
TECHNOLOGY DEVELOPMENT OF A MAXIMUM POWER

POINT TRACKER FOR REGENERATIVE FUEL CELLS

N. JANSEN VAN RENSBURG

207060860

A dissertation submitted in fulfilment of the requirements for the degree

Magister Technologiae: Engineering: Electrical

Department: Electronic Engineering

Faculty of Engineering and Technology

Vaal University of Technology

Vanderbijlpark

Supervisor: Prof HCvZ Pienaar

Date: 24 June 2015

ii

Declaration

I, Neil Jansen van Rensburg, hereby declare that the following research information

is solely my own work. This is submitted in fulfilment of the requirements for the

Magister Technologiae: Engineering: Electrical to the Department of Electronic

Engineering at the Vaal University of Technology, Vanderbijlpark. It has not been

submitted previously for any assessment to any educational institution.

…………………..

Neil Jansen van Rensburg

Date:…………………

iii

Acknowledgements

I hereby wish to express my gratitude to the following individuals who enabled this

document to be completed successfully:

 Prof HCvZ Pienaar for encouragement and guidance throughout this research

 Telkom Centre of Excellence, TFMC, M-Tech and THRIP

 Personnel of the Department of Electronic Engineering for support and

encouragement

iv

Dedication

This dissertation is dedicated to my parents, Ronnie and Thea, my sisters, Elaine and

Nicolene, as well as their spouses, my friends, and lastly, the love of my life, Tanya

Nortje, for all their support and continuing encouragement throughout the study of

this project.

Success is the ability to go from failure to failure

without losing your enthusiasm.

- Sir Winston Churchill

v

Abstract

Global warming is of increasing concern due to several greenhouse gases. The

combustion of fossil fuels is the major contributor to the greenhouse effect. To

minimalise this effect, alternative energy sources have to be considered. Alternative

energy sources should not only be environmentally friendly, but also renewable

and/or sustainable. Two such alternative energy sources are hydrogen and solar

energy.

The regenerative fuel cell, commonly known as a hydrogen generator, is used to

produce hydrogen. The current solar/hydrogen system at the Vaal University of

Technology’s Telkom Centre of Excellence makes use of PV array to supply power

to an inverter and the inverter is connected to the hydrogen generator. The inverter

provides the hydrogen generator with 220VAC. The hydrogen generator has its own

power supply unit to convert the AC power back to DC power. This reduces the

efficiency of the system because there will be power loss when converting DC power

to AC power and back to DC power. The hydrogen generator, however, could be

powered directly from a PV array. However, the hydrogen generator needs specific

input parameters in order to operate. Three different input voltages with their own

current rating are required by the hydrogen generator to operate properly. Thus, a

DC-DC power supply unit needs to be designed to be able to output these parameters

to the hydrogen generator. It is also important to note that current PV panel

efficiency is very low; therefore, the DC-DC power supply unit also needs to extract

the maximum available power from the PV array. In order for the DC-DC power

supply unit to be able to extract this maximum power, a maximum power point

tracking algorithm needs to be implemented into the design. The DC-DC power

supply is designed as a switch mode power supply unit. The reason for this is that the

efficiency of a switch mode power supply is higher than that of a linear power

supply.

To reach the objective the following methodology was followed. The first part of the

research provided an introduction to PV energy, charge controllers and hydrogen

generators. The problem statement is included as well as the purpose of this research

vi

and how this research was to be carried out. The second part is the literature review.

This includes the background study of algorithms implemented in MPPT’s; it also

explains in detail how to design the MPPT DC-DC SMPS. The third part was divided

into two sections. The first section is the design, programming and manufacturing of

the MPPT DC-DC SMPS. The second section is the simulation of the system as a

whole which is the simulation of the PV array connected to the MPPT DC-DC SMPS

and the hydrogen generator. The fourth part in the research compared the results

obtained in the simulation and practical setup. The last part of the research provided

a conclusion along with recommendation made for further research.

The simulation results showed that the system works with an efficiency of 40,84%.

This is lower than expected but the design can be optimised to increase efficiency.

The practical results showed the efficiency to be 38%. The reason for the lower

efficiency is the simulation used ideal components and parameters, whereas the

practical design has power losses due to the components not being ideal.

The design of the DC-DC switch mode power supply, however, indicated that the

hydrogen generator could be powered from a PV array without using an inverter,

with great success.

