington, D.C.:

American Psychological Association.

http://www.springerlink.com/contentlbv5gtav53uqmg8hk
http://www.dhet.gov.za/SiteAssets/Minister%20Speeches2014/Keynote%20address%20by%20the%20Minister%20of%20Higher%20Education%20and%20Training%20.pdf
http://www.dhet.gov.za/SiteAssets/Minister%20Speeches2014/Keynote%20address%20by%20the%20Minister%20of%20Higher%20Education%20and%20Training%20.pdf
http://www.dhet.gov.za/SiteAssets/Minister%20Speeches2014/Keynote%20address%20by%20the%20Minister%20of%20Higher%20Education%20and%20Training%20.pdf
http://www.info.gov.za/
http://bitbucket.icaap.org/dict.pl

105

PREECE, J., ROGERS, Y. & SHARP, H. 2002. Interaction design: beyond human-

computer interaction. New York: John Wiley & Sons.

PRESSMAN, R. 2009. A practitioner’s approach. New York: McGraw-Hill. [Online].

Available at: http://books.google.co.za/books. Accessed: 12/10/2014.

QUINLAN, C. 2011. Business research methods. UK: Cengage Learning.

RADDON, A. 2015. Early stage research training: epistemology & ontology in social

science research. College of Social Science, University of Leicester. [Online].

Available: https://www2.le.ac.uk/colleges/socsci/documents/research-training-

presentations/EpistFeb10.pdf . Accessed: 11/05/2015.

RUSSO, J.E. & SCHOEMAKER, P. 1989. Decision traps: the ten barriers to brilliant

decision-making and how to overcome them. NY, USA: Simon & Schuster.

SALDANA, J. 2009. The Coding Manual for qualitative researchers. 1st ed. London:

Sage.

SALO, O. & ABRAHAMSSON, P. 2004. Empirical evaluation of agile software

development: A controlled case study approach. Proceedings. The 5th

International conference on product focused software process improvement,

Japan.

SAUNDERS, S., LEWIS, P. & THORNHILL, A. 2009. Research methods for business

students. 5th ed. Harlow, UK: Pearson Educational.

SCHMIDT, J.B., MONTOYA-WEISS, M.M. & MASSEY, A.P. 2001. New product

development decision-making effectiveness: comparing individuals, face-to-face

teams, and virtual teams. Decision Sciences, 3232:575-600.

SHNEIDERMAN, B. & PLAISANT, C. 2005. Designing the user interface - strategies

for effective human-computer interaction. 4th ed. Reading, MA: Addison-Wesley.

SINGH, Y.K. 2006. Fundamentals of research methodology and statistics. New Delhi:

New Age International.

SLIFE, B.D. & WILLIAMS, R.N. 1995. What’s behind the research? Discovering

hidden assumptions in the behavioral sciences. Thousand Oaks, CA: Sage.

STEYN, H.S. 2000. Practical significance of the difference in means. Journal of

Industrial Psychology, 26(3):1-3.

STRAUSS, A. & CORBIN, J. 1990. Basics of qualitative research: Grounded Theory

procedures and techniques. California: Sage.

http://books.google.co.za/books
https://www2.le.ac.uk/colleges/socsci/documents/research-training-presentations/EpistFeb10.pdf
https://www2.le.ac.uk/colleges/socsci/documents/research-training-presentations/EpistFeb10.pdf

106

STRINGER, E.T. 2008. Action research in education. 2nd ed. New Jersey: Pearson.

SZALVAY, V. 2004. An introduction to Agile software development. Danube

Technologies Inc. [Online]. Available at:

http://www.danube.com/docs/Intro_to_Agile.pdf. Accessed: 04/02/2015.

TASHAKKORI, A. & TEDDLIE, C. 1998. Mixed methodology: combining qualitative

and quantitative approaches. Thousand Oaks, California: Sage.

THOMAS, L., RATCLIFFE, M. & ROBERTSON, A. 2003. Code warriors and code a-

phobes: a study in attitude and pair programming. Proceedings. The 34th

SIGCSE Technical Symposium on Computer Science Education, Reno,

Nevada, USA: 363-367.

UBOS see UGANDA BUREAU OF STATISTICS. 2015. Non-random sampling

design. [Online]. Available at:

http://www.ubos.org/Compendium2012/NonRandomSamplingDesign.html

Accessed: 10/02/2015.

UNIVERSITY WORLD NEWS. 2015. 7 reasons why students drop out of college.

College and University Blog. [Online]. Available at:

http://www.stateuniversity.com/blog/permalink/7-Reasons-Why-Students-Drop-

Out-Of-College.html. Accessed: 30/04/2015.

VOIGT, J.J. 2004. Dynamic systems development method. [Online]. Available at:

http://books.google.co.za/books. Accessed: 18/02/2015.

VYGOTSKY, L.S. 1978. Mind in society: the development of higher psychological

processes. Cambridge: Harvard University Press.

WALSHAM, G. 1993. Interpreting information systems in organizations. Chichester,

NH: Wiley.

WERNER, R., DENNER, J. & BEAN, S. 2004. Pair-programming strategies for

middle school girls. Proceedings. The Seventh International Conference on

Computers and Advanced Technology in Education (IASTED), 16-18 August,

Minneapolis: 161-166.

WHEELER, B.C. & VALACICH, J.S. 1996. Facilitation, GSS, and training as sources

of process restrictiveness and guidance for structured group decision making:

an empirical assessment. Information Systems Research, 7:429-450.

WILLIAMS, L. 1999. Strengthening the case for pair-programming. [Online]. Available

at: http://books.google.co.za/books. Accessed: 23/02/2015.

http://www.danube.com/docs/Intro_to_Agile.pdf
http://www.ubos.org/Compendium2012/NonRandomSamplingDesign.html
http://www.stateuniversity.com/blog/permalink/7-Reasons-Why-Students-Drop-Out-Of-College.html
http://www.stateuniversity.com/blog/permalink/7-Reasons-Why-Students-Drop-Out-Of-College.html
http://books.google.co.za/books
http://books.google.co.za/books

107

WILLIAMS, L. & KESSLER, R. 2000. All I ever needed to know about pair-

programming I learned in kindergarten. Communications of the ACM, 43:108-

114.

