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Abstract 

Petroleum wastewater is highly contaminated with toxic organic pollutants that are harmful to 

the environment. The heterogeneous photocatalytic oxidation (HPO) process has shown the 

ability to remove these pollutants through the application of a fluidized bed reactor (FBR). The 

purpose of the study was to apply response surface modelling (RSM) and computational fluid 

dynamics (CFD) to optimize the operating conditions for the photodegradation process in an 

FBR. This was done by investigating the hydrodynamics, photodegradation efficiency and 

reaction kinetics; that gave a holistic view on the performance of the FBR. 

The hydrodynamic study focused on modelling the axial liquid velocity, gas hold-up and 

turbulence quantities due to their substantial impact on the design and performance of the FBR. 

This was done by implementing the Eulerian-Eulerian approach which solves the continuity 

and momentum equations for each phase. In addition, the standard k-ε turbulence model was 

used to capture the turbulent characteristics in the liquid phase. A numerical optimization 

technique (desirability) was used to determine the optimal simulation setting methods; that 

were found to be a fine grid size (500 000 cells), 2nd Order Upwind discretization scheme and 

a small time step size (0.001) and gave the best desirability (0.985). The axial liquid velocity 

was maximal towards the centre of the reactor and decreased towards the wall. The same trend 

was seen with the local gas hold-up, where it was high towards the centre and low near the wall 

region. This was an indication that the bubbles tended to gather towards the central region as 

they move up. Furthermore, the bubbles had a spherical–like shape due to the low superficial 

gas velocity and operating within the homogeneous regime. The turbulent kinetic energy 

increased at distances away from the distributor region, due to the bubbles accelerating, and it 

balanced well with the energy introduced by the bubbles. 

Central composite design (CCD), which is a type of response surface modelling technique, was 

used to investigate and optimize the photodegradation operating parameters. The maximal 

degradation efficiency in the current study was found to be 65.9%, which was relatively low 

when compared to literature (80.84%). This was attributed to the increase in the catalyst 

particle size from nanometer to micrometer. Furthermore, the second-order empirical model 

that was developed, using the analysis of variance (ANOVA), presented a sufficient correlation 

to the photodegradation experimental data. The optimal photodegradation operating conditions 

were found to be: superficial gas velocity of 17.32 mm/s, composite catalyst loading of 1.0 g/L, 



4 

 

initial pH level of 3.5 and reaction time being 210 min. Using the Langmuir-Hinshelwood 

model, it was found that the photocatalytic degradation of petroleum wastewater follows 

pseudo first-order reaction kinetics. Since the photocatalytic degradation mechanism of phenol 

follows three stages whereby the second stage is the photocatalytic degradation on the surface 

of the catalyst to form by-products. This is the rate dominant stage and follows the pseudo first-

order reaction kinetics.
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CHAPTER 1 

1. Introduction 

1.1. General introduction 

South Africa (SA), as a water stressed nation, is faced with a great challenge of addressing its 

water crisis (Nastar & Ramasar, 2012). Several regions of South Africa are highly dependent 

on summer rainfall and with the current dwindling water supplies, SA needs robust and 

efficient technologies to treat the current available water. One of the primary causes of human, 

animal and aquatic health problems is due to an increase in contaminated water caused by 

industries such as petroleum, pharmaceutical, beverages and mining.  Petroleum refineries 

consist of very large and complex chemical processes that provide us with useful products that 

include jet fuel, petrol, kerosene, diesel and feedstock for the petrochemical industry. 

Wastewater from petroleum refineries often contains a high concentration of organic pollutants 

that are often released into the environment. These organic pollutants include aliphatic, 

aromatic and polyaromatic compounds. Phenol and phenolic derivatives are the mostly found 

organic pollutants present in petroleum wastewater. They are extremely harmful to micro-

organism life, aquatic life, the environment and humans (Zulfakar et al., 2011).  

The commonly applied wastewater treatment techniques such as – coagulation, bio-

decomposition, chemical precipitation, adsorption and  catalytic wet air oxidation (CWAO) for 

the removal of toxic organic compounds are quite often inadequate (Abhang et al., 2011). In 

addition, these processes have a disadvantage of transferring the pollutant from one phase into 

another, thereby producing secondary wastes (Primo et al., 2007). The application of advanced 

oxidation process (AOP) for the degradation of organic pollutants is efficient due to the fact 

that it converts the pollutants into less harmful products. Fluidized bed reactors, often used in 

the AOPs, consists of three phases (gas, liquid, solid) and quite often the mixing inside the 

reactor is a challenge. Therefore, analysis of mixing inside the reactor is often conducted by 

using computational fluid dynamics (CFD) as it is a low-cost reactor optimization technique. 

1.2. Motivation 

The petroleum refining industry applies a wide range of physical and chemical treatment 

processes based on the crude oil composition and desired products. Consequently, a portion of 

the wastewater from these processes, containing organic pollutants, is released into the 

environment. These organic pollutants are hazardous to the environment, humans and animals. 
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Due to the inadequacy of biological treatment and the cost of reactor optimization techniques, 

the advanced oxidation process has been the potential solution for degrading organic pollutants 

in petroleum wastewater. The performance of the AOPs depends on the determination of both 

optimal reactor design and operating conditions. In this context, CFD simulation and response 

surface modelling have shown that they are low cost optimization techniques. The 

heterogeneous photocatalytic oxidation (HPO) process, that is an AOP process, was used in 

the current study due to its ability to convert organic pollutants into less toxic substances. 

1.3. Problem statement 

Organic pollutants found in petroleum wastewater are hazardous to the environment, humans 

and animals. Biological processes are ineffective in degrading them due to their non-

biodegradability, and the use of other processes such as chemical precipitation is costly. For 

this reason, AOPs such as the heterogeneous photocatalytic oxidation, have attracted a lot of 

interest in recent years to photodegrade organic pollutants through the application of ultraviolet 

(UV) light and TiO2 photocatalyst. Scale-up of the HPO process, that is a challenge, is due to 

factors such as the cost of UV irradiation, complexity of the mixing inside the photoreactor and 

the separation of the photocatalyst after treatment. 

 A thorough study regarding the hydrodynamics (mixing and fluid dynamics) will be conducted 

through CFD. In addition, optimization of the CFD setting methods will be conducted to obtain 

the finest accuracy and convergence. Response surface modelling along with reaction kinetics 

will be employed to optimize the photodegradation operating parameters. Sedimentation 

experiments will be conducted by settling the two different photocatalysts (micro- and nano-

sized) to determine the impact on efficiency when increasing the particle size. 

1.4. Aim 

The aim of this study was to apply CFD techniques and response surface modelling to optimize 

the hydrodynamics and operating conditions of the photodegradation of petroleum wastewater. 

1.5. Specific objectives: 

a) To simulate and photodegrade petroleum wastewater using solar irradiation. 

b) To apply CFD and experimental techniques to determine the optimal hydrodynamic 

operating parameters in a fluidized bed reactor. 

c) To determine the photodegradation reaction kinetics of the process. 
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d) To optimize the photodegradation operating conditions using Response Surface 

Methodology (RSM). 

1.6. Thesis outline 

The second chapter of the thesis provides a detailed study on the fundamental concepts and 

relevant laws that were used in the study. The characteristics of petroleum wastewater were 

dealt with, along with the different methods that are found in literature to treat petroleum 

wastewater. The different types of reactors used in photocatalysis were surveyed and the 

application of CFD to optimize fluidized bed reactors was examined. A detailed analysis of 

response surface modelling was provided along with a detailed explanation of statistical 

optimization in photocatalysis. 

A detailed explanation of how the specific objectives were achieved is given in Chapter 3. A 

clear mathematical modelling and numerical setup of the CFD simulations is shown. The 

photodegradation experiments are explained in detail including the experimental setup, 

analysis made, experimental design and the materials used. The method for determining the 

reaction kinetics is also given. 

Chapter 4 includes a detailed discussion and analysis of the CFD simulation, photodegradation, 

sedimentation and reaction kinetics results. The CFD simulations were compared to the 

experimental results using a numerical optimization technique. The CFD simulation data was 

used to characterize the hydrodynamics of an FBR by investigating parameters such as axial 

liquid velocity, gas hold-up, turbulent kinetic energy and turbulent dissipation rate. The 

photodegradation results were modelled and optimized by using the central composite design. 

The reaction kinetics were determined by using the Langmuir-Hinshelwood model and the 

sedimentation results were used to investigate the efficiency of catalyst and wastewater 

separation post treatment. 

Chapter 5 summed up the discussion and the specific objectives of the study. The CFD 

simulations revealed the hydrodynamic behaviour of the FBR and was optimized by using the 

numerical optimization technique. The CFD study showed the significant impact the 

hydrodynamics have on the photodegradation experiments. The response surface modelling 

study provided the optimal photodegradation operating parameters along with a highly 

significant empirical polynomial model. Lastly, further possible studies were suggested in the 
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recommendations section to improve both CFD simulations and photodegradation 

experiments.  
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CHAPTER 2 

2. Literature review 

Petroleum refinery wastewater often contains high concentrations of aromatic and aliphatic 

hydrocarbons. Petroleum refineries generate polluted wastewater and the process configuration 

often controls the characteristics and composition of the wastewater generated. These organic 

contaminants are significantly toxic to water sources due to their low biodegradability, stability 

and toxicity (Shahrezaei et al., 2012a). Conventional wastewater treatment techniques that are 

currently being used include: coagulation, bio-decomposition, chemical precipitation, 

adsorption and  catalytic wet air oxidation (CWAO) (Abhang et al., 2011). Furthermore, the 

disadvantage with these conventional removal techniques include: restricted pH range, control 

of operating conditions, disposal of activated sludge and low reaction rates and efficiency 

(Shahrezaei et al., 2012a). 

In recent years, significant research has been intensified on the treatment methods that depend 

on the oxidation of refractory and harmful organic pollutants and most of these methods use 

the advanced oxidation process (AOP). The main feature behind AOP is the generation of 

hydroxyl radicals ( •HO ) that degrade aqueous organic contaminants. Substances such as 

ultraviolet light, ozone and hydrogen peroxide have been researched for the generation of 

hydroxyl radicals (Shahrezaei et al., 2012a). The HPO process has attracted several researchers 

for the degradation of pollutants found in gaseous and liquid phase through the use of artificial 

light or solar illumination (Zulfakar et al., 2011). This process has the ability to produce less 

harmful and biodegradable substances. 

Fluidized bed reactors employed in the HPO process are referred to as photoreactors. The 

preference of these reactors to researchers over conventional chemical reactors is due to their 

low operational temperature and high selectivity (Mohajerani et al., 2012). Despite their 

preference by numerous researchers, photoreactors are less preferred for industrial application 

due to limitations such as fouling on lamps, size limitations, construction difficulties 

(Mohajerani et al., 2012) and cost of UV light manufacturing and post-treatment for catalyst 

(Boyjoo et al., 2013). Shahrezaei et al. (2012b) reported that irradiation intensity significantly 

affects the photodegradation of liquid phase organic contaminants. Mohajerani et al. (2012) 

reported that irradiation intensity is the main factor for determining reaction kinetics and 

photoreactor performance. It is therefore evident that understanding the reaction kinetics is 

essential in evaluating the performance of the reactor. It has been reported in literature that the 
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reaction kinetics of the HPO process can be described by the Langmuir-Hinshelwood model 

(Bechambi et al., 2015). This model has the ability to determine the reaction order and reaction 

rate constants for both the photodegradation and adsorption mechanism. 

There have been several developments in the HPO process such as synthesis of novel catalysts, 

optimization of operating conditions and reactor configuration. Therefore, suitable 

optimization and design of photoreactors is of paramount importance. It has been argued that 

reaction kinetics alone does not establish proper optimization of the photoreactor performance 

(Qi et al., 2011). Other factors such as light distribution and hydrodynamics need to be 

considered. Hydrodynamics inside a photoreactor has been reported to be complex and unclear 

due to the existence of three phases (solid, gas and liquid). CFD has attracted interest as a 

technique to study the hydrodynamics in fluidized bed reactors, stirred tank reactors and bubble 

column reactors (Qi et al., 2011). CFD models have also been used as modelling tools to 

optimize the hydrodynamics in a photoreactor. 

2.1. Petroleum wastewater 

2.1.1. Characteristics 

There are various inorganic and organic substances that can be found in crude oil and these 

would include water-soluble metals, salts and suspended solids. The composition of petroleum 

wastewater (PW) depends on the complexity of the refinery process but in general, compounds 

in petroleum wastewater include dissolved and suspend materials. Table 2-1 shows the 

characteristics of petroleum wastewater that contains a blend of hydrocarbons (phenol, 

benzene, polyaromatic hydrocarbons, toluene, xylenes and ethylbenzene). In addition, cations 

and anions, that are dissolved inorganic substances, include heavy metals.  
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Table 2-1. Characteristics of petroleum wastewater ([1] – Coelho et al., 2006; [2] –  Dold, 

1989, [3] - Khaing et al., 2010). 

Parameter [1] [2] [3] Average 

BOD (mg/L) 570 150 – 350 - 357 

COD (mg/L) 850 - 1020 300 – 800 330 - 556 643 

Phenol (mg/L) 98 -128 20 – 200 - 111 

Oil (mg/L) 12.7 30 40 - 91 43 

TSS (mg/L) - 100 130 - 250 160 

Heavy metals (mg/L) - 0.1 – 100 - 50 

Chrome (mg/L) - 0.2 – 10 - 5.1 

Ammonia (mg/L) 5.1 - 2.1 - 4.1 - 33.4 22.4 

pH 8.0 - 8.2 - 7.5 - 10.3 8.5 

Turbidity (NTU) 22 -52 - 10.5 - 159.4 61 

BOD: Biological oxygen demand 

COD: Chemical oxygen demand 

TSS: Total suspended solids 

 

2.1.2. Methods of treatment 

From literature, it was observed that studies relating to the photodegradation of organic 

pollutants often involve optimizing and controlling reaction conditions such as irradiation time, 

temperature, catalyst loading and pH level to achieve maximal degradation efficiency. 

Furthermore, the reactor configuration in these studies is either re-circulatory and/or batch 

(Boyjoo et al., 2013; Abhang et al., 2011; Lee et al., 2016; Cheng et al., 2012; Kim Phuong et 

al., 2016). 

Shahrezaei et al. (2012b) used titanium dioxide as a photocatalyst and achieved an optimal 

catalyst loading of 60 mg/L and reported that temperature had an insignificant effect on the 

process. Abhang et al. (2011) used sodium acetate to combine the silica gel together with the 

TiO2 catalyst particles to form a composite catalyst. The composite catalyst was used to 

photodegrade wastewater contaminated with phenol. The temperature in the study was not 

considered and operating conditions such as catalyst loading, initial concentration of phenol 

and aeration rate were varied for two hours. It was reported that a maximal degradation of 

95.27% was obtained in 1.5 hours for a 21 L of solution and that the initial concentration of 

phenol and aeration significantly affected the photodegradation efficiency. 

Zulfakar et al. (2011) used a fluidized bed rector to investigate the photodegradation of phenol, 

contrary to Abhang et al. (2011), the TiO2 catalyst was immobilized on quartz sand. The 
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photocatalyst was synthesized by using diethanolamine, titanium isopropoxide, (TTIP), 

Degussa P25 TiO2 powder and isopropanol. They reported that an optimal catalyst loading of 

0.33 g/L was obtained using the synthesized catalyst although this was significantly higher than 

that found by Shahrezaei et al. (2012a) (60 mg/L). This was due to the fact that Shahrezaei et 

al. (2012a) used Degussa P25 titanium dioxide photocatalyst whilst Zulfakar et al. (2011) used 

a composite photocatalyst. 

2.2. Photoreactors 

Effective application of the fluidized bed reactor for photocatalysis requires accurate 

understanding of reactor efficiency among other aspects such as geometry, illumination 

sources, hydrodynamics and catalysts. In addition, factors such as superficial gas velocity, fluid 

properties and material of construction are significant parameters for evaluating the efficiency 

of the reactor. The reactors that are used as photoreactors for wastewater treatment are quite 

often operated and/or designed using the fundamentals of fluidized bed reactors. The 

preference of photoreactors by researchers is due to their low operating temperature, good 

selectivity, and the catalyst can either be immobilized on support material or suspended in 

solution (Mohajerani et al., 2012). 

There are several types of immobilized reactors that have been effectively used in literature; 

such as fixed-bed, flat plate, trickle beds, falling film closed and annular venture packed bed. 

Whereas the suspended reactors can take numerous forms such as externally aerated 

rectangular tanks, annular reactors, fluidized beds and moving beds where the catalyst is 

suspended in the wastewater (Boyjoo et al., 2013). The immobilized reactors are cost effective 

in the sense that they do not require post-treatment, that is, separation for micro-sized to nano-

sized catalyst recovery. However, immobilized reactors perform poorly as compared to 

suspended reactors. The suspended reactors have high mass transfer coefficients, good catalyst-

to-pollutant contact and guarantee better catalyst particle light exposure (Boyjoo et al., 2013). 

However, factors such as high productions costs, fouling on lamp walls, difficulties in 

construction, size limitation and design are reported to inhibit the scale-up of photoreactors 

(Mohajerani et al., 2012; Boyjoo et al., 2013). Consequently, the photocatalytic degradation 

process, when compared to traditional wastewater treatment methods, is preferred as a 

secondary option. Since most reactors employed for the photodegradation of industrial 

wastewater are suspended in nature, the design of photoreactors is based on the concept of 

fluidized bed reactor. The optimization of the fluidized bed reactor that consists of a three phase 



9 

 

contact pattern and maximizes the UV irradiation area, has been studied by several researchers 

(Abhang et al., 2011; Mohajerani et al., 2012; Boyjoo et al., 2013). Abhang et al. (2011) applied 

a three-phase fluidized bed photocatalytic reactor to maximize the UV irradiation area. In their 

study, they optimized design variables such as: choice of catalyst, geometry of photoreactor 

and usage of irradiation energy. Mohajerani et al. (2012) reported that the main characteristic 

in the design of a photoreactor is radiation field, due to the fact that it influences the kinetics 

and performance of the photoreactor. Cheng et al. (2012) designed a novel gas-liquid-solid 

circulating fluidized bed photocatalytic reactor (GLSCFBPR) that was employed to investigate 

the effects of process parameters (catalyst loading, superficial liquid and gas velocity) on the 

performance of the reactor. The two main concepts that were used in the design of the 

GLSCFPR reactor were to facilitate the mass transfer of oxygen and carbon dioxide produced 

and to strategically place the internal multi-layered lamps due to the fact that internal lamps 

provide uniform illumination better than external lamps. 