vii

TABLE OF CONTENTS

Contents Page No

Declaration ii

Acknowledgements iii

Dedication iv

Abstract v

List of figures x

List of tables xii

Glossary of abbreviations xiii

CHAPTER 1 – Introduction and overview 1

1.1 Global warming and Solar energy 1

1.2 Photovoltaic energy 1

1.3 Charge controllers and Maximum Power Point Trackers 3

1.4 Regenerative Fuel Cells 5

1.5 Problem statement 8

1.6 Focus and purpose 8

1.7 Objective 9

1.7.1 Specific objectives 9

1.8 Research methodology 10

1.9 Summary 11

CHAPTER 2 – Maximum power point trackers 12

2.1 MPPT classification 12

2.2 Direct MPPT algorithms 14

2.3 P&O algorithm 16

2.4 DC-DC Switch Mode Power Supply 20

2.4.1 Types of DC-DC converter topologies 20

2.4.2 The Buck converter 21

viii

2.5 Control of the DC-DC SMPS 24

2.5.1 Voltage-mode control 25

2.5.2 Current-mode control 26

2.5.3 Proportional-Integral-Derivative (PID) controller 29

2.6 Synchronous buck converter design equations 33

2.7 Summary 36

CHAPTER 3 – Design, programming and simulation 38

3.1 MPPT classification 38

3.2 The synchronous buck converter circuits 42

3.3 The MPPT sensing circuit 45

3.4 Programming 47

3.5 Simulation setup 47

3.6 Simulation measurements 53

3.7 Summary 59

CHAPTER 4 – Measurements and results 60

4.1 Simulation results 60

4.2 Experimental setup 63

4.3 Measurement results 64

4.4 Summary 67

CHAPTER 5 – Conclusion and recommendations 68

5.1 Conclusions 68

5.1.1 Design and simulation 68

5.1.2 Practical environment 69

5.2 Recommendations 70

ix

REFERENCES 71

ANNEXURE INDEX 76

x

LIST OF FIGURES

Contents Page No

Figure 1 PV effect 2

Figure 2 PV array characteristic curve 4

Figure 3 HOGEN® GC 300 6

Figure 4 HOGEN® GC 300 power supply and electronics 6

Figure 5 HOGEN® GC 300 block diagram 7

Figure 6 VUT Sustainable/Alternative Energy System 8

Figure 7 HOGEN GC 300 block diagram with new power supply 9

Figure 8 MPPT scheme of PV system 16

Figure 9 P-V Characteristic family curve 17

Figure 10 Flowchart of the P&O algorithm 18

Figure 11 Divergence of P&O from MPP 19

Figure 12 Buck converter topology 21

Figure 13 Buck converter steady-state operating modes: (a) CCM and (b) DCM 22

Figure 14 Synchronous buck converter 24

Figure 15 Voltage-mode control 25

Figure 16 Current-mode control 26

Figure 17 Unity feedback system (closed loop) 30

Figure 18 Ziegler-Nichols closed-loop tests 32

Figure 19 Controller circuit 39

Figure 20 Supply circuit 41

Figure 21 Synchronous buck converter schematic circuit 43

Figure 22 Synchronous buck converter sensing schematic circuit 44

Figure 23 MPPT voltage and current sensing schematic circuit 45

Figure 24 PCB 3D view - Top 46

Figure 25 PCB 3D view - Bottom 46

Figure 26 Main Simulink PV system model 48

Figure 27 Signal builder blocks for irradiance and temperature 49

Figure 28 MPPT algorithm subsystem 49

Figure 29 MPPT algorithm logic 49

xi

Figure 30 PV array subsystem 50

Figure 31 PV array model 50

Figure 32 Diode and Rp model 51

Figure 33 I-V and P-V characteristics of one module at 25°C 51

Figure 34 Synchronous buck converter subsystem block 52

Figure 35 Synchronous buck converter subsystem detailed 52

Figure 36 HG subsystem 53

Figure 37 Number of PV panels needed for operation 54

Figure 38 PV array characteristic curves 55

Figure 39 SMPS output power for the irradiance range of 700 W/m
2
 – 1000 W/m

2
 55

Figure 40 SMPS output power for the irradiance range of 700 W/m
2
 – 760 W/m

2
 56

Figure 41 SMPS output power for the irradiance range of 755 W/m
2
 – 760 W/m

2
 56

Figure 42 PC V array output power at minimum irradiance setting 57

Figure 43 SMPS voltage output while in operation 58

Figure 44 SMPS current output while in operation 58

Figure 45 SMPS power output while in operation 59

Figure 46 Experimental setup 63

Figure 47 Practical PV array power 65

Figure 48 Simulation and practical results compared for output voltage 65

Figure 49 Simulation and practical results compared for output current 66

Figure 50 Simulation and practical results compared for output power 66

xii

LIST OF TABLES

Contents Page No

Table 1 HOGEN® GC 300 power supply output voltages 7

Table 2 PV panel characteristics 12

Table 3 Direct and indirect MPPT algorithms 13

Table 4 Summary of P&O algorithm 17

Table 5 Comparison of the voltage and current-mode control techniques 28

Table 6 Effect of PID controllers on closed-loop system 31

Table 7 Ziegler-Nichols tuning, using the oscillation method 32

Table 8 Chosen SMPS parameter values for the calculations 42

Table 9 Calculated values for the synchronous buck converters 43

Table 10 Simulation results for different PV panels 61

Table 11 DC-DC SMPS running at 1000W/m
2
 62

Table 12 DC-DC SMPS running for various irradiances with 4 PV panels 62

xiii

Glossary of abbreviations

A

A - Amp

AC – Alternating current

ADC – Analog to digital converter

C

CIGS – Copper indium gallium selenide

CMC – Current-mode control

CNC – Computer numerical control

CCM – Continuous conduction mode

D

DC – Direct current

DC-DC – Direct current to direct current

DCM – Discontinuous conduction mode

D – Duty cycle

E

ESC – Extremum seeking control

EHP – electron-hole pair

eV – electron Volt

eff - Efficiency

F

fSW – Switching frequency

FC – Fuel cell

H

H2 – Hydrogen gas molecule

H2O – Water

HG – Hydrogen generator

Hz – Hertz

I

IMPP – Current at maximum power

ISC – Short circuit current