WILLIAMS, L. & KESSLER, R. 2001. Experiments with industry's "pair-programming"

model in the Computer Science classroom. Computer Science Education,

11(1):7-20.

WILLIAMS, L. & UPCHURCH, R. 2001. In support of student pair-programming.

Proceedings. The 32nd SIGCSE Technical Symposium on Computer Science

Education, Charlotte, North Carolina, USA. 21-25 February. ACM SIGCSE

Bulletin, 33(1):327-331.

WILLIAMS, L., WIEBE, E., YANG, K., FERZLI, M. & MILLER, C. 2002. In support of

pair-programming in the introductory Computer Science course. Computer

Science Education, 123:197-212.

WILLIAMS, L., LAYMAN, L., OSBORNE, J. & KATIRA, N. 2006. Examining the

compatibility of student pair programmers. Proceedings. The Agile 2006

International Conference Agile'06, Minneapolis, IEEE Computer Society: 411-

420.

WILLIAMS, L., LAYMAN, L., SLATEN, K., BERENSON, S. & SEAMAN, C. 2007. On

the impact of a collaborative pedagogy on African American millennial students

in software engineering. Proceedings. The 29th International Conference on

Software Engineering, ICSE'07, Minneapolis: 320-330.

WILLIAMS, L., MCCRICKARD, D.S., LAYMAN, L. & HUSSEIN, K. 2008. Eleven

guidelines for implementing pair-programming in the classroom. Proceedings.

The Agile 2008 Conference, Minneapolis: 445-452.

WYNEKOOP, J.L. & RUSSO, N.L. 1997. Studying systems development

methodologies: An examination of research methods. Information Systems

Journal, 7:47-65.

YIN, R.K. 2003. Case study research: design and methods. 3rd ed. Thousand Oaks,

CA: Sage: 19.

ZHANG, D. 2010. Towards theory building in agile manufacturing strategies: Case

studies of an agile taxonomy. International Journal on Production Economics,

131:303-312.”

ZIKMUND, W.G., BABIN, B.J., CARR, J.C. & GRIFFIN, M. 2010. Business research

methods. 8th ed. Mason, HO: Cengage Learning.”

108

ZOGHBI, N.B. & KUMAR, N. 2009. Teaching programming language to engineering

students: case study of Al Fateh University, Tripoli. Proceedings. The 3rd

National Conference, New Delhi.

109

ANNEXURE A: INTERVIEW GUIDE

 The purpose of the interview is to obtain data on pair-programming

 Interviews were held in a quiet environment at the university

 Each participant was given 10 min to 15 min

 All information provided is confidential

Name:

Student Number:

Date of interview:

Do you have your own computer?

How did you become interested in computers?

Why did you decide to study IT?

Do you enjoy IT?

Do you enjoy programming? And Why?

What don’t you like in programming?

What programming language do you prefer? And Why?

What skills do you need to be strong in programming?

Do you have those skills?

How many times do you practice programming by yourself per week?

Are you going to further your career in IT? And Why?

What can be done to attract more students to programming?

Do you have any idea about solo-programming? If yes, what is solo-programming?

Do you have any idea about pair-programming? If yes, what is pair-programming?

Do you think pair-programming will help students enjoy programming?

Will you enjoy pair-programming experience more than programming alone? And why?

110

ANNEXURE B: INTERVIEW RESPONSES FROM PARTICIPANTS (BEFORE AND AFTER)

From the 50 students interviewed, feedback from ten (10) participants who were most representative of the collaborative group opinion,

were selected to present in this annexure.

BEFORE INTRODUCING PAIR-PROGRAMMING TO STUDENTS

Questions Answers Answers Answers Answers Answers

 Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

1. Do you have your own
computer?

Yes, I do. Yes, I have. Yes Yes Yes

2. How did you become
interested in computers?

I got interested in
computers because I like
playing games on my
computer.

By going to the
Internet café.

I was so obsessed
with computers.

Mentors informed me
about IT.

I wanted to know
how to fix
computers.

3. Why did you decide to study
IT?

I decided to study
programming because I
love programming.

I’m so interested in
technology.

I love computers. I saw a lot of people I
know succeeding.

I love computers.

4. Do you enjoy IT? No, I don’t enjoy at all. Yes Sometimes Yes Very much.

5. Do you enjoy programming?

Why?

No, I don’t enjoy
programming because it is
very difficult for me and I
don’t understand it.

Yes, it is a bit
challenging.

No, it is boring and
very confusing.

Yes, It challenges me
and I find it very
interesting

Yes

6. What don’t you like in
programming?

I don’t like everything. Complex problems. Don’t like
programming.

Theory class. Nothing

7. What programming language
do you prefer? Why?

I don’t prefer any
programming language
because as I said I don’t
understand programming.

Visual Basic because
it is easy.

Don’t like
programming.

Java Java, I want to
create mobile
applications.

111

Questions Answers Answers Answers Answers Answers

 Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

8. What skills do you need to be
strong in programming?

Problem solving in
programming.

Coding skills. Problem solving. Creativeness Faith

9. Do you have those skills? No, I don’t have it. No. No. Not yet. Not yet.

10. How many times do you
practice programming by
yourself per week?

Four times. Two times. Not sure. 3 to 4 times a week. 2 times a week.

11. Are you going to further your
career in IT? Why?

Yes, I can’t change the
course.

Yes, to know more
about technology.

No, IT is difficult
because of
programming.

Yes, it is very broad
and one can choose
anything within IT.

Yes, I love
computers more
than anything.

12. What can be done to attract
more students to programming?

Working in group. By teaching and
making students
understood
programming.

Grouping students. Workshop Write programs for
money.

13. Do you have any idea about
solo-programming? If yes, what
is solo-programming?

Yes, solo-programming
means working alone.

No. Yes, programming
alone.

Yes, a sort of
programming where
one can work
individually.

Writing program by
yourself without any
help from anyone.

14. Do you have any idea about
pair-programming? If yes, what
is pair-programming?

No, I don’t have any idea.
But I can guess it is
working in group.

No. No idea about pair-
programming.

Yes, two or more work
together.

Sharing the
program with
someone.

15. Do you think pair-
programming will help students
enjoy programming?

I don’t know yet. I don’t know anything
about pair-
programming.

Don’t know. Yes Yes, programming
works better with
two people.

