

I

DECISION SUPPORT FRAMEWORK FOR THE ADOPTION OF

SOFTWARE DEVELOPMENT METHODOLOGIES

Dissertation submitted for the degree Magister Technologiae in

Information Technology

In the Faculty of Applied and Computer Sciences

Lynette Simelane

209121807

Supervisor: Professor Tranos Zuva

Co Supervisor: Dr Etienne Alain Feukeu

II

DECLARATION

Student Number: 209121807

I declare that this dissertation is my work and that all the sources that I have used or quoted

have been indicated and acknowledged by means of complete references.

……………………….. ………………. Date

………………………………………… SIGNATURE

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof T Zuva, for his guidance throughout the study.

I would also like to thank all the participants for their invaluable input.

Most importantly I would like to thank my husband and children, for their support and

encouragement throughout the study.

A special thanks goes to my mother for her support, encouragement; and all the sacrifices she

made for us to receive quality education. I would also like to thank her for setting the bar and

always reminding us of the importance of education.

Last but not least, praise be to God for granting me the opportunity to study and complete this

degree.

III

TABLE OF CONTENTS

Declaration .. ii

Acknowledgements ... ii

LIST OF ACRONYMS .. vi

Abstract ...vii

CHAPTER ONE ... 1

BACKGROUND INTRODUCTION.. 1

1.1 Introduction ... 1

1.2 Rationale and Motivation of the Study ... 3

1.3 Problem Statement .. 4

1.4 Research Questions and Hypotheses .. 5

1.5 Research Objectives ... 5

1.6 The Objectives of the Study .. 5

1.7 Outline of the Study ... 6

1.8 Summary of the Chapter .. 6

CHAPTER TWO .. 8

LITERATURE REVIEW.. 8

2.1 Introduction ... 8

2.2 Overview of Software Development Methodologies .. 8

2.2.1 The Traditional Methodologies ... 9

2.2.2 Agile Methodologies ... 16

2.3. Benefits of Agile Adoption .. 25

2.3.1 Problem of agile software methodologies ... 26

2.4. Overview Of Strengths And Weaknesses Of Traditional And Agile Methodologies 26

2.5. Project Characteristics and Adoption of Software Development Methodologies............... 30

2.6. Organizational Factors influencing the choice of software development methodologies .. 36

2.7. Summary of the Chapter .. 39

CHAPTER THREE .. 49

RESEARCH METHODOLOGY ... 49

3.1 Introduction ... 49

3.2 Research Methodology Contents Map.. 49

3.3 Philosophical foundation of the study .. 50

3.3.1 Epistemology .. 50

3.3.2. Research paradigm ... 53

3.4 Research approach ... 54

IV

3.4.1 Proposed Framework ... 54

3.5 Research Design ... 55

3.6 Methodological Process ... 57

3.7 Empirical Research ... 58

3.7.1 Population .. 58

3.7.2 Sampling Technique ... 58

3.8 Data Collection Procedure .. 59

3.9 Evaluation of the Framework ... 60

3.9.1 Research Validity .. 61

3.9.2 Research Reliability .. 61

3.9.3 Research Accuracy .. 61

3.9.4 Research Precision.. 61

3.10 Ethical Considerations .. 61

3.11 Summary Of The Chapter ... 63

CHAPTER FOUR ... 64

RESULTS AND DISCUSSION .. 64

4.1 Introduction ... 64

4.2 Presentations of Results ... 64

4.3 DS Framework Precision Measurement .. 72

4.4 Interpretation and Discussion of Findings ... 75

4.5 Summary Of The Chapter ... 79

CHAPTER FIVE.. 80

CONCLUSION AND RECOMMENDATIONs ... 80

5.1 Introduction ... 80

5.2 Conclusion ... 80

5.3 Recommendation ... 82

5.4. Limitation Of The Study .. 82

5.5 Suggestion for Future Research .. 83

References .. 84

V

Figure 1: Software Development Methodology Time (Griffin & Brandyberry, 2010). 4
Figure 2: Waterfall Methodology (Dr Winston W Royce 2016) ... 10
Figure 3: Spiral Methodology (Morley et al., 2000) .. 12
Figure 4: Prototype Methodology (Despa, 2014:45) ... 13
Figure 5: RAD methodology (Morley et al., 2000:131).. 14
Figure 6: V Model (Despa, 2014:45) ... 15
Figure 7: Life Cycle of the XP process (Abrahamsson et al., 2017b: 19) .. 19
Figure 8: Scrum methodology (Despa, 2014:45) ... 22
Figure 9: Graphical representation of the Feature Driven Development Model ((Palmer & Felsing, 2002)..... 25
Figure 10: Research Methodology Content Map (Babbie E & Mouton J, 2001) .. 50
Figure 11: Proposed Framework (Verma, Bansal and Panley, 2014) ... 54
Figure 12: Case Based Reasoning (Shekapure & Nagar, 2015) ... 56
Figure 13: Showing methodological Process of Study (Babbie, E. & Mouton, J., 2001) 57
Figure 14: Average score for requirements documentation ... 65
Figure 15: Average score for project size.. 65
Figure 16: Average score for project timelines ... 66
Figure 17: Average score for project complexity .. 66
Figure 18: Average score for user impact ... 67
Figure 19: Decision Support Framework user interface .. 68
Figure 20: Decision Support Framework user interface - continued ... 68
Figure 21: DS Framework Precision Test Results .. 74

Table 1: Providing an overview of Agile and traditional methods (Leau et al., 2012) 16
Table 2: Prescriptive Characteristics of some Agile Methods (Cohen et al., 2004) .. 18
Table 3: showing the key features/Benefits of Agile Methods (Vanker Cassim, 2015) 25
Table 4: Differences between traditional and agile development processes (Sharon et al., 2010:44) 27
Table 5: Characteristics, Strengths and Weaknesses of some of the common software methodologies (Despa,

2014: 51-54) .. 27
Table 6: The level of factors for which the software development methodology is appropriate (Geambaşu et

al. (2011:490)) ... 32
Table 7: Likert Scale Questionnaire (Verma, Bansal, and Pandey 2014) ... 59

file:///C:/Users/lsimelan/Documents/SDLC/ICT_MTech_L%20Simelane_209121807_Edited%20v2.docx%23_Toc9326318
file:///C:/Users/lsimelan/Documents/SDLC/ICT_MTech_L%20Simelane_209121807_Edited%20v2.docx%23_Toc9326319
file:///C:/Users/lsimelan/Documents/SDLC/ICT_MTech_L%20Simelane_209121807_Edited%20v2.docx%23_Toc9326320

VI

LIST OF ACRONYMS

ACRONYM FULL NAME

CMMI Capability Maturity Model Integration

EP Extreme Programming

DSF Decision support framework

FDD Feature Driven Development

GSD Global software development

IT Information technology

JSE Johannesburg Stock Exchange

OOAD Object-Oriented Analysis and Design

PLS Partial least squares

PM Project managers

RAD Rapid Application Development

SASD Structured Analysis and Structured Design

SC Software Crisis

SD Software Development

SDLC System development life cycle

SDC Software development companies

SDM Software development methodology

SDMs Software development methodologies

SPI Software process improvement

TAM Technology Acceptance Model

US United States

XP Extreme Programming

DSS Decision Support System

DS Framework Decision support framework

VII

ABSTRACT

There are many software development methodologies that are used to control the process of

developing a software system. However, no exact system has been found which could help

software engineers in selecting the best software development methodology (SDM). The

increasing complexity of software development today has led to complex management of

software systems.

This complexity increases the challenges faced by professionals in selecting the most

appropriate SDM to adopt in a project. This is important because the wrong choice of

methodology is costly for the organization as it may impact on deliveries, maintenance costs,

budget projects and reliability.

In this study we propose a decision support framework to assist professionals in the selection

of appropriate software development methodologies that would fit each organisation and

project setting.

The case based reasoning (CBR) methodology was implemented in this study. This

methodology focuses on problem solving that centres on the reutilization of past experiences.

The CBR methodology was implemented using the SQL programming language.

We tested the precision of the decision support framework by comparing the recommended

methodology to the actual software methodology that was adopted for the project. The DS

framework recorded an 80% precision result. In addition, the findings contribute to reducing

the software crisis faced by today’s professionals. Therefore the framework can be adopted as

a reliable tool for methodology selection in software development projects.

1

CHAPTER ONE

BACKGROUND INTRODUCTION

1.1 INTRODUCTION

Many software projects fail due to inappropriate selection of software development

methodologies (SDMs). The increasing complexity of software developments today has led to

complex management of these software systems (Despa, 2014) for many Information

technology (IT) industries in the world (Dingsøyr et al. (2018)), particularly within South

Africa (Silberberg & Africa, 2006). This complexity increases the challenges faced by

managers in deciding the most appropriate software methodologies to adopt in a software

project. This is important because the wrong choice of methodology is costly for the

organization as it may impact on deliveries, maintenance costs, budget projects and reliability.

Whereas a right choice may minimize Software Crisis (SC) (Sharon et al., 2010). SC was a

period of software development misery claimed to have tormented computer science since

early 1970s (de Vasconcelos et al., 2017). According to Haigh (2010), SC is attributed to a lack

of availability of a functional decision support framework (DSF), amongst other factors.

Likewise, SEI (2006) affirms that frameworks can assist organises to improve in the way it

operates. Making DSF vital in software development, hence, the availability of DSF for the

adoption of software development methodologies will provide project managers with the

necessary knowledge to gain insights and take decisions driven by the framework.

Additionally, DSF will be a means of solving the challenges of selecting the right SDMs and

tackling the existing software crisis.

SC was caused by the need to increase quality, tools and methods for software engineering.

Software methodologies assisted in organising the software development process from

documentation of requirements through to maintenance and support of the end product. A

software development process involves a group of activities, methods, tasks, actions and

practices that are used within the process of creating a high-quality software product

(Georgiadou, 2003). In this study, the focus is on SDM and it refers to the framework used to

structure, plan and control the process of developing an information system (Centers for

Medicare & Medicaid Services, 2008). There are many different methodologies used to

2

develop software products e.g. waterfall, incremental process, prototype, spiral, iterative, and

RAD, to mention a few.

Additionally, software development methodologies (SDMs) is a way of managing a software

development project which typically address issues like selecting features for inclusion in the

current version, when software will be released, who works on what, and what testing is done.

While SDMs have been scantly covered in some of the IT degree curriculums, individuals

working for professional software development organizations find that it is a big part of their

daily work environment. When selecting a SDM, the user is confronted with an assortment of

possibilities and the difficult task of identifying which method is most suited to the salient

characteristics of the decision situation, and the environment in which it exists. Most of these

SDMs are based on three generic methods, namely: the sequential methods, the evolutionary

(iterative) methods and the component-based software methods (Sommerville, 2016).

Most software processes available currently are based on these methodologies, there is no one

size fits all methodology, as none is considered as ideal or always the best (Kuhrmann et al.,

2018)& Mahapatra, 2015). Since there are many methodologies available, one of the challenges

faced by project managers is to decide on the most suitable methodology to adopt in a software

project. For many organizations, the analysis of all processes and the characteristics of each

new project is time consuming. Hence, most organizations consider choosing software

development methodologies known to them and at the same time familiar to all employees as

a suitable decision.

Unfortunately, according to Sharon et al. (2010) this manner of selecting SDMs is only suitable

for medium to large systems. From reviewing over a hundred software development projects

in organizations, Georgiadou (2003), found that almost 80% of projects were unsuccessful

because these organizations apply methodologies to projects without putting into consideration

the characteristics of these projects and other methodologies available. According to

Georgiadou, the success of a software project should be heavily dependent on the

characteristics of the project and method in use. Likewise, Meulendijk and Oud (2007), claimed

that the most suitable methodology depend on the characteristics of the particular project.

Similarly, Vliet (2008) argued for the need to apply a certain software methodology grounded

on the characteristics of the project.

One possible means to cope with the above is to tailor a method according to the organization

and its environment. Unfortunately, this strategy will demand a need for project managers to

3

continually monitor, analyse and adjust the method, tailoring strategies and the project

environment during the project (Xu & Ramesh, 2008). Using different methodologies for

different projects may be another solution. By providing project managers a decision support

framework for selecting the right methodologies, valuable time is saved. Besides, projects that

are adopted with the use of a suitable development methodology, may increase the quality of

the final product.

Therefore, the benefits and significance attached to decision support framework cannot be

overemphasized. Developing a decision support framework is a means of tackling the existing

challenges of selecting the right SDM. Selecting an appropriate SDM can make a big difference

in achieving a successful end result when measured in terms of cost, meeting deadlines, client

happiness, robustness of software, or minimizing expenditures on failed projects. It is against

this background that this study attempts to evaluate the methodologies applied and practiced

on various software development projects with the overall objective of developing a decision

support framework for the adoption of software methodologies. This will ensure successful

completion of business critical software development projects and realization of business

objectives for which the projects were undertaken (Khan & Beg, 2013).

1.2 RATIONALE AND MOTIVATION OF THE STUDY

Previously, software development consisted of a programmer writing code to solve a problem

or automate a procedure. Nowadays, systems are so large and complex that teams of architects,

analysts, testers, programmers and end users must work together to create a solution that

satisfies business needs and requirements (Mahanti et al., 2012).

Organizations constantly adapt their information systems to reflect changes in the type of

information needed because of changes in technology, business processes, structure, or the

external environment. A process called the systems development life cycle (SDLC) has been

developed to ensure that these changes are orderly and productive. To manage this, a number

of system development life cycle (SDLC) methodologies have been developed, namely:

waterfall, spiral, RAD, prototyping and JAD. Beside the existence of the SDLC, and based on

the vast varieties of available methods, it is still very difficult to choose appropriate

methodologies which will play an important role in ensuring that the project is delivered within

schedule, within cost and meet the user requirements.

4

1.3 PROBLEM STATEMENT

Some concerns in the world have indicated a need for a methodology that is cost effective and

results in higher quality and success rate (Overhage et al. 2011). For example, a report from

the Standish Group CHAOS (2015) revealed that most projects run globally in 2015 were either

challenged (52%) or failed (19%) (Standish Group 2015 Mahapatra, 2015).

The software development industry emerged over six decades ago (Cusick et al., 2008). Since

the late 1960s, lots of methodologies have been developed and introduced to try address the

challenges that emerge during the software development life cycle (Jiang & Eberlein, 2008).

Presently, there are various models, standards, procedures, methodologies and process

improvement guidelines that have been introduced to assist an organisation in the way it

operates and conducts business (SEI, 2006).

A series of common software development methodologies is summarised by Griffin and

Brandyberry (2010) as depicted in Figure 1 below.

Figure 1: Software Development Methodology Time (Griffin & Brandyberry, 2010).

Failures in software development projects have attracted much attention in academia, industry

and the government because of the on-going failures of software development projects in

relation to meeting time, budget and functional requirements (Marques, Costa, Silva, &

Gonçalves, 2017). As such, failures in software development projects have dominated the topic

5

of several studies (Abrahamsson, Salo, Ronkainen & Warsta, 2017; Batarseh & Gonzalez,

2018; Lei, Ganjeizadeh, Jayachandran & Ozcan, 2017; Varajão, J. et al., 2014). Unfortunately,

these studies are limited, in that they focus more on project management and significantly

ignore the kind of software development practices suitable for each organizational and project

setting. It was also pointed out by scholars (Dingsøyr et al. 2018) that implementing software

that is within budget, schedule, satisfies customer requirements and is of good quality, seems

to be a very big challenge for professionals in the field. Therefore, in closing this gap, the

present study develops a decision support framework to assist in the selection of appropriate

software development methodologies that would fit each organization and project setting.

1.4 RESEARCH QUESTIONS AND HYPOTHESES

This study is designed to provide a solution to the research question below:

“How to determine the best methodology to adopt in a software development project?”

Below are the formulated sub questions for this research. These sub questions are an

answerable inquiry into the specific concern. They relate to the different components of this

research as stated below:

 How to propose a suitable tool for selecting the most appropriate methodology to adopt

in a software project?

 To what extent do the project characteristics inform the adoption of the best fit software

development methodology?

 How to measure the effectiveness of the proposed decision support framework for the

adoption of software development methodologies?

1.5 RESEARCH OBJECTIVES

This study is aimed at developing a framework to assist organizations in making a sound

decision regarding which software development methodology to apply during their software

development lifecycle.

1.6 THE OBJECTIVES OF THE STUDY

 To study what has been done in literature in relation to adoption of appropriate software

development methodologies and the factors informing the decision.

6

 To propose a decision support framework to assist in the selection of a suitable software

development methodology to adopt for a particular project.

 To evaluate the proposed framework by demonstrating its effectiveness in a real world

environment and also by comparing the results to that of existing evidence by other

researchers.

1.7 OUTLINE OF THE STUDY

This study is structured in five chapters following the V-Model (Sheffield, 2005), This model

describes the various chapters of the study and how they relate to each other. The intention or

purpose of the research appears on the left, and the results and outcomes appear on the right.

This model ensures alignment between purpose and outcomes of a study.

This first chapter describes the problem and motivation of the topic of interest. It also presents

the research objectives, questions, and the chapter outline.

The second chapter looks at previous literature in the field; this is important for studying the

gaps and developing a research model for the study.

Chapter three informs the reader about the research philosophy and methods that were used to

gather data and evaluate the research model. Furthermore, a hypothesis is developed. This

chapter provides a basis for the data analysis as presented in chapter 4.

Chapter four reports on the analysis of data gathered as per method described in chapter 3. The

results of statistical analyses of the data as well as illustrations are presented, interpreted and

discussed in this chapter.

The final chapter concludes this study with a summary of the key findings and qualified

responses to the initial research questions. It also discusses the limitations of the study and

recommends further research if required.

1.8 SUMMARY OF THE CHAPTER

The chapter discussed the background introduction of software development methodologies,

and considered the problem statement, which was the departure point for the study. This was

substantiated with the rationale and a motivation why the study needed to be undertaken.

7

Thereafter, research questions, hypothesis and study objectives were clearly stated, followed

by the chapter outline.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter consists of an analysis of the characteristics of software development and the

theoretical analysis of software development methodologies. The chapter presents analysis of

current software development methodologies. These methodologies are presented by

emphasizing, benefits, strengths and weaknesses from the user’s perspective. This is done in

order to understand reasons for adopting and selecting these methodologies. Thereafter,

relevant literature review on project characteristics and the adoption of software development

methodologies was discussed. Likewise, the chapter review literature on the extent to which

organisational factors influence the way software development is carried out in software

enterprises. These reviews are important to attempt to identify gaps in previous studies and the

need for developing a decision software framework in order to ensure successful completion

of business (Khan & Beg, 2013). The chapter ends with a summary, this provides an overview

of the literature reviewed, by tabulating various research topics, methodologies, findings and

gaps identified in the various study reviewed.

2.2 OVERVIEW OF SOFTWARE DEVELOPMENT METHODOLOGIES

The main purpose of this section is to provide an overview of different software methodologies

so as to explain the evolution of software methodologies. This is relevant as it will set the

rationale of this study.

In the last three decades, various software development methodologies have been developed,

but only a few remain relevant today (Abrahamsson et al., 2017b; Despa, 2014; Tavares et al.,

2017). This is because the software industry is forever developing and introducing new and

improved methodologies, particularly because organizations are constantly adapting their

information systems to reflect changes in the type of information needed as a result of changes

in technology, business processes, structure, or the external environment (Zykov, 2018). The

change is informed by the increasing challenge of identifying and selecting the best-fit,

appropriate software development methodology. Besides, the need to improve quality, reduce

cost and develop faster software is overwhelming for project managers who are continually

faced with the task of choosing from numerous methodologies and variations of methodologies

to match the needs of the software project or the nature of the organisation.