IPV – Current of photovoltaic panel

I-V – Current versus voltage

ICD – In-circuit debugger

IC – Integrated circuit

Irr - Irradiance

K

kW – Kilowatt

L

LED – Light emitting diode

M

MCU – Microcontroller unit

Mosfet – Metal-oxide semiconductor

field-effect transistor

MPLab – Microchip PICmicro Laboratory

MPP – Maximum power point

MPPT – Maximum power point tracker

N

N/A – Not available

O

O2 – Oxygen

P

P – Power

PPV – Power of photovoltaic panel

PCB – Printed circuit board

PEM – Proton Exchange Membrane

PIC – Peripheral interface controller

PID – Proportional-Integral-Derivative

P&O – Perturb and Observe

PV – photovoltaic

P-N – p-type and n-type

P-V – Power versus voltage

PWM – Pulse-width modulation

R

RFC – Regenerative fuel cell

S

SinESC – Sinusoidal ESC

xiv

SMESC – Sliding mode ESC

SMPS – Switch-mode power supply

STC – Standard test conditions

T

TCD – Thermal conductivity detector

U

URFC – Unitized regenerative fuel cell

µH – micro-Henry

µF – micro-Farad

V

V – Voltage

VAC – Volts alternating current

VCM – Voltage-mode control

VUT – Vaal University of Technology

VOC – Open circuit voltage

VMPP – Voltage at maximum power

VPV – Voltage of photovoltaic panel

W

W – Watt

1

CHAPTER 1 INTRODUCTION AND OVERVIEW

1.1 Global warming and solar energy

Global warming (greenhouse effect) is becoming an ever-increasing concern for

humanity. According to Şen (2008), there are several greenhouse gases that

contribute to the global warming effects in the atmosphere and they are almost

entirely due to human activities. Fossil fuel combustion is one of the contributing

factors to the greenhouse effect, along with acid rain, air pollution, climate changes

and oil spills (Şen, 2008). Thus, it is logical that research in alternative energy

sources, which are not only environmentally friendly, but also renewable and/or

sustainable, are of primary concern. Farret and Simões (2006) state that there are

several renewable energy sources that have been used for thousands of years, one of

which is solar energy.

The radiation from the sun, that is capable of producing heat, causing chemical

reactions or generating electrical energy, is called solar energy (Ashok, 2012).

According to Şen (2008), solar radiation is the world’s most abundant and permanent

energy source. Lynn (2010) states that the sun provides, in about an hour, the

present energy requirements of earth’s entire population for a whole year. It can be

seen clearly that solar energy is an important renewable and sustainable alternative

energy source. But, how will all that energy be harnessed? There are two ways to

produce electricity from solar energy: solar thermal and photovoltaic (PV) systems.

The method that is of an increasing interest in electrical power applications,

according to Kwon et al. (2006), is PV energy. The reason for this increase in

interest is that it is clean, free, abundant, pollution-free and inexhaustible. The rapid

growth in solar cells and power electronics technology also contributes to an increase

in PV energy (Kwon et al., 2006).

1.2 Photovoltaic energy

The European Commission (2009) defines PV as the field of technology and research

related to devices, which convert sunlight (solar radiation) directly into electrical

energy. PV cells, which are made of semiconductor materials, such as silicon, are the

basic building blocks of PV technology (European Commission, 2009). The PV cell,

2

which is a semiconductor P-N junction device, converts sunlight into electrical

energy due to the PV effect shown in Figure 1. The PV effect was discovered in 1839

by Edmund Becquerel, a French scientist (Solanki, 2009). Sunlight contains photons,

and these photons contain various amounts of energies depending on different light

situations. Photons can either be reflected, absorbed or they can pass through when

they strike the PV cell. For the PV effect to take place, there are three basic

requirements, namely (1) absorption of photons through the creation of electron-hole

pairs (EHPs); (2) separation of the these EHPs from each other across the P-N

junction, resulting in the generation of a potential difference in the PV cell; (3)

transfer of these separated electrons and holes through electrical terminals to an

external circuit in the form of electrical current, and thus, power can be extracted

from the PV cell (Mitchell and Tatro, 2008; Solanki, 2009; de Neufville, 2012).

Figure 1 PV effect

Fraas and Partain (2010) state that the main characteristic of a PV cell is the

conversion efficiency of solar energy into electrical energy. Unfortunately, several

causes place limitations on the PV cell efficiency. One of the limitations is based on

the properties of the silicon semiconductors used in PV cells. Photons, having energy

less than 1.12 eV, do not get absorbed in the material due to the band gap of the cell,

3

and photons with energies more than 1.12 eV lose their energy in the form of heat

dissipation. Other losses include: optical losses, recombination losses and resistive

losses (Fraas and Partain, 2010). It can be observed that due to all these losses the

efficiency is greatly reduced. For example, according to Fraas and Partain (2010) the

theoretical efficiency of a crystalline silicon PV cell is about 29%, the world record

is 24.3% but average efficiencies for typical industrial PV cells are only in the range

of 16% to 17%.