16. Do you think you will enjoy
pair-programming experience
more than programming alone?
Why?

I don’t know yet. Don’t know yet. Don’t know. I don’t know yet
because I usually work
alone.

No, I like
programming on
my own.

112

BEFORE INTRODUCING PAIR-PROGRAMMING TO STUDENTS (CONTINUED)

Questions Answers Answers Answers Answers Answers

 Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

1. Do you have your own
computer?

Yes Yes Yes yes Yes

2. How did you become
interested in computers?

I got interested when my
sister had one.

Playing games on
computer.

Through playing
videos games.

By doing my
assignments.

I want to learn more
about technology.

3. Why did you decide to study
IT?

I want to be a
programmer.

I want to know more
in IT field.

To become a qualified
software developer.

IT has a wide
knowledge.

I want to learn
about technology.

4. Do you enjoy IT? Yes Yes Yes Yes, I do enjoy IT but
not the programming
part.

Yes

5. Do you enjoy programming?

Why?

Yes, because
programming is
challenging and I like
challenges.

No, it is confusing for
me.

Yes, programming is
what I want to do in
the industry.

No, it is very difficult. Yes, it taught me
how to run codes.

6. What don’t you like in
programming?

Complex questions. Everything, as I said
it is confusing.

I like programming. I don’t like everything
which deals with
programming.

Nothing

7. What programming language
do you prefer? Why?

VB I don’t like any
programming
language.

Java Maybe VB because is
easy.

C# and Java
because I find them
simple and
understandable.

8. What skills do you need to be
strong in programming?

Understanding the
programming logic.

I don’t know. Logic design and
analytical skills.

No idea. Practicing

9. Do you have those skills? Not really. I don’t know. Yes Don’t like
programming, as I
said.

Yes, I practice a lot.

113

Questions Answers Answers Answers Answers Answers

 Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

10. How many times do you
practice programming by
yourself per week?

Every day (2 hours per
day).

I don’t practice at all. 5 times a week. I practice only before
the test or exam.

Twice a week.

11. Are you going to further your
career in IT? Why?

Yes, because I want to be
very good in computers.

Yes but in networks. Yes because I want to
become a better
software developer
with a degree in IT.

Yes because it is too
late for me to change
the course.

Yes, because I love
and enjoy doing it.

12. What can be done to attract
more students to programming?

Student must be taught
programming from high
school.

Enough time for
practicing.

Exposing students to
great opportunities that
are offered by
programming.

Start coding from
scratch and the
lecturer should share
codes where and
when to place a
specific piece of code,
not just opening a
folder with the codes
already done.

Tell the students
more about
programming, also
how does it work.

13. Do you have any idea about
solo-programming? If yes, what
is solo-programming?

No No Yes, when one
programmer builds an
application on his own.

No Yes, a program that
is made by one
person.

14. Do you have any idea about
pair-programming? If yes, what
is pair-programming?

No No Yes No Yes, a program that
is made by two
people.

15. Do you think pair-
programming will help students
enjoy programming?

No idea. I don’t know. Don’t know yet. I don’t have any
information on pair-
programming.

Yes

16. Do you think you will enjoy
pair-programming experience
more than programming alone?
Why?

I don’t know. I don’t know. To be honest, I don’t
know.

I don’t have any
information on pair-
programming, as I said
previously.

Yes, I will need the
help somewhere.

114

AFTER INTRODUCING PAIR-PROGRAMMING TO STUDENTS

Questions Answers Answers Answers Answers Answers

 Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

1. Do you have your own
computer?

Yes, I do. Yes, I have. Yes Yes Yes

2. How did you get interested in
computers?

I got interested in
computers because I like
playing games on my
computer.

By going to the
Internet café.

I was so obsessed
with computers.

Mentors informed me
about IT.

I wanted to know
how to fix
computers.

3. Why did you decide to study
IT?

I decided to study
programming because I
love programming.

I’m so interested in
technology.

I love computers. Many people I know
succeeding in IT.

I love programming.

4. Do you enjoy IT Yes, I do. Yes Yes. Yes Very much.

5. Do you enjoy programming?
Why?

Yes, I do because
programming is
challenging and it is
funny.

Yes, it is a bit
challenging.

Kind of. Now, I start
understanding it.

Programming is very
interesting and I like it.

It is challenging and
I love challenges.

6. What don’t you like in
programming?

I don’t like when a lecturer
spends more time in
theory.

I don’t like when we
don’t practice.

I don’t like too much
theory.

Lot of theory. Nothing

7. What programming language
do you prefer? Why?

I prefer Visual Basic and
PHP.

Visual Basic and
Java.

Visual Basic. Java and PHP. Java, I want to
create mobile
applications.

8. What skills do you need to be
strong in programming?

Problem solving, critical
thinking, fast thinking and
logical thinking.

To be creative. Coding. Creativity Problem solving
skills.

9. Do you have those skills? Yes, I do have them after
being introduced to pair-
programming.

Now I can say I’m
getting them.

Not sure but right now
I’m able to code in
Visual Basic.

Yes, I do. Yes, I think I do.

115

Questions Answers Answers Answers Answers Answers

 Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

10. How many times do you
practice programming by
yourself per week?

Many times because now
I enjoy programming.

Many times because
my partner assists
me.

Many times. Every day, I can’t
sleep without doing
some exercises.

6 times a week.

11. Are you going to further your
career in IT? Why?

Yes, I want to go as far as
possible in order to learn
as much as possible.

I will think about it. Yes, I’m enjoying
programming.

Yes, it is very broad
and gives many
options in the industry.

Yes, I love
computers and
programming.

12. What can be done to attract
more students to programming?

Introduction of pair-
programming.

Pair-programming is
the best.

Working in team. Introducing pair-
programming.

Use of pair-
programming.

13. Do you have any idea about
solo-programming? If yes, what
is solo-programming?

Yes, solo-programming
means working alone.

Yes, coding alone. Yes, programming
alone.

Yes, typing codes
alone.

Coding individually.

14. Do you have any idea about
pair-programming? If yes, what
is pair-programming?

Yes, I do. Pair-
programming means
working in group of two
students in which both
students share everything
and switch roles and both
must be active.

Yes, programming in
team of two partners.

Yes of course, coding
in a group of two
partners where you
share the entire
project.