2.3. Computational fluid dynamics 

Photocatalytic bubble column reactors are often employed in industries such as petroleum, 

mining and wastewater treatment. The physics (momentum, mass and energy balance 

equations) describing the phenomena inside these reactors is extremely intricate in that 

modelling it is sometimes complicated and/or tedious. Therefore, to achieve correct scale-up 

and design procedures, fundamental phenomena such as hydrodynamics, reaction kinetics, and 

thermodynamics need to be accurately modelled and exposed. To date, computational, 

mathematical and numerical methods have been extensively used to predict the hydrodynamics 

inside the bubble column reactor for design, scale-up and optimization (Pourtousi et al., 2015). 

In the past decades, computational fluid dynamics (CFD) has enhanced our knowledge of the 

complex hydrodynamics that occur inside a bubble column reactor and due to high computing 

power and advancements in numerical techniques; CFD has been found very useful in 

simulating multiphase flow (Pourtousi et al., 2015). Bubble column reactors are often simulated 

and/or operated using multiphase (gas and liquid), where the liquid is considered as the 

continuous phase and gas as the dispersed phase. Therefore, inside the bubble column reactor, 

there is an interaction between the two phases (gas and liquid) that affects the interfacial forces, 

turbulence and bubble characteristics. Furthermore, correct modelling of the bubble column 

reactor is highly dependent on the accurate simulation of the interfacial forces, turbulence 

model and bubble characteristics (Pourtousi et al., 2015). 
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2.3.1. Interfacial forces 

An interaction exists between the gas and liquid that affects the interfacial forces. Several 

models for interfacial forces have been reported in literature (Pourtousi et al., 2015; Masood et 

al., 2014; Pourtousi et al., 2014) and correct modelling of the bubble column reactor is 

dependent on the selection of the correct interfacial force. The models for interfacial forces are 

used to study the interaction between the phases in multiphase modelling and this is done by 

solving the differential momentum equations that consist of the interfacial forces. In multiphase 

modelling of the Eulerian-Eulerian approach, the drag force is considered as the predominant 

interphase force (Pourtousi et al., 2014). Numerous studies have used only the drag force to 

model the hydrodynamics inside the bubble column; on the other hand, some researchers have 

used a combination of different interfacial forces in solving the differential momentum 

equations (Zhang et al., 2006; Laborde-Boutet et al., 2009; Olmos et al., 2001). It has been 

reported that the use of a pair and/or all the interfacial forces improves the accuracy of the flow 

pattern prediction (Zhang et al., 2006).  

The total interfacial forces that are caused by the physical effects of two phases coming in 

contact can be described by the following equation: 
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 are the interfacial forces due to drag force, lift force, wall 

lubrication and turbulent dispersion, respectively. A detailed description and modelling of the 

interfacial forces can be found in Section 3.1.2. 

2.3.2. Turbulence 

Alongside the governing equations and interfacial forces, turbulence models are a key factor 

in capturing the hydrodynamic behaviour inside the photocatalytic bubble column reactor 

(Pourtousi et al., 2014).  The interaction between the gas bubbles and the surrounding fluid is 

a complex and fascinating phenomenon. As the bubble rises, the wake generated behind it 

induces turbulence normally referred to as bubble induced turbulence (BIT). The bubble 

induced turbulence tends to amend the turbulent characteristics of the surrounding fluid and as 

a result influences the hydrodynamic behaviour of the bubbles resulting in a scientific concept 

that, till this day, has revolutionized the field of fluid mechanics (Santarelli & Fröhlich, 2015). 

Furthermore, the turbulence transferred into the surrounding fluid (normally liquid) is in a form 
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of energy (turbulent kinetic energy) and its intensity is dependent on the regime (homogeneous 

or heterogeneous). 

In the homogenous regime, the energy transferred is restricted due to the fact that the bubbles 

rising are not hindered, whereas, hindrance of the bubbles results in substantial energy being 

transferred (heterogeneous regime). The energy absorbed by the liquid, regardless of regime, 

results in turbulent motion in a form of eddies of diverse time and length scales. These flow 

structures have a significant impact on the transport phenomena. Therefore, understanding 

turbulent structures and their influence on the physics of contacting reactors is essential. In this 

section, various turbulent models (Direct Numerical Simulation, Large Eddy Simulation, 

Reynolds Stress Model and standard k-ε) are reviewed. 

(a) Direct numerical simulation (DNS) 

Direct numerical simulation has the ability to reveal the full picture of practical fluid 

mechanical behaviour by rigorously resolving the governing equations without applying any 

filtering and/or smoothing method (Santarelli & Fröhlich, 2016). The use of such an approach 

coupled with experimental validation can provide some insight into the turbulent flow 

structures. Furthermore, DNS can be used to increase the understanding of multiphase models, 

whereby two methods have been studied in literature regarding the simulation of swarm of 

bubbles (Santarelli & Fröhlich, 2015). The first method, that is triply periodic domain, 

consisted of an unrestrained infinite domain that was used to study the characteristics of a group 

of bubbles. The study focused on spherical bubbles and was later expanded to deformed 

bubbles where factors such as velocity fluctuations and bubble-to-bubble interaction were 

investigated.  

The second method looked at a swarm of bubbles in a channel flow, where a multiphase was 

restricted between two vertical walls. This method was advantageous due to the fact that it 

resembles several industrial contacting equipment (Santarelli & Fröhlich, 2015). Although 

there has been a substantial improvement in computational power, it is not sufficient to allow 

for full direct numerical simulations of real reactors, therefore, making DNS a costly option 

(Santarelli & Fröhlich, 2016). Consequently, researchers have opted for the use of a simplified 

turbulence model (Large eddy simulation) that requires the definition of the turbulence 

variables. 
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The algorithm that can be used for a direct numerical simulation study takes the full Navier-

Stokes equation as: 
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This type of formulation represents that of a single phase and is applied over the entire domain. 

In addition, a tracking function (c) is included and represents the volume fraction of the 

continuous phase. 
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The properties are resolved by: 

 

  LG

LG

cc

cc









1  

1  
          (4) 

The interfacial interaction has been included in the Navier-Stokes equation as a source term 

using the front tracking algorithm. In addition, this algorithm (that consists of the Dirac delta 

function (δ)) allows for the determination of bubble-to-bubble interaction along with the 

deformation. 

nF si              (5) 

where σi is the interfacial tension and 
s is the surface curvature. 

Theoretically, it is possible to solve the whole spectrum of turbulent scales using the direct 

numerical simulation. Here, modelling is not required, however, it is not practicable for 

problems concerning high Reynolds number flows due to the fact that this model resolves large 

eddies directly and the small eddies are modelled (ANSYS, 2010). This creates a need for high 

computing power, therefore, the LES model is much more suitable due to its filtering operation. 

(b) Large eddy simulation (LES) 

Eddies are used to characterize turbulent flows with a wide range of length and time scales. 

The characteristic length scale is comparable to the largest eddies, whereas the turbulent kinetic 
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energy is dispersed by the smallest scales (ANSYS, 2010). In LES, the governing equations 

for each phase separate the small scale motions from the large scale motions by using a filtering 

operation. This is done by creating two sub-grid-scale models namely Smagorinsky-Lilly 

model and the Dynamic Smagorinsky model (DMS) and these two have been used to simulate 

bubble column reactors.  

From the filtered equations, the dynamics of large scale structures are computed while the small 

scale turbulence is modelled using the SGS model. Therefore, the resulting flow field in the 

LES model is decomposed into large scale or resolved components and small scale or subgrid 

components. Subsequent subgrid scales from the filtering operation are unknown and require 

modelling and this is done by employing the Boussinesq hypothesis (ANSYS, 2010).  

The most frequently used SGS model is the Smagorinsky model (1963) where the turbulent 

viscosity is modelled by: 

SLst

2             (6) 

where sL is the mixing length for the subgrid scales and is expressed as: 

 3/1,min VCdL ss            (7) 

where d is the distance to the closest wall,   is the von Kárman constant, V is computed 

according to the volume of the computational cell and Cs is the Smagorinsky constant. 

Smagorinsky (1963) derived the value for Cs = 0.23 for homogeneous isotropic turbulence, 

however, this value was found to cause excessive damping of large scale fluctuations in the 

presence of mean shear and in transitional flows as near solid boundary and must be decreased 

in such regions. Therefore, Cs is not a universal constant, although a value of 0.1 was found to 

produce the best results for a wide range of flows. This was also shown in Tabib et al. (2008) 

research. 

From Equation 6, S is represented by: 
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and can be further expressed as: 
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Germano et al. (1991) developed a procedure in that the Smagorinsky model constant can be 

solved based on the information obtained from the resolved scales of motion. This procedure 

then removes the necessity of specifying the model constant, Cs, in advance (ANSYS, 2010). 

The whole notion in the dynamic procedure is to apply a second filter (named test filter) to the 

equations of motion. At the test filtered field level, the SGS stress tensor is expressed as: 

  /jijiij uuuuT          (11) 

Both ij and Tij are computed analogous to the Smagorinsky-Lilly model, with the assumption 

of scale similarity; 
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(ANSYS, 2010). In Equations 12 and 13, the coefficient C is assumed to be similar and 

independent of the filtering process,
2

sCC   (ANSYS, 2010). 

When compared to the Reynolds-Averaged Navier-Stokes (RANS) models, the LES model 

accurately predicts the gas hold-up and liquid velocity fluctuations for complex systems that 

are driven by buoyancy operating at high gas fractions (Pourtousi et al., 2014). It has been 

found that the LES model, that separates the large scale eddies from the small scale eddies, 

requires a considerably finer mesh than that found in the RANS model. In addition, the LES 

model fails to capture the wall boundary layers due to high resolution requirements (ANSYS, 

2010). As a result, the large eddies are captured as ‘relatively small’ near the wall and this 

causes the LES model to be suitable for low Reynolds numbers wall bounded flows. 
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(c) Reynolds-Averaged Navier-Stokes (RANS) 

Another method for modelling turbulent flows is the Reynolds-Averaged Navier-Stokes 

approach. In this approach, the instantaneous solution variables in the equations are 

disintegrated to produce fluctuating and mean components (ANSYS, 2010). Furthermore, these 

instantaneous solution variables can be in the form of species concentration, velocity vectors, 

energy, pressure or any scalar quantity of interest. The decomposed instantaneous solution 

variables are then substituted into the instantaneous momentum and continuity equations. This 

process is referred to as time averaging of the Navier-Stokes and it results in a decrease in the 

number of scales present in the flow field. This creates a mean flow due to the fact that time-

averaging is larger than the largest scale (Ruiz et al., 2015). At this point, the Reynolds-

Averaged Navier-Stokes has the same general form as the instantaneous Navier-Stokes 

equations. However, the solution variables in RANS represent time-averaged values. The 

RANS equations require explicit modelling and closure relations, and this is done by modelling 

the Reynolds stresses. Various models (Reynolds Stress Model and Standard k-ε Model) have 

been proposed as closure relations and they are widely used as turbulence models by several 

researchers. 

The Reynolds Stress model is the most intricate type of Reynolds-averaged Navier-Stokes 

(RANS) turbulence model, in that it abandons the isotropic eddy-viscosity hypothesis thus 

closing the RANS equations by resolving the transport equations for the Reynolds stresses 

collectively with the equation of dissipation rate (ANSYS, 2010). Several researchers have 

used the Reynolds stress model to solve the hydrodynamics inside the bubble column. The 

Reynolds stress model has the ability to predict more appropriately the effects of streamline 

curvature, rotation, swirl and changes in strain rate (ANSYS, 2010; Pourtousi et al., 2014). 

Silva et al. (2012) used the Reynolds stress model to study the flow behaviour of a bubble 

column operating in a heterogeneous regime. They concluded that the Reynolds stress model 

was suitable for the flow prediction in the distributor region. When bubble induced turbulence 

and anisotropy of turbulence are significant, the Reynolds stress model has the potential to 

show the characteristics of the bubble column (Pourtousi et al., 2014).  

The Reynolds stress model consists of individual Reynolds stresses ( ji  ) that are calculated 

using a differential transport equation. The Reynolds stress transport equations are derived 

from exact momentum equations, resulting in six Reynolds stress transport equations that are 
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solved together with the equation for dissipation rate (Tabib et al., 2008). The generic transport 

equations for the transference of Reynolds stresses ( ji  ) in the liquid phase are written as: 
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where the left-hand side of Equation 14 represents the local time derivative and convection 

term. Several terms in this equation do not require any modelling, however ij  and ε need to 

be modelled in order to close the equations (ANSYS, 2010). ijp  is the exact stress production 

term and is written as: 
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ij  is the pressure strain term and is given by: 
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The source term, userS , can be defined by the user (ANSYS, 2010) and it accounts for the 

bubble-induced turbulence that is quite often set to zero. Therefore, to account for the 

turbulence caused by the bubbles, Equation 16 is added to the laminar viscosity. The Reynolds 

stress model is closed by solving the transport equation of the dissipation rate: 
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where the model constants are listed as C1 = 1.8, C2 = 0.6, C = 0.15, 1C = 1.44 and 2C  = 1.92 

(ANSYS, 2010). 

The Reynolds Stress Model is limited by its closure assumptions in the transport equations. 

Although the Reynolds Stress Model is considered to be superior to the two-equation models 

(k-ε model), it struggles particularly in modelling the dissipation-rate and pressure-strain terms 
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(ANSYS, 2010). This forces the model to rely on scale equations such as the k-ε model to 

underlie the assumptions in its transport equations. 

(d) k-ε models 

The k-ε models fall under a class of models referred to as two-equation models that allow the 

determination of both the turbulent length scale and time scale. This is done by solving two 

separate transport equations (ANSYS, 2010). In the last two decades, k-ε models have been 

extensively used to describe the flow pattern in bubble columns and fluidized bed reactors. In 

addition, incorporating turbulence models with the correct interfacial force models leads to an 

accurate solution of the hydrodynamic parameters (Pourtousi et al., 2015). The great preference 

of this model by researchers is due to its simplicity, low computational requirement and being 

relatively inexpensive and is preferred to predict the liquid velocity and gas hold-up profiles 

under low superficial gas velocity (Pourtousi et al., 2015).  

Pourtousi et al. (2015) reported that the standard k-ε model showed an agreement with the mean 

experimental data when compared to the modified k-ε models (Realizable and Renormalization 

Group). They added that, when considering the fluctuating liquid velocity and turbulent kinetic 

energy near the wall, the modified k-ε models produce more accurate solutions. The 

experimental equipment commonly used to measure the liquid velocity profiles, bubble size 

distribution, gas rise velocity, turbulence and bubble plume oscillation is the laser Doppler 

anemometry (LDA) and particle image velocimetry (PIV). Pfleger & Becker (2001) used 

standard k-ε model to study the hydrodynamics inside the bubble column and compared the 

CFD simulation data with experimental results obtained using LDA and PIV. They showed 

that the standard k-ε model could accurately predict the flow behaviour inside the bubble 

column; particularly the results for turbulent kinetic energy and the liquid velocity. A 

comparison study on the different turbulent models (LES, Reynolds stress model and k-ε) was 

conducted by Tabib et al. (2008) and they found that the Reynolds stress model performed well 

in anisotropic flows involving acceleration, buoyancy, deceleration and swirls. After 

understanding turbulence formulation, it is important to consider the process of discretization 

of the mass, momentum and turbulence equations within the computation domain. 

2.3.3. Importance of numerical discretization scheme 

Computational fluid dynamic simulations often consist of a computational domain that has 

been subdivided into cells (mesh). These cells can be tetrahedron, hexahedron or quadrilateral 
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in shape. The differential governing equations, momentum, mass and turbulent models, are 

discretized (transformed) into algebraic equations and are subsequently applied over each cell, 

thereby allowing the scalar value at the face of each cell to be estimated (Laborde-Boutet et al., 

2009). This method of discretization is initially applied to the differential governing equations 

and turbulent models as a step toward making them more suitable for numerical evaluation and 

implementation in fluid behaviour studies. With that in mind, it is therefore necessary to 

employ the correct discretization scheme for a particular study. The numerical schemes 

available in the commercial ANSYS Fluent 16.0 are First-order Upwind, Second-order upwind 

and Quadratic Upstream Interpolation for Convective Kinematics (QUICK), amongst others. 

The First-order scheme assumes that the cell-center values of any scalar variable are denoted 

by the cell-average value thereby computing the values at the cell faces (ANSYS, 2010). It 

further assumes that the face values are equal to the cell values and employs this assumption 

throughout the entire cell. As a result, the First-order Upwind scheme becomes easy to 

converge and results in an inaccurate solution (Laborde-Boutet et al., 2009). In the Second-

order Upwind scheme, the cell face values are estimated by using the multidimensional linear 

reconstruction method (ANSYS, 2010). In this method, higher-order accuracy is obtained by 

using the Green-Gaus cell based approach to compute the scalar gradient and then unite with 

the value from the upstream cell to determine the value at any cell face. This results in second-

order accuracy (Laborde-Boutet et al., 2009). ANSYS (2010) recommends the use of Second-

order Upwind scheme for hybrid or unstructured meshes. 

The QUICK scheme is preferable for grids consisting of hexahedral and quadrilateral meshes 

due to the fact that it calculates the higher-order value of the scalar quantity at the cell face. 

This is done by using the weighted average of the central interpolations and second-order 

upwind of the variable (ANSYS, 2010). The QUICK scheme will typically result in a more 

accurate solution, particularly in a structured mesh. In closure, although they are easier to 

converge, low-order schemes result in increased numerical diffusion errors, particularly, when 

the flow is misaligned with the mesh. In high-order schemes, the numerical diffusion error is 

significantly decreased even though they are tougher to converge. 

Computational Fluid Dynamics has been preferred as a modelling technique to study and 

optimize the hydrodynamics in a photoreactor. It has, however, several setting methods that 

need to be considered during simulation, and proper selection of these settings is essential to 
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produce accurate simulation data that best predicts experimental results. A multicriteria 

optimization technique is required to resolve the selection of suitable setting methods in CFD. 

2.4. Optimization using desirability function 

As in many research investigations, the effects of several process variables are evaluated 

against multiple response variables simultaneously minimizing the variance. Quite often, the 

responses are inconsistent with one another making it problematic to optimize all means and 

variations at the same time. An example of a process that consists of numerous independent 

variables and multiple responses is computational fluid dynamic studies. In a typical CFD 

study, in order to achieve suitable accuracy and convergence (multiple responses) one requires 

experience and understanding of the turbulence models and interfacial forces amongst other 

setting methods (independent variables). Therefore, the desirability function that uses the 

multicriteria methodology, is a suitable tool to solve the problem of optimization of several 

responses. This method is used when several response variables have to be simultaneously 

evaluated and optimized.  