Solanki (2009) explains that solar PV modules/panels are numerous individual PV

cells collectively connected to each other in a series and/or parallel grid. Lynn (2010)

then describes a PV array as a group of interconnected modules working together in

a PV installation. PV systems can either be grid-tied or stand-alone, according to

Lynn (2010). When PV systems are used for stand-alone applications, a battery (or

any DC storage component) is normally connected to the system as a back-up source

to supply the load during the night or overcast days when the PV array is not

operational (Solanki, 2009). Solanki (2009) explains that where batteries are used, it

is important to prevent over-charging or deep discharging to prolong battery life.

This is achieved by using charge controllers.

1.3 Charge controllers and maximum power point trackers

IEEE-SA (2003) defines a charge controller as an electrical control device that

regulates battery charging by voltage control and/or other means. It may also

incorporate one or more of the following functions: discharge termination, regulation

voltage temperature compensation, load control and status indication. According to

Solanki (2009) there are three types of charge controllers: series controllers, shunt

controllers and maximum power point trackers (MPPTs).

The first two charge controllers mentioned deliver all the power from the PV array

into the battery, with low efficiency. It can be concluded that because of the low

efficiency of PV cells every bit of output power is important. Solanki (2009) explains

that for the charging to be more efficient, the PV array has to be operated at a point

where the PV array output power is maximum, in other words at the maximum

power point (MPP). Figure 2 shows a typical PV array characteristic curve.

4

Figure 2 PV array characteristic curve

This is where the MPPT fits in. E-Power (2008) explains that MPP tracking is a

technique used in charge controllers to extract the maximum available power (the

point on a PV module’s I-V curve, where the product of the voltage and the current is

a maximum) from the panels, as the maximum power changes according to

variations in ambient temperature, solar cell temperature and solar radiation. The

MPPT measures the output of the PV panels, comparing it to a battery’s voltage and

then setting the highest power that the PV panels can deliver to charge the battery. It

then converts the power to the optimum voltage to transfer maximum current into the

battery.

Currently, there are different kinds of MPP tracking algorithms used in PV systems.

Esram and Chapman (2007) explain that all the methods vary in their complexity,

sensors required, convergence speed, cost, effectiveness, implementation hardware,

popularity and in other aspects. They also range from simplistic to complex; from

ineffective to effective but simplicity does not necessarily mean ineffective. Xiao et

al. (2011) mention a comparison study that was presented by Jain and Agarwal

(2007) and Esram and Chapman (2007), which illustrated MPP tracking methods

developed before 2006. Some of these techniques are heuristic search (hill climbing,

perturb and observe); extreme value searching (incremental conductance); linear

5

approximation methods (fractional VOC or fractional ISC); intelligent control (fuzzy

logic, neural network); linear control techniques (dV/dV or dP/dI feedback control)

and a few other methods. All these methods have their own advantages,

disadvantages, effectiveness and reliability.

Xiao et al. (2011) classifies the latest MPP tracking algorithm developments since

2006 in the following categories: (1) Real-time identification method, (2) Extremum

seeking control, (3) Particle swarm optimisation, (4) DIRECT (DIviding

RECTangles) search algorithm, and (5) Adaptive step-size method. The importance

of MPPT originates from the fact that it adjusts the power interfaces to achieve the

greatest possible power from a PV array during moment to moment variations of

light level, shading, temperature and PV module characteristics (Xiao et al., 2011).

Xiao et al. (2011) states, “MPPT has become an essential component to evaluate the

design performance of PV power systems”.

Instead of storing the solar energy in batteries, the energy could be converted to

hydrogen. The stored hydrogen could be manufactured with a regenerative fuel cell.

1.4 Regenerative fuel cells

A regenerative fuel cell (RFC) is a device that produces hydrogen (H2). The RFC,

which can also be referred to as a hydrogen generator (HG), is a fuel cell (FC)

operating in the reverse mode. A FC, which operates in the forward mode, uses

hydrogen (H2) and oxygen (O2) to produce electrical energy and water (H2O) (Li et

al., 2010). In contrast, a RFC uses electrical energy and water to produce H2 and O2.

A dedicated RFC should not be confused with a unitised RFC (URFC). The RFC

works only in the reverse mode (electrolyser), whereas the URFC operates in both

reverse and forward modes (Grigoriev et al., 2011; Van Tonder, 2011).

The HG that is focused on in this research is the HOGEN® GC 300, which utilises a

four cell proton exchange membrane (PEM) RFC stack to produce H2, see Figure 3.

The reason for the choice of this specific HG is that it is currently in use at the Vaal

University of Technology (VUT), Electronics Department, for their research in a

solar-hydrogen fuel cell plant.

6

Figure 3 HOGEN® GC 300

The HOGEN® GC 300 incorporates a power supply of 110-220 VAC, single phase

and a frequency of 50 or 60 Hz to operate (see Annexure B). The HOGEN® GC 300

uses a switch-mode power supply (SMPS) to supply DC voltage to the electronic

components on the printed circuit board (PCB). Figure 4 shows the power supply

section of the HOGEN® GC 300.

Figure 4 HOGEN® GC 300 power supply and electronics

7

The output voltages of the power supply are indicated in Table 1.