Yes, sharing codes. Typing codes
collaboratively with
the partners.

15. Do you think pair-
programming will help students
enjoy programming?

Yes because two heads
are better than one head.

Yes, it is the best. Obvious Yes Yes

16. Will you enjoy pair-
programming experience more
than programming alone? Why?

Yes, I do. Pair-
programming helps me to
improve my programming
skills. In our team we help
each other to find
solution.

Yes, it helps me to
understand
programming.

Yes, it helps me to
pass Visual Basic.

Yes, I do enjoy pair-
programming
experience.

Yes, It was
amasing.

116

AFTER INTRODUCING PAIR-PROGRAMMING TO STUDENTS (CONTINUED)

Questions Answers Answers Answers Answers Answers

 Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

1. Do you have your own
computer?

Yes Yes Yes Yes Yes

2. How did you get interested in
computers?

My sister introduced me
to computers.

Playing games and
doing my assignment
on my computer.

Playing video games. Doing my assignments
on the computer.

To know more
about IT.

3. Why did you decide to study
IT?

I want to be a good
programmer and develop
some application

To know more about
IT.

I want to be a qualified
programmer.

IT Gives me many
options to do. For
examples: Networks,
Programming,
Database, etc.

To have more
knowledge in IT.

4. Do you enjoy IT Yes Yes Yes Yes Yes

5. Do you enjoy programming?
Why?

Yes, programming
increases my skills of
thinking and solving
problems.

Yes, I do.
Programming helps
me to solve
problems.

Yes, I want to be a
programmer in my life.

Yes Yes

6. What don’t you like in
programming?

Easy questions. Right now I like
programming.

I like coding. Now, I enjoy any
programming.

I like programming.

7. What programming language
do you prefer? Why?

VB VB and Java. Java VB, Java and C#. Java and C#.

8. What skills do you need to be
strong in programming?

Programming logic skills. Problem solving. Logical and analytical
skills.

Problem solving. Logical thinking.

9. Do you have those skills? Yea, I’m going there. Yes I do have it. I’m getting there with
the help of my partner.

Yes

10. How many times do you
practice programming by
yourself per week?

Everyday 5 times a week with
or without my
partner.

5 times. Almost every day. 6 times a week.

117

Questions Answers Answers Answers Answers Answers

 Participant 6 Participant 7 Participant 8 Participant 9 Participant 10

11. Are you going to further your
career in IT? Why?

Yes, I want to be a good
programmer.

Yes, programming is
so interesting.

Yes, I want to be a
better software
developer.

Yes, now I love
programming.

Yes, I enjoy IT.

12. What can be done to attract
more students to programming?

Applying pair-
programming.

Enough time for
practicing (practical
classes) and let the
students to do the
assignments in team
(Pair-programming).

Exposing students to
great opportunities that
are offered by
programming.

Teaching theory to
students and give
them enough time to
practice in team.

Grouping the
students in teams
and give them
many exercises to
do.

13. Do you have any idea about
solo-programming? If yes, what
is solo-programming?

Working alone. Yes, coding alone. Yes, coding
individually.

Yes, coding alone. Yes, doing the
whole coding alone.

14. Do you have any idea about
pair-programming? If yes, what
is pair-programming?

Coding the entire project
in team by sharing ideas.

Yes, coding with your
partner.

Yes, coding with your
partner.

Yes, now I know what
is pair-programming.
Sharing code with your
partner and both of
you must be active
throughout coding.

Yes, coding with
your partner.

15. Do you think pair-
programming will help students
enjoy programming?

Yes Yes, it is a strong
tool.

Yes, because students
are able to get help
from their partners but
not for me because I
want to get the
solution by my own.

Yes, based on my
experience pair-
programming helps me
to understand
programming. So yes
it helps students to
enjoy programming.

Yes definitively.

16. Will you enjoy pair-
programming experience more
than programming alone? Why?

Yes, It was a wonderful
experience.

Yes, it was a good
experience.

No, I want to work
alone.

Yes, I enjoyed pair-
programming. It helps
me to understand
some coding by
sharing ideas with my
partner.

Yes, my partner
helped me a lot and
together
programming
becomes so easy.

118

ANNEXURE C: FEEDBACK FROM STUDENTS - OBJECTIVES

From the 50 students interviewed, feedback from ten (10) participants who were most

representative of the collaborative group opinion, were selected to present in this

annexure.

ENJOYMENT OF PAIR-PROGRAMMING

Student 1: I enjoy pair-programming.

Student 2: I love pair-programming because it makes programming easy.

Student 3: Everyone enjoys pair-programming.

Student 4: With pair-programming, I communicate and share ideas with my

partner.

Student 5: Pair-programming is much better than working on your own.

Student 6: I enjoy Pair-programming because it enhances my ability to think.

Student 7: Pair-programming helps me to be able to run some applications alone

what I couldn’t do before.

Student 8: Pair-programming assists us to increase our logical thinking to solve

programming problems which is wonderful.

Student 9: I enjoy pair-programming because I can discuss with my partner. But

sometimes I feel like pair-programming is time consuming and I like to

work alone.

Student 10: Pair-programming is awesome. My partner assisted me to develop a

positive attitude towards programming and stop thinking that

programming is difficult.

ACADEMIC PERFORMANCE

Student 1: I have managed to increase my marks and passed the subject with

good marks.

Student 2: My partner and I passed the subject after failing it twice before.

119

Student 3: It helps to understand the subject therefore I managed to pass the

subject.

Student 4: Pair-programming is useful. I submitted all the projects on time because

we were assisting each other.

Student 5: My partner and I are able to develop good projects.

Student 6: I am happy. Now I managed to pass programming and understand

programming.

Student 7: I passed programming with good results which was impossible before

being introduced to pair-programming. My partner really helped me a lot

to understand programming.

Student 8: I passed all my programming subjects and now I am able to develop

good applications alone.

Student 9: I and my teammate passed programming with distinction. So I am very

happy.

Student 10: I passed some programming subjects and I am still struggling with

other. But I am sure at the end of the day I will pass.

ATTITUDE TOWARDS SOFTWARE DEVELOPMENT AND A CAREER IN

PROGRAMMING

Student 1: Now I understand programming and I am confident. So I think I will

continue with programming to develop more software.