The desirability function or Derringer function is the most currently utilized multicriteria 

methodology in optimizing analytical procedures (Bezerra et al., 2008). The procedure for 

applying desirability involves: (1) defining the levels of the independent factors that 

concurrently produce the optimal predicted responses on the dependent variables and (2) 

determine the maximal overall desirability associated with the controllable variables. As a 

result, desirability functions are applied to determine surface responses that are both 

quantitative and qualitative by converting the studied responses into one measurement (Islam 

et al., 2009). The overall process to desirability is to first transform all the responses into 

discrete desirability functions (di) that vary from 0 to 1, where 0 is the lowest desirability and 

1 being the highest. Numerous forms of transformations were published to obtain the individual 

desirability. Taking the target value (T) for a response (y) is a maximal, the individual response 

can be determined by: 
































Ty

TyL
LT

Ly

y

d

s

 if 1

 if 

1 if 0

        (18) 



20 

 

where s is the weight and L is the lower acceptable value. The criteria for the weight are as 

follows: (a) the desirability function is a linear (s = 1), (b) the major points near the target value 

are weighted as important (s > 1) and (c) the demand is of low importance (s < 1). By taking 

the target value (T) for a response (y) is a minimum, the individual response can be determined 

by: 
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where t is the weight and U is the upper acceptable value. The criteria applied for s similarly 

applies for t. Taking a target that is located between the upper and lower limits, forces the 

desirability function to become two-sided and the function can be expressed as: 
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 Each calculated desirability function is then combined, by computing their geometric mean, 

to determine the overall desirability function (D). 
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where n is the number of responses studied and di is the desirability of the response. If any of 

the responses falls beyond the desirability region, the overall desirability function tends to zero. 

To accommodate these kinds of responses, vi is added to Equation 21 to indicate the importance 

of the responses: 
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Prior to computing the individual respective desirability, optimization goals need to be defined 

for each response. In this instance, the low and high values are allocated values similar to L 

and U for simultaneous optimization. The meanings of the goal parameters are: 

Maximal: 

di = 0 if y < low value. 

0 ≤ di ≤ 1 as y varies from low to high. 

di = 1 if y > high value. 

 

Minimum: 

di = 1 if y < low value. 

1 ≤ di ≤ 0 as y varies from low to high. 

di = 0 if y > high value. 

 

Target: 

di = 0 if y < low value. 

0 ≤ di ≤ 1 as y varies from low to target. 

1 ≥ di ≥ 0 as y varies from target to high. 

di = 0 if y > high value. 

Range: 

di = 0 if y < low value. 

di = 1 as y varies from low to high. 

di = 0 if y > high value. 
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Several studies have reported the use of desirability function in various fields of science and 

engineering. The desirability function, when used for multiple response optimization, creates 

an advantage of objectivity, economy and efficiency (Bezerra et al., 2008). It is unfortunate 

that the desirability function is mainly used in the field of Chemistry and there is no application 

of desirability in literature for CFD studies. Islam et al. (2009) used the desirability function 

for the optimization of the adsorption process to develop an efficient method to achieve 

maximal removal of quinalphos (organic pesticide) from aqueous solution. They concluded 

that the Box-Behnken design satisfactorily modelled the effect of different adsorption 

parameters. Furthermore, they obtained 96.31 % removal of quinalphos using optimal 

adsorption condition and desirability for optimization. On the other hand, Shahrezaei et al. 

(2012b), used CCD to model and optimize the degradation of organic pollutants in real 

petroleum refinery wastewater. They obtained a desirability value of 0.979 that gave an optimal 

operating condition to achieve high photocatalytic degradation efficiency. 

Petrović et al. (2015), conducted a study where they synthesized a composite photocatalyst of 

TiO2/WO3. They varied the photocatalyst preparation conditions (reaction time, current density 

and concentration of 12-tungstosilicic acid solution) to decolourize methyl orange. Subsequent 

use of Derringer’s desirability function resulted in an overall desirability value of 0.82 that is 

relatively lower than that obtained by Islam et al. (2009) and Shahrezaei et al. (2012b) that 

were 0.999 and 0.979, respectively. From the studies discussed, it has been shown that the 

desirability function can solve the problem of multiple responses that draw opposing 

conclusions. It has also shown that it can be applied in a wide range of analytical procedures 

that consist of multiple responses, such as the system used in the present work. 

2.5. Photocatalysis 

Photocatalytic reactions are believed to be significantly affected by two factors: mass transfer 

and photon efficiency and the reaction mechanism is dissimilar to traditional heterogeneous 

catalytic reactions (Zulfakar et al., 2011). The application of fluidized bed reactors in 

wastewater treatment has been the subject of interest to many researchers. The modelling of 

fluidized bed reactors is optimized by using the desirability function. Fluidized bed reactors 

used in photocatalysis are referred to as photoreactors. Photocatalysis is a process that is 

applied within the water treatment industry for the destruction of toxic organic pollutants. The 

process involves using a semiconductor catalyst that is activated by UV irradiation to create 

chemical oxidants that are responsible for the photodegradation of toxic and recalcitrant 
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organic pollutants. The photocatalysis process when applied in a heterogeneous photoreactor 

can be classified into five stages (Mohajerani et al., 2012) and is also graphically depicted in 

Figure 2-1. 

a. Mass transfer of phenol from the bulk fluid to the surface of the photocatalyst. 

b. Adsorption (pore diffusion) of phenol from the surface of the photocatalyst to inside 

the pore of the photocatalyst. 

c. Photocatalytic degradation reaction on the surface of the photocatalyst and formation 

of by-products. 

d. Desorption of the by-products from the photocatalyst surface. 

e. Mass transfer of the products from the interface region to the bulk fluid. 

 

Figure 2-1. Schematic representation of mechanism for photocatalytic degradation of phenol 

(Sarkar et al., 2015). 
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Furthermore, the mechanism of photocatalysis can be broken down into elementary chemical 

reactions. The fundamentals of photocatalysis lie on the absorption of UV light by the catalyst, 

thereby, generating electron/hole pairs on its surface (Reaction 1). The holes generated in turn 

create the highly reactive hydroxyl radicals ( •HO ) as shown by Reaction 2: 

-

cbvb2 eh  TiO  hv         (R1) 

•  OH  OH h -

vb         (R2) 

The unaccompanied electron tends to recombine with the hole, resulting in a deactivated 

catalyst. Therefore, the presence of oxygen is essential due to the fact that it acts as an oxidant 

that prevents the recombination of the electron/hole pairs by reacting with the electron to form 

superoxide radicals as per the following reaction (Boyjoo et al., 2013): 

-

22

-

cb O  O e           (R3) 

The hydroxyl radicals drive the oxidation reactions that decompose the organic pollutants on 

the surface of the catalyst. The overall photodegradation reaction of phenol into less harmful 

products can be shown by: 

acids Mineral  OH  CO  O  Phenol 22

light  UVCatalyst 

2        (R4) 

2.5.1. Photocatalyst 

Photocatalysts are robust in treating high strength effluents such as petroleum wastewater that 

typically contains bio-recalcitrant compounds. A typical example of a photocatalyst is the 

widely used nano-sized titanium dioxide (TiO2) due to its affordability, resistance to various 

chemical compounds, insolubility in water and its non-toxicity. Haque et al. (2012) conducted 

a study relating to the reaction kinetics and mechanism of TiO2 as a catalyst and it was reported 

that TiO2 is stable in aqueous solutions and has the uppermost photocatalytic activity as a 

semiconductor. Lee et al. (2016) also stated that TiO2 has the highest activity at photon energies 

of 300 nm < λ < 390 nm and remains steady after recurring catalytic cycles.  

The four most commercially available TiO2 powders are: Degussa P25, Sachtleben Hombikat 

UV100, Inorganic PC500 and Travancore Titanium Product. In addition, Degussa P25 is the 
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most preferred TiO2 photocatalyst. Literature has shown that the use of Degussa P25 results in 

rapid photodegradation rates as compared to other TiO2 powders (Colmenares et al., 2009). 

Khune et al. (2014) investigated the use of solar photocatalytic degradation for the treatment 

of phenolic wastewater under the influence of TiO2 attached to silica. They showed that an 

increase in catalyst composite results in an increase in the photodegradation of phenol. They 

found that a catalyst composition of 60% TiO2 was found to be optimal. 

2.6. Reaction kinetics 

The design and scale-up of small-scale processes is essential and can be achieved by correct 

determination of the kinetic coefficients (amongst other parameters) involved in the reaction. 

The reaction kinetics during the photocatalytic degradation of petroleum wastewater are 

complex due to the formation of intermediates and ultimate products. The photocatalytic 

degradation mechanism of phenol follows three main stages: (1) adsorption of phenol onto the 

surface of the catalyst; (2) photocatalytic degradation on the surface of the catalyst to form by-

products and (3) desorption of the by-products from the catalyst surface (Sarkar et al., 2015). 

 Shahrezaei et al. (2012b) proposed that the second stage of the photodegradation mechanism 

of phenol is the rate-predominate step. Photocatalytic degradation of organic pollutants 

(phenol) is exemplary to the heterogeneous catalytic interaction between phenol and TiO2 

catalyst. This advanced oxidation reaction is carried out with the aid of hydroxyl radicals ( •OH

) that are created on or after the reaction between water molecules and TiO2 under UV/solar 

irradiation (Sarkar et al., 2015). Since the oxidation reactions are greatly affected by reaction 

conditions (catalyst loading, pH level, etc.), it is therefore essential to understand the 

photodegradation reaction kinetics that in turn helps quantify the rate at that the oxidation 

reactions occur. 

Shahrezaei et al. (2012b) reported that there are three stages in the degradation mechanism of 

aniline using TiO2 as a photocatalyst whereby the second stage, that involves the 

photodegradation of aniline, is the principal step. It was also reported that the Langmuir-

Hinshelwood (L-H) model (Equation 24) best described the pseudo first-order reaction 

kinetics. Bechambi et al. (2015) investigated the photocatalytic degradation of bisphenol A in 

the company of Ce-ZnO catalyst by evaluating the effectiveness of the Langmuir-Hinshelwood 

model. They mathematically solved or reformulated Equation 24 to produce an algebraic 

equation (Equation 25) that encapsulates both the photodegradation (kr) and adsorption (b) 

reaction rate constants. It has been reported in literature that when the initial concentration of 
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pollutant is low (Bechambi et al., 2015) and/or adsorption is relatively weak (Kim Phuong et 

al., 2016), the denominator of the term on the right in Equation 24 becomes insignificant and 

hence it can be neglected. Therefore, Equation 24 can be transformed into a linearized algebraic 

model (Equation 26). 
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where kr is a degradation reaction rate constant that may rely on humidity, temperature and 

incident light and b is the adsorption reaction rate constant that depends on the chemical affinity 

of the pollutant with the catalyst, C0 and C are the initial and final concentration of organic 

pollutant and Kapp is the apparent rate constant used as a simple kinetic variable for different 

photocatalysts (Bechambi et al., 2015). 

Wang et al. (2012) used the L-H model to investigate the photocatalytic process for the odour 

abatement process to photodegrade organic gaseous substances. In addition, they stretched the 

L-H model by incorporating the irradiation intensity (I) (Equation 27). This was also evident 

in the work done by Sanongraj et al. (2007) where the photocatalytic destruction of organic 

contaminants in air was modelled using the modified L-H model (Equation 28). 
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where I is the irradiation intensity. 
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where A is the constant for influence of UV light intensity, RH is the percentage relative 

humidity, Co is the initial concentration of organic pollutant, K2, K3, K4, K5, and K6, are the 

fitting constants. 



27 

 

Primo et al. (2007) developed a mathematical model that was used to evaluate the kinetics of 

process toxicity for phenol photooxidation. They developed a generalized kinetic model by 

using the combination of Stark-Einstein law and Lambert-Beer law as shown by:  
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where j  is the molar extinction coefficient, L is the effective length of the reactor, fi is the 

ratio of light absorbed by i to the sum of all the components in solution that absorbed the light, 

I0 is the incident flux of radiation and i is the quantum yield. 

Furthermore, it was stated that when the UV radiation is absorbed by substrate i (fi = 1) and the 

optical density is less than 1, then Equation 29 can be simplified into a first-order expression 

(Equation 30) that is often used to determine the quantum yield. They motivated that the use 

of this generalized kinetic model is due to the fact that it considers both direct photolysis by 

UV and degradation by hydroxyl radicals that are formed by the photolysis of hydrogen 

peroxide. 

jji
i CLI

dt

dC
 03.2         (30) 

In comparing the work done by Wang et al. (2012) and Sanongraj et al. (2007), the reaction 

kinetics of the photocatalytic degradation of gaseous contaminants is largely influenced by the 

irradiation intensity, in addition, Sanongraj et al. (2007) reported that the photodegradation of 

toluene was also affected by a relative humidity greater than 14 %. Shahrezaei et al. (2012b) 

showed that irradiation intensity significantly affects the photodegradation of liquid phase 

organic contaminants. The generalized kinetic model that was developed by Primo et al. (2007) 

is limited in a sense that it merely considers the photodegradation reaction kinetics that are due 

to direct photolysis (UV) and degradation by •HO  and disregards the adsorption kinetics. 

2.7. Statistics and optimization 

Researchers are constantly conducting experiments to evaluate conflicting theories. Within the 

process of resolving conflicting theories, the performance of a system needs to be improved to 

achieve maximal profit and this is done through optimization. From a research point of view, 

optimization has been frequently used as a tool for identifying experimental conditions, that 
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when combined together, produce the best possible response (Bezerra et al., 2008). In the past 

years, a systematic procedure to design experiments has been defined and researchers 

understand the wide variety of statistical methods to conduct experiments successfully. Other 

researchers find the approach very empirical in a sense that they occasionally use the Simplex 

method for optimization whilst others still find the need to use multivariate analysis (Araujo & 

Brereton, 1996). The conventional optimization technique commonly used by researchers is by 

monitoring the influence of one-factor-at-a-time on the experimental response. This is done by 

changing one parameter whilst keeping other parameters constant. The main drawback 

regarding this optimization technique is that it is non-feasible and does not include the 

interactive effects between the parameters (Islam et al., 2009).  

In addition, one-factor optimization increases the number of experiments to be conducted, thus 

resulting in an increase in the operational cost and time. This optimization disadvantage needs 

to be resolved due to a demand by industrial applications for comprehensive optimization 

techniques (Petrović et al., 2015). For this reason, multivariate statistical techniques have been 

used as a statistical optimization tool. In the past years, factorial or fractional factorial designs, 

have been preferred over one-factor design due to its scientific approach to evaluate how inputs 

disturb the response. The response surface methodology (RSM) is the most frequently used 

statistical optimization tool (Petrović et al., 2015).  

Response surface methodology involves the grouping of mathematical and statistical 

techniques to create an empirical model that is usually in the form of a polynomial equation 

(Bezerra et al., 2008). The empirical model is then applied on experimental data to describe the 

behaviour of the data set and to simultaneously optimize the levels of the parameters to obtain 

the best process performance. Before applying RSM modelling, it is essential to select an 

experimental design that will define how the parameters will be studied and to understand 

whether the experimental design will yield first-order, second-order or higher-order models. 

For linear functions, experimental designs such as one-variable-at-a-time, factorial designs 

should be used whilst for quadratic response surfaces, central composite, Box-Behnken and 

Doehlert designs should be used (Bezerra et al., 2008). The steps that are used when employing 

RSM as an optimization technique are: 

a) Choosing the independent variables that have the main effect on the system; 

b) The selection of the appropriate experimental design and performing the experiments 

according to the experimental matrix; 
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c) The mathematical-statistical analysis of the data by fitting the polynomial functions; 

d) The evaluation of the model fitness and 

e) Optimization of the studied variables. 

2.7.1. Screening of variables 

Most experiments consist of numerous variables that may affect the response of a system. As 

a result, identifying and controlling all the variables that pose minor or major effects to the 

response variable is practically impossible. It is therefore advisable to select variables with 

major effects by conducting screening designs (Bezerra et al., 2008). Araujo & Brereton (1996) 

studied screening approaches to enable researchers to identify factors that are significant and 

to fine-tune the optimization process by using three to four significant factors. Callao (2014) 

stated that full factorial and reduced factorial designs can be used as screening approaches due 

to their efficiency. 

2.7.2. Selection of experimental design 

The response variable to experimental data can be approximated by linear or quadratic (three-

level factorials, Doehlert, central composite and box-Behnken) functions and this was 

introduced by Box & Wilson (1951). In the past 50 years, concepts such as rotatability and bias 

criterion have been applied in the statistical approach of experiments for experimental design 

purposes (Hill & Hunter, 1966). It should be noted that, in this context, the experimental data 

that can be modelled using first-order equations are referred to as first-order designs, whereas, 

experimental data that can be modelled using second-order or quadratic polynomials are 

referred to as second-order or quadratic designs. 

A model that can be simply applied under RSM is the linear function. For suitable application 

of the linear function, the response variable must fit well in the following equation: 

exy
k

i ii  
10 

           (31) 

where 0  is the constant term, k is the number of variables, xi symbolises the variables, e is the 

residual error observed in the response and i  signifies the coefficients of the linear variables.  

A response surface that graphically produces a linear curve can be modelled using a low-order 

polynomial. However, a response surface that graphically produces curvature must be 

evaluated using second-order model. Two-level factorial designs are used to evaluate linearity, 
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however, the drawback is that they disregard responses where curvature is significant (Bezerra 

et al., 2008). This drawback can be resolved by adding a central point in the two-level factorial 

design and this improves the modelling of curvature. Therefore, second-order polynomial 

models can model curvature and evaluate the interaction between the different experimental 

factors. In addition, the second-order interaction model is extended to include the following 

terms: 

exxxy
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where ij signifies the coefficients of the interaction parameters and ji xx  represents the 

interaction between the different variables.  

As opposed to the two-level factorial design, a three-level factorial design has to be carried out 

to compute the variables in Equation 31 resulting in two modelling and symmetrical response 

surface designs. Curvature producing experimental designs often consists of critical points, 

namely: minimum, maximal and/or saddle. Consequently, these critical points can be 

mathematically captured by extending Equation 32 to include quadratic terms: 
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where ii signifies the coefficients of the quadratic parameters. As mentioned earlier, the most 

commonly encountered second-order symmetrical designs are the three-level, Doehlert, central 

composite and Box-Behken design. These second-order designs vary from each other with 

respect to their number of levels, number of runs and selection of experimental points. The 

central composite design is the second-order design that was used in the current study and is 

further discussed in the subsequent section 

2.7.3. Variable codification 

Second-order experimental designs are necessary to define the number of variables studied 

(major effects) and at what level each variable is set at. This is done by establishing a region 

so that each variable will be studied and this is referred to as the experimental region or domain 

(Hill & Hunter, 1966). It is therefore not guaranteed that the experimental results will be valid 

outside this experimental domain. The next step is to transform the studied real values into 

coded dimensionless quantities that must be proportional at its localization in the experimental 
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domain. This is referred to as codification of the levels of the variables studied and it enables 

the variables to be investigated at various orders of magnitude without influencing the 

evaluation of the lesser (Bezerra et al., 2008). The coded values are indicated by –α, -1 and 0 

that are branded as low axial point, low factorial point and central point, respectively. In 

addition, the positive (+) symbols would refer to the respective high coded values. The real 

studied values are coded using the following equation: 
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where xi is the coded level, ∆zi is the distance between the real value at the central point and 

the real value in the low or high level of a variable (step change), zi is the real value and 
0

iz  is 

the real value in the central point. 