9

Nevertheless, a process called the systems development life cycle (SDLC) was developed to

ensure that these changes in technology and business processes are orderly and productive. To

manage this, a number of SDLC methodologies have been developed, namely: waterfall, spiral,

RAD, prototyping and JAD. The oldest of these, and the best known, is the waterfall: a

sequence of stages in which the output of each stage becomes the input for the next. These

methodologies are examples of the traditional methodologies, the next section detail an

overview of the traditional methodologies.

2.2.1 The Traditional Methodologies

Traditional methodologies can be described as predictive, process-focussed, document and

plan driven (Boehm, 1988; Despa, 2014), and follows sequential steps (Paul et al., 2008). The

methodologies include thorough planning, formalised processes, proper documentation, and

sustainable design processes (Despa, 2014). Additionally, traditional methodologies requires

software initiatives to begin with the gathering of requirements, and documentation thereof,

followed by an architectural design, development and testing (Awad, 2005). It has been

suggested (Gill et al., 2018) that traditional plan-driven software development practices (e.g.

waterfall, spiral) may be more applicable in large projects.

Paul et al. (2008) emphasizes that the Waterfall model is widely used in smaller software

development companies because it is simple and easy to understand. This implies that

organization size and effort of implementation are factors that have an influence in

methodology selection.

Equally, traditional methodologies emphasize that complex systems can be built in a single

pass without necessarily revisiting or changing requirements (Victor Szalvay 2008) . Thus,

solid understating of the stakeholder’s needs are vital according to (Paul et al. (2008), which is

not the case in today’s complex and high-technology environment (SEI, 2006). Thus, indicating

another factor influencing methodology selection is the complexity of requirements, identified

as a limitation of the Waterfall model.

The spiral model is refined with basic principles internalized within the Rational Unified

Process (RUP), extreme programming, and generally the agile software development

framework (Paul et al., 2008). The spiral model is not without shortcoming, as it is noted that

spiral methodology has challenges in identifying the right moment to move onto the next phase.

10

More so, it is only those businesses that are uncertain about their requirements or expect major

edits in their mid to high-risk project that majorly benefit from the scalability of spiral

methodology. These weaknesses are reasons for the evolvement of more iterative development

methodologies Paul et al. (2008). Nevertheless, the Waterfall model is still widely in use

particularly within the context of South Africa (Paul et al., 2008 & Vinekar et al. 2006).

Consequently to this, the Waterfall model is analysed briefly below followed by a graphic

representation of other traditional methodologies. This is done to better individualize and

visualize their structure.

2.2.1.1 Waterfall Model

The waterfall method involves several phases and each phase includes multiple steps as

illustrated in Figure 2 below. The model was named waterfall due to the sequential manner that

one process follow after another. The model is so designed that the next phase cannot begin

unless the previous phase has been completed and approved. The advantage of this process is

that it is orderly and team members are aware of the work required and when they may proceed

to the next steps (Despa, 2014).

Figure 2: Waterfall Methodology (Dr Winston W Royce 2016)

Though software projects do not need to always follow a strict linear process, this may be

because clients’ requirements often change or may be misinterpreted. Moreover, rules can be

adjusted, likewise, through project analyses certain issues become clearer with time. According

11

to Vliet (2008) the Waterfall model is unrealistic, arguing further that, in many projects, real

sequential steps are often not obeyed. In the same manner, over 4 decades ago, Dr Winston W

Royce (2016) asserted that the Waterfall model is risky and prone to failures. The most issues

are experienced due to the use of this type of iterations. For instance, if the project is in testing

and errors/bugs are identified, a major redesign is required to fix the issues. This inflexibility

causes the developers to stall the parts where errors are found. For instance, if problems have

occurred in system requirements or analyses they are left for later resolution. This results in

problems being ignored and obviously causes poor solutions that do not conform to the user’s

requirements/wishes (Sommerville, 2016).

2.2.1.2 Spiral method

The spiral methodology permits team members to adopt multiple SDLC models based on the

risk patterns of the given project. A blend of the iterative and waterfall approaches, the issue

associated with the spiral model is identifying the right moment to move onto the next phase

as depicted in Figure 3. This model is particularly useful for businesses that are not certain

about their requirements or expect major changes in their mid to high-risk project. Such

businesses can benefit from the scalability of spiral methodology.

12

Figure 3: Spiral Methodology (Morley et al., 2000)

2.2.1.3 Prototyping

While the prototyping methodology is focused on producing an early model of an entirely new

system, software or application, the prototype would not have full functionality or be

thoroughly tested, however, it will provide external customers a sense of what is to come.

Afterwards, feedback is generated, and implemented throughout the rest of the SDLC phases

as illustrated in Figure 4 below. This methodology works perfect for enterprises in emerging

industries or new technologies.

13

Figure 4: Prototype Methodology (Despa, 2014:45)

2.2.1.4 Rapid Application Development (RAD)

This methodology is a type of iterative and incremental model used to expedite software

application development. In general, RAD methodology places more emphasis on adaptive

process than on planning. The approach uses predefined prototyping methods and tools to

produce minimally-coded software applications. Besides, the core of RAD is prototyping (i.e.

creating predefined components, structures and methods to rapidly develop software models).

In RAD, the functions are developed in parallel as if they were mini projects. The developments

are time boxed, delivered and then assembled into a working prototype. Figure 5 below show

the process involved in developing prototypes. The RAD methodology allows rapid

development of software from design right through to implementation.

14

Figure 5: RAD methodology (Morley et al., 2000:131)

While RAD prototypes may lack full-scale functionality, they are useful for demonstration and

requirement gathering, and helpful for end users to envisage entire solution stacks. Moreover,

because RAD is model-driven and employs an object-oriented approach to developing

complete solutions it is most suited for developing software driven by user interface

requirements. In addition, the software is grouped into smaller units, this enables changes to be

implemented easier throughout the development process. RAD employs other methods of the

same nature such as JAD, spiral and prototyping. In RAD, screens displayed during prototyping

become the actual screens of the end product software. More so, for this model to be considered

successful, it is important that prototypes developed are reusable. The shortcoming of

implementing this methodology is that it is possible to miss significant requirements as the

team is working through various project iterations (Geambaşu et al., 2011).

2.2.1.5 V-model

The methodology was introduced in the 80s. V-Model methodology is an extension of the

waterfall model, and was developed in order to introduce testing throughout the process. It

follows a vertical development process with a bottom-up approach for implementation as

depicted in Figure 6 (Matthews, 2002). The model presents thorough testing at each software

development phase. The left part of the model describes the requirements and design, whereas

the right part describes the development and testing activities. The final activity describes the

maintenance and support of the end product.

15

Figure 6: V Model (Despa, 2014:45)

The V-model presents a comprehensive manner of testing as illustrated in Figure 6. Each phase

begins with testing. The implication of this is that a good quality integration of the software is

provided. Each test is documented and compared with the documents retrieved from the

activity, besides the connection through the lines gives a clear overview of the results. Though,

similar problems like the one observed using the Waterfall methodology can develop with the

V-model method, especially during the start of the process where errors or mistakes in

interpretation of requirements and design often happens (Sommerville, 2016). Unfortunately,

the V-model is unable to cope with these problems (Aughenbaugh and Paredis 2008). After the

entire application is completed, the project owner’s feedback is expected as a confirmation of

user acceptance testing. The V-Model methodology can be applied to both small and medium

scale projects.

2.2.1.6 Problems of the Traditional Methodologies

According to Nandhakumar and Avison (1999:3) traditional methodologies are treated

primarily as a necessary fiction to present an image of control or to provide a symbolic status.

The authors argued further that these methodologies are too mechanistic to be in daily use by

organizations. Parnas and Clements (1986) indicated the same views. Truex et al. (2000:53)

was extremely firm in their assertions when they questioned the purpose of these

methodologies as to whether they function as frameworks or if the methods are merely

unattainable ideals and hypothetical straw men that provide normative guidance to utopian

development situations. Therefore, several problems became associated with the use of these

methodologies, by more and more IT organizations. Amongst the problems identified were:

 Too much rigidity, i.e., not enough flexibility in general;

 Too heavy;

16

 Too much linearity, i.e., too much of having to do things in a certain order;

 Too restrictive in what individuals were allowed to do;

 Not enough good communication lines between stakeholders;

 Not adequately utilising resources such as people and time;

 Long development cycles;

 Miscommunication; and

 Bug prone software.

The aforementioned problems provide motivation for the introduction of agile software

methodologies. Software development industries have turned to using agile methodologies to

manage projects, because unlike traditional approach, agile provide light approaches to projects

(Erickson et al., 2005). Moreover, they focus more on managing and speeding up development

activities (Goodpasture, 2010). These methodologies are seen as lightweight, and are light in

documentation requirements, adaptable to change, and customer focused.

Table 1: Providing an overview of Agile and traditional methods (Leau et al., 2012)

Criteria Agile Traditional

User requirements Iterative acquisition Detailed user requirements

are well defined before

coding

Rework cost Low High

Development Direction Readily changeable Fixed

Testing On every iteration After coding phase

Customer Involvement High Low

Extra quality required for

developers

Interpersonal skills and

basic business knowledge

Nothing in particular

Suitable project scale Low to medium scaled Large-scale

2.2.2 Agile Methodologies

Agile Development covers several iterative and incremental software development

methodologies. Abrahamsson et al. (2017b) states that a methodology can only be considered

to be agile when it possesses the following features, first, the software development has to be

incremental in nature (small software releases, with rapid cycles), second, it has to be

cooperative (stakeholders working constantly together with close communication), thirdly, the

17

software development must be straightforward (easy to understand and properly documented),

and lastly, it has to be adaptive (flexible enough to make last moment changes).

The most common agile methodologies are Extreme Programming (XP), Scrum, Crystal,

Dynamic Systems Development Method (DSDM), Lean Development, and Feature-Driven

Development (FDD). Compare to traditional processes, agile processes are more people

orientated (Dybå & Dingsøyr, 2008), they do not follow stringent processes, progress is

dependable on project group understanding and development; and they promote quicker

delivery of working software, they also promote the involvement of the stakeholders (Despa,

2014).

Erickson et al. (2005) describes agile processes as stripping off the heaviness of traditional

processes in order to encourage rapid responsiveness to changes in the user requirements,

timelines or project environment (Erickson et al., 2005). Likewise, Highsmith and Cockburn

(2001:122) noted that the significance of agile methodologies lies in the acknowledgement of

stakeholders being the primary drivers of project success, effectiveness and manoeuvrability

and not necessarily the practices they employ. This summarises the core values and principles

that define an agile world view as submitted by Dybå and Dingsøyr (2008), who stated that

agile methodology has four central values:

 Emphasize more on individuals thoughts and interactions;

 Less documentations more delivering of operational and tested software;

 Customer collaboration rather than contract negotiation; and

 Responding to change instead of following a plan.

Agile methods are mostly suitable in small organizations, especially start-ups, where speed and

flexibility is essential. In this regards, agile SDLC focuses on process adaptability and customer

satisfaction. Likewise, it advocates early delivery and encourage rapid and flexible response to

change.

Cohen et al. (2004) outlines four prescriptive characteristics of agile methods which govern

and influence methodology selection. These characteristics are infused in Table 2:

18

Table 2: Prescriptive Characteristics of some Agile Methods (Cohen et al., 2004)

Agile Methods
Team

Size

Iteration

Length

Distributed

Support

System

Criticality

Extreme Programming (XP) 2-10 2 weeks No Adaptable

Crystal Methods 1-7 4 weeks Adaptable Adaptable

Feature Driven Development

(FDD)
Variable < 4 months Yes All types

Lean Development (LD Variable < 2 weeks Adaptable Adaptable

Dynamic Systems Development

Methodology (DSDM) Not applicable

Agile Modelling (AM)

While, team size, iteration length, distribution support and system criticality are instrumental

in determining methodology selection, Laurie Williams (2007) additionally noted that because

Agile methodology focuses less on documentation, minimal documentation is required which

is sufficient enough for the development of software that meets the user’s needs. The most

effective method for transmitting information to and within the development team therefore is

through live communication, instead of written communication. Because it is beyond the scope

of this study to fully analyse theoretical frameworks of Agile methodologies, only XP and

Scrum will be briefly discussed while a table summarizing characteristics of both traditional

and agile software development methodologies will be displayed. This is relevant in order to

identify the weaknesses of these methodologies for the purpose of proposing a decision

framework for IT organizations to assist in the selection of a development methodology to

adopt for a particular project. XP, Scrum and FDD as examples of Agile methodologies that

will be analysed, particularly because they are in used in South Africa (Ramnath, 2010).

2.2.2.1 Extreme Programming (XP)

Extreme Programming (XP) like any other examples of agile software development

methodologies differ from traditional methodologies because of its ability to emphasise

adaptability rather than predictability. Beck and Gamma (2000), describes XP as a software

methodology that categorizes users to implement quality software in a fast paced manner. It

possesses the characteristics of Agile methodology because it breaks the conventional software

development process into several short development cycles. In this regard, according to Beck

and Gamma (2000), XP attempts to minimise the costs associated with changing requirements

during the system development life cycle.

19

Furthermore, XP promotes practices found to be effective in software development processes

in the past decades (Geambaşu et al., 2011). Among such practice is collective code ownership,

whereby, any developer is able to make updates or changes to code packages that were not

even written by him (Despa, 2014). These practices disclose two main assumptions - close

physical proximity and close customer involvement. According to Geambaşu et al. (2011:485)

these assumptions increases solid communication amongst members of the project team, while

also promoting client interaction throughout the life cycle.

Figure 7: Life Cycle of the XP process (Abrahamsson et al., 2017b: 19)

Figure 7 above illustrates the lifecycle of an XP process. In order to reduce mistakes, XP

promotes vigorous unit testing. The software developers are required to produce test cases

before compiling the actual software code. In XP methodology, five core values are promoted,

which include:

Simplicity: XP entails developers to seek the simplest solutions necessary to satisfy current

customer needs while at the same time, they are discouraged from following solutions that

solve future problems (Laurie Williams, 2007).

Communication: this is a crucial medium for the exchange of rapid, continual feedback in XP

teams. Likewise, it supports agility and the spread of tactile knowledge and permits the team

to respond to changing requirements as the client begin to develop a better understanding of

the system (Loftus & Ratcliffe, 2005 & Turk et al., 2014). XP promotes face-to-face

20

communication between all stake holders (team members, and client) (Loftus & Ratcliffe,

2005).

Feedback: regular interval feedback value of XP team is critical to the delivery of working

software (Turk et al., 2014).

Respect: respect is crucial for XP team members, teams respect each other’s expertise and are

expected to strive to achieve high quality code and design (Turk et al., 2014 & Laurie Williams,

2007).

Courage: courage is the prerequisite to apply the other XP values (Laurie Williams, 2007),

e.g. an environment need team members to be in good interpersonal communication, practicing

simple design or generating feedback, and individuals needs to have courage to begin

implementing these XP practices. Beck and Gamma argue that courage is important for a team

especially when faced with the following situations:

 To make architectural corrections;

 To throw away tests and code;

 To be transparent, whether favourable or not;

 To deliver complete, quality work in the face of time pressure;

 To never discard essential practices;

 To simplify code at every turn;

 To attack whatever code the team fears most (sic); and

 To take credit only for complete work.

The five core values of XP are supported by thirteen important practices namely below:

Pair programming: developers usually work in pairs at a workstation (Loftus & Ratcliffe,

2005).

Collective code ownership: team owns the code base (Loftus & Ratcliffe, 2005).

Continuous integration: daily integration of Code (Loftus & Ratcliffe, 2005; Turk et al.,

2014).

Test-first Development: team develops the system through test case writing followed by

implementation code (Loftus & Ratcliffe, 2005).

Sit Together: team works in an open space (Laurie Williams, 2007).

21

Whole Team: The team must be cross functional. This comprises testers, developers, the client

and quality assurance team members (Laurie Williams 2007).

Energized work: the XP teams need to work a 40-hour week. Long periods of overtime are

not encouraged as they are counterproductive (Laurie Williams, 2007).

Stories: XP team need to write short statements describing the functionality of the desired

product (Laurie Williams, 2007). Likewise, they must estimate the size and prioritize the stories

(Laurie Williams, 2007).

Weekly cycle: a weekly progress review meeting is advised to allow customer the opportunity

to pick a week’s worth of stories to be implemented (Laurie Williams, 2007). More so, such

meetings assist to break the stories down into tasks (Laurie Williams, 2007).

Quarterly cycle: this is the period for choosing larger themes or interrelated stories that will

be developed over a quarter (Laurie Williams 2007 & Münch, Armbrust, Kowalczyk & Soto,

2012). The implication of this is that themes permit teams to see the larger picture (Laurie

Williams, 2007).

Slack: low priority tasks are dropped when team is behind schedule (Laurie Williams, 2007)

& Münch et al., 2012).

Ten-minute build: the whole system with the unit test must be built and run in ten minutes

(Laurie Williams, 2007 & Münch et al., 2012).

Incremental design: there is a need for daily investment in the design of the system by the

team. (Laurie Williams, 2007 & Münch et al., 2012).

XP methodology can only apply successfully when several conditions are met, such as; smaller

teams members, the environment must promote continuous communication and team

coordination, and all persons involve must accept methodology practices and principles. The

XP methodology is appropriate for all kinds of projects from small to, medium and large scale

projects.

2.2.2.2 Scrum methodology

Scrum methods are an empirical approach which applies industrial process control theory to

system development. Scrum is involved in this study because of its usage in IT firms in South

Africa and because it focuses on self-management and on numerous processes involving shared

22

decision-making. Scrum approach is helpful for reintroducing flexibility, adaptability and

productivity into software development methodologies (Schwaber & Beedle, 2002). According

to Rising and Janoff (2000), scrum is a software development method that is ideal for gradually

developing complex software.

Figure 8: Scrum methodology (Despa, 2014:45)

Moreover, Scrum does not define any specific software development techniques; it

concentrates on the functionality of team members so as to produce system flexibly in a

continuously changing IT environment. The idea behind Scrum is to meet several

environmental and technical variables for example requirements, time frame, resources, and

technology, and the ability to be flexible enough to respond to the changes as illustrated in

Figure 8 above. Likewise, Scrum assist to advance the existing engineering practices (e.g.

testing practices), this is because Scrum involves many management activities targeted at

identifying any deficiencies in the development process and the practices that are used

(Abrahamsson et al., 2017b). The Scrum methodology can be applied to any project size, small,

medium or large.

The Scrum framework consists of the following components:

Roles:

 Team: these are the developers in the Scrum team dedicated towards achieving the

sprint goal (Laurie Williams, 2007).

 Scrum Master: the Scrum is responsible for supervisory roles that assist team resolve

issues that are blocking team progress (Lacey, 2012).

23

 Product Owner: the product owner is responsible for the prioritised product backlog

which is in the form of user stories (Scharff, 2011). More so, this individual’s duties

involves making decisions concerning the approval of stories at the end of a sprint

(Laurie Williams, 2007).

Ceremonies:

 Sprint Planning: in the course of sprint planning meeting, the product owner produces

and prioritises the product backlog (Laurie Williams, 2007). Throughout the sprint

planning session the team agrees on a sprint goal, which assists as the success criteria

for the sprint (Laurie Williams, 2007).

 Sprint Review: this provides an opportunity for the team members to show its

accomplishments during the sprint (Lacey, 2012).

 Sprint Retrospect: retrospectives are significant for the continuous development of the

team (Lacey, 2012). Retrospectives also provide opportunity for team members to

reflect on how to improve efficiency, quality and velocity (Lacey, 2012).

 Daily Scrum Meeting: this refers to 15 minutes daily meetings whereby each team is

obligatory to provide answers to the following three questions (Laurie Williams, 2007):

o What did you do yesterday?

o What will you do today?

o What is blocking you from completing your tasks?

Artefacts:

 Product Backlog: refers to a prioritized master list of requirements that encompasses

the vision of the product to be developed (Williams, 2007 & Lacey, 2012).