Table 1 HOGEN® GC 300 power supply output voltages

Output Voltage (V) Current (A) Power (P)

Output 1 7,5 20 150

Output 2 12 4,2 50

Output 3 5 10 50

The output voltages of the PSU supply specific sections of the HOGEN® GC 300,

they are as follows:

 Output 1: Fuel cell stack

 Output 2: Water circulatory pump

 Output 3: Microcontroller unit (MCU) and the rest of the electronic

components and circuitry.

Figure 5 shows the block diagram of the unmodified HOGEN® GC 300.

Figure 5 HOGEN® GC 300 block diagram

The work done in this project will bypass the need for a 220 VAC power supply by

directly powering the PCB in the HG, with DC voltage from a PV panel, through the

MPPT.

Commercially available HGs, as in the case with the HOGEN® GC 300, are

dependent on an input voltage of 220 VAC, although in essence it only requires DC

voltage to operate. The reason for this is that 220 VAC is fed to the power supply,

8

which converts the AC to a number of DC output voltages as indicated in Table 1,

which are 7.5 V, 12 V and 5 V.

1.5 Problem statement

To power a regenerative hydrogen generator from a PV array is a problem because

the available HGs make use of 220 VAC. To address the problem of sustainable and

alternative energy, there is a need to develop technology to power HGs directly from

PV panels, via a MPPT. Commercially available MPPTs are not designed for a wide

range of electrical loads and are particularly not designed for HGs. Such MPPTs for

HGs do not exist, yet it is a crucial link in the sustainable alternative energy chain.

1.6 Focus and purpose

The focus and purpose of the research will be on the design and development of a

MPPT, as indicated in Figure 6. As can be seen, the research forms part of a

sustainable alternative solar energy system. The research will significantly improve

the sustainability and efficiency of the integrated alternative energy system at VUT

and will largely contribute towards the commercialisation of the system.

Figure 6 VUT Sustainable/Alternative Energy System

In the proposed system for this research the MPPT will replace the HG power supply

(see Figure 7), thus making the HG independent from grid power as illustrated in

Figure 6. The hybrid system will consist of a PV array, MPPT, HG and a hydrogen

storage tank and the FC power plant. The MPPT will deliver optimum power to the

HG to increase its efficiency.

9

Figure 7 HOGEN GC 300 block diagram with new power supply

1.7 Objective

To design and develop dedicated MPPT technology, in order to connect PV panels

directly to the HG.

1.7.1 Specific objectives

1.7.1.1 Gathering of electrical data and information plus analysis of the data

 Gathering electrical data on RFCs

 Evaluating data obtained on RFCs

 Choosing the most suitable MPPT algorithm for this application.

1.7.1.2 Development of the MPPT

 Mathematical modelling of the chosen MPPT

 Designing of the MPPT and programming of the algorithm

 Running design simulations

 Evaluating simulation results.

1.7.1.3 Fabrication and testing of the MPPT

 Fabricating the MPPT

 Testing the MPPT in the laboratory and in real time

 Evaluating the results and comparing results with the simulated results.

1.7.1.4 Implementation in the VUT hybrid system and testing the system over a

period of time

1.7.1.5 Documentation and thesis writing.

10

1.8 Research methodology

The strategy that was followed in the research study:

1.8.1 Gathering of electrical data and information plus analysis of the data

 Taking electrical measurements to determine the electrical requirements of a

HG

 These data are an important design parameter of the MPPT.

 A MPPT algorithm was chosen according to data obtained on the RFC as

well as on other criteria.

1.8.2 Development of the MPPT

 Simulations on the design was done using Mathworks Matlab (Mathematical

software) and Mathworks Simulink (Simuliink is a logic circuit simulation

software)

 Altium Designer (schematic and PCB design software) was used to design

the circuit.

 Programming the algorithm on a PIC microcontroller was done using

Microchip MPlabX (microcontroller programming software).

 Efficiency was evaluated and adjustments to the circuit design were done.

1.8.3 Fabrication and testing of the MPPT

 A CNC machine (Computer Numerical Control) was used to fabricate the

PCB (printed circuit board)

 The algorithm was loaded onto the microcontroller using the Microchip

ICD3 (In-circuit debugger and programmer)

 Outdoor testing was done using a PV panel to test the MPPT under real

world conditions.

 Efficiency was evaluated and adjustments to the circuit design will be done.

1.8.4 Implementation in the VUT hybrid system and testing of the system over a

period of time in order to evaluate overall system efficiency and performance

11

1.8.5 Documentation and thesis writing.

1.9 Summary

This chapter explained the impact of global warming and the need for alternative

energy sources. An overview of PV energy was also given and how to extract

maximum power from PV panels to deliver optimum power to the HG. The purpose

of the study along with the problem statement was given. Lastly, an overview was

given to indicate the outline of the research.

Chapter 2 describes theoretical background study on the MPPT algorithms and DC-

DC SMPS.