2.7.4. Central composite design (CCD) 

The central composite design is the most popular class of designs used for fitting second-order 

models. It was introduced by Box & Wilson, (1951) and generally consists of a full factorial 

or fractional factorial design, central runs and additional points (star runs) that are at a distance 

α from the centre. Figure 2-2 shows the full CCD for the optimization of k = 2 and k = 3 factors. 

The second-order design that is being modelled by CCD should provide good predictions 

throughout the region of interest. Box & Wilson, (1951) proposed that the design should be 

rotatable, meaning that the variance of the predicted response should be the same in all direction 

from the central point. The RSM is an optimization technique and the location of optimal is 

unknown prior to running the experiment. Therefore, it is advantageous to use a design that 

will provide equal precision of estimation in all directions. The correct practical employment 

of the CCD is through sequential experiments, that is, a factorial design that was used to fit a 

first-order model and exhibits lack of fit. Therefore, axial runs are added to the experimental 

design resulting in quadratic terms being amalgamated into the model (Montgomery, 2012). 

The number of experiments (N) to be conducted is computed by the following equation: 

cnkkN  22
         (35) 

where k is the number of factors (major effects) and nc is the number of replicates for the central 

point.  
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Central composite design is very appropriate for second-order modelling and requires two 

parameters to be defined: the number of central points and the distance of the axial runs (α) 

from the respective central points. The rotatability in CCD is caused by the choice of α 

(Montgomery, 2012). The distance of the axial runs depends on the number of factors used and 

is determined by   4/2 pk  . Therefore, for two, three and four factors; the axial points will 

be 1.41, 1.68 and 2.00, respectively (Bezerra et al., 2008). A fully routable CCD is often studied 

in five levels: -α, -1, 0, +1 and +α.  

 

Figure 2-2. Representation of central composite design showing two-variable and three-

variable optimization. (a) two-variables (α = 1.41) and (b) three-variables (α = 1.68). (□) 

central point, (○) axial points and (●) factorial design points (Bezerra et al., 2008). 

2.7.5. Model fitting and verification 

Evaluating the combined effects of the experimental factors on the response variable is 

essential in experimental analysis. The predicted values need to exhibit negligible deviation 

from the actual values and they are obtained from the model fitting technique using Design 

Expert® Software of Stat-Ease Inc. In some cases, the fitted model does not reasonably describe 

the actual data within the experimental domain studied such that the model exhibits a 

significant deviation. A reliable way to evaluate the value of the fitted model is through the 

application of analysis of variance (ANOVA). The whole purpose of ANOVA is to associate 

the variance that is caused by changing the combination of the variable levels with the variation 
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due to random errors intrinsic to the measurement of the response surface (Bezerra et al., 2008). 

Furthermore, it is then possible to evaluate how significant the regression used is to the 

predicted responses considering experimental variance. The variation of the predicted values 

studied by evaluating its dispersion through the following equation: 

 22 yyd iji            (36) 

where di is the squared deviation, yij is the replicate of the predicted value (yi) and y is the 

observed value. The sum of the squared deviation for all observations relative to the media is 

referred to as the total sum of the square (SStot) that, alternatively, can be written as: 

resregtot SSSSSS           (37) 

where SSreg is the sum of the square due to regression (fitted mathematical model) and SSres is 

the sum of the square due to the residuals produced by the model. As aforementioned, CCD 

consists of replicates of the central point (nc); this assists in determining the pure error 

associated with repetitions. Therefore, the sum of the squares due to residuals can be defined 

as: 

lofperes SSSSSS           (38) 

where SSlof is the sum due to lack of fit and SSpe is the sum of the square due to pure error. 

Media of the square (MS) is obtained by dividing the sum of the square (SS) of each source 

variation (lack of fit, total, pure error, residual and regression) by its respective numbers of 

degrees of freedom (d.f.). Determination of the degrees of freedom for each sum of the square 

variation is show in Table 2-2. The effect caused by the regression can be evaluated by the ratio 

of media of square of regression (MSreg) to the media of square of the residuals (MSres). The 

comparison of these variation sources is done by using the Fisher distribution (F test), 

considering the respective degrees of freedom associated with regression and variance (Bezerra 

et al., 2008). A significant value for this ratio should be greater than the tabularized value for 

F. This shows that the polynomial model fits well to the experimental data. 
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Table 2-2. Analysis of variance of the fitted polynomial model to experimental data using 

multiple regression (Bezerra et al., 2008). 

 
(p) is the number of parameter of the model, (m) is the total number of levels in the design and (n) is the number of observations. 

In summary, contamination of water sources by industrial processes has been a serious threat 

to human, animal and aquatic life. Advancement in wastewater treatment technologies, such as 

Heterogeneous Photocatalytic Oxidation (HPO), has shown great potential in the removal of 

toxic organic pollutants. An essential feature in the HPO process is the utilization of a fluidized 

bed reactor to aid uniform mixing of the different phases and provide good catalyst-to-light 

exposure. Computational fluid dynamics is a useful technique to offer insight regarding the 

mixing inside the fluidized bed reactor.  It captures the hydrodynamic behaviour such as: gas 

hold-up, velocity vectors, bubble size distribution and turbulence structures. Moreover, the 

photodegradation operating variables and their subsequent optimization are equally important. 

The optimization is done using response surface modelling. The hydrodynamic behaviour can 

be married with the photodegradation data to obtain a complete picture on the performance of 

the HPO process.   
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CHAPTER 3 

3. Methodology 

Petroleum wastewater is the industrial wastewater of interest that was photodegraded using the 

HPO process in a fluidized bed photoreactor. This is the process that was focused on due to its 

ability to degrade persistent organic pollutants and produce more biologically degradable and 

less toxic substances. This process is highly dependent on the generation of hydroxyl radicals 

and these radicals can transform several toxic organic pollutants, including non-biodegradable 

ones, into less harmful products such as carbon dioxide and water. The HPO process is highly 

influenced by operating conditions such as: reaction time, pH level, superficial gas velocity 

and catalyst loading. Therefore, these conditions were studied experimentally and optimized 

by using the central composite design. 

The HPO process follows a three stage degradation mechanism where the dominant stage is 

the photocatalytic degradation of organic pollutants on the surface of the catalyst (Shahrezaei 

et al., 2012b). Therefore, understanding the photodegradation reaction kinetics is essential to 

understand the reaction mechanism. The photodegradation kinetics were determined using the 

L-H model due to its ability to account for both the adsorption (b) and photodegradation (kr) 

kinetics. The modified L-H models developed by Sanongraj et al. (2007) and Wang et al. (2012) 

were not considered in the current study due to their inapplicability in liquid photodegradation.  

A fluidized bed photoreactor was used to photodegrade the petroleum wastewater due to its 

ability to operate at low temperatures and its high selectivity. The fluidized bed reactor was 

operated in suspended mode as it provides good catalyst-to-pollutant contact, high mass 

transfer coefficient and better catalyst particle light exposure (Boyjoo et al., 2013). However, 

the hydrodynamics inside this reactor are complex due to the presence of three phases. 

Therefore, CFD was used as a modelling tool to determine the flow behaviour and optimize 

the hydrodynamics inside the reactor. This was done by varying the CFD settings (time step 

size, discretization scheme and grid size) that had a significant influence on the simulation 

accuracy and convergence. The varying of the CFD settings was done by using a 3-level 

factorial design which enables the study of the interdependency of the CFD settings and the 

simulation data was compare to Kulkarni et al., 2007. 
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3.1. Mathematical modelling 

3.1.1. Governing equations 

Three-dimensional (3D) transient CFD models were used to solve the local hydrodynamics 

inside the photocatalytic bubble column reactor. The Eulerian-Eulerian approach was used to 

describe the flow characteristics of each phase. In this approach, liquid is considered to be the 

continuous phase, whereas gas is dispersed. This means that both phases (liquid and gas) are 

treated as interpenetrating continua (Qi et al., 2011). Furthermore, this approach permits the 

modelling of multiple separate, yet interacting phases for which equations such as mass and 

momentum are solved for each phase (ANSYS, 2010; Boyjoo et al., 2014). The governing 

differential continuity equation, neglecting the interphase mass transfer, for each phase in the 

photocatalytic bubble column reactor is given as: 

    0  
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where k , k  and ku


 are the volume fraction, density and velocity vector of phase k, 

respectively. The subscript k represents liquid, gas or solid phase. The momentum equation is 

given as: 
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where g


and p are the gravitational acceleration and pressure gradient, respectively. kF


 

represents the interfacial forces exerted on phase k due to the presence of phase j. k  is the 

stress term of gas bubbles and is given by: 
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where keff ,  is the effective viscosity of the liquid that in turn consists of three terms namely: 

molecular viscosity, turbulent viscosity and bubble induced turbulence. 

lBITlTlleff ,,,            (42) 
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In addition, the gas phase effective viscosity is given as: 

L

G
leffGeff



 ,,           (43) 

3.1.2. Interfacial forces 

In the current study, a combination of all the interfacial forces (Equation 1) was used as 

recommended by literature. The source of the drag force is caused by the resistance experienced 

by the bubbles as they move through the liquid. The pressure distribution that surrounds the 

bubble creates form drag and the viscous stress creates skin drag (Tabib et al., 2008). The 

interphase momentum transfer due to the drag force is given as: 
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where CD is the drag coefficient and gd is the bubble diameter. The superficial gas velocity in 

this study was varied between 5.77 and 23.1 mm/s, signifying a homogeneous flow regime. In 

this regime, the bubbles are assumed to be spherical, have similar sizes, shapes and velocities 

and the bubble break up, collision and coalescence are negligible (Pourtousi et al., 2015). 

Therefore the Grace et al. (1978) relation was chosen to compute the drag coefficient and is 

given by: 
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where bd  is the mean bubble diameter,  is the density difference between the liquid and 

gas phases and 
Tu is the terminal rise velocity of the bubble and is explained in Appendix F 

(List of equations). 

The lift force acts on the particles of the secondary phase (bubbles) and is mainly due to the 

velocity gradients in the primary phase. Therefore, the lift force becomes more significant for 

larger bubble sizes. This force is created by the net effect of pressure and stress exerted on the 

surface of the secondary phase. The lift force acting on the primary (l) and secondary (g) phases 

can be calculated as: 
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The sign convention of this force depends on the orientation of the slip velocity with respect to 

the gravity vector. CL is the lift coefficient and was computed using the Saffman-Mei lift model 

(ANSYS, 2010): 

LL CC '
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          (47) 

where 
LC' = 6.46 and 0 ≤ Rep≤ Reω ≤1. Here, Rep is the particle Reynolds number and is the 

voracity Reynolds number. Extention of the Saffman-Mei lift model is shown in Appendix F 

(List of equations). 

The wall lubrication force can be used to model bubbly flows (liquid-gas) using the Eulerian 

approach. The wall lubrication force drives the secondary phase away from the wall resulting 

in the secondary phase concentrating in the area near but not immediately next to the wall. The 

wall lubrication force exerted on the secondary phase is given by (ANSYS, 2010): 
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where wn


 is the unit normal pointing away from the wall; Cw is the wall lubrication coefficient 

and is computed using the Antal et al. (1991) model: 
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where Cw1 and Cw2 are the non-dimensional coefficients and for the current study were  

specified to be -0.0064 and 0.016 (Krepper et al., 2005), respectively.  

The effect of turbulent fluctuations on the liquid velocity, caused by the turbulent eddies in the 

continuous phase, interact with the bubbles by transporting them from a region of high 

concentration to a region of low concentration (ANSYS, 2010). This phenomenon is described 

by the turbulent dispersion force that encapsulates the interphase turbulent momentum transfer 

and acts as a turbulent diffuser for the dispersed flow. The turbulent dispersion force, that was 

modelled using the Burns et al. (2004) model in the current study, can be derived from the 

Favre averaging of the drag term: 
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where CTD is the turbulent dispersion coefficient and was assigned a value of 0.2 for the current 

study and lg  is the Schmidt number and a value of 0.9 is typically used (ANSYS, 2010). 

3.1.3. Turbulence modelling 

Modelling turbulence in a multiphase fluid flow problem is an extremely complex task due to 

the increase in the number of terms that require closure in the momentum equations. Closure 

models are essential in turbulence modeling due to the fact that they assist in unfolding the 

effects of turbulent variations of velocities and scalar variables (ANSYS, 2010). The standard 

k-ε model was used in the current study to capture the turbulent characteristics in the liquid 

phase. The choice of using the standard k-ε model is due to its simplicity, low computational 

requirements and being relatively inexpensive and is preferred to predict the liquid velocity 

and gas hold-up profiles under low superficial gas velocity (Pourtousi et al., 2015). 

Furthermore, it has been shown that it gives a fair prediction of the flow field. When the 

standard k-ε model is applied, the turbulent eddy viscosity model is used to determine the 

averaged fluctuating turbulent characteristics (length scale and characteristic time). The 

turbulent eddies can be defined in terms of the characteristic time as: 
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where lt ,  is the characteristic time. In addition, the energetic turbulent eddies can be described 

by the length scale ( lt
L

, ) as (ANSYS, 2010): 
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The turbulent eddy viscosity (
lT ,

 ) can be shown by the following equation: 
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where k and ε are the turbulent kinetic energy and turbulent kinetic energy dissipation rate, 

respectively, and are calculated from their governing equations: 
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where k = 1 and  = 1 are the Prandtl numbers. The standard values of all the model constants 

are C = 0.09, 1C  = 1.44 and 2C = 1.92. The term G  in Equations 70 and 71 is the production 

of turbulent kinetic energy and is formulated by: 

LL uG  :           (56) 

The hydrodynamic characteristics that were predicted by the CFD simulations need to satisfy 

the energy balance. It has been shown in literature that the energy, E, that is supplied by the 

bubbles to the liquid is described by (Kulkarni et al., 2007; Tabib et al., 2008):  
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where VS is the slip velocity, 
l is the liquid volume fraction and CB represents the influence 

of the bubble induced turbulence that is transported into the liquid phase. 

3.2. Numerical techniques 

Computational fluid dynamics (CFD) makes a substantial contribution in the modelling of 

chemical industrial equipment due to its ability to model complex hydrodynamic phenomena 

efficiently. The shortfalls regarding the application of CFD are the endless parameters that need 

to be adjusted to achieve accuracy and convergence at minimal expense. Previous simulations 

have shown that the most influential parameters that affect accuracy and convergence in 

transient simulations are: grid size, discretization scheme and time step size. Furthermore, 18 

simulations were carried out by varying the aforementioned parameters and comparing to 

experimental results from Kulkarni et al. (2007) as a reference case. 
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In the current study, a set of governing equations, explained in the Mathematical Modelling 

section, were solved numerically by following these stages: (i) generation of the appropriate 

grid domain; (ii) transformation of the governing equations into algebraic equations; (iii) 

selecting the discretization schemes; (iv) formulation of the discretized equation at every grid 

location; (v) formulation of the pressure equation and (vi) the development of a suitable 

iteration scheme to obtain a final solution. These solution steps were carried out using 

ANSYS Fluent 16.0 software and the equations of motion and continuity were solved, coupled 

with k-ε equations, to obtain complete a flow pattern by scrutinizing the gas holdup, liquid 

velocity and turbulence modelling profiles.  

3.2.1. Geometry 

The geometry studied is similar to that discussed in Section 3.5. It consists of a cylindrical 

shaped body comprising of 4 side ports and a conical shaped top section suited for degassing. 

The cylindrical shaped section contains an inside diameter of 40.8 mm with a height of 600 mm 

and the conical section has an inside diameter of 80 mm with a height of 100 mm. Appendix E 

shows a study of the effect of computational domain size on the accuracy of the simulation 

results. Based on the study, there was no significant difference between the full and half 

domain, although the quarter domain showed significant error in the simulation data, 

particularly at distances towards the top of the reactor where the flow is fully developed. The 

3D geometry of the current reactor was sliced into half, thereby reducing the computational 

domain and time and imposing an assumption of symmetrical flow.  

3.2.2. Grid generation 

 A grid independent study was conducted using three types of grids (fine, medium and coarse). 

The grids were created using ANSYS mesh as shown in Figure 3-1, where all the grids 

consisted of hexahedral cells structurally placed throughout the computational domain. When 

compared to the tetrahedral or triangle mesh, the hexahedral mesh can estimate a complex 

geometry resulting in fewer cells, lower computational cost and better numerical analysis 

(Pourtousi et al., 2015). The fine grid consisted of a total of 500 000 elements, with an element 

size of 1.2 mm, medium grid consisted of a total of 166 000 elements, with an element size of 

2.56 mm and the coarser grid consisted of a total of 80 000 elements, with an element size of 

25 mm. 
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 The inflation feature was activated to capture the boundary layer at the walls and consisted of 

a maximum of 5 layers. Inflation is a boundary layer capturing method in CFD that is useful 

for resolving gradient variations at the wall of a variable of interest (ANSYS, 2011).  The 

orthogonal quality of the fine, medium and coarse grids were 0.253, 0.245 and 0.247, 

respectively and these values are well within the acceptable range (ANSYS, 2010). Grid 

independent studies are still essential for multi-phase contacting equipment such as fluidized 

bed (photo)reactors.  Detailed grid independent studies have revealed the relationship between 

particle size and cell size. Cloete et al. (2014) reported that small particle sizes require finer 

grids, whereas, larger particle sizes (~ 500 µm) are less strict to grid sizes. On overall, grid 

independent studies are useful in reducing the number of simulations and computational time. 

 

 

Figure 3-1. Simulation grid for a fluidized bed reactor: (a) fine grid; (b) medium grid and (c) 

coarse grid.  

3.2.3. Initial and boundary conditions 

All simulations were carried out using air as the gas phase and deionized water as the liquid 

phase. The walls were set as a stationary wall with a no slip condition for both phases (Kulkarni 

et al., 2007). The air inlet, which was modelled as a distributor, was defined as a fully open 

inlet where the gas velocity was computed based on the superficial gas velocity of 20 mm/s 

with an air volume fraction of 1. The pressure outlet boundary condition was applied at the 



43 

 

liquid outlet and the degassing for the gas outlet (Li et al., 2009). The initial conditions 

specified are essential due to the fact that they influence the direction and accuracy of the 

solution. Therefore, to initialize the solution, parameters such as turbulence, volume fraction, 

axial, radial and tangential liquid and gas velocities were assigned the value of 0 at t = 0 s as 

shown in Table 3-1.  