 Sprint Backlog: refers to a list of tasks needed to be completed by the team during the

sprint (Lacey, 2012).

 Burn down Charts: a graphical representation of the work remaining (Williams, 2007

& Lacey, 2012).

2.2.2.3 Feature Driven Development (FDD)

FDD emphases on delivering tangible functionality in 2 week iterations and is designed to be

used in conjunction with other development activities (Mnkandla, 2009). Feature Driven

Development has the following artefacts and roles as depicted in Figure 9:

24

Artefacts:

 Feature list: useful features for the client (Laurie Williams, 2007).

 Design packages: describes notes, class diagrams, and sequence diagrams reports

(Palmer & Felsing, 2002).

 Track by feature: a graph indicating dates when features are to be released (Laurie

Williams, 2007).

 “Burn Up” chart: refers to a chart showing project scope and work completed (Laurie

Williams, 2007).

Roles

 Project manager: project administrative leader (Laurie Williams, 2007).

 Chief architect: the individual accountable for overall design (Laurie Williams, 2007).

 Development manager: The person answerable for daily development activities

(Laurie Williams, 2007).

 Chief programmer: An experienced the team leader (Laurie Williams 2007).

 Class owner: the person accountable for overall designing, testing and documenting

features (Laurie Williams, 2007).

 Domain experts: expert individual(s) with deep knowledge about the business (Laurie

Williams, 2007).

 Feature teams: deals with implementing features (Laurie Williams, 2007).

25

Figure 9: Graphical representation of the Feature Driven Development Model ((Palmer & Felsing, 2002).

2.3. BENEFITS OF AGILE ADOPTION

Past studies (Dybå & Dingsøyr, 2008; Sharp & Robinson, 2004; Poole et al., 2001) have shown

an increase in productivity when agile practices were adopted. Besides, the productivity

increase mentioned by Poole et al (2001) was also attributed to an increase in moral resulting

from paired programming (Poole et al., 2001).

More so, a study at IBM on a small team (7- 11 team members) reported an improvement in

productivity with a 40% reduction in pre-release defect density when compared to the same

metrics from an earlier release (Layman et al., 2004).

In a case study conducted by Bedoll (2003) on infinite productivity consisting a team of 20

developers using Boeing’s standard development methodology, the team reported that an initial

release was scrapped after two months of trials. Nevertheless, a second attempt by a two-person

team involving the use of practices similar to that of Extreme Programming (EP) delivered a

working product in only six weeks.

Most studies (Dybå & Dingsøyr, 2008; Laanti et al., 2011; Murphy et al., 2013; Senapathi &

Srinivasan, 2011; Sriram & Mathew, 2012;) submitted positive evidence that Agile

methodology have several adoption benefits. These benefits include: better software quality,

upgraded quality of the development process, decrease in defects, reduced time to market and

documentation, improved customer collaboration, shared learning, developed communication

and productivity, better predictability and improved transparency. The benefits are tabled in

Table 3.

Table 3: showing the key features/Benefits of Agile Methods (Vanker Cassim, 2015)

Feature Benefits

Continuous requirements gathering Provides flexibility by allowing customers to

delay crucial decisions

Frequent face-to-face interactions Building trust and overcoming

misunderstanding amongst team members

Pair programming Improves code ownership and promotes

teamwork.

26

Refactoring Progressive improvement of code without

creating shock waves

Continuous release and integration Supports early detection and correction of

bugs. Resulting in higher quality software.

Early expert customer feedback Reduces costly code overhauls in the end.

Also lowers the cost of development.

Reduced documentation Lowers the cost of documentation. Resulting

in shorter development time.

2.3.1 Problem of agile software methodologies

Agile methodologies offer many benefits to an organization over traditional plan-driven

approaches, such as increased customer collaboration, improved time-to-market, productivity

and quality software, learning-in-pair programming, and thinking ahead for management

(Dybå & Dingsøyr, 2008). There are some shortcomings as well, for example concern has been

raise as to adopting agile methodologies in large-scale distributed project development

environments (Laanti, 2013). Likewise, Manawadu et al. (2013:5) noted that the lean

development technique reported some issues for teams trying it out when pair programming

was inefficient. XP has been criticised as appropriate with experienced development teams.

Moreover, past studies have recognised that Agile methodologies lack attention to design and

has architectural issues (Manawadu et al., 2013; Rosenberg & Stephens, 2008).

2.4. OVERVIEW OF STRENGTHS AND WEAKNESSES OF TRADITIONAL AND AGILE

METHODOLOGIES

The previous sections have discussed traditional and agile methodologies, while also

highlighting various related problems. When developing a decision framework, there is a need

to further provide an overview for various characteristics, strengths and weaknesses of these

methodologies. This section caters for this.

Table 4 below offers the main difference between the processes of these methodologies, which

is based on processes related to projects and their surrounding environments. For example,

traditional processes view the world as fully specifiable and the environment is considered

stable. On the other hand, agile processes acknowledges that changes always occur,

particularly in such a dynamic market. These processes are so intended that element

specification takes place at a later stage of the process, in which more knowledge has been

gathered concerning the project and the environment.

https://link.springer.com/article/10.1007/s10796-016-9672-8#CR55

27

The implication of this is that there is a total different approach to the organization and

management of a project and project team. Traditional projects requires tight coordination and

promotes individualization, whereby each member of a project team works independently.

While traditional methods is predictive, agile is adaptive, and requires a much more flexible

project team. It advocates a small and collaborative team that work closely together. Team

members are expected to work collaboratively which allows knowledge sharing among team

members and business partners.

Table 4: Differences between traditional and agile development processes (Sharon et al., 2010:44)

 Traditional processes Agile processes

Assumptions Software is specific and

predicable and is well planned.

Software is developed

following continuous/ iterative

approach, based on regular

feedback.

Control Style Follows hierarchy where there

is command and control.

High interaction and

collaboration.

Content

Management

Content is explicit Static knowledge

Communication Formal Casual or informal

Ideal organizational

structure

Large formal cooperation with

some level of bureaucracy.

Flexible, cooperative and social

action

Quality Assurance Vigorous planning and

stringent controls

Ongoing control

The differences between the software processes and categories highlighted in Table 4 are also

found in the characteristics, strengths and weakness of each individual process as presented in

Table 5 below. The information displayed in Table 5 is grounded on literature review as

mentioned in the previous sections.

Table 5: Characteristics, Strengths and Weaknesses of some of the common software methodologies (Despa,

28

2014: 51-54)

 Characteristics Strengths Weaknesses
W

a
te

rf
a
ll

Proper documentation is

required. Proper

planning is required.

This methodology

follows a linear or

sequential process. Each

stage has its own

deliverables.

Clear, easy to understand

and easy to manage for the

user and software team.

Software is delivered at

the end of the project.

Cannot handle changing

requirements.

Low tolerance for

planning and design

errors.

P
ro

to
ty

p
in

g

Stakeholders are

actively involved.

A demo version is

developed.

writing code is valued

over writing

specifications

Accurate understanding of

application requirements.

Regular feedback from

project owner.

Emphasis on user

experience.

Early identification of

errors in functionality.

Often leads to increase of

application complexity.

Costs of generating a

demo version/prototype

S
p

ir
a
l

Consists of four main

phases: Planning, risk

analysis,

implementation and

evaluation/testing.

This methods emphasis

on risk analysis.

Various options are

evaluated before

proceeding to the

planning phase.

Risk is minimized.

Documentation is well

maintained.

Working code is delivered

early in the project.

Depends heavily on risk

analysis.

The costs of risk

mitigation/handling may

be high.

29

 Characteristics Strengths Weaknesses
R

a
p

id
 a

p
p

li
ca

ti
o
n

D
ev

el
o
p

m
en

t
Follows a time box

approach.

Effort and emphasis is

given to development

rather than planning

tasks.

Software is produced

rapidly, and the code is

easily reusable.

Documentation is not well

maintained.

Development costs are

high.

Application is broken

down into modules,

therefore integration

issues exist.

V
-m

o
d

el
s

Testing happens after

every development

stage.

Maintenance of

software is emphasized.

Simple to understand.

Less errors or bugs due to

vigorous testing.

Prone to scope creep.

Follows initial set of

requirements. Not flexible

to change.

S
cr

u
m

Follows agile approach.

Iterative development

style.

Groups’ development

tasks into sprints. Daily

feedback meetings.

Organised teams and

managed tasks.

Quicker development

cycles.

Regular feedback.

Adaptable to change.

Poor documentation.

Requires experienced

developers.

Poor effort estimation and

cost estimations.

Puts effort into

determining the

requirements.

Involves the

stakeholders and end

users.

Requirements are jointly

developed in JAD

meetings.

Quicker design.

Clear requirements.

Promotes teams work.

Customer centric.

Dependant on successful

JAD meetings.

Poor documentation after

system design phase.

30

2.5. PROJECT CHARACTERISTICS AND ADOPTION OF SOFTWARE DEVELOPMENT

METHODOLOGIES

Mahapatra (2015), describes software development methods (SDM) as a standardised approach

to the implementation of software solutions. The main purpose of his research paper was to

discuss and compare the different methodologies in order to be able to choose the most suitable

methodology for a specific project. Munassar and Govardhan (2010) purported to present

different models of software development and draw a comparison between them. In their study,

the authors focused more on important issues in the computer world and concerned themselves

with examining the various software development methodologies. Five different

methodologies were taken into consideration, namely, waterfall, Iteration, V-shaped, Spiral

and Extreme Programming, mainly to show the features and defects of each model. The study

however, did not discuss what make these methodologies appropriate for use.

In addressing the above gap, Despa (2014:55) asserted that in choosing an appropriate software

methodology, certain factors will need to be taken into consideration. Factors such as project

stakeholders, developer’s skills, project complexity, costs and timelines. The author confirms

that no single method will perfectly suited to the profile of a specific project. However, Despa

(2014) stressed that the best matching methodology should be used in an organization. More

so, a combination of methodologies may be introduce in cases of experienced project teams

and project managers while a new methodology is advised for innovative software

development projects.

Abrahamsson et al. (2017b), claimed that the introduction of several different approaches to

software development in the past 25 years is not the solution to achieving success in software

development. These authors reviewed and analysed agile software development methodologies

for the purpose of enabling software professionals, projects and organizations to choose and

adopt the best software methodology, and their finding begged for an urgent need for the

adoption or selection frameworks to be used by practitioners rather than introduction of new

methodologies.

Meanwhile in New Zealand, Sheffield and Lemétayer (2013) explored factors associated with

the software development agility of successful projects, using qualitative methodology to

determine what factors in the project and its environment may be suggestive of software

development agility in successful projects. The study findings showed that software

31

development agility was indicated by a project environment factor (organizational culture) and

a project factor (empowerment of the project team). While the findings may assist practitioners

in reflecting on development practices and to negotiate change towards achieving higher rates

of project success, the study only focused on organizational culture and empowerment of

project teams, whereas project characteristics may be crucial in choosing software

methodologies. In an investigative study, Vijayasarathy and Butler (2016), tested whether

organizational, team and project characteristic matter when choosing software methodologies.

Project managers and other team members were surveyed about their choice of methodologies

through an anonymous online survey. Study findings indicated that while agile methodologies

such as Agile Unified Process and Scrum have been dominant over 10 years ago, traditional

methodologies, like the waterfall model, are still popular and in use today. Likewise,

organizations are taking a hybrid approach, using multiple methodologies on projects. Besides,

their choice of methodologies is connected with certain organizational, project, and team

characteristics.

Although, organization, project and team characteristics may be relevant, a decision support

framework remain significant in the selection for appropriate methodologies as acknowledged

recently by Abrahamsson, et al., (2017:106), who stated that introduction of several software

methodologies is not the solution to addressing software crisis, but rather having a decision

framework in place. According to Abrahamsson, et al., (2017:106) the frequent release of new

agile methods into the market will bring about confusion instead of clarity. This is because

each method uses different vocabulary and terminology. In the process of integrating these

many viewpoints, minimal work is achieved. Therefore an evaluation of project characteristics

becomes critical.

In the United States, Harb et al. (2015) evaluated project characteristics for the Best-fit Agile

Software Development Methodology. This is because they acknowledged that choosing an

appropriate software methodology is complex, which requires a multi-criteria decision

approach and this have implications for project success. Harb et al. (2015) offered solution by

presenting a teaching case designed especially to support Information Systems students,

improve skills in understanding and evaluating complex business requirements, and help in

selecting the most appropriate software development methodology vis-a-vis needs of a specific

IT project, and the organization. In an Evaluation study of software development methodology

32

adoption in Sri Lanka, Manawadu et al. (2013:8) found that choosing an appropriate software

methodology was due to the nature of project management.

The views of early scholars are different with regard to factors that influence selection of the

most appropriate software development methodology. For example, grounded on the

investigation of over one hundred software organizations, Russo et al. (1995) found that “the

three most important features both for selecting and using the methodologies were: structured

development techniques, well-defined corporate policies/procedures, and sharing of

information between developers”. Cockburn (2000) recognizes only two factors, namely:

project priorities and the methodology designer’s peculiarities. Yet, the shortcoming in these

studies are their inability to analyse and identify specific development methodologies relative

to these factors.

In analysing key factors that influence choosing the most adequate software development

methodology, Geambaşu et al. (2011:491) analysed RUP, XP and RAD methodologies, unlike

the scholars named above, Geambaşu et al. (2011:491) identified ten factors that influence the

decision of choosing the most adequate development methodology for a specific project (see

identified factors in Table 6 below).

Table 6: The level of factors for which the software development methodology is appropriate (Geambaşu et al.

33

(2011:490))

Replicating the findings of Harb et al. (2015) in another study in the United States, Kamal

(2015) employed an action research methodology to investigate the extent to which

Information Technology adoption and usage could be sustained in micro-enterprises so as to

facilitate business growth. The study developed an online tool to facilitate micro-enterprises’

sustainability of ICT adoption and use. This study was however limited as it did not provide a

framework for the adoption of software development methodologies.

In closing the above gap, Khan and Beg (2013) investigated utilising the extended decision

support matrix for selection of SDLC models on traditional and agile software development

projects. The authors acknowledge the risks associated with wrong selection of SDLC-models

on business critical software projects and offer a pragmatic solution by proposing a handy

selection matrix for choosing the best SDLC models on different types of Software

Development Projects. However, this research only focuses on traditional and agile

development projects, but did not consider the level of adoption and effectiveness of software

development methodologies.

Ramnath (2010) examined the extent to which software development methodologies are

effective in the software industry in South Africa. In an attempt to establish whether the factors

influencing the selection are indeed realised Ramnath (2010) found that the agile methodology

is currently the most prevalent in the South African software industry, and is furthermore the

34

most preferred by professionals in this field. Moe et al. (2012) argue that preferring agile

development should not alter the important knowledge required in software development

however, it only changes the manner of coordination and collaboration in software projects.

According to Moe et al. (2012) this may intensify development problems (Dybå & Dingsøyr,

2008). Therefore, determining decision making in this context becomes imperative.

Moving from a traditional methodology to an agile approach may be a part of organisation’s

strategy (Munassar & Govardhan, 2010), but it is important that professionals are clear about

their role in fulfilling this strategy. A failure of such recognition may easily predict a failure of

the agile strategy itself (Delcheva, 2018:13). Giving an holistic overview Delcheva (2018:6),

stated that most organisations, transiting to Agile from traditional approach, overlook the

different backgrounds of both approaches with their different principles (Fitzgerald, 1996).

Stressing further that the majority of literature on agile development focuses more on the

comparison between these two methodologies, while in effect the project manager role is also

important in a successful business strategy.

The assumption of aligning product and project decisions with business strategy become

important for the successful application of an agile approach in software development, and this

was the motivation for a study on challenges of shared decision-making by Moe et al.

(2012:854). In understanding the challenges of shared decision-making in agile software

development teams among two software product companies, Moe et al. (2012) designed a

multiple case study involving three projects that recently implemented Scrum. Results

identified three major challenges associated with shared decision-making in agile software

development, i) alignment of strategic product plans to iteration plans, ii) development of

resource allocation, iii) performing development and maintenance tasks in teams. The

limitation of this study is that it only focused on software product companies using Scrum

approach.

Bassil (2012) studied the waterfall model, an example of Software development life cycle

(SDLC), because SDLC is continuously plagued by budget overrun, late or postponed

deliveries, and disappointed customers (Leung & Fan, 2002). A situation confirmed by the

Standish Group (2015), who reported that several projects were unsuccessful based on delivery

time, budget and requirements. Bassil (2012) attached these failures to project managers,

stressing that project managers are not intelligently assigning the required number of

employees and resources to the various activities of the Software Development Life Cycle.

35

This will explain why some SDLC phases are been delayed, with other dependent phases

staying idle, until completion of other phases, resulting to a bottleneck between the arrival and

delivery of projects which leads to a failure in delivering a functional product on time, within

budget, and to an agreed level of quality. To solve this situation, Bassil (2012) proposed

simulation for the Waterfall model. Although this was meant to address the issue of trade-offs

between cost, schedule, and functionality. However, this study was not conclusive in that a

framework to guide the adoption of software development methodologies was not formulated.

SDLC of software systems has always encountered problems and limitations that resulted in

significant budget overruns, late or suspended deliveries, and dissatisfied clients

In a mixed method study in Brazil, Roses et al. (2016) proposed and tested a model to evaluate

the degree of conditions favourability in the adoption of agile methods to develop software

particularly where traditional methods predominate. Using surveying methods and applying

factorial and frequency statistical analyses on quantitative data and thematic content analysis

to analyse qualitative data, a model was proposed to examine the degree of favourability

conditions in the adoption of agile practices within the context of software developers within

the banking field. This study limitation was its focus on only traditional software

methodologies.

To close the above gap, from a vendor’s perspective, Rajagopalan and Mathew (2016) assessed

how Vendor firms made choices on agile methodologies in software projects as well as their

fit. This resulted in the development of two analytical frameworks from literature. Findings

were compared with real life decisions. Findings on Framework 1 showed that the choice of

XP for one project was not a supported base for framework guidelines. While the choices of

Scrum for other two projects, were partially supported. Analysis using the framework 2

revealed that with the exception of one XP project, the rest had adequate project management

support, limited scope for adaptability and had prominence for rules.

Moniruzzaman and Hossain (2013) conducted a comparative study on agile software

development methodologies and they identified that Agile development approach improves

software development process so as to meet the rapid changing business environments. A brief

comparison of both agile and traditional development methodologies were discussed.

According to Moniruzzaman and Hossain (2013), agile software development emerged as a

36

substitute to traditional software development methods, this is to satisfy customers through

timely and continuous delivery of the valuable software.

2.6. ORGANIZATIONAL FACTORS INFLUENCING THE CHOICE OF SOFTWARE

DEVELOPMENT METHODOLOGIES

It is important to identify the underlying factors to be considered when adopting a software

development methodology. Geambaşu et al. (2011) identified and analysed the key factors that

influence the selection of the most appropriate software development methodology for a

specific project. The researcher further analyses some common software development

methodologies i.e. RUP, XP and RAD with the purpose of finding the relationship between the

key factors affecting the model.

Cockburn (2000) identified two factors that affect the methodology selection, namely, the

project priorities and the designer’s peculiarities. However, both researchers did not analyse

the link between these factors and the actual software development methodologies, for

instance, which methodology should be applied in accordance to the identified factors.

The software development life cycle adheres to the basic rules of project management, although

includes some added features. A software project manager is required to manage arising issues

that are propriety to the software industry. Also, in software development there are some

benefits that make it easy to manage the software project.

Liviu Despa (2014) addresses the current state of software methodologies. The aim was to

standardise the software development methodologies that are dedicated to innovation and

information technology. The author begins by presenting specific characteristics in software

development projects. The methodologies are then compared by discussing their strengths and

weaknesses from the user’s perspective. Conclusions were formulated and a formalised

methodology is enunciated.