Student 2: I have developed problem solving skills. So I will be a good programmer

to contribute to the success of the community.

Student 3: Yes of course, I will continue with programming.

Student 4: So far pair-programming helps me to understand programming. But I

am still thinking of carrying on with programming.

Student 5: Pair-programming makes me enjoy programming, so I will try my luck in

programming.

Student 6: pair-programming makes programming easy but still I will go to

networks because I love networks.

120

Student 7: I will towards programming because it brightens my future and I hope

one day I will design my own program.

Student 8: Yes of course, I will continue with programming in the industry.

Student 9: I enjoy programming so I will continue with it.

Student 10: Pair-programming is awesome. My partner assisted me to develop a

positive attitude towards programming and stop thinking that

programming is difficult.

121

ANNEXURE D: PUBLISHED JOURNAL ARTICLE

KAFILONGO, KWM. & JORDAAN, A. 2014. Agile Programming: an innovative

approach to software development in higher education. South African Innovation

Summit Journal on Research, Science, Technology and Innovation, 2(1):49-59.

Pretoria: Innovation Summit ™. ISSN 2310-8622.

SA Innovation Summit Journal

RESEARCH, SCIENCE, TECHNOLOGY AND INNOVATION
2014

VOLUME 2, ISSUE 1

Selected papers presented at Cape Town Stadium, Western Cape
on 16-17 September 2014

ON

ANNEXURE D: Published Journal Article

__

Page | i

South African Innovation Summit Journal
Volume 2, Issue 1
November 2014
ISSN 2310-8622

Publisher: Innovation Summit ™

Mark Shuttleworth Street
The Innovation Hub, Room 3

Pretoria, 0001, Gauteng
Tel: +27 (0)12 844 0674
Fax: +27 (0)86 605 7714

Email: info@innovationsummit.co.za

Copyright © Innovation Summit ™ 2014

__

Page | ii

TABLE OF CONTENTS

1. PREFACE .. iii

2. FOREWORD ... v

3. COMMITTEES ... vii

4. INTERNATIONAL PANEL OF REVIEWERS ... viii

5. KEYNOTE SPEAKER: PATRICIA GOUWS .. 1

5.1 Biography ... 1

5.2 Keynote Address: Innovation through Community Engagement — Inspired towards Science,

Engineering and Technology (I-SET) – Gouws, PM .. 2

6. FULL PAPERS .. 15

6.1 Schooling Teachers and Learners by Design – Enslin, C (Dr) ... 15
6.2 Game Changing Africa—Competencies for the Successful Use of Digital Gaming in Building

Digimodern Leadership – Grové, W .. 27

6.3 Agile Programming: An Innovative Approach to Software Development In Higher Education –

Kafilongo, KWM ... 49
6.4 Degradation of Pre-treated Abattoir Wastewater for Optimisation of OLR and HRT in a UASB

Reactor – Ondari, JM ... 60

7. DISCUSSION PAPERS ... 72
7.1 The Rationale and Trajectory of ‘Re-Blocking’: A Case of Formalising the Informal and

Informalising the Formal – Bolnick, A ... 72

7.2 Innovation and Enterprise Development: The Case of eThekwini Municipality – Chetty, A (Dr) ... 83

7.3 Design Thinking as a Catalyst for a Culture of Innovation in Organisations: A Case of Project

Management – Makhoalibe, P ... 95

7.4 The Benefits of Structured Innovation – Markoulides, D ... 111

7.5 A Novel Engineering Design for early diagnosis of Breast Cancer – Vaughan, K (Dr) 118

8. SHORT BIOGRAPHIES ... 127

8.1 Authors ... 127

8.2 Journal editors and Academic Conference Stream Organisers .. 129

TABLE OF CONTENTS

__

Page | viii

Beyers, R (Dr)
Young Engineers and Scientists of
Africa,
South Africa
Email: ron@yesa.org.za

Du Pré, RH (Prof)
Chairperson: South African Technology
and Training Platform (SATTP), Southern
Africa
Email: rhdupre@sattp.net

De la Harpe, AC (Dr)
Cape Peninsula University of
Technology, South Africa
Email: andre@cencra.com

Farquharson, F
National Skills research Agency
(NASRA), South Africa
Email: fionaf@vitalitybroadband.co.za

Grové, W
University of the Western Cape,
South Africa
Email: wgrove@uwc.ac.za

Lombard, A
Vaal University of Technology,
South Africa
Email: alombard@vut.ac.za

Meyer, ME
South African Technology and Training
Platform (SATTP), Australia
Email: memeyer2265@gmail.com

Simpson, A (Dr)
Medico-legal Consultant,
South Africa
Email: andresimpson10@gmail.com

Vlok, A
University of Stellenbosch, Business
School, South Africa
Email: awie.vlok@telkomsa.net

Warden, SC (Dr)
Cape Peninsula University of Technology,
South Africa
Email: wardens@cput.ac.za

4. INTERNATIONAL PANEL OF REVIEWERS

__

Page | 49

6.3 Agile Programming: An Innovative Approach to Software Development
In Higher Education – Kafilongo, KWM

KWM Kafilongo
Vaal University of Technology
Email: kindukaf@gmail.com

A Jordaan
Vaal University of Technology

Email: annjor@yebo.co.za

P Conradie
Vaal University of Technology

Email: pieterc@vut.ac.za

ABSTRACT

The number of students passing computer programming modules at universities in South
Africa at first year level is low. Only with the second attempt do most students pass. This
delay results in most students completing their National Diplomas in four or even five years.
One possible contribution towards a solution for this problem is the introduction of an
innovative agile approach to Information and Communications Technology (ICT) education.
The agile approach, based on the principles of agile systems development methodologies, is
especially relevant to ICT education. This study endeavoured to investigate the perceptions of
fifty students regarding the use of an innovative agile approach in a computer programming
module. Interviews were used as a data collection method. It was established that students
have a positive opinion regarding the use of an agile approach in innovative computer
programming, with students reporting that they found the class more engaging, that
cooperation assisted in developing a shared understanding, and that they were more
motivated. This improved motivation links to enhanced self-efficacy, identified as a separate
theme during content analysis. The use of an agile approach in the classroom can thus
support praxis, introducing a teaching strategy with positive results, not only regarding the
final marks, but also the perceptions of students.