For all the simulations, the gas distributor (that is a sintered plate) was modelled as a uniform 

gas inlet with a superficial gas velocity being specified (Li et al., 2009). The bubble diameter 

at the inlet of the gas distributor was assumed to be 1.96 mm based on experimental data 

(Kulkarni et al., 2007). The use of a single mean bubble size in bubble columns is a reasonable 

assumption when operating within the homogeneous flow regime (Liu & Hinrichsen, 

2014).The specified bubble size was smaller than the medium grid cells (2.56 mm) but larger 

than the fine grid (1.2 mm). The backflow volume fraction was specified as 1 to reduce the 

entrainment of liquid. 

Table 3-1. Solution initiation. 

Parameter Value 

ul , vl , wl , vg , wg (mm/s) 0 

ug (mm/s) 20 

g  1x10-08 

k (J/kg) 0 

ε (m
2/s3) 0 

 

3.2.4. Numerical procedure 

All simulations were carried out using ANSYS Fluent 16.0 software that uses the finite control 

volume discretization method. There are several discretization methods: finite difference, 

Lattice Boltzmann and finite control volume, however, the finite control volume method can 

accurately compute single and multiphase flow inside a computational domain consisting of 

uniform and non-uniform grid (Pourtousi et al., 2015). The equations of continuity and 

momentum balance were solved, together with k-ε equations, using the Euler two-fluid 

approach to obtain a complete flow pattern. What this approach does is that it captures the 

water (primary phase) as a continuous phase and air as a secondary dispersed phase thereby 

solving the continuity and momentum equations for each phase. The CFD simulations were 

carried out by varying the number of cells, discretization scheme and time step size to 

determine the combination that would produce the best accurate simulation data with minimal 
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simulation time. The interfacial forces were kept constant in all simulations and are listed in 

Table 3-2. 

Table 3-2. Interfacial forces obtained from literature. 

Force Law  Constant Source 

Drag Grace  Qi et al. (2011) 

Lift Saffman  Qi et al. (2011) 

Wall lubrication Antal et al. 
Cw1 = 0.0064,  

Krepper et al. (2005) 
Cw2 = 0.016 

Turbulent dispersion Burns et al. 0.2  

Turbulent interaction Sato 0.6 Default 

 

The phase coupled SIMPLE algorithm, which is an extension of the SIMPLE algorithm for 

multiphase flow, was used for the pressure-velocity coupling and correction. The time step size 

was varied and all the simulations were computed for 30 s to obtain pseudo-steady state. The 

pseudo-steady state period was obtained by allowing the fluctuations of the surface monitors 

to stabilize, which occurred after 30 s of simulation time. The Under-Relaxation parameters 

were kept constant along with the convergence criteria of 1.0x10-03 (Kulkarni et al., 2007). The 

CFD simulations were validated by comparing them to experimental data obtained from 

Kulkarni et al. (2007) and the average sum of square errors (ASSE) was used as a response 

parameter. The ASSE data between simulation and experiment was computed as: 
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where iE , ix  and ix̂  are the relative error, predicted and experimental values of point i, 

respectively. E  is the average of all the relative errors (ASSE). 

3.3. Experimental methods 

3.3.1. Materials and chemicals 

The photocatalyst that was used in the current study was the commercially available titanium 

dioxide (TiO2) Degussa P25 due to its affordability, availability, insolubility in water, 

resistance to various chemicals and non-toxicity (Shahrezaei et al. 2012a). Titanium dioxide 
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mainly consists of anatase (± 98%) with a particle size of 30 nm (nano-sized) and a surface 

area of 49.2-50 m2/g (Shahrezaei et al., 2012b; Ohno et al., 2001) and was purchased from 

Sigma Aldrich (South Africa). Hydrochloric acid [32% (v/v)] and sodium hydroxide (solution) 

were used to adjust the initial pH level of the stock solution and were purchased from Labchem 

and Associated Chemical Enterprises, respectively. Phenol, that was used as a model pollutant 

to simulate petroleum wastewater, was purchased from Labchem. The chemicals used were of 

analytical reagent-grade quality and were used without any further purification. All the 

photodegradation and hydrodynamics experiments were conducted using deionized water that 

was obtained from a Milli-Q® Direct Water Purification System that purified tap water to reach 

a resistivity of 18.2 MΩ∙cm (25°C) and a total organic carbon (TOC) value of 5 ppb. 

3.3.2. Catalyst and wastewater preparation 

For economic reasons, a catalyst should have the capability to be recycled or regenerated in 

order to be reused as this reduces the cost of the catalyst loading. A limiting factor with the 

TiO2 photocatalyst is its nano-sized character and therefore creates the difficulty of separating 

it from the petroleum wastewater post treatment. Due to this limiting factor, the TiO2 

photocatalyst in the current study was agglomerated to form denser particle sizes using 

colloidal silica, consequently enhancing separation after treatment. The petroleum wastewater 

was simulated by synthesizing a stock solution consisting of phenol (model contaminant) at a 

specific concentration (30 ppm). The motive behind using phenol as a model pollutant is due 

to the fact that it is the most common pollutant present in petroleum and/or industrial 

wastewater systems (Ochieng et al., 2003). In addition, the concentration of phenol used in the 

experiment falls between the range found in literature (Coelho et al., 2006). 

A catalyst composite, containing 60% TiO2 in silica solution, was synthesized based on a study 

of Khune et al. (2014). Specific amounts of TiO2 and colloidal silica solution were mixed 

together inside a beaker by hand to form a Bingham plastic mixture (non-Newtonian). The 

mixture was then laid on a glass bowl and oven dried at 60°C to remove moisture. The dried 

sample was then crushed and screened to a particle size range of 300 – 1000 µm. The screened 

particles were then washed with 0.1 M HCl to remove left-over alkalinity. The acidified 

particles were neutralized several times, by using deionized water and air dried for 24 hours to 

obtain the final composite catalyst. During the neutralization process, the pH level of the wash 

was monitored until it reached a neutral value (~ 6.8). 
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3.3.3. Analytical methods 

As aforementioned, phenol was used as a model pollutant and before analysis, the samples 

were filtered through a 25 mm syringe filter consisting of a 0.45 µm glass fiber prefilter (GHP) 

membrane. The concentration of phenol was determined using a PerkinElmer Flexar™ FX-10 

ultrahigh performance liquid chromatography (UHPLC) system. The system consisted of a 

PerkinElmer Series photodiode array (PDA) plus detector, autosampler, Brownlee Validated 

C8 column (150 mm x 4.6 mm, 5 µm particle size) and two UHPLC pumps. The PDA detector 

operated at specific excitation and emission wavelengths that were 275 nm and 313 nm, 

respectively. The mobile phase was made up of methanol and pure water at 60% and 40% (v/v), 

respectively, and were pumped at a flowrate of 1.0 mL/min. The injection volume was 50 µL 

and the detection response time was 0.1 s.  

The total organic carbon (TOC) was analysed using the Teledyne Tekmar TOC Torch analyser. 

The Torch analyser uses a Static Pressure Concentration for the analysis of TOC using high 

temperature combustion. It has an autosampler with three vial rack choices, automated 

calibration and intellidilution that dilutes over-range samples to within the working calibration, 

PC driven control and has a carbon detection level range of 50 ppb to 30 000 ppm. 

3.3.4. Experimental design 

The HPO process consists of numerous operating variables that affect the response of the 

system. The performance of this process is highly dependent on proper selection and 

optimization of the process variables. Some of the effects are minimal whilst others are quite 

significant. Past experiments have shown that the HPO process is primarily influenced by four 

operating variables which are: reaction time, pH level, superficial gas velocity and catalyst 

loading (Shahrezaei et al., 2012a; Cheng et al., 2012). Therefore, based on literature, these were 

the operating variables that were investigated by determining their effect on the 

photodegradation of phenolic wastewater using the central composite design.  

The experimental design used in the current study was the full factorial with axial points and 

was selected due to its ability to examine the results changing several variables simultaneously; 

thereby revealing the interdependency of the parameters. While this design is complex, the 

advantages are, it is less costly and less time consuming. Table 3-3 shows the factorial design 

set-up consisting of four variables (k = 4) and the coded variables, determined by using 

Equation 34, were set at five levels: -2 (minimum), -1 (low), 0 (central), +1 (high) and +2 
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(maximum). After conducting the experiments according to the experimental matrix (Table 

3-3), response surface modelling was conducted by applying the central composite design 

(CCD), using Design Expert® Software of Stat-Ease Inc. (version 6.0.6), to model and optimize 

the reaction conditions.  

Table 3-3. Experimental design. 

Parameter 
Levels 

-α (-2) -1 0 +1 +α (+2) 

Initial pH level 2 3.5 5 6.5 8 

Catalyst loading (g/L) 0 1 2 3 4 

Reaction time (min) 60 120 180 240 300 

Superficial gas velocity (mm/s) 5.77 8.66 11.55 17.32 23.10 

 

Accordingly, the overall experimental design consisted of 30 experiments, determined by using 

Equation 35, that were made up of 8 axial points (nA), 16 full factorial points (nF) and 6 

replications at the centre (nC). In CCD, the major operating parameters’ pH level (A), catalyst 

loading (B), superficial gas velocity (C) and reaction time (D) were considered as independent 

variables, whereas the phenol degradation (%) was observed as a response variable. A 

sequential model fitting test was conducted to select a suitable model. A second-order 

polynomial model (Equation 33) was used to fit the data found from the 30 experiments. 

Analysis of variance (ANOVA) was used to attain the interaction between the process variables 

and the response parameter, to determine the statistical significance and reliability of each term 

in the polynomial model and to determine the graphical analysis of the data. The regression 

coefficients in the polynomial equation were used to produce 3D surface response and contour 

plots. Optimization of the process variables was carried out by solving the regression equation 

and graphical analysis of the data. 

3.4. Hydrodynamic experiments 

The global gas hold-up measurements were carried out to validate the effectiveness of the 

developed model and to characterize the hydrodynamic behaviour of the reactor. The global 

gas hold-up gives a direct indication of the amount of gas present in the reactor and the 

availability of oxygen for the oxidation-reduction reactions. The global gas hold-up ( G ) is 

defined as the average volumetric gas fraction present in the entire domain of the reactor and 
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was determined by observing the displaced height of the clear liquid (Ellenberger & Krishna, 

2003; Li & Zhong, 2015). 

D

D
G

H

HH 
           (60) 

where HD is the displaced height during gas sparging and H is the static clear liquid height with 

no gas sparging. 

3.5. Photodegradation experiments 

The photocatalytic degradation of phenol was performed using a solar photocatalytic fluidized 

bed reactor. All the photodegradation experiments were conducted outdoors (rooftop) to utilize 

the sunlight as an ultraviolet (UV) source and the reactor was operated in batch mode. The light 

intensity of sunlight fluctuates throughout the day, therefore, to capture as much sunlight as 

possible, the experiments were conducted between 09:00 to 15:00. Figure 3-2 shows a 

schematic diagram of the reactor that is cylindrically shaped (H = 600 mm and di = 40.8 mm) 

with a top conical section (H = 100 mm and di = 80 mm) that was used for degassing. 
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Figure 3-2. Experimental setup of a solar photocatalytic fluidized bed reactor. (1) 

Compressor; (2) Flowmeter; (3) Non-return valve; (4) Peristaltic pump; (5) Degassing zone; 

(6) Fluidized bed photoreactor; (7) Catalyst particles; (8) Air bubbles (9) Gas distributor and 

(10) Ball valves. 

The reactor consisted of 4 strategically placed side-ports, where the top (wastewater outlet) and 

bottom (wastewater inlet) side-ports were used for wastewater recirculation by a peristaltic 

pump. The purpose of wastewater recirculation was to assist in the hydrodynamic mixing 

within the reactor. Although it somewhat complicates the hydrodynamic behaviour it is more 

effective than having a static column of liquid. The reactor was made out of borosilicate glass 

that is a material that has been extensively used by researchers for photocatlysis using sunlight 

as a UV source (Boyjoo et al., 2013; Shahrezaei et al., 2012b). Shiota et al. (2016) demonstrated 

that borosilicate (pyrex type) has good photon emission capabilities. During all the 

experiments, 850 mL of aqueous phenol feed solution with a concentration of 30 ppm was 

transferred into the reactor. The initial pH of the feed solution was adjusted accordingly using 

HCl (1.0 M) or NaOH (1.0 M) and the pH level was measured using a pH meter (Inolab model 
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no. 7110). The composite catalyst was loaded into the reactor and a peristaltic pump was used 

for wastewater recirculation. A compressor was used to feed air into the reactor through the 

bottom, where it was evenly distributed by a sintered plate type distributor with a pore size of 

10 - 15µm. The bed was fluidized by the air. 

3.6. Reaction kinetics experiments 

The Langmuir-Hinshelwood (L-H) model (Equation 26) is generally used to determine the 

reaction kinetics of organic water impurities such as aniline, phenol and its derivatives. It was 

reported that the L-H model follows the pseudo first-order decay kinetics (Shahrezaei et al., 

2012a). The preference of the L-H model by many researchers is due to its ability to account 

for both the adsorption (b) and photodegradation (k) kinetics. The adsorption and 

photodegradation reaction kinetics were evaluated by monitoring the TOC as a response 

variable for the degradation of phenol. 

The kinetic experiments were setup and operated similarly to the photodegradation experiments 

(Figure 3-3). However, the TOC analyses were conducted in 30 min intervals for a period of 3 

hours. The optimal operating conditions obtained from the photodegradation experiments were 

used to conduct the reaction kinetic experiments. The TOC reduction ( TOCR) was determined 

by: 

 %100 x 
 - 

  TOC
TOC

TOCTOC

R
0

C

CC
         (61) 

where 
0TOC

C  and TOCC  are the concentrations of total organic carbon initially and after, 

respectively.  

To evaluate the results of Bechambi et al. (2015) and Kim Phuong et al. (2016), where it was 

reported that when the initial concentration of pollutant is low and/or adsorption is relatively 

weak, then Equation 26 can be employed. The adsorption study was conducted first by covering 

the reactor with a dark black plastic to prevent light energy from penetrating into the reactor. 

As soon as TOC reached equilibrium, the plastic was removed and photodegradation 

commenced.  

Samples of 50 mL were taken from the agitated wastewater solution in 30 min intervals, 

filtered through a 25 mm syringe filter consisting of a 0.45 µm glass fibre prefilter membrane 
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and analysed using the Teledyne Tekmar TOC Torch analyser. The TOC data were used to fit 

both the linear and second-order models to determine the reaction order. In addition, the 

coefficient of regression (R2) was used to determine the best fitting empirical model and the 

chosen empirical model was used to determine the apparent reaction rate constant. 
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CHAPTER 4 

4. Results and discussion 

The study involved investigating the treatment of petroleum wastewater by means of the HPO 

process. Computational fluid dynamic simulations were carried out to understand and optimize 

the hydrodynamics (axial liquid velocity, local gas hold-up and turbulent quantities) inside the 

fluidized bed photoreactor. In addition, the photodegradation experiments were conducted to 

determine the efficiency of this process, moreover, response surface modelling was applied to 

optimize the photodegradation operating parameters. The reaction kinetics were investigated 

to understand the reaction mechanism of the photodegradation. The results and analysis of 

experimentation, simulation and statistical modelling are discussed in this section. 

4.1. CFD simulation 

The influence of CFD setting methods (time step size, discretization scheme and grid size) on 

the simulation accuracy and convergence was studied by using a 3-level factorial design (Table 

4-2) and the simulations were validated by comparing them to experimental data obtained from 

Kulkarni et al. (2007). Optimization of the setting methods was examined by using the 

desirability technique which would result in a model consisting of optimal CFD setting 

methods. The model developed was then validated by studying the effect of superficial gas 

velocity on the global gas hold-up where the CFD simulations were compared to experimental 

results generated by the author.  

4.1.1. Grid independence 

A grid independent study was conducted as shown previously in Figure 3-1. Three sizes of the 

simulation grids (coarse, medium and fine) were generated using the commercial software 

ANSYS mesh. For all the cases of the grid independent study, the CFD setting methods such 

as discretization scheme, time step size, turbulence model and interfacial forces were all kept 

constant. The results shown in Table 4-1 are summarized results meaning detailed results of 

the grid independent study are shown in Appendix A (Grid independence study results). The 

results obtained (Table 4-1) show that the fine grid size gave the least error (0.0308), whereas 

the coarse grid size gave the highest error (0.0524). 

A grid size with fine structured cells produces reasonable accuracy due to the fact that the grid 

is aligned with the discretization of the governing equations of each cell (Laborde-Boutet et 

al., 2009). Furthermore, fine grid structures work well for studies consisting of particle sizes 
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similar to the grid size (Cloete et al., 2014). The cell size for the fine grid was 1.2 mm, which 

is smaller than the bubble size used (1.96 mm). However, the grid was well aligned with the 

flow path thus producing the least amount of error. The medium grid had the lowest error when 

compared to the coarse grid. However, there was no significant difference in the error between 

the medium and coarse grids, as shown by Table 4-1. Therefore, to simplify and reduce the 

number of simulations to be carried out; only the fine and coarse grids were considered in the 

numerical optimization study. 

Table 4-1. Grid independence study. 

Grid resolution Error 

Fine (500 000) 0.0308 

Medium (166 000) 0.0506 

Coarse (80 000) 0.0524 

 

4.1.2. Numerical optimization 

As mentioned in section 3.2.4 (numerical procedure), the CFD simulations were carried out by 

varying the number of cells, discretization scheme and time step size to determine the 

combination that would produce the best accurate simulation data with minimal simulation 

time. Table 4-2 shows the 3-level factorial design where the CFD settings where optimized by 

using a numerical optimization technique called desirability. 

The comparison between the simulation data and the experimental results (obtained from 

Kulkarni et al., 2007) was done by evaluating the axial liquid velocity, local gas hold-up, 

turbulent kinetic energy and turbulent dissipation rate, thereby resulting in four response 

surface parameters. In addition, the average relative error (ASSE) was used to assess the 

accuracy of all the simulations and was calculated using Equation 84. Table 4-2 shows the 

ASSE data (four response parameters) for all CFD simulations along with their respective 

desirability function. After conducting an analysis of the response parameters, it was noted that 

there was a significant difference between the ASSE data for each response parameter. For 

instance, in the first row of Table 4-2, the ASSE values for the axial liquid velocity, gas hold-

up, turbulent kinetic energy (k) and turbulent dissipation rate (ε) were 0.061, 0.0133, 0.0003, 

and 0.0237, respectively. Therefore, to obtain a simulation run that had the least average error, 

a numerical optimization technique referred to as the desirability function was used. 
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The desirability approach is the most widely used technique for the optimization of multiple 

response processes (Islam et al., 2009).  This numerical optimization technique uses statistical 

mathematical formulations (Equations 18 to 21) to evaluate the desirability of each response 

parameter by assigning numbers between 0 and 1. Here, 0 represents an undesirable value and 

1 a completely desirable value. Furthermore, the individual desirability values were then 

combined using a geometric mean giving an overall desirability (Equation 22) (Islam et al., 

2009). It is worth noting that from this point onwards, the individual simulation Runs under 

Table 4-2 will be coded to provide clarity when discussing the simulation results and to avoid 

confusion. The coded names are shown as such: 

(S) step  timeSmall - 0.001          schemeQUICK  - Q           grid Coarse - C

(I) step  timeteIntermedia - 0.01         schemeorder   2nd - 2        grid Medium - M

(L) step  timeLarge - 0.1             schemeorder 1st  - 1                 grid Fine - F

 

For instance, when referring to Run 1 under Table 4-2, the coded name of F2S will be used that 

signifies a fine grid of 500 000 cells, 2nd order discretization scheme and a small time step 

size. 