Based on factors (e.g. high budget, improper schedule, and failure to meet customer

expectations) that characterizes failures of software projects for developers, Kumaresan and

Kumar (2018) presented factors and methods for software project success. Factors such as

organizational, technical, people, and cultural factors were identified. Situational factors

however may be critical in predicting the choice of software development methodologies

37

Clarke and O’Connor (2012) investigated situational factors affecting the software

development process Factors such as the nature of the application(s) under development, team

size, requirements volatility and personnel experience were acknowledged to be factors

affecting software the development process, yet there is a lack of reference framework

addressing situational factors affecting the software development process. This is problematic

because it inhibits the ability to optimise the software development process, and potentially

undermines the capacity to determine vital limitations and characteristics of a software

development setting.

To address this deficiency, Clarke and O’Connor (2012) consolidated a substantial body of

related research into an initial reference framework of the situational factors affecting the

software development process and found eight classifications and 44 factors that inform the

software process. The situational factor reference framework presented only represents the key

situational elements affecting software process definition while organizational factors were

ignored.

Ezeh and Anthony (2013) explored organisational factors that have positive and significant

impact on knowledge sharing. By means of a case study carried out at Volvo Cars IT (VCIT),

Torslanda, software development professionals were to identify different perspectives on

organisational factors that influence knowledge sharing. Through thematic analysis, results

indicated the factors as social relations and network, physical closeness to colleagues, no stupid

question culture, mutual exchange, interest in work involvement, satisfaction of helping each

other, being listened to and taken seriously, and satisfaction from personal goal. The limitation

of this study is that only the organisational factors influencing knowledge sharing was

identified whereas organizational culture may be vital in software development process.

In a cross-case analysis across four software organizations in Brazil, Passos et al. (2014)

investigated the role of organizational culture in software development organizations. Through

employing the Theory of Reasoned Action (TRA) they analysed the connection to origins,

sources and impacts of beliefs on software development practices. The authors provided

narrative accounts of software project teams, relating the influence factors associated to team

belief systems and attitudes toward practice. The results presented strong influence of past

experiences and organizational contexts on software development practices. The short coming

of the study was that it was conducted in Brazil only.

38

To close the above gap, Khoza and Pretorius (2017) examined negative factors influencing

knowledge sharing in software development in South Africa. The study wasas conducted using

expert sampling to derive data from software development projects team members. Four

Johannesburg-based software companies participated in their study; the findings of this study

provide some compelling insights. It was revealed that job security, motivation, time,

physiological factors, communication, change and rewards are core factors which negatively

influence knowledge sharing within software development organisations. In conclusion, the

authors highlighted the importance of understanding the negative factors in order to assist

software development organisations to close the gap and ensure that software projects are

delivered in time, within budget and within scope. However, the limitation of this study is its

inability to identify organizational characteristics and structures.

In identifying factors influencing software development methodology, Farrell (2007) evaluated

each software methodology based on organizational characteristics. Organizational

characteristics and structures were examined. Characteristics associated with organizational

bureaucracies, namely, organizational structure, software complexity, effort, work type,

change management, and organizational size were discussed and analysed. According to

Farrell (2007) the type of organizational structure will predict the most suitable software

development methodology to adopt in that organization. Apart from organization structure,

organisation culture and top management support may also be crucial factors influencing the

choice of software development methodologies.

In Taiwan, Lee et al. (2016) investigated the impact of organizational culture and management

support on the success of software process improvement (SPI). An innovative model was

developed to test the influence of knowledge sharing on SPI success, the effect of knowledge

sharing in specific organizational cultures, and the extent to which the support of top

management have influence on the path to SPI success. Using partial least squares (PLS)

statistics to analyse 118 samples from Taiwanese SPI organizations. Findings suggest that that

clan-type organizational culture has a stronger relationships with knowledge sharing than

hierarchy-type culture in the context of SPI success. SPI knowledge sharing is indicated to be

a mediator between clan culture and top management support within the context of SPI success.

Colomo-Palacios et al. (2014) investigated the implications of Global Software Development

(GSD) for software project managers by analysing project performance from several

perspectives (e.g. the 360-degree feedback evaluation). Findings suggests that performance of

39

GSD projects is lower than in-house projects, further findings shows negative consequences

for software project managers, that needs serious consideration. For example, the experiment

indicated inattention to tasks by software project managers that led to performance losses.

People factors may be crucial factors influencing the choice of software development

methodologies.

Lalsing et al. (2012) examined the fundamental people factors to consider, in order for a team

to be effective, when adopting Agile. Using objective measures, subjective measures and a

survey findings suggests that for Agile methodologies to work well, it is crucial to choose the

right people for the right team. However, for Highsmith and Highsmith (2002:102),

organisation culture is the most crucial factor and they have highlighted the importance of

aligning the methodology to the organisational culture. Organisations that promote competence

and collaboration are more suited for agile methods, rather than those relying on more vigorous

control and planning. There was no concrete support provided to substantiate these views.

2.7. SUMMARY OF THE CHAPTER

The chapter reviewed existing research on traditional and agile software methodologies, with

special emphasis on characteristics, strengths and weaknesses of these methodologies, which

was intentional to identify the need for developing a decision support framework. In addition,

it discussed in detail project characteristics and organizational factors influencing the selection

of software development methodologies. In summary, previous studies have only focused on

the below:

1. Traditional and agile development projects;

2. Factors affecting the choice of Software Life Cycle Model;

3. Comparative study of various SDLC models; and

4. Challenges related to the adoption of various SDLC methods.

This study is different from the other studies in that the outcome of the study is to formulate a

framework that will guide professionals within the IT industry in selecting the most appropriate

methodology to adopt in their software development projects. This will reduce the problem of

failing projects. An overview summary of literature review is available in Table 7 below.

40

Table 7: Overview of Literature Review

Author Research Topic
Research

Methodology
Result

(Khan &

Beg, 2013)

Extended

decision support

matrix for

selection of

SDLC models

on traditional

and agile

software

development

projects.

The methodology

adopted in this study

was a combination of

exploratory research as

well and grounded

theory research

methods. (Survey was

used to implement

these methodologies).

This researcher only focuses on

traditional and agile development

projects; this study did not

provide a framework or a guide

for the adoption of software

development methodology for

various projects.

(Ramnath,

2010)

The extent to

effectiveness

and adoption of

software

methodologies

in South Africa

This study is

quantitative in nature

and follows descriptive

research approach to

respond to research

questions within the

South African context.

This study found that the Agile

method is most prevalent and

preferred methodology used

currently and to be used going

forward in South Africa.

However this study was not

conclusive in that a framework to

guide adoption of software

development methodologies was

not formulated.

(Mahanti et

al., 2012)

An Empirical

Study of Factors

Affecting the

selection of

Software Life

Cycle Models in

the Software

Industry.

The methodology used

in this study is a

survey-based approach.

This study revealed that the level

of understanding of the

requirements is the most crucial

factor in the choice of the model

used in the software project.

Project Complexity is the second

leading factor. Man-machine

Interaction is the least important

factor in the choice of software

development methodology;

however no guide or framework

was implemented for the

41

Author Research Topic
Research

Methodology
Result

adoption of software

development methodologies.

This study was conducted in

India and not in South Africa.

(Alashqur,

2016)

Towards A

Broader

Adoption of

Agile Software

Development

Methods.

The methodology used

in this study is a

quantitative based

approach.

In this paper, an analysis is

provided of several practices and

techniques that are part of agile

methods that may hinder their

broader acceptance. Further,

solutions are proposed to

improve such practices and

consequently facilitate a wider

adoption rate of agile methods in

software development. However

no guide or framework was

implemented for the adoption of

software development

methodologies.

(Sharma &

Singh,

2015)

Comparative

Study of Various

SDLC Models

on Different

Parameters.

The methodology used

in this study is a

quantitative based

approach.

In this paper a comparative study

of the following software models

namely Waterfall, Prototype,

RAD (Rapid Application

Development) Incremental,

Spiral, Build and Fix and V-

shaped was performed. The

main objective of this research is

to represent different models of

software development and make

a comparison between them to

show the features of each model.

However this paper does not

provide a guide or framework for

the adoption of software

42

Author Research Topic
Research

Methodology
Result

development methodologies.

(Campanell

i &

Parreiras,

2012)

A Conceptual

Model for Agile

Practices

Adoption.

The methodology used

in this study is a

questionnaire-based

approach.

This study proposed a model to

store information about agile

principles, methods, practices

and correlated information to

allow organizations to understand

their current practices versus

agile practices and define the

strategy of agile practices

adoption to achieve the

organization’s goals. However

this study does not provide a

guide or framework for the

adoption of software

development methodologies.

(Duggal,

2006)

Guidelines to

support choice

of development

methodology.

The main methodology

used in this study

includes gathering,

understanding, analysis

and presentation of

source material. This

was carried out by the

literature searching of

journals, books, reports

and periodicals

contained both in the

library and on the

internet.

The aim of this study was to

investigate what factors should

be considered when deciding

what development methodology

to use if any to support

development of a particular

project. However this study does

not provide a guide or framework

for the adoption of software

development methodologies.

(Floraet al.,

2014)

Adopting an

Agile Approach

for the

Development of

Mobile

An extensive survey

was conducted for this

study to gain a better

understanding of

suitable Agile

Agile processes were considered

to be very appropriate with

software for fast-paced markets,

where customer satisfaction is

governed by early and frequent

43

Author Research Topic
Research

Methodology
Result

Applications. approaches currently

practiced by mobile

companies for the

development of mobile

applications.

delivery, where there is scope for

changes even late in the project,

the delivery cycle is short (e.g.

every couple of weeks), there is

appropriate collaboration

between businesses and

developers, where working

software is the primary measure

of progress, and where there is

continuous attention to technical

excellence and good design and

simplicity. This study only

focuses on the adoption of Agile

approach in the mobile

applications development

industry.

(Manawadu

et al., 2013)

An Evaluation

of Software

Development

Methodology

Adoption by

Software

Developer in Sri

Lanka.

This research is an

exploratory study. The

research adopted a

hybrid approach mainly

based on quantitative

research methodologies

which slightly

combined with

qualitative research

methodologies.

The main goal of the research

was to understand the current

usage of software development

methodologies used by the

software developers in Sri Lanka.

Also to understand how the

methodology usage has evolved

during the past decade. This

study was not conducted in the

south African context and it also

does not provide any insight in

the adoption framework for

software development

methodologies.

(Kanane,

2014)

Challenges

related to the

adoption of

The methodology used

in this study is a

quantitative based

This study displays that the

nature of Scrum makes that there

is not a single way of adopting it.

44

Author Research Topic
Research

Methodology
Result

Scrum approach. This research

was conducted in

cooperation with a

software development

company in the

financial technology

field.

Adopting Scrum is more a

process of continuous adaptation

and improvement, therefore

facing challenges is an

inseparable part of this process.

This paper focuses on the agile

software development

methodology; it does not provide

a full analysis of all software

development methodologies and

does not provide a guide or

framework for the adoption of

software development

methodologies.

(Abrahamss

on et al.,

2017a)

Agile software

development

methods:

Review and

analysis.

The methodology

adopted in this study is

that of a systematic

review approach

The researchers recognized the

introduction of several different

approaches to software

development in the past 25 years,

and based on the systematic

analysis they conclude an urgent

need for the adoption or selection

frameworks to be used by

practitioners. Rather than

introduction of new

methodologies.

García,

Moraga,

Serrano &

Piattini,

2015.

Visualisation

environment for

global software

development

management

The methodology used

in this study is a

questionnaire-based

approach, all questions

were closed-type.

DESGLOSA-GSD was

developed with JAVA

technology for the visualization

of indicators in a Global

Software development (GSD)

context. This was to support the

decision-making process in GSD

contexts

45

Author Research Topic
Research

Methodology
Result

Harb, et al.,

2015

Evaluating

Project

Characteristics

for Selecting the

Best-fit Agile

Software

Development

Methodology: A

Teaching Case.

The analysis presented

a multi-criteria decision

approach

The analysis presented a multi-

criteria decision approach to

systematically frame the

methodology-selection problem

teaching case designed to help

Information Systems students

improve their skills in

understanding and evaluating

complex business requirements

and in selecting the most

appropriate software

development methodology to

match the needs of a specific IT

project, and the organization. The

teaching case includes a

comparative overview of various

agile methodologies, as well as

the use of multi-criteria decision

tools for solving the problem of

methodology selection. a multi-

criteria decision approach to

systematically frame the

methodology-selection problem

Kamal,

2015.

Developing a

sustainability

network for

information

technology

adoption and use

in micro-

enterprises.

An action research

methodology approach

was employed

In investigating the extent to

which Information Technology

adoption and usage could be

sustained in micro-enterprises so

as to facilitate business growth.

The study developed an online

tool to facilitate micro-

enterprises’ sustainability of ICT

adoption and use. However, this

study does not provide a

46

Author Research Topic
Research

Methodology
Result

framework for the adoption of

software development

methodologies.

(Moe et al.,

2012)

Challenges of

shared decision-

making: A

multiple case

study of agile

software

development.

The study applied

qualitative approach

Results identified three major

challenges associated with shared

decision-making in agile

software development, i)

alignment strategic product plans

to iteration plans, ii) development

resources allocation, iii)

performing development and

maintenance tasks in teams. The

limitation of this study is that it

only focused on software product

companies using Scrum.

Sheffield &

Lemétayer

2013

Factors

associated with

the software

development

agility of

successful

projects

The study was

anchored on qualitative

approach, employing

interviews methods,

which used the card

sort technique.

Analysis of the survey data

showed that software

development agility was directed

by a project environment factor

(organizational culture) and a

project factor (empowerment of

the project team). While these

results aimed to assist

practitioners to reflect on

development practices, and

negotiate change so as to achieve

higher rates of project success.

The study was Eurocentric based

as it was conducted in

Wellington, New Zealand.

Vijayasarat

hy &

Butler,

Choice of

software

development

The design of this

empirical study is

quantitative in nature.

Study findings revealed that

while agile methodologies such

as Agile Unified Process and

47

Author Research Topic
Research

Methodology
Result

2016). methodologies:

Do

organizational,

project, and

team

characteristics

matter?

Through an anonymous

online survey data was

collected

Scrum have been dominant over

10 years ago, traditional

methodologies, like waterfall

model, are still popular and are in

use today. Likewise,

organizations are taking a hybrid

approach, using multiple

methodologies on projects.

Besides, their choice of

methodologies is associated with

certain organizational, project,

and team characteristics.

Passos et al.

(2014)

The role of

organizational

culture in

software

development

practices: a

cross-case

analysis of four

software

companies

The study employed

qualitative thematic

analysis

Study findings revealed strong

influence of past experiences and

organizational contexts on

software development practices.

This study was conducted in

Brazil and not in South Africa.

Khoza and

Pretorius

(2017)

Factors

negatively

influencing

knowledge

sharing in

software

development

The study was

anchored on a

quantitative approach

and data were collected

using an online

questionnaire with

closed-ended questions

Findings showed that job

security, motivation, time

constraints, physiological factors,

communication, resistance to

change and rewards are vital

factors negatively influencing

knowledge sharing in software

organizations.

(Roses et

al., 2016)

Favorability

conditions in the

adoption of agile

The methodology used

in this study is a mixed

method based

Based on the findings a model

was proposed to assess the

degree of favorability conditions

48

Author Research Topic
Research

Methodology
Result

method practices

for software

development in a

public banking

approach. This research

was conducted in

cooperation with

software developers of

a Brazilian public retail

bank

in the adoption of Agile

practices. This study limitation

was its focus on only traditional

software methodologies.

(Rajagopala

n &

Mathew,

2016)

Choice of agile

methodologies

in software

development: A

vendor

perspective

The methodology

employed a desktop

approach

Findings on Framework 1

showed that the choice of XP for

one project was not supported

base of framework guidelines.

While the choices of SCRUM for

other two projects, were partially

supported. The study

shortcoming was its focus on

only agile methodologies

(Lee et al.,

2016)

Examining the

impacts of

organizational

culture and top

management

support of

knowledge

sharing on the

success of

software process

improvement

 The study used partial

least squares (PLS)

statistics to analyze 118

samples from SPI-

certified Taiwanese

organizations so as to

develop an innovative

model for explore the

success of software

process improvement

(SPI

Findings suggest that that clan-

type organizational culture has a

stronger relationships with

knowledge sharing than

hierarchy-type in the context of

SPI success. SPI knowledge

sharing is indicated to be a

mediator of between clan culture

and top management support

within the context of SPI success.

(Lalsing et

al., 2012)

People factors in

agile software

development and

project

management.

The methodology of

the study was anchored

on survey using a

quantitative approach

The results of the study clearly

show that for agile

methodologies to work well, it is

important to select the right

people for the right team.

49

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 INTRODUCTION

The methodology and design employed in this study aligns the research objectives, research

questions, data collection methods and data analysis. The aim of the chapter is to describe data

collection methods, offer justification for the selected research design, research instruments,

and data collection techniques used in the study. Likewise, associated issues encountered

during data collection process are explained. The chapter considers the philosophical

underpinning of the study, research approach and design, research methodology and empirical

research. Reliability and validity and ethical considerations were further discussed. The next

section present the contents of this chapter in the form of a document map.

3.2 RESEARCH METHODOLOGY CONTENTS MAP

A document map describes the relationships or topics under construction that inform the

chapter topic (Chukwuere, 2016 & Emekako, 2015).While the document map is often

represented in a diagrammatic format, Novak and Cañas (2008) claim that the document map

al the blueprint of a chapter to be seen, understood as well as to showcase concept and structure.

This is to say that, the document map is a structural graphical representation of the flow of

ideas covered in a document. Likewise, it is a directive that connects the flow of contents within

a document together, by linking one area of knowledge to another in a logical and scientific

manner.

Figure 10 below is the chapter document map of the research methodology employed by the

researcher. It indicates the flow straight from the philosophical underpinnings of the study to

the benchmark of thesis evaluation.

50

3.3

 PHILOSOPHICAL FOUNDATION OF THE STUDY

This study aims at developing a framework to assist organizations in making a sound decision

regarding which software development methodology to apply during their software

development lifecycle. To achieve this, a systematic explanation of the philosophical

worldview of epistemology and paradigm is necessary.

3.3.1 Epistemology

Past scholars have described epistemology to be the theory of knowing (Marsh & Furlong,

2002). Epistemology assists to determine how people really know or confirm what is true,

particularly how this truth could be validated according to different disciplines (Sturgeon,

Martin & Grayling, 1995). Different discipline may hold a different reality which employs

different epistemologies as the research domains may differ (Elliot, 2002). This present study

focuses on epistemology that investigates or validates truths in the sciences relating to

information science.

Every discipline arrives on norms concerning how researchers should collect data, validate and

present data and even judge theories. According to scientist philosopher, Jane Maienschein:

Figure 10: Research Methodology Content Map (Babbie E & Mouton J, 2001)

51

“It is epistemic convictions that dictate what will count as

an acceptable practice and how theory and practice should

work together to yield legitimate scientific knowledge”

(Maienschein, 2000:123).

In like manner, Repko (2012) states that over the years, an investigator’s epistemological stance

is shown in what is studied and how it is studied. These epistemological viewpoints includes:

positivist, constructivist/interpretivist, transformativist and the postcolonial worldviews

(Creswell, 2014). See Table 8 below for a comparison of selected paradigms. This study focuses

on the positivist worldview. The study uses epistemological positivism which assumes that the

only way to establish truth and objective reality is through the scientific method. Table 8 below

shows selected epistemology with justifications of choosing any particular one, alongside their

philosophical underpinnings, ontological assumptions for adopting any particular worldview and

most applicable methodology.

Table 8: Comparison of Selected Paradigms

Positivist/ post

positivist

paradigm

Constructivist/

interpretative

paradigm

Transformative

/ emancipatory

paradigm

Postcolonial/

indigenous

research

paradigm

Reason for

doing the

research.