Keywords: Agile Approach, Collaborative Learning, Engagement, Innovation, Motivation.

1. INTRODUCTION

An agile systems approach seems advantageous to education in general and could lead to
retention in the number of students enrolled in Information Technology (IT) courses at Higher
Education Institutions (HEIs) in South Africa. With an agile approach, the students use
collaborative learning (also known as cooperative learning) which maximises the learning and
satisfaction that result from working as part of a high-performance team. This research was
guided by the question whether an agile approach could have a positive effect on the
perception of students regarding the use of such an approach in an innovative computer
programming module, and whether it could result in an increase in the student retention rate
in Information and Communications Technology (ICT) at higher education (HE) level.

One of the learning outcomes of IT focuses on the design and development of appropriate
computer-based solutions to specific problems using programming (i.e. software
development). However, most of the students are not able to develop an appropriate
computer-based solution using programming due to a lack of innovative programming skills.
They do not develop strong programming skills because they are taught traditionally with

__

Page | 50

individual programming assignments and competitive grading rather than deeper learning in
teams in order to master programming languages and develop innovative programming skills.
Students face many obstacles when attempting to develop computer-based solutions to
specific problems using programming or developing software individually rather than in a
team. This contributes to the low pass rate of students enrolled for computer programming
modules at universities in South Africa at first year level. Research concluded that teams in
general have the potential to make more effective decisions than individuals as teams can
pool knowledge and information, which assists in good decision making (Russo &
Schoemaker, 1989; Schmidt et al., 2001; Wheeler & Valacich, 1996).

2. LITERATURE REVIEW

According to Beck (2000), the term Agile Software Development Methodology (ASDM)
refers to specific methodologies that share the principles and values as stated in the Agile
Manifesto, highlighting twelve principles through which a methodology can be identified to
be agile. In order for a methodology to be deemed agile, the most important characteristic is
the ability to adapt quickly to change. This adaptability is achieved through the techniques
and tools of the particular methodology (Beck, 2000). One innovative tool, referred to as agile
programming, is based on the premise that better software can be developed by iterative and
incremental software development methodologies which include Extreme Programming (XP),
Dynamic Systems Development Method (DSDM) and Feature-Driven Development (FDD).
According to Beck (2000), the use of XP in Industry has been claimed to provide significant
benefits and there seems to be potential in the use of this methodology for student projects. In
addition, Adams et al. (2003) states that the use of XP is common in most fields of innovative
software development. In a study done by Zhang (2010), it was found for example that agility
is widely accepted in the manufacturing industry as a new competitive concept.

Beck (2000) identified twelve principles through which the agile methodology can be
recognised:

a) The highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

b) Welcome changing requirements, even late in development. Agile processes harness
change for the competitive advantage of the customer.

c) Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to a shorter timescale.

d) Business people and developers must work together daily throughout the project.

e) Build projects around motivated individuals. Provide them with the environment and
support they need, and trust them to get the job done.

f) The most efficient and effective methodology of conveying information to and within
a development team is face-to-face conversation.

g) Working software is the primary measure of progress.

h) Agile processes promote sustainable innovative development. The sponsors,
developers and users should be able to maintain a constant pace indefinitely.

__

Page | 51

i) Continuous attention to technical excellence and good design enhances agility.

j) Simplicity, which is the art of maximising the amount of work not done, is essential.

k) The best architectures, requirements and designs emerge from self-organisation.

l) At regular intervals, the team reflects on how to become more effective and then
adjusts its behaviour accordingly.

One of the most important reasons for using an agile approach in innovative programming is
the use of grouping students in teams whereby collaborative or cooperative learning is
implemented. Collaborative learning used in agile programming is an approach to group work
that maximises the learning and satisfaction which results from working as part of a high-
performance innovative team. Relative to students being taught traditionally with instructor-
centred lectures, individual assignments focus on concepts which have limited opportunities
for students to practice programming skills.

Moreover, for many students, especially novices and those without the relevant background, it
is not easy to learn programming concepts and languages whereas students who are taught to
use agile programming tend to learn collaboratively because they are working in a
collaborative group. Thus, collaboratively taught students tend to exhibit higher academic
achievement; advanced high-level reasoning and critical thinking skills; a deeper
understanding of learned material; greater time on task; lower levels of anxiety and stress;
greater intrinsic motivation to learn and achieve; greater ability to view situations from
others’ perspectives; more positive and supportive relationships with peers; more positive
attitudes toward programming subjects; and a higher self-esteem (Johnson et al., 1998).

Johnson et al. (1998) further state that cooperative learning is instruction that involves
students working in teams to accomplish a common goal, under conditions that include the
following elements:

� Positive interdependence—team members are obliged to rely on one another to
achieve the goal. If any team members fail to do their part, everyone suffers
consequences.

� Individual accountability—all students in a group are held accountable for doing their
share of the work and for mastery of all of the material to be learned.

� Face-to-face promotive interaction—which enables some of the group work to be
parcelled out and done individually and some to be done interactively, with group
members providing one another with feedback, challenging reasoning and
conclusions, and perhaps most importantly, teaching and encouraging one another.

� Appropriate use of collaborative skills—thereby encouraging and helping students to
develop and practice trust-building, leadership, decision-making, communication and
conflict management skills.

� Group processing—team members set group goals, periodically assess what they are
doing well as a team, and identify changes they need to make in order to function
more effectively in the future.

__

Page | 52

3. RESEARCH PROBLEM

ICT students in general display a lack of knowledge in solving problems that involve different
programming languages and technologies. Most of the time students do not have experience
in innovative software development. This results in students becoming discouraged and
feeling that they are struggling alone. One possible solution for this problem is the
introduction of an agile approach (i.e. a collaborative pedagogical approach), whereby the
students develop software in collaborative teams. The problems are encapsulated in the
following research questions.

4. RESEARCH QUESTIONS

The research questions for this study are:

� What is the current status of the academic performance of ICT students in Higher
Education?

� How does agile programming affect the academic performance of ICT students?

� How does pair-programming change the attitudes of students to be more positive
towards innovative software development and a career in ICT?

� What recommendations can be made to advance agile programming?

5. AIMS OF THE STUDY

The aims of this study are to:

� To determine the current status of the academic performance of ICT students in
Higher Education.

� To determine how agile programming affects the academic performance of ICT
students.