From Table 4-2, F2S and CQS had the highest desirability values, whereas FQL had the least 

desirability. It is worth noting that out of a total of 18 simulations conducted for the 

optimization study, only 15 are shown in Table 4-2. The three additional simulations were 

automatically removed from the table by the statistical tool due to their significantly low 

desirability values. 

The low desirability value obtained by FQL was due to a relatively large time step size (0.1) 

coupled with a high discretization scheme (QUICK). In addition, convergence of FQL was 

fairly hard although the simulation time was relatively fast; it resulted in erroneous data as can 

be shown by its low desirability. F2S and CQS had desirability values of 0.985 and 0.978, 

respectively, denoting good accuracy. Li and Zhong, (2015) conducted a CFD simulation study 

where they studied the hydrodynamics in a three-phase bubble column. They varied the 

discretization schemes, times step size and grid-size. Their grid-sizes were relatively coarse 

(32 436, 56 865 and 95 788), however, they found that the 2nd order discretization scheme and 

time step size of 0.001 had the lowest error in both the radial and axial positions. 

Furthermore, an Analysis of Variance (ANOVA) was conducted on the simulation results to 

show the interaction between the CFD settings methods (Appendix B (CFD optimization 
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results). In addition, an empirical first order polynomial equation was developed that can be 

used to determine the error from the CFD setting methods. From the ANOVA study, it was 

seen that each of the CFD setting methods was significant (P-values were less than 0.05). In 

the current study, the simulation results for axial liquid velocity, gas hold-up and turbulence 

profiles were compared to experimental data obtained from literature (Kulkarni et al., 2007). 

For each response variable, two simulations with the least error were selected and comparison 

with experimental results is shown graphically. 

Table 4-2. Numerical optimization results. 

 
* Values that have the least error in their respective columns and are graphically discussed in 

the succeeding sections. 

  

4.1.3. Response surface analysis 

The contour plots are a good approach to obtain an insight into the effect of each variable in a 

factorial experiment (Fakhri et al., 2016). Since the current experiment consisted of several 

factors, therefore making it a quantitative experiment; contour plots are useful in visualizing 

the effects of several factors on a response parameter. Figure 4-1 shows a contour plot of the 

effect of discretization scheme and number of cells on a response parameter (error), whereby 

the time step size was kept constant (0.001). Literature has shown that an increase in the number 

of cells results in a more accurate (less error) solution at a cost of prolonged computation time, 

Factor 1 Factor 2 Factor 3 Response 1 Response 2 Response 3 Response 4

A: No. of cells B: Scheme C: Time step
SSE (Axial liq. 

Velocity)

SSE (Gas hold-

up)
SSE (k ) SSE (ε )

1 500,000 2nd order 0.001 0.061* 0.0133* 0.0003 0.0237* 0.985 Selected

2 80,000 QUICK 0.001 0.089 0.0208 0.0002 0.026* 0.978

3 80,000 2nd order 0.001 0.169 0.0148* 0.0001* 0.0262 0.975

4 80,000 1st oder 0.001 0.081 0.0236 0.0004 0.0239 0.964

5 500,000 QUICK 0.001 0.086 0.0222 0.0006 0.0238 0.951

6 500,000 1st oder 0.01 0.073 0.1091 0.0001* 0.0369 0.854

7 80,000 2nd order 0.01 0.127 0.0202 0.0016 0.0562 0.824

8 80,000 2nd order 0.1 0.183 0.0348 0.0019 0.0369 0.813

9 500,000 2nd order 0.01 0.063* 0.1013 0.0012 0.0361 0.799

10 500,000 QUICK 0.01 0.066 0.0978 0.0010 0.0590 0.792

11 80,000 QUICK 0.1 0.170 0.1309 0.0013 0.0742 0.691

12 500,000 1st oder 0.001 0.121 0.1896 0.0003 0.0437 0.660

13 500,000 1st oder 0.1 0.117 0.1754 0.0015 0.0691 0.607

14 500,000 2nd order 0.1 0.131 0.1809 0.0014 0.0691 0.599

15 500,000 QUICK 0.1 0.213 0.1837 0.0017 0.0713 0.562

Run Desirability
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whereas a decrease in the number of cells produces a less accurate solution with less 

computational time (Laborde-Boutet et al., 2009). 

This can be seen in Figure 4-1 where the 2nd order scheme obtained an error of 0.169 for 80 000 

cells and decreased to 0.066 for 500 000 cells. However, the 1st order and QUICK scheme did 

not display the same trend. This was due to the fact that the QUICK scheme is stubborn to 

converge, particularly in a fine mesh, thus resulting in an erroneous solution (Li & Zhong, 

2015). The 1st order scheme is quite straightforward to converge and requires less 

computational time, however, it results in a less accurate solution. 

The misalignment between the simulation grid and the flow path, particularly in the liquid 

recirculation zones, increases the numerical diffusion error in the 1st order scheme (Laborde-

Boutet et al., 2009). It is evident when observing the difference between the 1st order and 

QUICK scheme for both number of cells. There is a decrease in error signifying that the 

QUICK scheme is more accurate than the 1st order scheme. From Figure 4-1, it is evident that 

a simulation grid of 500 000 cells and a 2nd Order discretization scheme results in good 

accuracy (least error) and convergence. 
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Figure 4-1. Effect of discretization scheme and number of cells on a response parameter 

(error), whereby the time step size was kept constant (0.001).  

 

4.1.4. Axial liquid velocity profiles 

Figure 4-2 shows the comparison between CFD and experimental data for axial liquid velocity 

profiles at different axial locations (H/D = 0.2, H/D =2.6 and H/D = 5.0) of the reactor. Here, 

an axial location of H/D = 0.2 is near the distributor region, H/D = 2.6 is located at the middle 

of the reactor and H/D = 5.0 is towards the top of the reactor, before the gas disengagement 

zone. The plot for axial liquid velocity profile displayed a radial variation for all three figures, 

whereby, the liquid velocity had an upward movement at the centre and a downward movement 

near the wall. 

This was caused by the recirculation of the liquid as the gas flows up the column (Kulkarni et 

al., 2007). Bubbles tend to move at higher velocities than the liquid in the central region, 

therefore the dissipation rate is less than the energy input rate. This form of energy transfer 

maintains the liquid recirculation rate (Kulkarni et al., 2007). The experimental data in Figure 

4-2a showed turbulent swirling flow between 0.2 and 0.5 (normalized radial distance) and this 
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is towards the distributor region where gas is introduced into the reactor and the recirculating 

liquid is changing its flow direction. The axial liquid velocity was low towards the distributor 

region and increased up the reactor where the flow was fully developed. As the bubbles enter 

the reactor, they tend to accelerate due to the buoyancy force that is initially greater than the 

drag and gravitational forces. Due to momentum conservation, the displaced liquid will 

experience the same acceleration and this was modelled by the virtual mass force. The bubbles 

accelerate until the buoyant force is in equilibrium with the sum of the drag and gravitational 

forces. At this point, the bubbles have reached their terminal velocity and continue travelling 

up the reactor till the disengagement section is reached. 

The F2S (2nd Order scheme) accurately captured the axial liquid velocity profiles in all three 

locations and gave the best prediction. However, the CFD prediction of the axial liquid velocity 

was poor towards the wall and this was due to the presence of small eddies that limit the ability 

of the standard k-ε model to model near the wall turbulence. It has been reported that the 2nd 

order scheme uses a multidimensional linear reconstruction method thus resulting in second-

order accuracy (ANSYS, 2010) and good convergence. On the other hand, the QUICK scheme 

uses a higher-order discretization method that requires high computing power and causes 

convergence difficulties. Laborde-Boutet et al. (2009) studied the influence of numerical 

discretization schemes. They reported that the high-order schemes reduce the numerical 

diffusion errors significantly. However, higher-grade numerical schemes (QUICK and third-

order MUSCL scheme) are recommended for rotating and swirling flows (Laborde-Boutet et 

al., 2009) and are persistent in converging. 
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Figure 4-2. Comparison between the simulated and experimental axial liquid profiles at 

different axial positions. (a) H/D = 0.2; (b) H/D = 2.6 and (c) H/D = 5.0. 

 

The axial liquid velocity data showed a turbulent swirling profile towards the bottom of the 

reactor (H/D = 0.2) and the profile developed well at distances away from the distributor region. 

The swirling profile obtained in Figure 4-2a was due to the turbulence introduced by the 

bubbles as they enter the reactor. A suitable way to visualize eddy turbulence in the liquid 

phase, that is shown in Figure 4-2a, is by using a vector plot. Figure 4-3 shows a comparison 

between an XY plot (Figure 4-3a) and a vector plot (Figure 4-3b) where the XY plot represents 
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the axial liquid velocity at an axial location of H/D = 0.2. The vector plot shows the axial liquid 

velocity towards the distributor region of the reactor. The axial liquid velocity shown in Figure 

4-3a was drawn from the black line shown in Figure 4-3b and represents data drawn from the 

centre of the reactor all the way to the wall. 

As stated earlier, Figure 4-3a exhibits a vortex trend between the normalised radial distances 

of 0.2 to 0.5. This kind of trend was properly captured by the vector plot. In Figure 4-3b, 

specifically on the black line towards the centre of the reactor, there is a swirling flow of the 

liquid that is caused by the entering bubbles and the downward flow liquid at the wall. 

However, towards the wall of the reactor, there is a downward flow of the liquid velocity as 

shown by the downward facing vector line arrows. This downward flow shown by the vector 

plot can also be seen in the XY plot (Figure 4-3a) where the liquid velocity is negative at 

normalised radial distances of 0.75 to 0.98. Therefore, the vector plot has supported the trend 

that was shown by the XY plot. Detailed vector plots of the axial liquid velocity are shown in 

Appendix C. 

 

Figure 4-3. Comparison between (a) XY plot and (b) vector plot of axial liquid velocity profile.  

4.1.5. Local gas hold-up profiles 

An efficient and simple way to understand mixing within the reactor is to study the variation 

of gas hold-up. Figure 4-4 shows the plot of gas hold-up at different axial locations with a 

superficial gas velocity of 20 mm/s. The simulations were carried out in the homogeneous 

regime implying that the bubbles move with virtually similar velocities, sizes and with minimal 

(b) 

(b) 
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coalescence and break-up. This creates an added advantage of specifying a single bubble 

diameter (1.96 mm).  

The simulation results (Figure 4-4) gave a high gas hold-up towards the centre and a radial 

decrease when approaching the wall with an average radial gas hold-up of about 0.116. It is 

shown in Figure 4-2 that the liquid velocity varies at different axial locations of the reactor. 

Therefore, the lift force induced by the liquid causes the bubbles to rise faster towards the 

centre of the reactor and slower towards the wall (Kulkarni et al., 2007). This is comparable to 

the results of Kulkarni et al. (2007) and Tabib et al. (2008) who obtained an average radial gas 

hold-up of about 0.085 and 0.10, respectively. The prediction of the gas hold-up was poor 

towards the distributor region (Figure 4-4a) and developed well at distances away from the 

distributor (Figure 4-4b and c) implying that the free surface modelling was suitable towards 

the top. The gas hold-up axial profile develops due to the axial changing reduced pressure 

gradient that increases the bubble free area towards the disengagement zone. This results in 

more gas bubbles towards the centre and less near the wall. The CFD local gas hold-up profile 

for F2S compared well with the experimental data in Figure 4-4b and c. in relation to C2S. 

 

Figure 4-4. Comparison between the simulated and experimental gas hold-up profiles at 

different axial positions. (a) H/D = 0.2; (b) H/D = 2.6 and (c) H/D = 5.0.  
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Figure 4-5 shows the comparison between an XY plot and a contour plot for radial profile of 

gas hold-up. The data for Figure 4-5a was obtained from the black line shown in Figure 4-5b 

at an axial distance of H/D = 2.6. Figure 4-5b shows an aerial view of the gas hold-up and it 

can be seen that the local gas hold-up is ~ 0.115 at the centre of the reactor and radially 

decreases to a value of about 0.02 near the wall of the reactor. Similar to the axial liquid velocity 

data, the local gas hold-up data had a flat trend towards the distributor region (H/D = 0.2), due 

to the gas being introduced, and developed a radial profile at distances away from the 

distributor region. The F2S gave the best prediction of local gas hold-up, particularly at 

distances away from the distributor region.  

As the bubbles rise, they entrain some of the liquid and due to mass conservation, an equal 

amount of liquid needs to fall back. The falling liquid creates a velocity gradient that results in 

driving the bubbles towards the centre causing the bubbles to concentrate towards the central 

region. This was modelled by the Lift force. In addition, it is pleasing to see the contour plot in 

agreement with the XY plot. Complete contour plots of the reactor are shown in Appendix D. 

 

Figure 4-5. Comparison between (a) XY plot and (b) contour plot of radial gas hold-up.  

 

4.1.6.  Turbulent kinetic energy profiles 

Modelling turbulence is often a complex task due to an increase in the number of terms that 

require closure in the momentum equation. In the current study, the standard k-ε model, coupled 

with near-wall enhancement treatment, was used due to its simplicity, good convergence and 

low computational requirements. The two turbulent quantities that were used to capture the 
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turbulent characteristics were the turbulent kinetic energy (k) and turbulent dissipation rate (ε) 

where the bubble-induced turbulence is modelled from their governing equations.  

As the bubble moves through the liquid phase, it transfers its pressure energy into the liquid 

and this energy is converted into turbulent kinetic energy due to the drag force (Equation 57). 

At steady state conditions, the total energy carried by a swarm of bubbles is mostly used to 

pump the stagnant liquid, from bottom to top, resulting in an intense liquid recirculation 

(Kulkarni et al., 2007). This is also confirmed by the axial liquid profiles (Figure 4-2) where 

the liquid velocity increased due to the acceleration of the bubbles and this, in turn, provides 

more turbulent kinetic energy. As a result, the energy related with the liquid is less at the bottom 

than at the top. This is shown by Figure 4-6 where the turbulent kinetic energy increases at 

distances away from the distributor region. However, the induced turbulent liquid motion is 

locally dissipated (turbulent dissipation rate) through eddies found in the liquid phase. 

The turbulent kinetic energy showed an overall trend of constant value towards the centre and 

decreased near the wall (Figure 4-6). At distances away from the distributor region, there was 

an increase in the turbulent kinetic energy that corresponds to literature. Since the energy 

provided by the bubbles to the liquid is due to the drag force; and the lift force causes the 

bubbles to concentrate towards the central region, the turbulent kinetic energy tends to be 

higher in the centre of the reactor than near the wall. C2S accurately predicted the turbulent 

kinetic energy towards the distributor (Figure 4-6a) and deviated slightly at distances towards 

to the top of the reactor (Figure 4-6b and c) but predicted the overall trend of the experimental 

data better than F1I. The standard k-ε model is grounded on the assumption of isotropic flow. 

This suggests that it assumes that the normal stress components are equal to each other (Tabib 

et al., 2008). This causes the turbulent characteristics to be equally distributed, resulting in 

inaccurate turbulence profiles.  
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Figure 4-6. Comparison between the simulated and experimental turbulent kinetic energy 

profiles at different axial positions. (a) H/D = 0.2; (b) H/D = 2.6 and (c) H/D = 5.0.  

 

4.1.7. Turbulent energy dissipation rate 

Figure 4-7 shows the radial variation of the turbulent energy dissipation rate at different column 

heights. The dissipation rate profiles showed a constant trend towards the centre with a slight 

increase from r/R = 0.2 to r/R = 0.8 followed by a sharp increase near the wall. This similar 

trend was reported by Liu & Hinrichsen (2014) and Kulkarni et al. (2007). Analogous to the 

turbulent kinetic energy, the dissipation rate increased away from the distributor due to an 

increase in the turbulent kinetic energy away from the distributor region. The radial and axial 

variation of turbulent energy dissipation rate is obtained from the turbulent model used and 

subsequently computed by suitable volume integration (Tabib et al., 2008). Since the turbulent 
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energy dissipation rate is the frequency at which the turbulent kinetic energy is being dissipated 

by the small eddies, it should balance to the energy introduced by the bubbles (Equation 86). 

For instance, as the bubbles travel up the reactor part of the energy introduced by the bubbles 

is transferred into the liquid phase and converted into turbulent kinetic energy. The turbulent 

kinetic energy is characterized by large and small eddies. The small eddies are located towards 

the wall of the reactor and they dissipate most of the turbulent kinetic energy. This is the reason 

why the turbulent energy dissipation rate increases towards the wall. The turbulent dissipation 

rate data corresponds well with the turbulent kinetic energy data. F2S gave the best prediction 

whilst CQS deviated significantly from experimental data, particularly, at distances away from 

the distributor. 

 

Figure 4-7. Comparison between the simulated and experimental turbulent dissipation rate 

profiles at different axial positions. (a) H/D = 0.2; (b) H/D = 2.6 and (c) H/D = 5.0.  



66 

 

4.1.8. Bubble size distribution 

Figure 4-8 shows the effect of superficial gas velocity on the bubble size distribution. It can be 

seen that the superficial gas velocity significantly affects the bubble size. An increase in the 

superficial gas velocity (from 8.66 mm/s to 23.10 mm/s) resulted in an increase in the bubble 

size (from 3 mm to 11 mm). From Figure 4-8d, it can be seen that the bubbles had a spherical 

cap-like shape that was formed at high superficial gas velocities. The superficial gas velocity 

range used in the current study was well within the homogeneous regime, although, a 

superficial gas velocity of 23.10 mm/s gave a bubble size of about 11 mm. Besagni & Inzoli 

(2016) referred to this characteristic as the psuedo-homogenous regime and they further stated 

that at this regime, the bubbles entrain the smaller swarm of bubbles through their wake causing 

the break-up phenomena. This high bubble size obtained at a low superficial gas velocity is as 

a result of the type of distributor used (sintered plate). According to Li et al. (2009), the bubble 

size distribution along with the gas hold-up are strongly influenced by the distributor design. 

Furthermore, these two parameters are used to determine the interficial area between the gas 

and liquid phases. They further reported that the sintered plate distributor results in high 

average gas hold-up and bubble sizes as compared to other forms of distributors (pipe and 

orifice). 