To discover

laws that are

generalizable

and govern the

universe.

To understand

and describe

human nature.

To destroy

myths and

empower people

to change

society radically.

To challenge

deficit thinking

and pathological

descriptions of

the former

colonized and

reconstruct a

body of

knowledge that

carries hope and

promotes

transformation

and social

change among

the historically

oppressed.

Philosophical

underpinnings

Informed

mainly by

realism,

idealism and

critical realism.

Informed by

hermeneutics

and

phenomenology.

Informed by

critical theory,

postcolonial

discourses,

feminist

theories, race

specific theories

Informed by

indigenous

knowledge

systems, critical

theory,

postcolonial

discourses,

feminist

52

Positivist/ post

positivist

paradigm

Constructivist/

interpretative

paradigm

Transformative

/ emancipatory

paradigm

Postcolonial/

indigenous

research

paradigm

and neo-Marxist

theories.

theories, critical

race- specific

theories and

neo-Marxist

theories.

Ontological

assumptions.

One reality,

knowable within

probability.

Multiple socially

constructed

realties.

Multiple realties

shaped by

social, political,

cultural,

economic, race,

ethnic, gender

and disability

values.

Socially

constructed

multiple realities

shaped by the

set of multiple

connections that

human beings

have with the

environment, the

cosmos, the

living and the

non-living.

Place of

values in the

research

process.

Science is value

free, and values

have no place

except when

choosing a

topic.

Values are an

integral part of

social life; no

group’s values

are wrong, only

different.

All science must

begin with a

value position;

some positions

are right, some

are wrong.

All research

must be guided

by a relational

accountability

that promotes

respectful

representation,

reciprocity and

rights of the

researched.

Nature of

knowledge.

Objective. Subjective;

idiographic.

Dialectical

understanding

aimed at critical

praxis.

Knowledge is

relational and is

all the

indigenous

knowledge

systems built on

relations.

What counts

as truth?

Based on

precise

observation and

measurement

that is

verifiable.

Truth is context

dependent.

It is informed by

a theory that

unveils illusions.

It is informed by

the set of

multiple

relations that

one has with the

universe.

Methodology. Quantitative;

correlational;

quasi-

experimental;

experimental;

causal

Qualitative;

phenomenology;

ethnographic;

symbolic

interaction;

naturalistic.

Combination of

quantitative and

qualitative

action research;

participatory

research.

Participatory,

liberating, and

transformative

research

approaches and

methodologies

53

Positivist/ post

positivist

paradigm

Constructivist/

interpretative

paradigm

Transformative

/ emancipatory

paradigm

Postcolonial/

indigenous

research

paradigm

comparative;

survey.

that draw from

indigenous

knowledge

systems.

Techniques of

gathering

data.

Mainly

questionnaires,

observations,

tests and

experiments.

Mainly

interviews,

participant

observation,

pictures,

photographs,

diaries and

documents.

A combination

of techniques in

the other two

paradigms.

Techniques

based on

philosophic

sagacity, ethno

philosophy,

language

frameworks,

indigenous

knowledge

systems and talk

stories and talk

circles.

3.3.2. Research paradigm

The researchers choose to apply positivism worldview as a paradigm for this study because

this paradigm promotes the use of quantitative approach as showed in Table 8 above. More so,

positivism otherwise known as logical positivism proposes that the only way to establish the

truth is through scientific approach, the study is an attempt to establish the truth with regard to

choosing the right SDM to apply during software development lifecycle. Likewise, another

justification for applying positivism is because the paradigm is anchored on the opinion that

science is the only foundation for true knowledge. It further concludes that, the methods,

techniques and procedures applied in the natural sciences is the most suitable framework for

researchers to investigate the social world.

According to Crotty (1998) positivism is a reflection of a strict empirical approach whereby

claims about knowledge are strictly based on experience. Additionally, it stresses facts and the

causes of behaviour. Likewise positivism naturally relates the scientific method to the study of

human action. Positivism today is seen as being objectivist, in order words, objects around

people have existence and meaning, and they are independent of their consciousness of them

(Crotty, 1998).

54

3.4 RESEARCH APPROACH

The idea behind the choice of quantitative approach is that it is an inquiry into a social or human

problem, based on testing a theory composed of variables, measured with numbers, and

analysed with statistical procedures, in order to determine whether predictive generalisations

of the theory hold true (Creswell, 2007). In addition, in the positivism paradigm, a research

purpose is to predict results, test a theory, and find the strength of associations between factors,

or conduct a cause and effect relationship. In this regard, quantitative approach starts with

ideas, theories or concepts which are defined as they are used in the study to point to the

variables of interest.

3.4.1 Proposed Framework

Figure 11 illustrates the proposed framework for this study; the phases of the framework are

detailed below.

Identification Phase: Identification is the requirements analysis step carried out in traditional

software development. It involves a formal task analysis to determine the external

requirements, the form of the input and output, the setting where the program will be used; and

also determines the users of the system (Sylvester 2014).

Decision Support System

Decision Making

Recommended SDM

SDM

Identification

 Phase

Determination

 Phase

Selection

 Phase

Figure 11: Proposed Framework (Verma, Bansal and Panley, 2014)

55

Determination Phase: This involves organizing the key concepts, sub-problems and

information flow into formal representations. In effect, the program logic is designed at this

stage (Sylvester 2014).

Selection Phase: No one process is ideal so a framework is developed for picking a process

which depends on multiple components, project characteristic and selection boundaries. These

selection boundaries are: requirement specification, complexity of system, time, size and

change incorporated/user impact (Choudhary, Kasgar, and Kashyap 2015).

3.5 RESEARCH DESIGN

The study was anchored on a Case Based Reasoning (CBR) methodology because it focuses

on problem solving that centres on the reutilization of past experience (Aamodt & Plaza, 1994).

It is based on solutions, information and knowledge available in similar problems previously

solved. The CBR methodology was implemented using the SQL programming language. A

CBR production rule uses First Order Logic for knowledge representation and is structured in

two parts:

IF

<<Conditions>

Then

<<Actions>>

The assumption of CBR is that, remembering, understanding, experiencing, and learning is not

separated from each other. More so, human memory is dynamic which often change because

of experiences. Therefore, the justification for using CBR in the present study is that it

improves people’s performance as to become more efficient by remembering old solutions

given to similar problems and adapting these solutions to fit a new problem instead of solving

it from scratch. This is particularly relevant as different methodologies for software

development have been introduced over the last three decades (Abrahamsson et al., 2017b;

Despa, 2014; Tavares et al., 2017).

These different methodologies requires constant adaptation to information systems so as to

reflect changes in the type of information needed as a result of changes in technology, business

processes, structure, or the external environment (Zykov, 2018). CBR becomes important

because its elements of remembrance, understanding and experience are useful for learning the

latest Software methodologies. According to Steels (1990) CBR augments the ideas about the

56

components of expertise using the solved cases as an episodic memory. Likewise, case-based

reasoners become more competent in their evolution over time, this allows for deriving better

solutions especially when faced with less experienced situations, the implication of this is that

it assist in preventing people from repeating the same mistakes in the future (learning process).

All case-based reasoning methods have in common the following process (Shekapure &

Nagar, 2015):

 Retrieve the most similar cases as stored in the case library;

 Reuse the retrieved case in an attempt to solve the present problem;

 Revise and adapt the proposed solution to fit current situation; and

 Retain the final solution as part of a new case and reuse in other similar cases

As depicted in Figure 12 above, case-based reasoning is a problem solving mechanism that is

fundamentally different from other major problem solving methodologies. Instead of relying

solely on general knowledge of a problem, or making associations along generalized

relationships between problem descriptors and conclusions, CBR is able to utilize the specific

knowledge of past experiences and concrete problem cases.

A new problem is solved by finding similar problems from the past, and reusing it in the new

problem context. A second important difference is that CBR is also an approach to incremental

and sustained learning. This is because a new experience is retained each time a problem has

been solved, making it immediately available for future cases.

 New

Experience

Tested

Case

Solved

Case

Similar

Case

New

case

New case

Previous

Experience

Establish

Renewed

Experience

Revised

Saved

Figure 12: Case Based Reasoning (Shekapure & Nagar, 2015)

57

3.6 METHODOLOGICAL PROCESS

Figure 13 below describes the schematic methodological process of the empirical process for

the study. This figure was adapted from Babbie, E. & Mouton, J. (2001) and was modified to

fit the focus of the present study.

Figure 13: Showing methodological Process of Study (Babbie, E. & Mouton, J., 2001)

58

3.7 EMPIRICAL RESEARCH

The empirical research of this quantitative study entails a study of the population, sampling

techniques and statistical analysis.

3.7.1 Population

The population is the targeted community from which the sample for a study is selected

(McMillian & Schumacher, 2010). The entire population is not always studied but only part of

it. Population of a study habitually possesses same or similar characteristics and the researcher

task is to choose from this population the characteristics relevant and useful for the study

through means of scientific sampling techniques. Because this study investigates a decision

support framework for software development methodologies for IT related organizations in

South Africa, the characteristics essential for choosing participants in this study were variables

related to software development methodologies and working environment in South Africa,

particularly in Gauteng Province. The population of this study is all software development

firms in Gauteng, South Africa. This includes both listed and unlisted companies. This

however; is only limited to companies that operate in South Africa.

3.7.2 Sampling Technique

O’Leary (2010:162) defined sampling as a process of selecting elements of a population so as

to participate in a research study, since it is almost impossible to use an entire population, a

sample was drawn from the study population described in section 3.7.1 in order to infer and

arrive at a conclusion.

Convenience sampling and purposive sampling techniques were employed as sampling

technique in this study. Convenience sampling was used as a sampling technique by the

researcher to select ten software development companies based in Gauteng province, using

their proximity to the major roads as a criterion. Easy accessibility and cost were crucial factors

to be considered. According to Maree (2010:177), convenience sampling is described as a

sampling methods based on availability, accessibility and cost.

Purposive sampling, otherwise called judgmental sampling (Babbie, 2007:184) was also used

for selecting participants for the study. Thus, project managers and staff working in software

development companies were purposively selected to participate in this study. This sampling

technique is when researchers choose participants because they are most appropriate for

59

providing the best answers to the subject under investigation (Babbie, 2007:184). The

justification for using purposive sampling for this study is that the method considers the

selection of participants, the settings, incidents, events and activities for data collection (Maree,

2010:178), all which are relevant for the researcher.

A total of 100 participants were selected to participate in this quantitative study. These

participants are made up of professionals within the software development industry in Gauteng

province. These include project Managers, business analysts, developers and software testers.

Each participant will report on a software development project which they have worked on.

Therefore; 100 projects will be employed as training data for this study. The data from these

100 projects will be used to formulate the decision support framework for the adoption of a

software development methodology.

Furthermore; 15% of this data will be subsequently used to test the accuracy of the decision

support framework (DSS). .The sampling procedure used is shown below.

3.8 DATA COLLECTION PROCEDURE

The case based reasoning methodology was used in combination with a Likert Scale; this is a

type of rating scale which is used to measure the performance directly. Likert Scale is a five

point rating scale which allows the user to express their thoughts based on how much they

agree or disagree with a problem statement. Users give their responses by choosing a Likert

item. A Likert item is a word or statement which the user is asked to evaluate according to the

given criteria. Likert items are used to measure the degree of agreement or disagreement. In

this study we used a Likert scale questionnaire that was adopted from Verma, Bansal, and Pandey

(2014). See sample questionnaire in Table 10 below.

Table 7: Likert Scale Questionnaire (Verma, Bansal, and Pandey 2014)

Features Poor Fair Average Good Excellent

Required Specification 1 2 3 4 5

Complexity of system 1 2 3 4 5

Time Schedule 1 2 3 4 5

Cost 1 2 3 4 5

Documentation 1 2 3 4 5

Project Size 1 2 3 4 5

60

Features Poor Fair Average Good Excellent

Change Incorporated 1 2 3 4 5

The questionnaire was distributed to 100 participants in ten software development companies

within Gauteng Province. Before the questionnaire was given to participants, the researcher

explained the study purpose in detail. Upon creating rapport with the researcher, and

establishing willingness to participate in the study, participants signed the consent form and all

ethical principles were explained to them. Participants were informed that participation was

voluntary and they have the right to decline and even stop mid-way into the study without being

penalized. Data collection process took six weeks and 7-10 minutes was used to complete each

questionnaire.

The proposed framework will be rule based, and will be generated with the assistance of a

Likert scale measurement.

Example of a rule based model

IF Requirement specification <= 1 and

Complexity of system <= 2 and

Time schedule <= 5 and

Cost <= 2 and

Documentation <= 5 and

Project size <= 4 and

Change incorporated <= 1 and

THEN Waterfall Model (Score <= 20)

Data collected were coded and analyzed on SPSS version 24. SPSS software is statistical

software for analyzing quantitative data. Question one and two were tested using descriptive

analysis. Additionally, univariate analysis was conducted on the raw data and tables with

graphs were presented. Based on the findings of the analysis, proposed framework was

developed to determine the most appropriate software methodology to be adopted for the

projects.

3.9 EVALUATION OF THE FRAMEWORK

There are four key issues that may influence the quality of this research.

61

3.9.1 Research Validity

Validity is essential in research because it relates to whether you are actually measuring what

you planned to measure (Pearson, 2010). It is concerned with the accuracy of the findings. The

questionnaire used in this study was adopted from research done by Verma, Bansal, and Pandey

(2014), therefore the questionnaire is deemed valid.

In this study, the researcher ensured validity of the results by employing the Scenario Based

Simulation technique. This tests the proposed framework in action and demonstrates the

effectiveness of the proposed framework in a real world environment. The researcher will also

ensure validity of the results by comparing results to existing evidence by other researchers.

3.9.2 Research Reliability

Reliability relates to whether, if you carried out the research again, you would get the same or

similar results (Pearson, 2010) . In this study, the researcher will ensure reliability of the results

by making use of multiple repetitions of measurement over a long period of time, at different

points of time, in different scenarios or settings and by different persons.

3.9.3 Research Accuracy

Accuracy relates to how close your measurement is to the ‘gold standard’, or the intended result

(Pearson, 2010). In this study, the researcher will ensure accuracy of the results by testing the

precision of the Decision Support Framework.

3.9.4 Research Precision

Precision is related to the refinement of the measuring process. It is concerned with how small

a difference the measuring device can detect (Pearson, 2010). In this study, the researcher will

ensure precision of the results by making use of a Rules Based Reasoning approach that

focuses on the reutilization of past experiences. In this study we will test the accuracy of the

framework by applying rules based reasoning to real life software development projects that

have already been implemented.

3.10 ETHICAL CONSIDERATIONS

Ethical issues are present in any kind of research. The research process creates tension between

the aims of research to make generalizations for the good of others, and the rights of

62

participants to maintain privacy. Ethics pertains to doing good and avoiding harm (Orb et al.,

2000).

With the above understanding the following ethical considerations were well-thought-out

during this study. Permission to conduct the study was sought and obtained from the ethics

committee of the Vaal University of Technology. Likewise, the researcher obtained permission

to conduct the study from stakeholders within the software development companies, this was

important for a smooth data collection process.

In addition, participation in the study was voluntary, therefore, participants who indicated

willingness to participate in the study read and signed the Informed Consent Form. The form

specified the purpose of the study, and described the core fundamental principles of ethics. In

this regards, the researcher is aware of the responsibility of conducting research in accordance

with the ethical principles as endorsed by the Vaal University of Technology. Ethical

considerations are the fundamental principles upon which human subject protections are based

and they are as follows:

1. Respect for Persons: Ethical research honours the autonomy of individuals to make an

informed choice about participation in research and provides suitable protection for

vulnerable persons. Thus, participation was not only voluntary but participants had the

right to withdraw their participation from the research whenever they felt

uncomfortable with any aspect of it.

2. Beneficence: Ethical research has scientific or scholarly value in which the potential

benefits outweigh the risks, which are justified and minimized. In this regards, the

principle of beneficence which covered the aspect that this study had significant benefit

to both participants and the society at large was noted.

3. Justice: Ethical research is designed and conducted so that the burdens and benefits are

fairly distributed regardless of age, race, gender, ethnicity, etc. The principle of justice

which had great consideration to respect all participants equally was adhered to. In light

of this, study participants were assured of confidentiality of their responses. Names and

identification numbers were not required.

63

3.11 SUMMARY OF THE CHAPTER

The chapter has presented a detailed comprehensive research methodology of how data was

collected for the study. The research methodology approach guides the research process and

the kinds of tools and procedures used in order to achieve the aim of the study. This process

involves research approach, design and methods, data gathering methods and statistical

analysis. Likewise, this data was not only collected but analysed. The next chapter will present

the main results of this research detailing all statistical tests used in analysing the stated

questions.

64

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 INTRODUCTION

The purpose of this study is to formulate a decision support framework for the adoption of

software development methodologies in South Africa. This chapter describes the analysis of

data followed by a discussion of the research findings. In this regard, this chapter reports on

analysis of data which was obtained from questionnaires completed by 90 professionals; a 90%

response rate was achieved in this study. The aim of the study is to determine the best

methodology to adopt in a software development project. It should be emphasized that the

findings presented in this chapter provide answers to the main research question. The Findings

is discussed by linking them to existing literature. The chapter starts with presentation of

results, followed by its interpretation and discussion.

4.2 PRESENTATIONS OF RESULTS

The graphs below (Figures 14 to 19) are a presentation of the data collected from the

questionnaires. This data depicts the average scores that were received for each project

characteristic in relation to a software development methodology that was applied in a project.

This data was subsequently used to formulate the decision support framework rules/algorithm.

65

Figure 14: Average score for requirements documentation

Figure 15: Average score for project size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Requirements Documentation

Requirements
Documentation

0

0.5

1

1.5

2

2.5

3

3.5

Project Size

Project Size

66

Figure 16: Average score for project timelines

Figure 17: Average score for project complexity

0

0.5

1

1.5

2

2.5

3

3.5

Timelines of Project/Duration

Timelines of
Project/Duration

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Project Complexity

Project Complexity

67

Figure 18: Average score for user impact

Figure 19 below is a presentation of the Decision Support Framework user interface. This

framework is made up of a user interface as well as back end rules. Users will be required to

answer questions presented by the DS Framework user interface. Upon submission, the DSS

will then present the best software development methodology to adopt for the specific project.

The DSS is built on a SQL rules foundation. These rules were formulated using data collected

from the questionnaires.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

User Impact/User Interaction

User Impact

68

Figure 19: Decision Support Framework user interface

Figure 20: Decision Support Framework user interface - continued

Below is a presentation to the DSS rules. These rules were formulated based on data collected

from the questionnaire. The rules are the engine of the Decision support framework.