12

CHAPTER 2 MAXIMUM POWER POINT TRACKERS

Introduction

In order to power a HG from a PV array a summary of PV panel characteristics are

given. PV panel manufacturers make use of different technologies and materials to

produce PV panels, which gives each panel a unique characteristic (El Chaar et al.,

2011). Two of the more popular technologies are crystalline and thin-film. Some of

the materials used for the crystalline technology are mono-crystalline and poly-

crystalline and for thin-film technology, the materials are amorphous silicon and

cadmium telluride. Table 2 shows the technologies, materials and characteristics

from different manufacturers for their PV panels. See Annexure A for the PV panel

datasheets. As seen from Table 2 each PV panel has different characteristics that

have to be taken into account when designing an efficient MPPT.

Table 2 PV panel characteristics

 Cell type Characteristics

Manufacturer Crystalline Thin-film Power

(P)

Effeciency

(%)

VMPP

(V)

IMPP

(A)

VOC

(V)

ISC

(A)

Solyndra CIGS 150 N/A 65,70 2,28 91,40 2,72

CanadianSolar Poly 235 14,61 29,80 7,90 36,90 8,46

Sharp Poly 235 14,40 29,20 8,05 37,40 8,59

Sungen Amorphous 95 N/A 70,00 1,35 90,00 1,67

Sungen 195 15,30 38,60 5,05 46,10 5,56

 VMPP ≡ Voltage at maximum power point

 IMPP ≡ Current at maximum power point

 VOC ≡ Open-circuit voltage

 ISC ≡ Short-circuit current

2.1 MPPT classification

Salas et al. (2006) explains that MPPT algorithms can be classified as either direct

(not PV panel characteristic dependent) or indirect (PV panel characteristic

dependent) methods. Indirect methods take measurements such as short-circuit

current, open-circuit voltage and irradiance, which are indirect occurrences from the

operating voltage and current, to approximate the optimum voltage from an exact

13

model of the PV panel used, and according to Hohm and Ropp (2003) they are also

called model-based MPPT algorithms.

On the other hand, direct methods do not require an exact model of a PV panel to

operate effectively. Direct methods search for the optimum point from the operating

voltage and current measurements and their time-derivatives (Leyva et al., 2011).

Table 3 is adapted from various studies of MPPTs done by Esram and Chapman

(2007), Hohm and Ropp (2003), Onat (2010c) and Leyva et al. (2011).

Table 3 Direct and indirect MPPT algorithms

MPPT
Direct/

Indirect

True

MPPT

Analog/

Digital

Periodic

tuning

Track

speed

Sensed

parameter

Efficiency

(%)

Perturb &

observe
Direct Yes Both No Varies

Voltage,

Current
81,5 - 85

Constant

voltage/current
Indirect No Analog Yes Medium

Voltage/

Current
73 - 85

Hill climbing Direct Yes Both No Varies
Voltage,

Current
81,5 - 85

Fractional VOC Indirect No Both Yes Medium Voltage N/A

Artificial

intelligence
Indirect Yes Both No Fast Varies >95

Incremental

conductance
Direct Yes Digital No Varies

Voltage,

Current
73 - 85

Category descriptions:

 MPPT: Type of MPPT algorithm.

 Direct: Not PV panel characteristic dependent and Indirect: PV panel

characteristic dependent.

 True MPPT: Tracks the MPP accurately or uses approximations.

 Analog/Digital: Uses only analog/digital components or both in the circuit.

 Periodic tuning: The circuit parameters need to be calibrated often in order

to track the MPP.

 Track speed: Tracking speed of the MPP.

 Sensed parameters: What type of sensor the algorithm needs in order to

track the MPP.

 Efficiency: Algorithm efficiency for tracking the MPP.

14

Before a MPPT algorithm is selected there are a few criteria that need to be

considered beforehand in order to make the correct choice of algorithm for a specific

application. Summarised below is the main criteria when considering a MPPT

algorithm (Onat, 2010a):

 Ease of implementation. Methods can be either analog, digital or both. Digital

MPPT algorithms may require software and programming of a MCU.

 Required number of sensors. Sensors are either current, voltage or both.

Voltage sensing is easier and more reliable than current sensors. Current can

be cumbersome and rather expensive.

 Partial shading can affect the normal operation of the MPPT. Power loss may

occur during partial and thus the algorithm must take this into account if

possible.

 Cost of the MPPT must be taken into consideration. System features will

determine most of the cost, such as digital or analog, programming and

software requirements and number of sensors. Analog algorithms are

normally cheaper.

 Different MPPT techniques are more suitable for different applications.

Depending on the application, the algorithm must match the requirements of

that application. Different algorithms may have different results depending on

the application.

2.2 Direct MPPT algorithms

Since exact knowledge of a PV panel is needed for the indirect methods to work, the

research will focus on the direct methods. The methods are perturb and observe, hill

climbing and incremental conductance. A brief explanation of each is discussed

below:

 Perturb and observe

According to Hohm and Ropp (2003) the most commonly used algorithm in

commercial MPPTs is the perturb and observe (P&O) method. The structure

of the P&O algorithm is that of simple regulation with a few parameters of

measurement. It involves perturbation in the operating voltage of a PV panel.

15

This means it senses the voltage of the PV panel via a voltage sensor and

periodically increments or decrements the operating voltage and then it

compares the power obtained in the current cycle with that obtained in the

previous cycle (de Brito et al., 2011).