Fluidized bed photoreactors often use air mainly for mixing along with other factors. It is 

therefore necessary to model and understand bubble distribution in a fluidized bed 

photoreactor. The first few bubbles that enter the reactor through the distributor often determine 

the formulation of the initial bubble size. As the bubbles travel up the reactor, the initial bubble 

size range changes due to factors such as vorticity caused by shear flow, varying bubble rise 

velocities, wake entrainment, size deformation and liquid phase turbulence (Li et al., 2009). 

The bubble shape deformation, that is usually referred to as bubble break-up or coalescence, is 

caused by turbulent eddies that result in non-uniform bubble sizes and shapes. 

The population balance model (PBM) or Multiple Size Group (MUSIG) model are often used 

to model and capture the phenomena of bubble break-up and coalescence and bubble size 

distribution. In the current study, that uses a quantitative approach, the bubble size distribution 

was experimentally determined at four different superficial gas velocity size ranges (8.66 mms 

to 23.10 mm/s). It is worth noting that the superficial gas velocity range studied is well within 

the homogeneous regime, therefore, bubble shape deformation (bubble break-up and 

coalescence) is insignificant.  
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Figure 4-8. Effect of superficial gas velocity on the bubble distribution.  

 

4.1.9. Effect of superficial gas velocity 

The mathematical model developed in this study predicted the experimental data of Kulkarni 

et al. (2007) fairly well using the optimized setting methods. To verify the effectiveness of the 

model, it was further employed to study the effect of superficial gas velocity on the global gas 

hold-up. The simulation data was compared to the experimental global gas hold-up results 

determined in the present study. The optimal setting methods, as shown by Table 4-3, were 

used for all the simulation cases from here onwards. 
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Table 4-3. Optimal setting methods for CFD simulations. 

Parameter Setting 

Grid size 500 000 cells, 1.2mm 

Discretization scheme 
Momentum: 2nd order Upwind 
Volume fraction: QUICK 
Turbulence Eqs.: 2nd order Upwind 

Time step size 0.001 

 

Figure 4-9 shows the effect of superficial gas velocity on the global gas hold-up in the reactor. 

The simulation data was compared to the experimental results. The simulation data showed a 

good prediction of the experimental results from a superficial gas velocity of 11.55 mm/s to 

17.32 mm/s. The reactor was operated in the homogenous regime based on the superficial gas 

velocities studied. Literature has shown that within the homogeneous regime, as the bubbles 

travel to the top surface of the reactor, gas properties such as size, shape and velocity are 

constant and can be easily specified in the simulation (Pourtousi et al., 2015).  It was found that 

an increase in superficial gas velocity results in an increase in the global gas hold-up. The 

increase in global gas hold-up is due to an increase in the amount of bubbles present in the 

reactor. This similar trend was also found by Pourtousi et al. (2015) where they determined the 

effect of superficial gas velocity on the overall gas hold-up. At a superficial gas velocity of 

15 mm/s, they obtained an overall gas hold-up of ~ 0.048, whereas in the current study, a 

superficial gas velocity of 14.44 mm/s gave a global gas hold-up of 0.052 and 0.050 for 

experimental and simulation results, respectively. This agreement of the simulation data with 

the experimental results shows that the developed model is effective. 
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Figure 4-9. Effect of superficial gas velocity on the global gas hold-up: comparison between 

CFD simulation and experimental results.  

  

4.2. Photodegradation 

4.2.1. Model fitting and statistical analysis 

Response surface methodology seeks to find the relationship between the process variables and 

the response variable. The process variables that predominantly affect the efficiency and 

performance of the system, were selected based on past experiments. The central composite 

design was used to determine the collective effects of the process variables on the 

photodegradation of phenol. The response variable (photodegradation %) for both 

experimental and predicted along with the combination of the respective process variables is 

shown in Table 4-4. Based on the experimental response, the maximal degradation of phenol 

achieved was 65.9%, whereas the minimum degradation obtained was 7.83%. The low 

degradation efficiency (7.83%) was obtained at 0 g/L catalyst loading. The zero-catalyst 

loading was investigated to show the presence of a catalyst has an effect on the 

photodegradation process. The photodegradation efficiency obtained in the current study was 

relatively low as compared to literature (Shahrezaei et al. 2012b; Zulfakar et al. 2011) and this 

was due to the bigger particle size used in the current work. 
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Shahrezaei et al. (2012b) conducted a process modelling and kinetic study on the 

photodegradation of petroleum wastewater using TiO2 catalyst. The maximal degradation they 

obtained was 80.84% with a reaction time of 120 min using a nano-sized catalyst (0.1 g/L). 

Zulfakar et al. (2011) used a nano-sized TiO2 catalyst (0.33 g/L), similar to Shahrezaei et al. 

(2012b), to photodegrade phenol. The catalyst was immobilized and they achieved a maximal 

degradation of about 100% with a reaction time of 250 min, whereas in the current study, the 

maximal degradation (65.9%) was achieved in 180 min, with a particle size range of 300 – 

1000 µm and a catalyst loading of 1 g/L. Accordingly, literature studies using TiO2 as a 

photocatalyst achieve high photodegradation efficiency with nano-sizes whereas, the current 

study obtained a relatively low photodegradation efficiency at micrometer sizes. This is an 

indication that an increase in the particle size of the catalyst results in a decrease in the 

performance of the system. This is due to the fact that an increase in the particle size (from 

nanometer to micrometer), causes a decrease in the specific surface area and available active 

sites for adsorption and photodegradation of the pollutants. Thus reducing the efficiency of the 

process. 
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Table 4-4. Full factorial CCD experimental matrix with experimental and predicted 

responses. 

Run 
A: Initial pH 

level 

B: Catalyst 

loading (g/L) 

C: Reaction 

time (min) 

D: Superficial 

velocity (mm/s) 

Degradation (%) 

Experimental  Predicted 

1 3.5 1 120 8.66 35.94 34.20 

2 6.5 1 120 8.66 40.52 47.28 

3 3.5 3 120 8.66 53.55 43.60 

4 6.5 3 120 8.66 42.82 57.64 

5 3.5 1 240 8.66 38.13 43.99 

6 6.5 1 240 8.66 54.27 54.51 

7 3.5 3 240 8.66 50.34 31.52 

8 6.5 3 240 8.66 36.15 43.00 

9 3.5 1 120 17.32 51.90 41.25 

10 6.5 1 120 17.32 48.10 44.36 

11 3.5 3 120 17.32 55.57 52.78 

12 6.5 3 120 17.32 56.50 56.84 

13 3.5 1 240 17.32 65.90 68.83 

14 6.5 1 240 17.32 52.92 59.07 

15 3.5 3 240 17.32 58.74 48.18 

16 6.5 3 240 17.32 50.50 46.69 

17 2 2 180 11.55 58.80 53.64 

18 8 2 180 11.55 56.71 58.23 

19 5 0 180 11.55 7.83 9.63 

20 5 4 180 11.55 31.80 39.09 

21 5 2 60 11.55 28.31 38.61 

22 5 2 300 11.55 45.20 41.25 

23 5 2 180 5.77 34.97 44.79 

24 5 2 180 23.10 42.00 58.54 

25 5 2 180 11.55 46.00 46.15 

26 5 2 180 11.55 45.00 48.25 

27 5 2 180 11.55 46.20 44.32 

28 5 2 180 11.55 46.80 46.15 

29 5 2 180 11.55 46.00 47.36 

30 5 2 180 11.55 46.90 48.15 

 

The two responses, predicted and experimental, were determined through the combination of 

the process variables as shown in Table 4-4. The predicted values were computed by means of 

the final second-order empirical model (Equation 62) in terms of coded factors through the use 

of the Design Expert® Software of Stat-Ease Inc. The predicted values presented a sufficient 

correlation to the experimental values, although there was a slight deviation in some other 

experimental runs. The experimental data was fitted to several models (cubic, quadratic and 
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linear). However, it was found through their subsequent ANOVA that the photodegradation of 

phenol was best described by the second-order empirical model. From Equation 88, the main 

effects of initial pH level (A) had a significant negative influence on the photodegradation of 

phenol. This shows that an increase in the initial pH level will result in a decrease in the 

photodegradation efficiency.  

0.50CD0.66BD0.66BC1.37AD0.52AC AB14.1D88.1                        

C43.0B04.4 2.95A1.85D0.16C3.60BA77.415.46

2

222



y
  (62) 

In order to evaluate the adequacy of the empirical second-order model, both the ANOVA 

method and significance test were employed. The significance test was used to determine the 

regresion coefficients of the empirical second-order model. The ANOVA method was used to 

evaluate the significance of the empirical second-order model (Jiang et al., 2013),  and the 

results are shown in Table 4-5. The evaluation is done by determining the Probability value (P) 

and Fisher’s test (F) for each regression coeficient in the model. The significance of the 

interaction between the process variables is determined by the Fisher’s test, thereby creating a  

pattern between the interaction of the process variables (Petrović et al., 2015). This means that, 

the higher the values of the Fisher’s test, the lower the Probability values. Furthermore, the F-

values are computed for each tested model and the model with the most significant terms is 

selected (Fakhri et al., 2016). 

From Table 4-5, the F-value for the model was found to be 98.56 resulting in a Probabilty value 

that is less than 0.0001. This means that the model is suitable for this study (significant). The 

Probability values were used to specify the interaction strength between the independent 

variables (Petrović et al., 2015). In addition, model terms that obtain P-values that are less than 

0.05 are considered to be statistically significant. As per Table 4-5, the inital pH level (A), 

superficial gas velocity (D), quadratic of inital pH level (A2) and interaction of catalyst loading 

& reaction time (BC) and catalyst loading & superficial gas velocity (CD) are considered 

significant model terms. Other model terms are considered to be insignificant and it is 

recommended to eliminate them so as to simplify the empirical second-order model.  
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Table 4-5. Analysis of variance of the empirical second-order model. 

Source 
Sum of 

Squares 
DF 

Mean 

Square 
F-Value Prob > F 

 

Model 2099.96 14 139.59 98.56 <0.0001 Significant 

A 267.13 1 267.13 31.65 0.0453  

B 0.22 1 0.22 7.17 0.2275  

C 14.95 1 14.95 65.36 0.0546  

D 371.49 1 371.49 54.63 0.0411  

A2 249.51 1 249.51 38.14 0.0452  

B2 161.96 1 161.96 6.78 0.2334  

C2 134.81 1 134.81 1.59 0.0979  

D2 35.85 1 35.85 61.44 0.0501  

AB 0.92 1 0.92 3.63 0.3077  

AC 6.57 1 6.57 7.15 0.2278  

AD 106.83 1 106.83 10.14 0.1937  

BC 478.19 1 478.19 24.29 0.0212  

BD 11.74 1 11.74 9.09 0.2039  

CD 25.21 1 25.21 1.68 0.4182  

Residual 381.84 15 72.12 - -  

Lack of Fit 354.85 10 35.92 9.54 0.1084 Not significant 

Pure Error 26.99 5 5.4 - -  

Cor Total 2481.8 29     

 

The presence of systematic errors in the model is detected by means of residual analysis. Two 

factors that often contibute to the residual variance are: pure experimental error and lack of fit. 

The pure error is computed by considering the difference between the eperimental and 

predicted values under the same conditions in a random sequence (Petrović et al., 2015). The 

variations in the model terms are represented by the lack of fit. The P-value for lack of fit was 

found to be 0.1084 indicating that it was statistically insignificant. The coefficient of 

determination (R2) in the current study was found to be 0.975. This signifies that 97.5% of the 

variation was found in the response variable can be described by the model, whereas, 2.5% is 

residual variability (Islam et al., 2009). Furthermore, the adjusted coefficient of determination 

(
2

adjR ) was found to be acceptable (0.954), indicating the significance of the model.  It is worth 

noting that Equation 88 is highly significant (P-value < 0.0001), with an acceptable coefficient 

of determination (R2 = 0.954) and is therefore adequate to predict the photodegradation of 

phenol. 
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4.2.1.  3D response surface analysis 

Figure 4-10 shows the effect of initial pH level and reaction time on the degradation of phenol. 

A decrease in the initial pH level resulted in an increase in the photodegradation of phenol. The 

Zeta potential of Titanium dioxide is 3 mV as investigated by Liao et al. (2009). The influence 

of initial pH on the photodegradation efficiency can be described by the point of zero charge 

(pzc), whereby, this value was reported to be 6.2 for TiO2 (Shahrezaei et al., 2012b). This 

suggests that the surface of TiO2 is negatively charged in alkaline solutions (pH > 6.2) and, 

conversely, it is positively charged in acidic conditions (pH < 6.2). This was also confirmed by 

the empirical second-order model where the initial pH level had a negative regression 

coefficient (-4.77A). This suggests that a high initial pH level has a negative influence on the 

photodegradation of phenol.  

Since phenol and its derivatives are negatively charged in aqueous solution due to the OH 

groups (Shahrezaei et al., 2012b), it is therefore expected that their electrostatic attraction to 

the catalyst particles will be more favourable in acidic conditions and repulsive in alkaline 

conditions. Furthermore, the negatively charged anions are adsorbed into the pores (pore 

diffusion) of the catalyst as mentioned in Section 2.5. The initial pH results revealed that the 

photodegradation of phenol is favourable in acidic condition as opposed to alkaline conditions. 

From the current study, at these acidic conditions (pH = 3.5), the maximal photodegradation 

efficiency of phenol was found to be 52.2%. Saien & Nejati (2007) studied the 

photodegradation of petroleum wastewater (phenol) using a nano-sized TiO2 photocatalyst and 

they obtained a maximal photodegradation of 70% at a pH level of 3 and reaction time of 

120 min.  

It is illustrated in Figure 4-10 that an increase in the reaction time from 120 min to 210 min 

resulted in an increase in the photodegradation of phenol from 39.9% to 52.8%, whereas, the 

photodegradation of phenol remained constant with a further increase in the reaction time 

beyond 210 min. When the process reached a reaction time of 210 min, this implies that the 

active surfaces on the catalyst are fully occupied and the process has reached equilibrium. 

The interaction between the process variables can be better understood by plotting three-

dimensional response surface plots and these are discussed in detail in this section. These 

surface plots are graphical demonstrations of the developed empirical second-order model 

(Equation 78). They assist in analyzing the interaction among the process variables (Fakhri et 

al., 2016) and to determine the optimal level for each process variable for the degradation of 
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phenol. In addition, there exist an infinite number of combinations for any two tested process 

variables, therefore, these plots reveal the type of interactions between these variables (Petrović 

et al., 2015). 

Literature has shown that petroleum wastewater contains various organic compounds (Coelho 

et al., 2006) and, quite often, these organic pollutants differ greatly when it comes to solubility 

in water, speciation behaviour and hydrophobicity (Shahrezaei et al., 2012b). In addition, some 

of these pollutants can occur in negative, neutral or positive forms in solution and these 

discrepancies in ionic behaviour can significantly affect the photodegradation efficiency of the 

process. Consequently, the initial pH level of the solution plays a major role in the 

photodegradation efficiency of the system.  

 
Figure 4-10. Effect of reaction time and initial pH level on the photodegradation of phenol.  
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Figure 4-11 shows the effect of catalyst loading and initial pH level on the photodegradation 

of phenol. Since a composite catalyst was used, the values displayed here (1.0-3.0 g/L) were 

those of the composite catalyst as a whole. The catalyst dosage range chosen in this study was 

based on preliminary experiments that have shown that an increase in the TiO2 particle size 

necessitates an increase in catalyst dosage. The results, from Figure 4-11, show that an increase 

in the catalyst loading, from 1.0 to 2.0 g/L, results in an increase in the photodegradation of 

phenol. This is due to an increase in the number of active sites available for adsorption and 

photodegradation of phenol. However, a further increase beyond 2.0 g/L results in a decrease 

in the photodegradation efficiency. Therefore, the optimal catalyst loading in the current study 

was chosen to be 2.0 g/L that gave a photodegradation efficiency of 47.3%. 

The catalyst loading is an important process variable that affects photodegradation efficiency 

of organic pollutants in a fluidized bed photoreactor. It has been found that in photocatalytic 

systems, a high catalyst loading is ineffective due to excess catalyst particles preventing the 

UV light penetration thus resulting in the reduction of photodegradation efficiency. Therefore, 

an optimal catalyst loading is necessary to avoid the hindering of UV light penetration. It is 

also good practice to ensure good economic usage of the catalyst to reduce the cost of catalyst 

loading (Zulfakar et al., 2011). 
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Figure 4-11. Effect of catalyst loading and initial pH level on the photodegradation of 

phenol.  

 

Figure 4-12 shows the effect of superficial gas velocity and catalyst loading on the 

photodegradation of phenol. The results show that an increase in the superficial gas velocity 

results in an increase in the photodegradation efficiency. The optimal superficial gas velocity 

was found to be 17.32 mm/s that gave a maximal photodegradation efficiency of 48.6% with a 

catalyst loading of 2.0 g/L. The superficial gas velocity was varied within the homogeneous 

regime (8.66-17.32 mm/s). According to the hydrodynamic study, the bubble size distribution 

was uniform and the global gas hold-up was below 0.13 (Figure 4-8). An increase in the 

superficial gas velocity results in an increase in the number of bubbles present in solution due 

to an increase in the drag force, thus increasing the global gas hold-up. This increase in the 

global gas hold-up results in an increase in the availability of oxygen (to prevent electron-hole 

recombination) and enhances the mixing inside the reactor.  

The central idea of a fluidized bed photoreactor is that fluidization and air was used in the 

current study for fluidization (and agitation). The use of air is important due to the fact that it 

plays two major roles in photodegradation: mixing inside the reactor and the oxygen acts as an 
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electron scavenger that prevents electron-hole recombination. The mixing inside the reactor 

(hydrodynamics) has been discussed in Section 4.1 and it was shown that the gas hold-up assists 

in understanding the mixing in the reactor. It was also shown that the superficial gas velocity 

has a significant impact on the global gas hold-up. 

 

Figure 4-12. Effect of superficial gas velocity and catalyst loading on the photodegradation 

of phenol.  

 

4.3. Reaction kinetics 

In the current study, the adsorption reaction constant (b) was found to be insignificant, 

consequently, the term in the denominator of Equation 24 (L-H model) was neglected (bC ~ 0). 

Equation 24 was then transformed into a linearized algebraic equation (Equation 26) where the 

apparent reaction rate constant (Kapp) was determined by using the gradient of the slope and t 

is the reaction time in minutes. The apparent reaction rate encapsulates both the degradation 

reaction rate (kr) and the adsorption reaction rate constants (b), and it was assumed that b is 

negligible, compared to kr, and the assumption was confirmed by conducting adsorption 

experiments. The adsorption experiments were conducted at optimal conditions to evaluate the 
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composite catalyst’s adsorption capacity. The initial concentration of phenol for the adsorption 

study was 30 ppm and after 75 min, only 7.33% of phenol was adsorbed. Therefore, it is evident 

that the rate of adsorption was minimal. 