69

SET SERVEROUTPUT ON

DECLARE

 v_Req NUMBER ;

 v_size NUMBER;

 v_complexity NUMBER

 v_userimpact NUMBER

 v_timelines NUMBER

BEGIN

 IF v_Req >=4

 AND v_size <=2

 And v_complexity <=2

 AND v_userimpact <=3

 AND v_timlelines <=2

 THEN

 DBMS_OUTPUT.PUT_LINE (‘WATERFALL’);

 ELSE

 IF v_Req <=2

 AND v_size <=3

 AND v_complexity >=3

 AND v_userimpact >=4

70

 AND v_timlelines <=2

THEN

 DBMS_OUTPUT.PUT_LINE (‘AGILE’ or ‘SCRUM’);

ELSE

 IF v_Req <=2

 AND v_size >1

 AND v_complexity >=4

 AND v_userimpact >=4

 AND v_timlelines <=2

THEN

 DBMS_OUTPUT.PUT_LINE (‘RAD’);

ELSE

 IF v_Req <=2

 AND v_size >1

 AND v_complexity >2

 AND v_userimpact >=4

 AND v_timlelines <=3

THEN

 DBMS_OUTPUT.PUT_LINE (‘PROTOTYPE’);

ELSE

71

 IF v_Req >=4

 AND v_size >1

 AND v_complexity >3

 AND v_userimpact >=4

 AND v_timlelines <=3

THEN

 DBMS_OUTPUT.PUT_LINE (‘SPIRAL’);

ELSE

 IF v_Req >=4

 AND v_size <=3

 AND v_complexity >=3

 AND v_userimpact >=4

 AND v_timlelines <=2

THEN

 DBMS_OUTPUT.PUT_LINE (‘HYBRID’);

ELSE

 IF v_Req <=1

 AND v_size <=3

 AND v_complexity >=3

72

 AND v_userimpact >=4

 AND v_timlelines >=2

THEN

 DBMS_OUTPUT.PUT_LINE (‘JAD’);

 END IF;

 END IF;

 END IF;

 END IF;

 END IF;

 END IF;

END IF;

END;

4.3 DS FRAMEWORK PRECISION MEASUREMENT

Precision is related to the refinement of the measuring process. It is concerned with how small

a difference the measuring device can detect (Pearson, 2010). In this study, we tested the

precision of the framework by applying it to real life projects that have already been

73

implemented in the software development environment. A successful study is one that

demonstrates high precision and high accuracy.

As mentioned in the methodology, in this study we used 15% of the collected data for precision

testing purposes. We did this by comparing the results of the decision support framework

against the actual software methodology that was adopted for the project. In this study we

employed the precision testing formula by (Jizba 2000). Jizba explains precision as the ratio of

the number of relevant records retrieved to the total number of irrelevant and relevant records

retrieved. Jibza defines the formula for precision as A/A+C * 100/1; where A is true/positive

and C is false/negative.

Figure 21 is the representation of the testing data. As seen below, 15 projects were used for

testing the precision of the decision support framework. 12 projects recorded positive

correspondence between the DS framework results and the actual applied software

development methodology. Furthermore, 3 projects recorded non-correspondence to the DS

framework results. This concludes that the decision support framework is 80% precise.

Precision: 12/ (12+3) * 100 = 80%.

74

Figure 21: DS Framework Precision Test Results

75

4.4 INTERPRETATION AND DISCUSSION OF FINDINGS

From the analysis reported above, the research question that proposes the extent to which

project characteristics inform the decision for adoption of software development

methodologies was supported, the DSS framework was built using SQL programming

language and the results of the formulated DSS framework are in agreement with past studies.

Mahapatra (2015), described a comparative approach among different software development

methodologies in order to be able to select the most appropriate methodology. In similar vein,

Munassar and Govardhan (2010) presented different models of software development agreeing

with Mahapatra (2015) theory for SDM selection.

Furthermore, in the findings of this study, the DSS framework proves that the waterfall model

should be applied where requirements are well documented, clear and fixed. Besides, the

findings reveal factors that need to be considered when adopting SDM. These factors are:

product definition need to be stable, technology is understood and is not complex, project is

short, and there are ample resources with required expertise available to support the product.

This findings corroborated with the findings of past studies (Despa, 2014:55; Sheffield &

Lemétayer, 2013; Vijayasarathy & Butler, 2016). For example, Despa (2014:55) found that, to

choose appropriate software methodology, it is important to consider certain factors such as

the developer’s technical expertise and project complexity. Likewise, Sheffield and Lemétayer

(2013) reported that a project factor, the empowerment of the project team, is a significant

factor for choosing appropriate software methodologies. According to Vijayasarathy and

Butler (2016), project characteristic is important in choosing software methodologies today

because project managers and other team members reported that traditional methodologies,

like waterfall model, are still popular and are in use today due to certain organizational, project,

and team characteristics.

Although, the current study results was in contrast with findings of Victor Szalvay (2008), who

reported that traditional development methodologies emphasize that complex systems can be

built in a single pass without necessarily revisiting requirements in light of changing high-

technology environment and business needs. One possible reason for this contrary result may

be linked to a need for a perfect knowledge of the client’s needs, according to Paul (2008) this

is a vital factor which is not the case in todays’ complex and high-technology environment of

the twenty-first century (SEI, 2006).

76

Additionally, the DSS results are in agreement that the agile and scrum methodology should

be applied in short term projects, where there is high customer interaction and also where

requirements are not fixed. This findings offer credence to previous studies (Abrahamsson et

al., 2017b; Despa, 2014; Dybå & Dingsøyr, 2008). These authors stressed that for a

methodology to be considered as agile it has to possess features like being cooperative (i.e.

stallholders working constantly together with close communication), the software development

must be straightforward (easy to learn and to modify, well documented), and it has to be

adaptive (flexible enough to make last moment changes). According to Dybå and Dingsøyr

(2008) Agile methodologies do not follow stringent process, progress is dependable on project

group understanding and development, which is relevant to promote early delivery of working

code, and involvement of project owner (Despa, 2014).

An advantage of the result of the present study is that the DSS framework will help to promote

and advocate for quick response to changes in the environment, user requirement and deadlines.

Likewise, the DSS results supports the core values and principles that define an agile world

view (Cohen et al.,2004; Dybå & Dingsøyr, 2008), especially the core values of customer

collaboration rather than contract negotiation and responding to change instead of following a

plan.

In addition, the present findings of the DSS, which support high customer interaction with

requirements not being fixed, has a contributing factor to the IT sector. This is because the

framework will guide in the adoption of appropriate software development methodologies that

would fit each organization and project setting and further help in reducing the challenges faced

by today’s software professionals. Scholars (Dingsøyr et al. 2018; Zykov, 2018) have noted

that developing software which is within cost, schedule, fulfils customer requirements and is

reliable, seems to be the ultimate challenge in IT industries.

The above contribution will explain why Abrahamsson et al. (2017:106) recently stated that

introduction of several software methodologies is not the solution to addressing software crisis

but developing a functional decision framework will alleviate such crisis. In the view of

Abrahamsson et al. (2017:106) the rather frequent release of new agile methods into the market

will bring about confusion instead of clarity. Hence, the findings of the DSS is relevant to

influence the selection of appropriate methodologies thereby enabling companies within the

software development industry, particularly in South Africa, to deliver projects successfully.

77

Additionally, the DSS also found that the RAD methodology should be applied for complex

systems as it uses automated code generating tools. The framework also agrees that RAD

should be chosen only if business interaction is present and can provide knowledge. Similarly

as with Agile, RAD welcomes changes in requirements. This finding confirms findings of

Geambaşu et al. (2011:491) who in analysing RAD and other agile methodologies identified

system complexity as among the ten factors that influence the decision of choosing the most

adequate development methodology for a specific project,

The DSS results supports the theory that prototyping methodology should be applied where

requirements are not clear and also where the system requires high level of customer

interaction. The results prove that this methodology can be applied for simple projects, however

the projects tend to become complex as iteration occurs. These findings is consistent with the

theory of Abrahamsson et al. (2017b), who claim that it is significant for software development

to be incremental in nature, and to be cooperative (stallholders working constantly together

with close communication). This will explain why Harb et al. (2015), in the United States,

acknowledges that for a project to be successful in choosing an appropriate software

methodology, it requires a multi-criteria decision approach.

Further findings of the DSS results also prove that the spiral methodology can be applied to

large and risky projects that have complex requirements. The spiral methodology is a blend of

waterfall and prototyping with added risk analysis capability. These findings agrees with Gill

et al. (2018) who suggested that traditional plan-driven software development practices such

as waterfall and spiral methodology may be more applicable in large projects.

Possible explanations of these findings of the DSS may be associated with the fact that spiral

methodology, as a traditional methodology, is predictive, process-focussed as well as document

and plan driven (Boehm, 1988; Despa, 2014). Besides, it follow sequential steps, as its core

principle (Paul et al., 2008). Likewise, such a methodology include extensive planning, formal

processes, comprehensive documentation, and a long-term design process (Despa, 2014).

Finally the DSS results also agree that the hybrid methodology can be applied in project that

requires both agile and waterfall approaches. This means that well documented small projects,

which have high customer engagement, can use this methodology to deliver their project in

shorter, more frequent cycles. These findings has implication for minimizing software crisis

(Sharon et al., 2010), moreover, the findings of the present study is relevant as it will equip

project managers with the knowledge to choose appropriate SDMs, which in turn will assist to

78

reduce the increasing complexity of software development management today (Despa, 2014)

for many Information technology (IT) industries in the world, and particularly within South

Africa (Dingsøyr et al., 2018; Silberberg & Africa, 2006).

The aforementioned implication therefore will decrease the complexity and challenges faced

by managers in deciding the most appropriate software methodology to adopt in a software

project. This is important for IT industries worldwide, because, wrong choice of methodologies

have been documented (Overhage et al. 2011; Mahapatra, 2015) to be costly for the

organization as it may impact on deliveries, maintenance costs, project budget and reliability.

With the market pressure emphasizing the need to issue products faster and faster, the IT

industry is forced to release programs/applications as early and frequently as possible, even if

the only version available is limited, this has led to the development of more agile software

methodologies. As such, the findings of the present study is significantly beneficial and fit to

be adopted as an evolutionary approach, which should be understood as a decision support

framework for the adoption of software methodologies particularly for within the software

development industry in South Africa.

Further findings shows that the factors that affect software methodology adoption are not

influenced by the environment. The DSS framework can thus be applied in other areas outside

South Africa. The implication of these findings is that the DSS framework is relevant for

adoption not only in South Africa, where the study was conducted, but relevant for use

worldwide, which makes the proposed DSS framework a good framework for the selection of

appropriate SDM for all IT organization. These findings support that of past studies (Clarke &

O’Connor, 2012; Ezeh & Anthony, 2013; Kumaresan & Kumar, 2018). These authors

presented other organizational factors to be responsible for software project success.

The possible explanation that can account for the findings of the present study can be explained

through the argument of Kumaresan and Kumar (2018), who found factors such as

organizational, technical, people, and culture to be more important determinant of project

success. Additional explanation of the current study finding can be associated with the findings

of Clarke and O’Connor (2012) who advocated for situational factors affecting software

development process. According to Clarke and O’Connor (2012) factors like nature of the

application(s) under development, team size, requirements volatility and personnel experience

were acknowledged to be factors affecting software development process. In their views,

79

aligning with the findings of this present study, environment factors are not as crucial as

situational factors in predicting the choice of software development methodologies.

4.5 SUMMARY OF THE CHAPTER

This chapter has presented and discussed the findings obtained from the quantitative

questionnaire responses that were derived from ninety participants from ten software

development companies within Gauteng province in South Africa. While the study purported

to investigate the decision support framework for the adoption of software development

methodologies in South Africa, the findings obtained supported extant literature for choosing

the best fit Software Development Methodologies (SDMs).

In addition, findings of the present study contribute to reducing the software crisis, decrease

challenge faced by today’s software professionals and importantly, the DSS results is expected

to assist in the adoption of appropriate software development methodologies that would fit each

organization and project setting particularly in South Africa. Thus, the DSS results present a

framework relevant for methodology selection in IT organization.

80

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 INTRODUCTION

This chapter concludes this study with a summary of the key findings and qualified responses

to the initial broad research questions. It further acknowledges the limitation of this study and

suggests recommendations for future research.

5.2 CONCLUSION

Based on the formulated sub questions posed in the study, the following conclusions were

derived:

‘How to propose a suitable tool for the selecting the most appropriate methodology to

adopt in a software project’.

In this study, this question was answered by proposing a decision support framework to assist

organisations and individuals in determining the best methodology to adopt in a software

project. The findings of the present study showed that the results of the formulated DS

framework is in agreement with extant literature on the theory for SDM selection/adoption,

and this finding contribute to existing knowledge that there is no one size fit all methodology.

‘To what extent do project characteristics inform the adoption of the most appropriate

software development methodology?’.

In this study this sub question was answered by studying existing literature to determine the

characteristics which inform the selection of software development methodologies.

Furthermore, a research was carried out to determine these effects within the Gauteng province

setting. The findings were presented in chapter 4 of this document.

‘How to measure the effectiveness of the proposed decision support framework for the

adoption of software development methodologies’.

In this study this sub question was answered by performing an evaluation test on the proposed

decision support framework. The framework was tested for accuracy and precision using the

precision formula as defined by (Jizba 2000). The precision test produced positive results and

is also in agreement with extent literature. These findings were presented in chapter 4 of this

document.

81

In summary, the results of the study provide some compelling insights on the adoption of

software development methodologies. The objectives of the research were successfully

achieved and the main research question was adequately answered by each sub question.

The results of this study prove that the waterfall model should be applied where requirements

are well documented, clear and fixed, product definition is stable, technology is understood

and is not complex, and where the project is short and there are ample resources with required

expertise are available to support the product.

Further findings showed that the DS framework indicated that the agile and scrum methodology

should be applied in short term projects, where there is high customer interaction and also

where requirements are not fixed.

Moreover, the DS also found that the RAD methodology should be applied for complex

systems as it uses automated code generating tools. Besides, the framework submits that RAD

should be chosen only if business interaction is present and can provide knowledge. Similarly

than with Zgile, RAD welcomes changes in requirements.

The findings of DS supports the theory that prototyping methodology should be applied where

requirements are not clear and also where the system requires a high level of customer

interaction. The results prove that this methodology can be applied for simple projects, however

the projects tend to become complex as iteration occurs.

Additional findings from the DS framework prove that the spiral methodology can be applied

to large and risky projects that have complex requirements. The spiral methodology is a blend

of waterfall and prototyping with added risk analysis capability.

The DS results also agree that the hybrid methodology can be applied in project that requires

both agile and waterfall approaches. This means that well documented small projects, which

have high customer engagement, can use this methodology to deliver their project in shorter

frequent cycles.

Finally, the findings of the current study show that the DS framework is not environment

specific; this is because the factors that affect software methodology adoption are not

influenced by the environment, making the DSS framework universally relevant.

82

5.3 RECOMMENDATION

Based on the study findings mentioned above, it is recommended that IT organizations should

adopt the DS framework in the selection/adoption of SDM, this is recommended firstly because

developing software which is within cost, schedule, fulfils customer requirements and is

reliable will be attainable. Secondly, the developed framework will guarantee the selection of

appropriate software development methodologies that would fit each organization and project

setting which have tormented the IT industries for decades.

Besides, it is recommended that IT entrepreneurs should make provisions for periodical

training that is based on selection of appropriate methodologies, especially for Project

Managers. This is important to create awareness, educate Project Managers and further inform

them on the most appropriate methodologies to choose for applicable projects. The DSS results

have indicated which SDM need to be applied with regards to requirements, systems and

projects (simple or complex).

Finally, there is the need to organise internationally conferences that will be aimed at bringing

IT organizations together biannually. This is relevant to give progress reports and provide

feedbacks as to the most appropriate SDM for different projects in different IT organizations.

5.4. LIMITATION OF THE STUDY

The following have been acknowledged to be study limitations. The methodology used in the

current study might have affected study findings, it is suggested that future study should

consider using a mixed method approach because this will provide richer information. In

addition to this, all measures were based on self-reports, which might have affected the data.

This may lead to an increase in the level of common method bias (Conway & Lance, 2010).

In addition to the measure used in the study, there is a need for future researchers to combine

other measures such as focus group discussion and interviews along with self-reporting

measures in eliciting information from Project Managers and staff related working closely with

Project Managers.

Lastly, the present study featured samples from only one province (Gauteng province). Should

the DS framework be more fully validated, it will require analysis among more provinces. It is

suggested that future works should attempt to include more provinces as this might increase

sample size, although this is not to say that the results obtained in this study are not

generalizable. Regardless of these limitations however, this study is unique, because of the

83

attempt to address decades of challenges faced in the IT organization as regards selecting the

best fit SDM necessary to meet time, budget and functional requirements (Marques, Costa,

Silva, & Gonçalves, 2017). Thus, it is believed that the study constitutes a genuine contribution

to IT literature.

5.5 SUGGESTION FOR FUTURE RESEARCH

It is difficult for a study of this magnitude to be all encompassing, therefore, there is the need

for future studies to review decision support framework for the adoption of software

development methodologies using mixed method approach so as to explore more into

participants understanding, experiences and views on adoption of most appropriate SDM.

It is also suggested that future research should look more into factors that influence choice of

SDM. Likewise, there is a need for future studies to focus more on how complex systems can

be built.

Finally, futuristic research should address similar studies, using more samples, this can be

achieved by extending research setting to include more provinces in the country. This will

make findings more generalizable.

84

REFERENCES

Alashqur, A. (2016). Towards A Broader Adoption Of Agile Software Development Methods.

International Journal Of Advanced Computer Science And Applications. 7(12). P.94–98.

Awad, M. 2005. A Comparison Between Agile And Traditional Software Development

Methodologies. University Of Western Australia.

Babbie, E. K. 2007. The Practice Of Social Research: Internal Student Edition. 11th Ed. Ca:

Wadsworth.

Bassil, Y. 2012. A Simulation Model For The Waterfall Software Development Life Cycle.

Arxiv Preprint Arxiv:1205.6904.

Bern, A., Pasi, S. J. A., Nikula, U. & Smolander, K. (2007). Contextual Factors Affecting The

Software Development Process – An Initial View. 2nd Ais Sigsand European Symposium On

Systems Analysis And Design.

Campanelli, A. & Parreiras, F. (2012). A Conceptual Model For Agile Practices Adoption.

Zenodo.Org, 10. Retrieved From

Https://Zenodo.Org/Record/12306/Files/A_Conceptual_Model_For_Agile_Practices_Adopti

on.Pdf

Centers For Medicare & Medicaid Services. (2008). Selecting A Development Approach.

Centers For Medicare & Medicaid Services, 1–10. Retrieved From

Http://Www.Cms.Gov/Research-Statistics-Data-And-Systems/Cms-Information-

Technology/Xlc/Downloads/Selectingdevelopmentapproach.Pdf

Choudhary, Abhishek, Deepak Kasgar, And Lokesh Kashyap. 2015. “Evolvea Frameworkfor

Selectingprime Software Developmentprocess.” 5:20–24.

Cockburn, A. (2000). Selecting A Project’s Methodology. Ieee Software. 17(4). P.64–71.

Https://Doi.Org/10.1109/52.854070

Creswell, J.W. (2007). Qualitative Inquiry And Research Design: Choosing Among Five

Approaches (2nd Ed.). Thousand Oaks, Ca: Sage.

Dr Winston W Royce. 2016. “Sep 28 2016.” The Mississippi Supreme Court 933(August):1–

9.

Duggal, P. (2006). Guidelines To Support Choice Of Development Methodology Pravin

Duggal Information Systems Bsc. P.1–93.

Flora, H. K., Chande, S. V. & Wang, X. (2014). Adopting An Agile Approach For The

Development Of Mobile Applications. International Journal Of Computer Applications.

94(17). P.43–50. Https://Doi.Org/10.5120/16454-6199

Geambaşu, C. V., Jianu, I., Jianu, I. & Gavrilă, A. (2011). Influence Factors For The Choice

Of A Software Development Methodology. Accounting And Management Information

Systems., 10(4). P.479–494.

85

Khan, P. M. & Beg, M. M. S. S. (2013). Extended Decision Support Matrix For Selection Of

Sdlc-Models On Traditional And Agile Software Development Projects. International

Conference On Advanced Computing And Communication Technologies. Acct. 3(1). P.8–15.

Https://Doi.Org/10.1109/Acct.2013.12

Liviu Despa, M. (2014). Comparative Study On Software Development Methodologies.

Database Systems Journal. 5(3). P.37–56. Https://Doi.Org/10.1109/Mahc.1983.10102

Mahanti, R., Neogi, M. S. & Bhattacherjee, V. (2012). Factors Affecting The Choice Of

Software Life Cycle Models In The Software Industry-An Empirical Study. Journal Of

Computer Science. 8(8). P.1253–1262.