� To examine how pair-programming changes the attitudes of students to be more
positive towards innovative software development and a career in ICT.

� To recommend strategies that can be used to advance agile programming.

6. RESEARCH METHODOLOGY

This study is aligned with the positivist and post-positivist research paradigm. Therefore, the
nature of the study warranted the use of a quantitative statistical analysis on the effect of agile
programming in Higher Education (HE). A quasi-experimental study and survey (i.e. two
research methods) have been conducted over a period of one year with students who
registered for the module Information systems. Firstly a quasi-experiment was performed and
secondly a survey was conducted before and after the implementation of the selected agile
approach. The survey was conducted by interviewing each participant individually (i.e.
students in the Information Systems class). The results obtained, in combination with the

__

Page | 53

results of the experimental study which related to assessment marks, were used to draw a
relevant conclusion.

6.1 Population and sampling method

Population is regarded as any complete group of people and communities where they share
mutual characteristics (Zikmund, 2010). The participants in this research study were students
registered for the module Information Systems which is a module in Information Technology
(IT) where the students are introduced to the concepts of databases and required to develop a
working database by using a programming language. From this population a random sample
of fifty students were selected.

6.2 Ethical considerations

For both methods, the purpose of the study was explained to the participants and anonymity
guaranteed. In addition, the participants were informed that the information gathered is for
research purposes only and cannot be used against them. The researcher ensured that no
names were mentioned and recorded during the semi-structured interviews.

6.3 Data Collection

The data collection for this study was done by means of both a quasi-experimental study and a
semi-structured interview. There were no challenges from participants to collect data for this
study as these students attended the module offered by the researcher at a University of
Technology in South Africa.

 6.3.1 Quasi-experimental study

A quasi-experiment was conducted with a group of students being introduced to an agile
approach, while another group continued with the normal single-student programming
approach (solo-programming or traditional programming). A survey was conducted before
and after the implementation of the selected agile approach to investigate the perceptions of
students regarding the use of an agile approach in a computer programming module. The
researchers were also interested in measuring the improvement (if any) on the academic
performance of participants (students) after implementing innovative agile programming.

For the purpose of this study an agile approach is defined as grouping students in teams
whereby collaborative or cooperative learning is implemented. Collaborative learning as used
in agile programming is an approach to group work that maximises the learning and
satisfaction which results from working as part of a high-performance team.

The researcher divided students registered for the Information Systems module into two
groups. The students in Group A were introduced to an agile approach while the students in
group B continued with the normal single-student programming approach (solo-programming
or traditional programming). The researcher lectured both groups by covering the same
materials and using the same activities. The researcher used two activities to measure the

__

Page | 54

academic performance of the students in both groups.

Activity 1: Project

The researcher assigned different projects to the students. The projects were to develop a
database. In group A, the students worked in teams (agile programming) to implement the
database while in group B the students conducted the projects individually. The researcher
observed that the projects done in teams were of high quality and submitted in time while the
projects done individually were not of the same high standard and most were submitted late.

The students presented their projects to the researcher for marking. During the presentation of
the projects, the students who used the agile programming showed the enjoyment and
mastering of programming and delivered high quality databases while the students who
worked individually displayed a lack of programming skills and most of the databases were of
a poor quality.

Activity 2: Assessment

The researcher assessed both groups to measure the academic performance of each student.
The assessment consisted of three tests. During the assessments, all the students worked
individually. After marking all three assessments, the researcher observed that the students
who were introduced to innovative agile programming performed better that the students who
were not introduced to agile programming.

6.3.2 Semi-structured interview

According to May (2001), the semi-structured interview is an ideal technique to collect data
because it assists to easily analyse and compare data. According to Burns (2000), a semi-
structured interview takes the form of a conversation between the participant and the
researcher. The researcher conducted semi-structured interviews to obtain information from
participants before and after the quasi-experimental study.

The objectives of conducting the interview twice were:

i) Before quasi-experimental study

� To determine whether the participants have any agile programming skills and
are knowledgeable on pair-programming.

� To determine if participants enjoy programming.

� To determine if participants enjoy traditional programming (solo-
programming).

� To measure the academic performance by using solo-programming.

__

Page | 55

ii) After quasi-experimental study

� To verify whether the participants understand agile programming, especially
pair-programming.

� To determine whether the students enjoyed agile programming or solo-
programming.

� To measure the improvement (if any) on the academic performance of
participants (students) after implementing agile programming.

The participants were granted between 10 and 20 minutes for the interview to provide
sufficient time for discussions about issues raised. The researcher used tape-recordings (with
the approval of the participants) for later use and referral. Tape-recordings offered the
researcher sufficient time to engage in discussions with the participants without having to take
notes.

6.4 Data Analysis

According to Strydom and Delport (2002), data analysis in a qualitative inquiry involves a
dual approach. The analysis begins by referring back to the purpose of study (Greeff, 2002)
which, in this research, was to investigate the perceptions of students regarding the use of an
agile approach in a computer programming module at a HEI in South Africa. The analysis of
raw data is defined as the application of reasoning to understand the data that has been
gathered (Zikmund et al., 2010). The researcher used graphs and tables in an effort to draw
relevant conclusions from the recorded data.

The statistical analysis was carried out with the aid of the SPSS version 17 application.
Descriptive statistics (e.g. means, standard deviation, skewness and kurtosis) have been used
to analyse the data (Steyn, 2000). Cronbach alpha coefficients were employed to determine
the internal consistency, homogeneity and unidimensionality of the measuring instruments.
Coefficient alphas contain important information regarding the proportion of variance of the
items of a scale in terms of the total variance explained by that particular scale. Pearson
product-moment correlation coefficients were used to specify the relationship between the
variables. In terms of statistical significance, it was decided to set the value at a 95%
confidence interval level (p < 0,05). Effect sizes served to decide on the practical significance
of the findings. A cut-off point of 0,30 (medium effect) was set for the practical significance
of correlation coefficients.

7. DISCUSSION OF RESULTS

The researcher focused on the students’ perceptions of an innovative agile approach in
programming. The researcher posed the following questions to participants:

Would you enjoy an agile approach experience more than individual programming
outside a team environment? Why?