 The photodegradation kinetics of phenol under solar irradiation and TiO2 catalyst were 

studied. The kinetic experiments were conducted using the optimal photodegradation operating 

conditions that were found, using RSM, to be: superficial gas velocity of 17.32 mm/s, catalyst 

loading of 1.0 g/L, initial pH level of 3.5 and reaction time being 210 min. An initial 

concentration of 30 ppm (for phenol) was used for all reaction kinetic experiments and 

sampling was done at different time intervals. The reaction rate data was modelled using both 

the first-order (L-H model) and second-order kinetics by measuring the concentration of phenol 

at different time intervals. From the slope of the graph in Figure 4-13a, the apparent reaction 

rate constant was found to be 0.0046 min-1 that is within the range of what Shahrezaei et al. 

(2012b) obtained to be 0.007-0.013 min -1. 

The coefficient of determination (R2) was found to be 0.9931. A high value of R2 evidently 

shows that the L-H model was applied with a good degree of precision. In addition, the R2 

obtained in this study was similar to that found by Shahrezaei et al. (2012b) (R2 ˃ 0.997). This 

means that it can be used to predict future outcomes. The second order model was applied onto 

the reaction rate data and gave a relatively low value for R2 = 0.9698 and 

Kap = 0.0002 L/(mg.min)-1 (Figure 4-13b). Apollo et al. (2014) studied the photodegradation 

kinetics of phenol and methyl orange using solar irradiation and ZnO catalyst supported on 

silica. Although they did not use the L-H model, they showed that the degradation kinetics of 

phenol using ZnO-SiO2 catalyst followed the pseudo first-order kinetics. At an initial 

concentration of 30 ppm (phenol), they obtained a photodegradation reaction rate constant of 

0.0107 and R2 being 0.9941.  
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Figure 4-13. Linear fit for photodegradation reaction. a) L-H (first-order) model b) Second-

order model.  

From understanding the photodegradation kinetics of phenol under optimal conditions, further 

experiments were conducted to monitor the reduction of TOC using the optimal conditions. 

Figure 4-14 shows the effect of the optimal conditions on the reduction of TOC at different 

time intervals. After 210 min of irradiation, only 63.7% of TOC reduction was achieved. From 

the RSM results, it was shown that 52.7%, that was the concentration of phenol, was degraded 

in 150 min. Therefore, it is evident that beyond 150 min, there was still some intermediates 

present in solution. Zulfakar et al. (2011) investigated the photodegradation of phenol using 

immobilized TiO2 photocatalyst and UV light. They reported that the main intermediates 

formed during the degradation of phenol are p-benzoquinone, catechol, hydroquinone and 

resorcinol. They further mentioned that these intermediates tend to compete with phenol for 

the available active sites on the catalyst thus resulting in a decrease in the apparent reaction 

rate constant. In addition, the formation of intermediates is highly dependent on the initial 

concentration of phenol. 

It has been reported that as the hydroxyl radicals destroy phenol, it is converted into its 

derivatives (intermediates) and those derivatives are further converted into H2O, CO2 and weak 

acids (Shahrezaei et al., 2012b). Furthermore, literature shows that the intermediates 

significantly affect the apparent reaction rate constant (Zulfakar et al., 2011). Therefore, it is 

necessary to understand the reaction chain by monitoring the TOC reduction during the 

photocatalytic degradation of phenol. Total organic carbon has the ability to indirectly reveal 

the degradation of both phenol and phenolic derivatives (intermediates).  
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Figure 4-14. Reduction of TOC at different time intervals.  

 

4.4. Sedimentation tests 

Figure 4-15 shows the colloidal stability of titanium dioxide at different particle sizes, where, 

turbidity of the suspensions was monitored at different time intervals. The nano-sized particles 

had a sluggish decrease in turbidity from 888 to 458 NTU, whereas, the micro-sized particles 

showed a sharp decrease in turbidity from 0 to 10 min and remained constant from 70 min at 

around 84 NTU. It is worth noting that performance of a solid-liquid sedimentation process is 

significantly affected by electrolyte concentration and pH of solution (Fernández-Ibáñez et al., 

2003). Therefore, to rule out these effects, the sedimentation tests were carried out at a neutral 

pH and using de-ionized water. After 100 min of sedimentation, the nano-size achieved a 

turbidity reduction of 48.4%, whereas, the micro-size achieved 83.7%. 

As mentioned in Section 1.3, TiO2 is nano-sized (powder form) meaning that it has a large 

specific surface area for adsorption and photodegradation but the limiting factor is filtering it 

out of solution. The reason for attaching TiO2 onto silica was to increase the particle size 

thereby enabling a much easier filtration process. Several studies such as Xi & Geissen, (2001) 

have attempted the separation of titanium dioxide from aqueous solution by using cross-flow 

microfiltration (CFM) to improve the overall process of solar photocatalysis. Although the 

results from this study were encouraging, at commercial level,  microfiltration and membrane 

maintenance will significantly increase the operating costs (Fernández-Ibáñez et al., 2003). If 
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solar photodegradation is to be as competitive as its competitors, it requires a low cost and 

robust separation technique (sedimentation). The sedimentation tests were conducted by 

investigating the colloidal stability through experimental suspensions. 

 

Figure 4-15. Effect of turbidity during the sedimentation process. 

 

The composite catalyst in the current study achieved a low photodegradation performance 

(63.7% removal) but its ability to be filtered has been enhanced and this can be seen by the 

sedimentation experiments. The experiment involved comparing TiO2 catalyst at different 

particle sizes (nanometer and micrometer). Figure 4-16a and b show the different particle sizes 

at time t = 0 and Figure 4-16c and d were the different particle sizes after 24 hours of 

sedimenting. Figure 4-16c (micrometer) showed a rapid settling rate whilst Figure 4-16d 

(nanometer) was extremely slow. It is therefore evident from the sedimentation experiments 

that increasing the particle size of TiO2 significantly reduces the cost of filtration at an expense 

of low process performance. Therefore, one must find an optimal balance between the cost of 

filtration and process efficiency. 
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Figure 4-16. Comparison of settling rate for TiO2 catalyst at different sizes (nanometer and 

micrometer). (a) Micrometer size at time t = 0, (b) Nanometer size at time t = 0, (c) 

Micrometer size at time t = 24 h, (d) Nanometer size at time t = 24 h.  
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CHAPTER 5 

5. Conclusion and recommendations 

5.1. Conclusion 

The purpose of this study was to use CFD techniques to investigate the flow dynamics and 

turbulence inside the fluidized bed photoreactor. Furthermore, response surface modelling was 

applied to optimize the operating conditions for the photocatalytic degradation of petroleum 

wastewater. The petroleum wastewater was simulated by synthesizing a stock solution 

consisting of phenol that is an organic compound that is mostly found in petroleum wastewater. 

The concentration of phenol in the stock solution was 30 ppm and was degraded using solar 

irradiation. 

The CFD model was developed by investigating the hydrodynamic conditions such as axial 

liquid velocity, radial gas hold-up profiles, turbulent kinetic energy and turbulent kinetic 

dissipation rate. The numerical optimization technique (Desirability) was applied to determine 

the optimal CFD model settings. The developed model was validated by comparing simulated 

hydrodynamic data with experimental results (conducted by the author). The grid independence 

study revealed that the finer the grid size, with structured cells, the better the accuracy of the 

simulation data. The numerical optimization study showed that to obtain good convergence 

and accuracy, the following simulation setting methods should be used: grid resolution of 

500 000 cells, 2nd order discretization scheme and a small (0.001) time step size. The flow 

pattern inside the reactor revealed that the bubbles to gather at the centre of the reactor thus 

inducing a high velocity profile towards the centre of the reactor. The experimental bubble 

distribution study showed that the bubbles had a spherical-like shape due to low superficial gas 

velocity and the homogeneous regime. The CFD data showed a good agreement with the 

experimental CFD data from Kulkarni et al. (2007) and a thorough analysis of the 

hydrodynamic conditions gave understanding of the flow pattern and turbulence inside the 

reactor. 

Photocatalytic degradation has shown to be a potential wastewater treatment process. The 

process variables, which predominantly affect the efficiency and performance of petroleum 

wastewater degradation were optimized using response surface modelling. The 

photodegradation efficiency in the current study was found to be relatively low (65.9%) as 

compared to literature (80.84%) and this was attributed to the increase in catalyst particle size 
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(from nanometer to micrometer). The optimal operating conditions were determined, using 

RSM, to be: superficial gas velocity of 17.32 mm/s, composite catalyst loading of 2.0 g/L, 

initial pH level of 3.5 and reaction time being 210 min. The developed second-order empirical 

model presented a sufficient correlation to the photodegradation experimental data values, 

although there was a slight deviation in some other experimental runs. 

The reaction kinetics for the photocatalytic degradation of petroleum wastewater (phenol) were 

evaluated using the L-H model and it was found that the photocatalytic degradation of 

petroleum wastewater follows pseudo first-order reaction kinetics. Fitting the linear curve on 

the reaction data gave a high coefficient of determination (R2 = 0.9931) that was comparable 

to literature. The TOC photodegradation data (Figure 4-14) showed a removal efficiency of 

63.7% that was low when compared to literature and this was caused by the reduction in the 

composite catalyst specific surface area and restricting the experiments to reach equilibrium. 

There is a misalignment between the photodegradation efficiency and cost of catalyst 

separation post-treatment. Conventionally, TiO2 is used in its nano-sized form. This method 

produces excellent photodegradation efficiency. However, the nano-size increases the cost of 

separation post-treatment. Therefore, binding the catalyst by using silica reduces the 

photodegradation efficiency but improves the separation process and this was shown by the 

sedimentation experiments. In the current study, the catalyst particle size was increased from 

nano-to-microsize thus resulting in a low photodegradation efficiency at decreased cost of 

separation. It is therefore evident from the sedimentation experiments that increasing the 

particle size of TiO2 significantly reduces the cost of filtration at the expense of low process 

performance. Therefore, one must find an optimal balance between the cost of filtration and 

process efficiency. 

5.2. Recommendations 

The CFD model that was developed in this study showed good correlation to experimental 

results. It is therefore recommended to further apply the model to study other phenomena such 

as solid concentration distribution, mass transfer and light distribution in a fluidized bed 

photoreactor. A study on the effect of catalyst particle size on the photodegradation 

performance should be conducted to obtain the optimal particle size. This will assist in 

obtaining a balance between the catalyst particle size and photodegradation performance. 

Furthermore, improvements of the sedimentation technique needs to be studied by 
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investigating variables such as effect of pH level of solution, flocculants and electrolyte 

concentration on the sedimentation efficiency.  
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APPENDICES 

Appendix A (Grid independence study results) 

Figure A-1 shows the simulation data from a grid independence study. The grid independence 

study was conducted by keeping all the CFD settings (time step size, discretization scheme and 

turbulence model) constant for all cases. The simulation data was compared to experimental 

results obtained from Kulkarni et al., 2007. Figure A-1 shows a comparison between the 

simulation and the experimental results where the local gas hold-up was used as a response. 

 

Figure A-1: Grid independent study; comparison between simulation and experimental 

results. 
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Appendix B (CFD optimization results) 

The simulations were conducted by varying the CFD settings (time step size, discretization 

scheme and grid size) that had a significant influence on the simulation accuracy and 

convergence. The varying of the CFD settings was done by using a 3-level factorial design 

which enables the study of the interdependency of the CFD settings and the simulation data 

was compare to Kulkarni et al., 2007. Table B-1 shows the ANOVA design from the 3-level 

factorial study where significance of the model is shown. 

Table B-1: Analysis of variance for selected factorial optimization study. 

Source 
Sum of 
Squares 

DF 
Mean 

Square 
F 

Value 
Prob > F 

  

  

Model 0.097 12 8.13E-03 4.1 0.02128 Significant 

E 0.012 1 0.012 6.15 0.01314  
F 0.016 2 8.12E-03 4.09 0.01964  
G 0.02 2 9.99E-03 5.04 0.01657  
EF 9.90E-03 2 4.95E-03 2.49 0.02862  
EG 0.034 2 0.017 8.49 0.01053  
RG 0.027 3 9.00E-03 4.53 0.01859  

Residual 3.97E-03 2 1.98E-03    

Cor Total 0.1 14     

E – Number of cells, F – Discretization scheme and G – Time step size 

The developed empirical polynomial model is shown by Equation B1. It was developed 

through the statistical optimization study using Design Expert® Software of Stat-Ease Inc. 

(version 6.0.6). The developed model can be used to determine the percentage error of the 

simulation results. 

1FG1.00.068EG 037.00.083G0.091F00432.0034.0%  EFEError ………(B1) 
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Table B-2: Diagnostics case statistics. 

Run 
Actual Predicted 

Value Value 

1 0.014 -0.006 

2 0.175 0.195 

3 0.015 0.039 

4 0.181 0.157 

5 0.131 0.127 

6 0.184 0.188 

7 0.243 0.243 

8 0.109 0.109 

9 0.020 0.020 

13 0.020 0.040 

14 0.190 0.170 

15 0.015 -0.009 

16 0.013 0.037 

17 0.024 0.028 

18 0.022 0.018 
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Appendix C (Vector plots) 

Figures C-1 to C3 show the velocity vector plot of the axial liquid velocity at different locations 

in the reactor. The most significant fluid sections in the reactor were inlets and outlets for both 

fluids (water & air). The velocity vector graphs were helpful in visualizing turbulent swirling 

profiles and areas of fully developed flow. 

 

Figure C-1: Vector plot for axial liquid velocity at the distributor zone. 
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Figure C-2: Vector plot for axial liquid velocity at the disengagement zone. 
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Figure C-3: Vector plot for axial water velocity for the entire computational domain. 

  



101 

 

Appendix D (Contour plots) 

Figures D1 and D2 show contour plots of the gas volume fraction at different locations in the 

reactor. The contour plots were helpful in determining as to where is the gas concentrated as it 

flows up the reactor. 

 

Figure D-1: Contour plot of aerial view for local gas hold-up at three axial positions. 
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Figure D-2: Contour plot of local gas hold-up for the entire computational domain.  
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Appendix E (Computational domain study) 

Figures E-1 and E-2 show a preliminary simulation study that was done to determine the effect 

of decreasing the computational domain. 

 

Figure E-1: Simulation grids for three different computational sizes. (a) Full; (b) Half and (c) 

Quarter. 
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Figure E-2: Comparison between simulation and experimental results for axial liquid 

velocity at different computational domain sizes. 
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Appendix F (List of equations) 

Bubble induced turbulence is as a result of the displacement of the liquid phase caused by the 

gas flowing through the liquid phase (Zhang et al., 2006). Sato et al. (1981) used this model 

(Equation 44) to predict the bubble induced turbulence in bubble column reactors.  

LGBGBITLlBIT uudC  ,,         (F1) 

where 
Bd  is the bubble diameter and BITC ,  is a model constant set to 0.6 in accordance with 

previous studies (Masood et al., 2014; Pourtousi et al., 2015). The interphase force term is due 

to phenomena such as cohesion, friction, pressure and other effects, therefore, a suitable 

expression that is linked to the interphase force term is needed to close Equation 40. 
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where 
gu

  and lu


 are the gas and liquid phases velocities and Kgl is the interphase momentum 

exchange coefficient. 

 In fluid-fluid flow scenarios, the secondary phases are considered to be bubbles or particles. 

For example, when modelling a bubble column reactor that consists of a liquid phase and a gas 

phase (unequal amount of phases), the liquid phase is modelled as the primary fluid due to the 

fact that the gas phase will form bubbles or droplets (dispersed). The momentum interphase 

exchange coefficient in such processes is described by: 
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where f is the friction function and is expressed based on the respective interphase exchange 

coefficient model, Ai is the interfacial transfer area and 
k is the particulate relaxation time: 

g
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k

d






18

2

           (F4) 

where 
g and dg are the viscosity and diameter of the secondary phase, respectively. 
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The interfacial area is a cross sectional area that exists when two different phases come into 

contact and is expressed per unit volume of mixture. The modelling of this variable is very 

essential due to the fact that it assists in predicting the transfer of energy, momentum and mass 

from one fluid to another. Therefore, when modelling a multiphase reactor using the Eulerian 

model, the interfacial area was calculated by resolving the algebraic relationship between the 

interfacial area concentration and the bubble diameter specified (ANSYS, 2010). The 

interfacial area model originates from the surface area to volume ratio of the particle (Equation 

F5).  

p
g

g

i
d

d

d
A

6

6

1 3

2






         (F5) 

However, there are various algebraic interfacial area models that can be used to model the 

interfacial area. In the current study, the Symmetric Model was used (Equation F6). The 

diversity of this model is that it includes the volume fraction that directs the interfacial area 

concentration to approach 0 as the volume fraction approaches 1 (ANSYS, 2010). 
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Modelling interfacial drag force 

The terminal rise velocity of the bubble and is given by (ANSYS, 2010): 
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where Mo is the Morton number related to the fluid property and is defined by: 
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where σ is the surface tension and J is given by the piecewise function: 
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H is expressed as: 

14.0

149.0

3

4



















ref

lEoMoH



        (F11) 

where ref = 0.0009 kg/(m.s) is the reference viscosity of water at a specific temperature and 

pressure (Qi et al., 2011). Eo is the Eötvös number defined as: 
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Modelling interfacial lift force 

The Saffman-Mei model was extended by Mei & Klausner, (1994) by empirically representing 

it as: 
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where 
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and 
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Modelling interfacial wall lubrication force 

yw is the distance nearest to the wall and when: 
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where the values of Cw2 and Cw1 become default when: 

bw dy 5           (F17) 
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Turbulence modelling 

In the current study, the effect of the dispersed phase on the turbulence of the multiphase 

equations was considered since the Eulerian multiphase approach was used along with the 

standard k-ε turbulence model. The terms (
q  and lg
) are representative of the source terms 

and are due to the influence of the dispersed phase. The instantaneous equation that is linked 

to the continuous phase, is derived from the source term
lg . 
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where klg is the covariance of the velocities for the both the liquid and gas phase, Cs is a user-

modifiable model constant that was specified as 1 (default value), lgU


 is the relative velocity 

and 
drU


 is the drift velocity computed as: 
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where 
lgD is the fluid particulate dispersion tensor. 
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where Xlg ~ 1 for granular flows. 

The formulation of the turbulence models for the dispersed phase is shown by the characteristic 

particle relaxation time (
F

gl ) that is associated with the inertial effects that are exerted on the 

dispersed phase. 



109 

 

  

















g

l

VM

lc

glF

gl C
f

d








 1

Re,18

2

       (F23) 

The energetic turbulent eddies can be represented by the time scale ( t

l ) that is described as: 
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The cross-trajectory is the main characteristic that affects the eddy particle interaction time    

(
t

gl ) and is described as: 
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where 
1  is equated to 1 and C  is described as: 
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 can be calculated as: 
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