Mahapatra, H. B. (2015). Selection Of Software Development Methodology (Sdm): A

Comparative Approach. International Journal Of Advanced Research In Computer Science

And Software Engineering. 5(3). P.58–61.

Manawadu, C. D., Johar, G. & Perera, S. S. N. (2013). An Evaluation Of Software

Development Methodology Adoption By Software Developer In Sri Lanka. ￼International

Journal Of Computational Engineering Research. 3(11). P.1–11.

Mohammed, N., Munassar, A. & Govardhan, A. (2010). A Comparison Between Five Models

Of Software Engineering. International Journal Of Computer Science. 7(5). P.94–101.

Https://Doi.Org/10.1.1.403.3201

Orb, A., Eisenhauer, L. & Wynaden, D. (2000). Ethics In Qualitative Research. Journal Of

Nursing Scholarship. 33(1). P.93–96. Https://Doi.Org/10.1111/J.1547-5069.2001.00093.X

Pearson. (2010). Research Methods For Sport And Exercise Sciences. P.1–34.

Ramnath, V. (2010). The Level Of Adoption And Effectiveness Of Software Development

Methodologies In The Software Development Industry In South Africa. (November). P.80.

Sei. (2006). Cmmi For Development, Version 2.1. Pittsburgh: Carnegie Mellon University.

Available From: Http://Www.Sei.Cmu.Edu/Reports/06tr008.Pdf (Accessed 01/10/2018)

Sharma, P. & Singh, D. (2015). Comparative Study Of Various Sdlc Models On Different

Parameters. International Journal Of Engineering Research. 4(4). P.188–191. Retrieved From

Http://Www.Ijer.In/Ijer/Publication/V4s4/Ijer_2015_405.Pdf

Shekapure, P. S. & Nagar, K. (2015). Problem Solving Using Case Based Reasoning

Methodology. 1(11). P.881–887. Https://Doi.Org/01.0401/Ijaict.2015.11.16

Sylvester, I. 2014. “An Overview Of The Development Principles , Stages And Building

Blocks Of Expert System.” 11(1):44–58.

Verma, J., Bansal, S. & Pandey, H. (2014). Develop Framework For Selecting Best Software

Development Methodology. 5(4). P.1067–1070.

Boehm, B.W. 1988. A Spiral Model Of Software Development And Enhancement. Computer,

21(5):61-72. Leau,

Chilisa, B. (2011). Indigenous Research Methodologies. Thousand Oaks: Sage.

86

Chukwuere, J. E. 2016. Toward A Culture-Oriented E-Learning System Development

Framework (E-Lsdf) In Higher Education Institutions: South Africa. Mafikeng: North-West

University (Doctor Information Systems).

Clarke, P. & O’connor, R.V. 2012. The Situational Factors That Affect The Software

Development Process: Towards A Comprehensive Reference Framework. Information And

Software Technology, 54(5):433-447.

Cockburn, A. 2000. Selecting A Project's Methodology. Ieee Software, 17(4):64-71.

Cohen, D., Lindvall, M. & Costa, P. 2004. An Introduction To Agile Methods. Advances In

Computers, 62(03):1-66.

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F.J. & Tovar,

E. 2014. Project Managers In Global Software Development Teams: A Study Of The Effects

On Productivity And Performance. Software Quality Journal, 22(1):3-19.

Creswell, J. W. 2014. Research Design: Qualitative, Quantitative, And Mixed Methods

Approaches. Fourth Edition. Thousand Oaks, Ca: Sage Publications, Inc.

Creswell, J. W. 2008. Educational Research: Planning, Conducting, And Evaluating

Quantitative And Qualitative Approaches To Research, 3rd Ed. Upper Saddleriver, Nj:

Merill/Perason Education.

Crotty, M. (1998). The Foundations Of Social Research: Meaning And Perspective In The

Research Process. London: Sage

De Vasconcelos, J.B., Kimble, C., Carreteiro, P. & Rocha, Á. 2017. The Application Of

Knowledge Management To Software Evolution. International Journal Of Information

Management, 37(1):1499-1506.

Delcheva, Y. 2018. Challenges During The Transition To Agile Methodologies: A Holistic

Overview.

Despa, M.L. 2014. Comparative Study On Software Development Methodologies. Database

Systems Journal, 5(3):37-56.

Dingsøyr, T., Moe, N.B., Fægri, T.E. & Seim, E.A. 2018. Exploring Software Development

At The Very Large-Scale: A Revelatory Case Study And Research Agenda For Agile Method

Adaptation. Empirical Software Engineering, 23(1):490-520.

Dybå, T. & Dingsøyr, T. 2008. Empirical Studies Of Agile Software Development: A

Systematic Review. Information And Software Technology, 50(9-10):833-859.

Elliot, D. J. 2002. Philosophical Perspectives On Research. (In Colwell, R. & Richardson, C.

(Eds.). The New Handbook On Research Music Teaching And Learning (Pp. 85-102). Oxford:

Oxford University Press).

Emekako, R. U. 2015. Management Strategies For Learner Discipline In Secondary Schools In

Ngaka Modiri-Molema District Of The North West Province. Mafikeng: North-West

University (Masters Education Management).

87

Erickson, J., Lyytinen, K. & Siau, K. 2005. Agile Modeling, Agile Software Development,

And Extreme Programming: The State Of Research. Journal Of Database Management (Jdm),

16(4):88-100.

Ezeh, A. & Anthony, P. 2013. Factors Influencing Knowledge Sharing In Software

Development: A Case Study At Volvo Cars It Torslanda.

Farrell, A. 2007. Selecting A Software Development Methodology Based On Organizational

Characteristics. An Essay Submitted In Partial Fulfillment Of The Requirements For The

Degree Of “Master Of Science In Information Systems”, Athabasca University, Athabasca.

Fitzgerald, B. 1996. Formalized Systems Development Methodologies: A Critical

Perspective. Information Systems Journal, 6(1):3-23.

Geambaşu, C.V., Jianu, I., Jianu, I. & Gavrilă, A. 2011. Influence Factors For The Choice Of

A Software Development Methodology. Accounting And Management Information Systems,

10(4):479-494.

Georgiadou, E. 2003. Software Process And Product Improvement: A Historical Perspective.

Cybernetics And Systems Analysis, 39(1):125-142.

Gill, A.Q., Henderson-Sellers, B. & Niazi, M. 2018. Scaling For Agility: A Reference Model

For Hybrid Traditional-Agile Software Development Methodologies. Information Systems

Frontiers, 20(2):315-341.

Goodpasture, J.C. 2010. Project Management The Agile Way: Making It Work In The

Enterprise: J. Ross Publishing.

Griffin, A.S. & Brandyberry, A.A. 2010. System Development Methodology Usage In

Industry: A Review And Analysis. Journal Of Information Systems Applied Research, 3(19):1-

18.

Harb, Y., Noteboom, C. & Sarnikar, S. 2015. Evaluating Project Characteristics For Selecting

The Best-Fit Agile Software Development Methodology: A Teaching Case. Journal Of The

Midwest Association For Information Systems, 1:33.

Highsmith, J. & Cockburn, A. 2001. Agile Software Development: The Business Of

Innovation. Computer, 34(9):120-127.

Highsmith, J.A. & Highsmith, J. 2002. Agile Software Development Ecosystems. Vol. 13:

Addison-Wesley Professional.

Jiang, L. & Eberlein, A. 2008. Towards A Framework For Understanding The Relationships

Between Classical Software Engineering And Agile Methodologies. (In. Proceedings Of The

2008 International Workshop On Scrutinizing Agile Practices Or Shoot-Out At The Agile

Corral Organised By: Acm. P. 9-14).

Khan, P. & Beg, M.S. 2013. Extended Decision Support Matrix For Selection Of Sdlc-Models

On Traditional And Agile Software Development Projects. (In. Advanced Computing And

Communication Technologies (Acct), 2013 Third International Conference On Organised By:

Ieee. P. 8-15).

88

Khoza, L.T. & Pretorius, A.B. 2017. Factors Negatively Influencing Knowledge Sharing In

Software Development. South African Journal Of Information Management, 19(1):1-9.

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., Mc Caffery, F., Vahid, G.,

Felderer, M., Linssen, O. & Hanser, E. 2018. Hybrid Software Development Approaches In

Practice: A European Perspective. Ieee Software.

Kumaresan, K. & Kumar, R. 2018. Analysis Of Software Failure Factors And Criteria To

Increase The Software Quality. Paripex-Indian Journal Of Research, 6(11).

Lalsing, V., Kishnah, S. & Pudaruth, S. 2012. People Factors In Agile Software Development

And Project Management. International Journal Of Software Engineering & Applications,

3(1):117.

Lee, J.-C., Shiue, Y.-C. & Chen, C.-Y. 2016. Examining The Impacts Of Organizational

Culture And Top Management Support Of Knowledge Sharing On The Success Of Software

Process Improvement. Computers In Human Behavior, 54:462-474.

Leung, H. & Fan, Z. 2002. Software Cost Estimation. Handbook Of Software Engineering

And Knowledge Engineering: Volume Ii: Emerging Technologies. World Scientific. P. 307-

324).

Maienschein, J. 2002. Competing Epistemologies And Developmental Biology. In Creath, R.

& Maienschein, J. (Eds.), Biology And Epistemology (Pp. 127-137). Cambridge, Uk:

Cambridge University Press.

Manawadu, C., Johar, M.G.M. & Perera, S. 2013. An Evaluation Of Software Development

Methodology Adoption By Software Developer In Sri Lanka. Editorial Committees:84.

Maree, K (Ed). 2010. First Steps In Research. Pretoria: Van Schaik.

Marsh, D., And Furlong, P. 2002. A Skin, Not A Sweater: Ontology And Epistemology In

Political Science. In Marsh, D & Stoker, G (Eds.), Theory And Methods In Political Science,

2nd Edition: 17-41. New York: Palgrave Macmillan.

Mcmillian, J.H And Schumacher, S. 2010. Research In Education: Evidence-Based Inquiry.

7th Ed. Pearson: Boston, Ma.

Moe, N.B., Aurum, A. & Dybå, T. 2012. Challenges Of Shared Decision-Making: A Multiple

Case Study Of Agile Software Development. Information And Software Technology,

54(8):853-865.

Moniruzzaman, A. & Hossain, D.S.A. 2013. Comparative Study On Agile Software

Development Methodologies. Arxiv Preprint Arxiv:1307.3356.

Morley, C., Hugues, J. & Leblanc, B. 2000. Uml Pour L'analyse D'un Système D'information-

Le Cahier Des Charges Du Maître D'ouvrage.

Munassar, N.M.A. & Govardhan, A. 2010. A Comparison Between Five Models Of Software

Engineering. International Journal Of Computer Science Issues (Ijcsi), 7(5):94.

89

Novak, J. D. And Cañas, A. J. 2008. The Theory Underlying Concept Maps And How To

Construct And Use Them, Technical Report Ihmc Cmaptools.

Http://Cmap.Ihmc.Us/Publications/Researchpapers/Theoryunderlyingconceptmaps.Pdf Date

Of Access: 20/11/2018.

O’leary, Z. 2010. The Essential Guide To Doing Your Research Project. London: Sage

Publications.

Passos, C., Mendonça, M. & Cruzes, D.S. 2014. The Role Of Organizational Culture In

Software Development Practices: A Cross-Case Analysis Of Four Software Companies. (In.

Software Engineering (Sbes), 2014 Brazilian Symposium On Organised By: Ieee. P. 121-130).

Paul, J. 2008. Quantitative Approach For Lightweight Agile Process Assessment. University

Of Turku.

Paul, J., Knuutila, T. & Järvi, A. 2008. Quantitative Approach For Lightweight Agile Process

Assessment. Master's Thesis, University Of Turku, 7.

Rajagopalan, S. & Mathew, S.K. 2016. Choice Of Agile Methodologies In Software

Development: A Vendor Perspective. Journal Of International Technology And Information

Management, 25(1):3.

Ramnath, V. 2010. The Level Of Adoption And Effectiveness Of Software Development

Methodologies In The Software Development Industry In South Africa. University Of Pretoria.

Repko, A.F. 2012. Interdisciplinary Research: Process And Theory. Second Ed. La: Sage

Publications.

Rising, L. & Janoff, N.S. 2000. The Scrum Software Development Process For Small Teams.

Ieee Software, 17(4):26-32.

Rosenberg, D. & Stephens, M. 2008. Extreme Programming Refactored: The Case Against

Xp: Apress.

Roses, L.K., Windmöller, A. & Carmo, E.A.D. 2016. Favorability Conditions In The

Adoption Of Agile Method Practices For Software Development In A Public Banking. Jistem-

Journal Of Information Systems And Technology Management, 13(3):439-458.

Russo, N., Wynekoop, J. & Walz, D. 1995. The Use And Adaptation Of System Development

Methodologies. Managing Information & Communications In A Changing Global

Environment, Idea Group Publishing, Pa.

Schwaber, K. & Beedle, M. 2002. Agile Software Development With Scrum. Vol. 1: Prentice

Hall Upper Saddle River.

Sharon, I., Dos Santos Soares, M., Barjis, J., Van Den Berg, J. & Vrancken, J.L. 2010. A

Decision Framework For Selecting A Suitable Software Development Process. (In. Iceis (3)

Organised By. P. 34-43).

90

Sheffield, J. & Lemétayer, J. 2013. Factors Associated With The Software Development

Agility Of Successful Projects. International Journal Of Project Management, 31(3):459-472.

Silberberg, R. & Africa, I. 2006. An Investigation Into Methods Used To Develop Software

Systems. Elektron Journal-South African Institute Of Electrical Engineers, 23(2):56.

Sommerville, I. 2016. Software Engineering. London Pearson

Tavares, B.G., Da Silva, C.E.S. & De Souza, A.D. 2017. Risk Management Analysis In Scrum

Software Projects. International Transactions In Operational Research.

Sturgeon, S., Martin, M. G. F., And Grayling, A. C. 1995. Epistemology. (In Grayling, A. C.

(Ed.). Philosophy 1: A Guide Through The Subject (P. 7-60). New York: Oxford University

Press).

Vijayasarathy, L.R. & Butler, C.W. 2016. Choice Of Software Development Methodologies:

Do Organizational, Project, And Team Characteristics Matter? Ieee Software, 33(5):86-94.

Vinekar, V., Slinkman, C.W. & Nerur, S. 2006. Can Agile And Traditional Systems

Development Approaches Coexist? An Ambidextrous View. Information Systems

Management, 23(3):31-42.

Vliet, H.V. 2008. Software Engineering : Principles And Practice. 3rd Ed. Chichester,

England ;: John Wiley & Sons.

Williams, L. 2010. Agile Software Development Methodologies And Practices. Advances In

Computers. Elsevier. P. 1-44).

Xu, P. & Ramesh, B. 2008. Using Process Tailoring To Manage Software Development

Challenges. It Professional, 10(4).

Zykov, S.V. 2018. Managing Software Crisis: A Smart Way To Enterprise Agility. Cham:

Springer International Publishing. Available:

Harma, Sheetal & Sarkar, Darothi & Gupta, Divya. (2012). Agile Processes And

Methodologies: A Conceptual Study. International Journal On Computer Science And

Engineering. 4.

Jizba, R. 2000. “Measuring Search Effectiveness.” Creighton University Health Sciences

Library.

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. 2017a. Agile Software Development

Methods: Review And Analysis. Arxiv Preprint Arxiv:1709.08439.

Aughenbaugh, J.M. And Paredis, C.J., 2004, January. The Role And Limitations Of Modeling

And Simulation In Systems Design. In Asme 2004 International Mechanical Engineering

Congress And Exposition (Pp. 13-22). American Society Of Mechanical Engineers.

Awad, M. 2005. A Comparison Between Agile And Traditional Software Development

Methodologies. University Of Western Australia.

Babbie, E. K. 2007. The Practice Of Social Research: Internal Student Edition. 11th Ed. Ca:

Wadsworth.

91

Bassil, Y. 2012. A Simulation Model For The Waterfall Software Development Life Cycle.

Arxiv Preprint Arxiv:1205.6904.

Boehm, B.W. 1988. A Spiral Model Of Software Development And Enhancement. Computer,

21(5):61-72.

Chilisa, B. (2011). Indigenous Research Methodologies. Thousand Oaks: Sage.

Chukwuere, J. E. 2016. Toward A Culture-Oriented E-Learning System Development

Framework (E-Lsdf) In Higher Education Institutions: South Africa. Mafikeng: North-West

University (Doctor Information Systems).

Clarke, P. & O’connor, R.V. 2012. The Situational Factors That Affect The Software

Development Process: Towards A Comprehensive Reference Framework. Information And

Software Technology, 54(5):433-447.

Cockburn, A. 2000. Selecting A Project's Methodology. Ieee Software, 17(4):64-71.

Cohen, D., Lindvall, M. & Costa, P. 2004. An Introduction To Agile Methods. Advances In

Computers, 62(03):1-66.

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F.J. & Tovar,

E. 2014. Project Managers In Global Software Development Teams: A Study Of The Effects

On Productivity And Performance. Software Quality Journal, 22(1):3-19.

Creswell, J. W. 2014. Research Design: Qualitative, Quantitative, And Mixed Methods

Approaches. Fourth Edition. Thousand Oaks, Ca: Sage Publications, Inc.

Creswell, J. W. 2008. Educational Research: Planning, Conducting, And Evaluating

Quantitative And Qualitative Approaches To Research, 3rd Ed. Upper Saddleriver, Nj:

Merill/Perason Education.

Crotty, M. (1998). The Foundations Of Social Research: Meaning And Perspective In The

Research Process. London: Sage

De Vasconcelos, J.B., Kimble, C., Carreteiro, P. & Rocha, Á. 2017. The Application Of

Knowledge Management To Software Evolution. International Journal Of Information

Management, 37(1):1499-1506.

Delcheva, Y. 2018. Challenges During The Transition To Agile Methodologies: A Holistic

Overview.

Despa, M.L. 2014. Comparative Study On Software Development Methodologies. Database

Systems Journal, 5(3):37-56.

Dingsøyr, T., Moe, N.B., Fægri, T.E. & Seim, E.A. 2018. Exploring Software Development

At The Very Large-Scale: A Revelatory Case Study And Research Agenda For Agile Method

Adaptation. Empirical Software Engineering, 23(1):490-520.

Dybå, T. & Dingsøyr, T. 2008. Empirical Studies Of Agile Software Development: A

Systematic Review. Information And Software Technology, 50(9-10):833-859.

92

Elliot, D. J. 2002. Philosophical Perspectives On Research. (In Colwell, R. & Richardson, C.

(Eds.). The New Handbook On Research Music Teaching And Learning (Pp. 85-102). Oxford:

Oxford University Press).

Emekako, R. U. 2015. Management Strategies For Learner Discipline In Secondary Schools In

Ngaka Modiri-Molema District Of The North West Province. Mafikeng: North-West

University (Masters Education Management).

Erickson, J., Lyytinen, K. & Siau, K. 2005. Agile Modeling, Agile Software Development,

And Extreme Programming: The State Of Research. Journal Of Database Management (Jdm),

16(4):88-100.

Ezeh, A. & Anthony, P. 2013. Factors Influencing Knowledge Sharing In Software

Development: A Case Study At Volvo Cars It Torslanda.

Farrell, A. 2007. Selecting A Software Development Methodology Based On Organizational

Characteristics. An Essay Submitted In Partial Fulfillment Of The Requirements For The

Degree Of “Master Of Science In Information Systems”, Athabasca University, Athabasca.

Fitzgerald, B. 1996. Formalized Systems Development Methodologies: A Critical

Perspective. Information Systems Journal, 6(1):3-23.

Geambaşu, C.V., Jianu, I., Jianu, I. & Gavrilă, A. 2011. Influence Factors For The Choice Of

A Software Development Methodology. Accounting And Management Information Systems,

10(4):479-494.