 Hill climbing

Hill climbing also involves perturbation but it differs from P&O in the sense

that has perturbation in the duty cycle of the power converter. The duty cycle

is perturbed, which in turn perturbs the PV panel operating current and

consequently perturbs the PV panel operating voltage (Esram and Chapman,

2007).

 Incremental conductance (IncCond)

The IncCond method is the same as the P&O method in the sense that it

monitors both the voltage and current of the PV but there is no need to

calculate the PV power. The basic principle of IncCond is the fact that the

power slope of the PV is zero at the MPP (dP/dV = 0), thus the MPP can be

tracked in terms of the increment in the array conductance (Zegaoui et al.,

2011).

Comparing the algorithms according to the main criteria described previously along

with numerous other aspects taken into account, the following should be included

with the chosen algorithm.

 It has to be a direct method, meaning it is not model-based and, therefore,

does not depend of the PV panel characteristics.

 The algorithm should be easy to implement into a microcontroller.

 The sensor can be either analog or digital depending on the design.

 Partial shading problem should be partially eliminated by modifying the

algorithm.

 Fast tracking should be achieved with high efficiency by modifying the

algorithm according.

The next section will describe the P&O algorithm, as it is the chosen method to be

implemented into the system.

16

2.3 P&O algorithm

As described previously the P&O algorithm senses the voltage of the PV panel via a

voltage sensor and periodically increases/decreases the operating voltage. It then

compares the power obtained in the current cycle with that obtained in the previous

cycle. Petreuş et al. (2011) indicate that to adjust the panel voltage, a DC-DC SMPS

needs to be placed between the PV panel and the load, which is normally a battery

bank. In this case, the load will not be a battery but the hydrogen generator and

storage tanks. The algorithm will continuously change the duty cycle to the DC-DC

SMPS, thus extracting the maximum power available from the PV panel. As Figure 8

indicates, the DC-DC SMPS input signals are the PV panel voltage VPV and the PV

panel current IPV, thus the PV panel power is PPV = IPV·VPV.

Figure 8 MPPT scheme of PV system

Figure 9 is adapted from studies done by Zegaoui et al. (2011) and Onat (2010b),

which shows a family of P-V characteristic curves, at different irradiance (Irr) levels,

for uniform irradiance and temperature. Assume the PV array is operating at point A

in Figure 9. First, the input voltage of the PV array VPV is measured by the voltage

sensor. VPV is then perturbed by a small increment, and the resulting change in PV

array power (ΔPPV) is calculated. If ΔPPV is positive, meaning an increase in PV

array power, then the increase in VPV moved the operating point of the PV array

17

closer to that of the MPP at point B (Femia et al., 2005). Thus, further perturbing the

VPV in the same direction (with the same algebraic sign) moves the operating point

closer and closer to the MPP until it reaches the MPP. If the ΔPPV is negative and

operating at point C, meaning a decrease in PV array power, the operating point

moved away from the MPP. When this happens the perturbation of VPV is reversed

(the algebraic sign is reversed) to move back in the direction of the MPP toward

point D. This process is continuously repeated until the MPP is reached, thus the

algorithm has a small oscillation about the MPP point resulting in a small percentage

power loss (Esram and Chapman, 2007).

Figure 9 P-V Characteristic family curve

The P&O algorithm can be summarised as indicated in Table 4.

Table 4 Summary of P&O algorithm

Perturbation Change in Power Next Perturbation

Positive Positive Positive

Positive Negative Negative

Negative Positive Negative

Negative Negative Positive

18

The P&O algorithm can also be expressed in the form of a flowchart. By using a

flowchart, the algorithm can easily be programmed onto a MCU. Figure 10

represents the basic operation principle (Atallah et al., 2014).

Figure 10 Flowchart of the P&O algorithm

Due to the ease of simplicity and implementation, there are a few drawbacks

regarding P&O. One of these limitations is that when the irradiance decreases the P-

V curve flattens out, as seen in Figure 9. This occurrence makes it difficult for the

algorithm to discern the location of the MPP, due to the small change in power

regarding the perturbation of the voltage. Another small drawback, as mentioned

earlier, is that the algorithm oscillates around the MPP causing small power losses.

One last drawback occurs at rapidly changing atmospheric conditions such as the

irradiance. As seen in Figure 11, when the irradiance increases the power curve is

shifted from P1 to P2 within the same sampling period. The operating point moves

from A to C, this shifting of the curve indicates an increase in power, thus the

perturbation stays the same according to the principles of operation of the P&O

19

algorithm. The operation point will keep diverging from the MPP as the irradiance

increases (Onat, 2010a; Esram and Chapman, 2007).

Figure 11 Divergence of P&O from MPP

Despite the abovementioned drawbacks, the P&O is still widely used. Much research

has been done to improve the efficiency of the P&O algorithm by either completely

or partially overcoming the drawbacks mentioned. By adding the optimisations that

follow, the efficiency of the P&O algorithm can be increased to about 95-98%. The

following are optimisations of the fundamental P&O algorithm to increase efficiency

(Hohm and Ropp, 2003; Esram and Chapman, 2007):

 Variable-step perturbations. When the operating point is far from the MPP,

large perturbation steps are used; as the operating point nears MPP, smaller

steps are used. This increases the tracking of the MPP.