__

Page | 56

This was to assist the researcher in establishing the impact of an agile approach. The results
pointed to a positive impact on the students’ perception of an agile approach in programming.
The data analysis and graph below indicate that 98% of the students interviewed were of the
opinion that their programming skills improved by working in a team, and that their level of
enjoyment towards programming also increased.

The researcher focused on the average results of both group A (students using an agile
approach) and group B (individual programming) over two semesters. In our study, the
assessment consisted of developing a database in the practical classes.

Figure 1 below indicates the students’ perception of an innovative agile approach towards
programming.

Figure 1: Students' perception of innovative agile approach

As the results indicate in Figure 2 and Figure 3 below, group A obtained an average of 60% in
semester 1 and it increased by 15% in semester 2 while group B obtained less than 50% in
both semesters. This means group A was performing very well.

Figure 2 shows the academic performance of the students introduced to agile programming in
both semester 1 and semester 2. In semester 1, the students started using agile programming
without any experience and the average was 60%. In semester 2, the same students continued
using agile programming and gained experience. This resulted in an increase of 15% of the
academic performance of the students. It can thus be concluded that agile programming has a
positive impact on the academic performance of ICT students.

98%

2%

Very satisfied

Sometimes satisfied

__

Page | 57

Figure 2: Group A: Students using an agile approach

Figure 3 below shows the academic performance of the students conducting individual
programming in both semester 1 and semester 2. In semester 1, the academic performance of
the students was poor with an average of 30%. In semester 2, there was a little improvement
of the same the students using individual programming. The average of the academic
performance went to 45% but still it was under 50%. This shows that there is a need for an
intervention to improve the academic performance of the students.

Figure 3: Group B: Individual programming

The researcher assessed the students who were introduced to an agile approach individually to
determine their performance. Next, the researcher compared the results with those students
who were not introduced to agile programming. The results obtained from the assessments
were used to determine the impact of an agile approach on student academic performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Semester 1 Semester 2

Average Results

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Semester 1 Semester 2

Average Results

__

Page | 58

Analysis of the results indicates that the students who followed an agile approach obtained
significantly higher results and mastered programming skills better than those who were not
introduced to the agile approach (individual programming).

A paired t-test was performed to measure if there was a significant difference between the
results of semester 1 and semester 2 for agile programming. The p-value was 0.01 (<p<01.05)
and t=3.75, indicating a statistical significant difference between semester 1 and semester 2.
The intervention, i.e. agile programming, had a positive impact on student academic
performance. Again, a paired t-test was performed to measure if there was a significant
difference between the results of semester 1 and semester 2 for individual programming. The
p-value was 0.05 and t=2.56, indicating no statistical significant difference between semester
1 and semester 2. Thus, no change occurred with regard to student performance between
semester 1 and semester 2.

8. CONCLUSION

The aim of this study was to explore the impact of an agile programming approach on the
perception of students regarding the use of an innovative agile approach in a computer
programming module at HEIs in South Africa. After analysing the data gathered through
surveys, it is clear that an innovative agile programming approach had a positive effect on the
academic achievement of students, i.e. an increased high-level reasoning and critical thinking
skills; deeper understanding of learned material; greater time on task; lower levels of anxiety
and stress; greater intrinsic motivation to learn and achieve; a greater ability to view situations
from others’ perspectives; more positive and supportive relationships with peers; more
positive attitudes toward programming subjects; and a higher self-esteem by providing
creativeness, innovativeness, collaboration and mastery of learning.

With an innovative agile programming approach, positive interdependence is structured into
the team task activities and students are responsible for each other’s success. Communication
skills are taught and expected to be used by all team members. The instructor observes and
intervenes if necessary to ensure that the process is followed. From our research conducted,
the results proved to be positive that an agile approach will assist the students in mastering IT
subjects such as programming concepts, programming logics and programming code among
others, and enhancing their skills and academic performance.

REFERENCES

Adams, I., Goold, A., Lynch, K., Daniels, M., Hazzan, O. & Newman, I. 2003. Challenges in

teaching capstone courses. ITiCSE'03, Thessaloniki, Greece. ACM Press.

Beck, K. 2000. Extreme programming explained: Embrace change. Reading, MA: Addison-

Wesley. [Online]. Available: http://books.google.co.za/books. [Accessed: 12 March
2012].

Burns, R. 2000. Introduction to research methods. New Delphi: Sage.

__

Page | 59

Johnson, D.W., Johnson, R.T. & Smith, K.A. 1998. Active Learning: Cooperation in the
college Classroom. 2nd ed. Edina, MN: Interaction Book.

Greeff, M. 2002. Information collection: Interviewing. In A.S. de Vos (ed), H., Strydom, C.B.

Fouche & C.S.L. Delport. Research at grass roots for the social sciences and human
services professions. Pretoria: J.L. van Schaik.

May, T. 2001. Social Research. Philadelphia: Open University Press.

Russo, J.E. & Schoemaker, P. 1989. Decision traps: The ten barriers to brilliant decision-

making and how to overcome them. NY, USA: Simon & Schuster.

Schmidt, J.B., Montoya-Weiss, M.M. & Massey, A.P. 2001. New product development

decision-making effectiveness: Comparing individuals, face-to-face teams, and virtual
teams. Decision Sciences, 3232:575-600.

Steyn, H.S. 2000. Practical significance of the difference in means. Journal of Industrial

Psychology, 26(3):1-3.

Strydom, H. & Delport, C.S.L. 2002. Information collection: Documentation study and

secondary analysis. In A.S. de Vos (ed), H. Strydom, C.B. Fouche & C.S.L. Delport.
Research at grass roots for the social sciences and human services professions.
Pretoria: J.L. van Schaik.

Wheeler, B.C. & Valacich, J.S. 1996. Facilitation, GSS, and training as sources of process

restrictiveness and guidance for structured group decision making: An empirical
assessment. Information Systems Research, 7:429-450.

Zikmund, W.G., Babin, B.J., Carr, J.C. & Griffin, M. 2010. Business research methods. 8th

ed. Mason, HO: Cengage Learning.

Zhang, D. 2010. Towards theory building in agile manufacturing strategies: Case studies of an

agility taxonomy. International Journal on Production Economics, 131:303-312.

122

ANNEXURE E: LANGUAGE EDITING CERTIFICATE

122

ANNEXURE E: Language Editing Certificate