Georgiadou, E. 2003. Software Process And Product Improvement: A Historical Perspective.

Cybernetics And Systems Analysis, 39(1):125-142.

Gill, A.Q., Henderson-Sellers, B. & Niazi, M. 2018. Scaling For Agility: A Reference Model

For Hybrid Traditional-Agile Software Development Methodologies. Information Systems

Frontiers, 20(2):315-341.

Goodpasture, J.C. 2010. Project Management The Agile Way: Making It Work In The

Enterprise: J. Ross Publishing.

Griffin, A.S. & Brandyberry, A.A. 2010. System Development Methodology Usage In

Industry: A Review And Analysis. Journal Of Information Systems Applied Research, 3(19):1-

18.

Harb, Y., Noteboom, C. & Sarnikar, S. 2015. Evaluating Project Characteristics For Selecting

The Best-Fit Agile Software Development Methodology: A Teaching Case. Journal Of The

Midwest Association For Information Systems, 1:33.

Highsmith, J. & Cockburn, A. 2001. Agile Software Development: The Business Of

Innovation. Computer, 34(9):120-127.

Highsmith, J.A. & Highsmith, J. 2002. Agile Software Development Ecosystems. Vol. 13:

Addison-Wesley Professional.

93

Jiang, L. & Eberlein, A. 2008. Towards A Framework For Understanding The Relationships

Between Classical Software Engineering And Agile Methodologies. (In. Proceedings Of The

2008 International Workshop On Scrutinizing Agile Practices Or Shoot-Out At The Agile

Corral Organised By: Acm. P. 9-14).

Khan, P. & Beg, M.S. 2013. Extended Decision Support Matrix For Selection Of Sdlc-Models

On Traditional And Agile Software Development Projects. (In. Advanced Computing And

Communication Technologies (Acct), 2013 Third International Conference On Organised By:

Ieee. P. 8-15).

Khoza, L.T. & Pretorius, A.B. 2017. Factors Negatively Influencing Knowledge Sharing In

Software Development. South African Journal Of Information Management, 19(1):1-9.

Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Trektere, K., Mc Caffery, F., Vahid, G.,

Felderer, M., Linssen, O. & Hanser, E. 2018. Hybrid Software Development Approaches In

Practice: A European Perspective. Ieee Software.

Kumaresan, K. & Kumar, R. 2018. Analysis Of Software Failure Factors And Criteria To

Increase The Software Quality. Paripex-Indian Journal Of Research, 6(11).

Lalsing, V., Kishnah, S. & Pudaruth, S. 2012. People Factors In Agile Software Development

And Project Management. International Journal Of Software Engineering & Applications,

3(1):117.

Lee, J.-C., Shiue, Y.-C. & Chen, C.-Y. 2016. Examining The Impacts Of Organizational

Culture And Top Management Support Of Knowledge Sharing On The Success Of Software

Process Improvement. Computers In Human Behavior, 54:462-474.

Leung, H. & Fan, Z. 2002. Software Cost Estimation. Handbook Of Software Engineering

And Knowledge Engineering: Volume Ii: Emerging Technologies. World Scientific. P. 307-

324).

Maienschein, J. 2002. Competing Epistemologies And Developmental Biology. In Creath, R.

& Maienschein, J. (Eds.), Biology And Epistemology (Pp. 127-137). Cambridge, Uk:

Cambridge University Press.

Manawadu, C., Johar, M.G.M. & Perera, S. 2013. An Evaluation Of Software Development

Methodology Adoption By Software Developer In Sri Lanka. Editorial Committees:84.

Maree, K (Ed). 2010. First Steps In Research. Pretoria: Van Schaik.

Marsh, D., And Furlong, P. 2002. A Skin, Not A Sweater: Ontology And Epistemology In

Political Science. In Marsh, D & Stoker, G (Eds.), Theory And Methods In Political Science,

2nd Edition: 17-41. New York: Palgrave Macmillan.

Mcmillian, J.H And Schumacher, S. 2010. Research In Education: Evidence-Based Inquiry.

7th Ed. Pearson: Boston, Ma.

Moe, N.B., Aurum, A. & Dybå, T. 2012. Challenges Of Shared Decision-Making: A Multiple

Case Study Of Agile Software Development. Information And Software Technology,

54(8):853-865.

94

Moniruzzaman, A. & Hossain, D.S.A. 2013. Comparative Study On Agile Software

Development Methodologies. Arxiv Preprint Arxiv:1307.3356.

Morley, C., Hugues, J. & Leblanc, B. 2000. Uml Pour L'analyse D'un Système D'information-

Le Cahier Des Charges Du Maître D'ouvrage.

Munassar, N.M.A. & Govardhan, A. 2010. A Comparison Between Five Models Of Software

Engineering. International Journal Of Computer Science Issues (Ijcsi), 7(5):94.

Novak, J. D. And Cañas, A. J. 2008. The Theory Underlying Concept Maps And How To

Construct And Use Them, Technical Report Ihmc Cmaptools.

Http://Cmap.Ihmc.Us/Publications/Researchpapers/Theoryunderlyingconceptmaps.Pdf Date

Of Access: 20/11/2018.

O’leary, Z. 2010. The Essential Guide To Doing Your Research Project. London: Sage

Publications.

Passos, C., Mendonça, M. & Cruzes, D.S. 2014. The Role Of Organizational Culture In

Software Development Practices: A Cross-Case Analysis Of Four Software Companies. (In.

Software Engineering (Sbes), 2014 Brazilian Symposium On Organised By: Ieee. P. 121-130).

Paul, J. 2008. Quantitative Approach For Lightweight Agile Process Assessment. University

Of Turku.

Paul, J., Knuutila, T. & Järvi, A. 2008. Quantitative Approach For Lightweight Agile Process

Assessment. Master's Thesis, University Of Turku, 7.

Rajagopalan, S. & Mathew, S.K. 2016. Choice Of Agile Methodologies In Software

Development: A Vendor Perspective. Journal Of International Technology And Information

Management, 25(1):3.

Ramnath, V. 2010. The Level Of Adoption And Effectiveness Of Software Development

Methodologies In The Software Development Industry In South Africa. University Of Pretoria.

Repko, A.F. 2012. Interdisciplinary Research: Process And Theory. Second Ed. La: Sage

Publications.

Rising, L. & Janoff, N.S. 2000. The Scrum Software Development Process For Small Teams.

Ieee Software, 17(4):26-32.

Rosenberg, D. & Stephens, M. 2008. Extreme Programming Refactored: The Case Against

Xp: Apress.

Roses, L.K., Windmöller, A. & Carmo, E.A.D. 2016. Favorability Conditions In The

Adoption Of Agile Method Practices For Software Development In A Public Banking. Jistem-

Journal Of Information Systems And Technology Management, 13(3):439-458.

95

Russo, N., Wynekoop, J. & Walz, D. 1995. The Use And Adaptation Of System Development

Methodologies. Managing Information & Communications In A Changing Global

Environment, Idea Group Publishing, Pa.

Schwaber, K. & Beedle, M. 2002. Agile Software Development With Scrum. Vol. 1: Prentice

Hall Upper Saddle River.

Sharon, I., Dos Santos Soares, M., Barjis, J., Van Den Berg, J. & Vrancken, J.L. 2010. A

Decision Framework For Selecting A Suitable Software Development Process. (In. Iceis (3)

Organised By. P. 34-43).

Sheffield, J. & Lemétayer, J. 2013. Factors Associated With The Software Development

Agility Of Successful Projects. International Journal Of Project Management, 31(3):459-472.

Silberberg, R. & Africa, I. 2006. An Investigation Into Methods Used To Develop Software

Systems. Elektron Journal-South African Institute Of Electrical Engineers, 23(2):56.

Sommerville, I. 2016. Software Engineering. London Pearson

Tavares, B.G., Da Silva, C.E.S. & De Souza, A.D. 2017. Risk Management Analysis In Scrum

Software Projects. International Transactions In Operational Research.

Sturgeon, S., Martin, M. G. F., And Grayling, A. C. 1995. Epistemology. (In Grayling, A. C.

(Ed.). Philosophy 1: A Guide Through The Subject (P. 7-60). New York: Oxford University

Press).

Vijayasarathy, L.R. & Butler, C.W. 2016. Choice Of Software Development Methodologies:

Do Organizational, Project, And Team Characteristics Matter? Ieee Software, 33(5):86-94.

Vinekar, V., Slinkman, C.W. & Nerur, S. 2006. Can Agile And Traditional Systems

Development Approaches Coexist? An Ambidextrous View. Information Systems

Management, 23(3):31-42.

Vliet, H.V. 2008. Software Engineering : Principles And Practice. 3rd Ed. Chichester,

England ;: John Wiley & Sons.

Williams, L. 2010. Agile Software Development Methodologies And Practices. Advances In

Computers. Elsevier. P. 1-44).

Xu, P. & Ramesh, B. 2008. Using Process Tailoring To Manage Software Development

Challenges. It Professional, 10(4).

Zykov, S.V. 2018. Managing Software Crisis: A Smart Way To Enterprise Agility. Cham:

Springer International Publishing. Available:

Harma, Sheetal & Sarkar, Darothi & Gupta, Divya. (2012). Agile Processes And

Methodologies: A Conceptual Study. International Journal On Computer Science And

Engineering. 4.

Jizba, R. 2000. “Measuring Search Effectiveness.” Creighton University Health Sciences

Library.

96

Aamodt, A. And Plaza, E., 1994. Case-Based Reasoning: Foundational Issues, Methodological

Variations, And System Approaches. Ai Communications, 7(1), Pp.39-59.

Babbie, E. K. 2007. The Practice Of Social Research: Internal Student Edition. 11th Ed. Ca:

Wadsworth.

Batarseh, F.A. And Gonzalez, A.J., 2018. Predicting Failures In Agile Software Development

Through Data Analytics. Software Quality Journal, 26(1), Pp.49-66.

Beck, K. And Gamma, E., 2000. Extreme Programming Explained: Embrace Change.

Addison-Wesley Professional.

Bedoll, R. 2003. A Tail Of Two Projects: How “Agile” Methods Succeeded After “Traditional”

Methods Had Failed In A Critical System-Development Project. In Extreme Programming And

Agile Methods - Xp/Agile Universe. Vol. 2753. 25–34.

Chilisa, B. (2011). Indigenous Research Methodologies. Thousand Oaks: Sage.

Chukwuere, J. E. 2016. Toward A Culture-Oriented E-Learning System Development

Framework (E-Lsdf) In Higher Education Institutions: South Africa. Mafikeng: North-West

University (Doctor Information Systems).

Cohen, David, Mikael Lindvall, And Patricia Costa. "An Introduction To Agile

Methods." Advances In Computers 62, No. 03 (2004): 1-66.

Creswell, J. W. 2014. Research Design: Qualitative, Quantitative, And Mixed Methods

Approaches. Fourth Edition. Thousand Oaks, Ca: Sage Publications, Inc.

Crotty, M. (1998). The Foundations Of Social Research: Meaning And Perspective In The

Research Process. London: Sage

Cusick, J. J., Prasad, A., & Tepfenhart, W. M. (2008). Global Software Development: Origins,

Practices, And Directions. Advances In Computers, 74, 201-269. Doi:10.1016/S0065-

2458(08)00606-2

Emekako, R. U. 2015. Management Strategies For Learner Discipline In Secondary Schools In

Ngaka Modiri-Molema District Of The North West Province. Mafikeng: North-West

University (Masters Education Management).

Elliot, D. J. 2002. Philosophical Perspectives On Research. (In Colwell, R. & Richardson, C.

(Eds.). The New Handbook On Research Music Teaching And Learning (Pp. 85-102). Oxford:

Oxford University Press).

Haigh, T., 2010, June. Crisis, What Crisis? Reconsidering The Software Crisis Of The 1960s

And The Origins Of Software Engineering. In Second Inventing Europe/Tensions Of Europe

Conference, Sofia, Bulgaria.

Laanti, M., Salo, O. & Abrahamsson, P. 2011. Agile Methods Rapidly Replacing Traditional

Methods At Nokia: A Survey Of Opinions On Agile Transformation. Information And Software

Technology. 53(3):276–290.

Lacey, M., 2012. The Scrum Field Guide: Practical Advice For Your First Year. Addison-

Wesley Professional.

Layman, L., Williams, L. And Cunningham, L., 2004, June. Exploring Extreme Programming

In Context: An Industrial Case Study. In Agile Development Conference (Pp. 32-41). Ieee.

97

Leau, Yu Beng, Wooi Khong Loo, Wai Yip Tham, And Soo Fun Tan. "Software Development

Life Cycle Agile Vs Traditional Approaches." In International Conference On Information

And Network Technology, Vol. 37, No. 1, Pp. 162-167. 2012.

Lei, H., Ganjeizadeh, F., Jayachandran, P.K. And Ozcan, P., 2017. A Statistical Analysis Of

The Effects Of Scrum And Kanban On Software Development Projects. Robotics And

Computer-Integrated Manufacturing, 43, Pp.59-67

Loftus, C. And Ratcliffe, M., 2005. Extreme Programming Promotes Extreme Learning?. Acm

Sigcse Bulletin, 37(3), Pp.311-315.

Maienschein, J. 2002. Competing Epistemologies And Developmental Biology. In Creath, R.

& Maienschein, J. (Eds.), Biology And Epistemology (Pp. 127-137). Cambridge, Uk:

Cambridge University Press.

Maree, K (Ed). 2010. First Steps In Research. Pretoria: Van Schaik.

Marsh, D., And Furlong, P. 2002. A Skin, Not A Sweater: Ontology And Epistemology In

Political Science. In Marsh, D & Stoker, G (Eds.), Theory And Methods In Political Science,

2nd Edition: 17-41. New York: Palgrave Macmillan.

Matthews, T. (2002). Phase I – Systems Engineering Management Plan: A Process Review

And

Appraisal Of The Systems Engineering Capability For The Florida Department Of

Transportation.

Florida Department Of Transportation. [Online] Requested March 2009. Available At

Http://Www.Floridaits.Com/Semp/Files/Pdf_Report/030220-Tmi-V2.Pdf

Mcmillian, J.H And Schumacher, S. 2010. Research In Education: Evidence-Based Inquiry.

7th Ed. Pearson: Boston, Ma.

Moe, N.B., Aurum, A. & Dybå, T. 2012. Challenges Of Shared Decision-Making: A Multiple

Case Study Of Agile Software Development. Information And Software Technology,

54(8):853-865.

Meulendijk, K.L.; Oud, S. (2007). Project Management Is Risicomanagement. Automatisering

Gids, Vol. 47, 2007.

Münch, J., Armbrust, O., Kowalczyk, M. And Soto, M., 2012. Software Process Definition

And Management. Springer Science & Business Media.

Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N. & Begel, A. 2013. Have

Agile Techniques Been The Silver Bullet For Software Development At Microsoft? In 2013

Acm / Ieee International Symposium On Empirical Software Engineering And Measurement.

Ieee. 75–84.

Mnkandla, E. 2009. About Software Engineering Frameworks And Methodologies. In Africon

2009. Vol. 1087. Ieee. 1–5.

98

Novak, J. D. And Cañas, A. J. 2008. The Theory Underlying Concept Maps And How To

Construct And Use Them, Technical Report Ihmc Cmaptools.

Http://Cmap.Ihmc.Us/Publications/Researchpapers/Theoryunderlyingconceptmaps.Pdf Date

Of Access: 20/11/2018.

Parnas, D. L. And P. C. Clements (1986) "A Rational Design Process: How And Why To Fake

It", Ieee Transactions Of Software Engineering, Pp. 346-357.

Repko, A.F. 2012. Interdisciplinary Research: Process And Theory. Second Ed. La: Sage

Publications.

Palmer, S. R. And J. M. Felsing (2002). A Practical Guide To Feature-Driven Development.

Upper Saddle River, Nj, Prentice-Hall Inc.

Paul, J. (2008). Quantitative Approach For Lightweight Agile Process Assessment (Master‟S

Thesis, University Of Turku). Available From:

Http://Www.Johanpaul.Com/Thesis_Johanpaul.Pdf (Accessed 01/11/208)

Poole, C.J., Murphy, T., Huisman, J.W. & Higgins, A. 2001. Extreme Maintenance. In

Proceedings Ieee International Conference On Software Maintenance. Icsm 2001. Ieee

Comput. Soc. 301–309.

Sei. (2006). Cmmi For Development, Version 2.1. Pittsburgh: Carnegie Mellon University.

Available From: Http://Www.Sei.Cmu.Edu/Reports/06tr008.Pdf (Accessed 01/10/2018)

Scharff, C., 2011, May. Guiding Global Software Development Projects Using Scrum And

Agile With Quality Assurance. In 2011 24th Ieee-Cs Conference On Software Engineering

Education And Training (Csee&T) (Pp. 274-283). Ieee.

Senapathi, M. & Srinivasan, A. 2011. Understanding Post-Adoptive Agile Usage -- An

Exploratory Cross-Case Analysis. In 2011 Agile Conference. Ieee. 117–126.

Sharp, H. And Robinson, H. (2004) ‘An Ethnographic Study Of Xp Practice’, Empirical

Software Engineering, Vol. 9, No. 4, Pp.353–375.

Sheffield, J. & Lemétayer, J. 2013. Factors Associated With The Software Development

Agility Of Successful Projects. International Journal Of Project Management, 31(3):459-472.

Steels, L. (1990). The Components Of Expertise, Ai Magazine, 11(2):30–49.

Sriram, R. & Mathew, S.K. 2012. Global Software Development Using Agile Methodologies:

A Review Of Literature. In 2012 Ieee International Conference On Management Of Innovation

& Technology (Icmit). Ieee. 389–393.

Sturgeon, S., Martin, M. G. F., And Grayling, A. C. 1995. Epistemology. (In Grayling, A. C.

(Ed.). Philosophy 1: A Guide Through The Subject (P. 7-60). New York: Oxford University

Press).

O’leary, Z. 2010. The Essential Guide To Doing Your Research Project. London: Sage

Publications.

99

Szalvay, V. (2008). An Introduction To Agile Software Development. Retrieved From:

Http://Www.Danube.Com/System/Files/Wp_Intro_To_Agile.Pdf

Truex, D., Baskerville, R. And Travis, J., 2000. Amethodical Systems Development: The

Deferred Meaning Of Systems Development Methods. Accounting, Management And

Information Technologies, 10(1), Pp.53-79.

Turk, D., France, R. And Rumpe, B., 2014. Limitations Of Agile Software Processes. Arxiv

Preprint Arxiv:1409.6600.

Overhage, S. Et Al., 2011. What Makes It Personnel Adopt Scrum? A Framework Of Drivers

And Inhibitors To Developer Acceptance. In Proceedings Of The 44th Annual Hawaii

International Conference On System Sciences. Ieee, Pp. 1–10.

Griffin, A. S. & Brandyberry, A. A. (2010). System Development Methodology Usage In

Industry: A Review And Analysis. Available From:

Http://Proc.Conisar.Org/2008/3522/Conisar.2008. Keskin, N. And B. Kunte.Pdf (Accessed

01/10/2018)

Nandhakumar, J. & Avison, D.E. (1999). The Fiction Of Methodological Development:A Field

Study Of Information Systems Develo

Varajão, J. Et Al., 2014. Failures In Software Project Management - Are We Alone? A

Comparison With Construction Industry. International Journal Of Modern Project

Management, 2(1), Pp.22–27

Victor Szalvay. 2008. “Introduction To Agile Software Development.” 1–24.

Vijayasarathy, L.R. And Butler, C.W., 2016. Choice Of Software Development

Methodologies: Do Organizational, Project, And Team Characteristics Matter?. Ieee

Software, 33(5), Pp.86-94.

Williams, L. (2007). A Survey Of Agile Development Methodologies. Retrieved From

Http://Agile.Csc.Ncsu.Edu/Sematerials/Agilemethods.Pdf