 Introduction of a ‘waiting’ function that causes a temporary termination of

the perturbations if the algebraic sign changes several times in succession,

indicating that the MPP has been reached. This function reduces the

oscillation around the MPP in the steady state under constant irradiance

conditions. This, however, slows the response time to changing atmospheric

conditions.

 Optimising the sampling rate as well as introducing a high sampling speed.

These two optimisation methods are used to overcome the slow response time

20

with the previously mentioned optimisations. However, it will also increase

the response time according to rapid changing atmospheric conditions.

2.4 DC-DC Switch Mode Power Supply (SMPS)

As indicated in Figure 8, a DC-DC SMPS is incorporated between the PV panel and

the HG. As Kalogirou (2009) explains, the MPP, which is the optimum operating

voltage, varies according to changes in temperature and irradiance. Thus, the DC

output voltage from the PV panel is unregulated. DC-DC SMPS play the role of

converting the unregulated voltage into a controlled and stable output voltage

(Mohan et al., 2003).

2.4.1 Types of DC-DC converter topologies

There are two basic converter topologies, namely step-down voltage (buck) and step-

up (buck). Then, there are two variations of these two topologies, namely buck-boost

and čuk converters. The advantage of these types of converters is that they do not

require a transformer. These converter topologies are also non-isolated converters,

which means the output and input has no dielectric isolation between them. Below

are short explanations of these converters.

 Buck converter

Buck converters are current step-up and voltage step-down devices. The input

voltage is higher than the output voltage and the input current is lower than

the output current (Agrawal, 2001).

 Boost converter

Boost converters are current step-down and voltage step-up devices. Where

the input voltage is lower than the output voltage and the input current is

higher than the output current (Agrawal, 2001).

 Buck-boost converter

This type of converter is a combination of a buck topology in cascade with a

boost topology. Either a step-up or step-down function can be utilised at any

time (Agrawal, 2001).

21

 Čuk converter

The čuk converter configuration is almost the same as the buck-boost

converter and can deliver either the step-up or step-down voltages, but with

inverted polarity (Agrawal, 2001).

2.4.2 The buck converter

The chosen DC-DC converter topology is the buck converter because the voltage

required by the power supply as indicated in Table 1 is less than that supplied by the

PV panel.

In Figure 12 below, the basic buck converter topology is shown. The circuit consists

of a DC input voltage (unregulated) VPV, a mosfet switch Q, a diode D, an inductor

L, filter capacitor C, and the HG as the load. Though for clarity the HG structure is

not shown (Mack, 2005).

Figure 12 Buck converter topology

It is important to note that according to Janse van Rensburg (2012) the output

voltage’s magnitude is directly proportional to the duty cycle of the switch Q, which

is operated at a high frequency.

For the operation of the buck converter, it is assumed that the circuit is running in the

steady-state. The steady-state operation has two states, namely:

 Switch Q closed: If switch Q is closed/turned on, diode D does not conduct,

because it is reversed biased. The inductor opposes a change in current, thus

22

if switch Q is closed the inductor stores energy in its magnetic field. The

capacitor opposes a change in voltage, therefore, capacitor charges during

this stage (Jacob, 2002).

 Switch Q open: If switch S is open/turned off, diode D is forward biased

because the polarity of the inductor L is reversed. If switch Q is open, the

inductor generates current. Also, during this stage the voltage starts to drop,

therefore, the capacitor discharges, sending current to the HG to hold the

voltage up (Jacob, 2002).

Janse van Rensburg (2012) also states that the net charge and discharge over one

cycle is zero, thus the capacitor voltage stays constant.

Figure 13 Buck converter steady-state operating modes: (a) CCM and (b) DCM

When running in steady-state, there are two definable operating modes with respect

to the inductor current iL. If the inductor current always stays positive and never falls

to zero at any given time during the switching period, it is called the continuous

23

conduction mode (CCM). The other mode is the discontinuous conduction mode

(DCM). That is where the inductor current goes to zero during each switching period

(Siwakoti et al., 2010). Figure 13 distinguishes between the two modes.

The input voltage is chopped into a rectangle by switching switch S on and off. The

duty cycle of the switch is D, given by

on

period

=
t

D
T

 (1)

Where:

on

period

Duty cycle

Time on

Total time on and off for Switch S

D

t

T







The output voltage across the load is a fraction of the input voltage, and this fraction

is equal to the duty cycle, therefore, the duty cycle can also be expressed as:

out

in

 =
V

D
V

 (2)

Where:

out

in

 Voltage across the load (HOGEN GC

 Input voltage (PV panel)

V

V

  



Thus, the voltage across the HG can be expressed as:

 out in=V D V (3)

It is important to note that the MPPT must continuously track the MPP with the

highest possible efficiency. Therefore, the CCM is chosen as the operation mode for

the buck converter because the inductor current is never zero and constant power will

be delivered to the HG.

It must be included that it is possible to go from CCM to DCM. Siwakoti et al.

(2010) indicates that this happens when the switching frequency is low and/or the

input current is low. To prevent this situation from happening, the diode is replaced

24

by a second mosfet switch. This new arrangement according to Vazquez et al. (2010)

is known as synchronous rectification and the second mosfet is called a synchronous

rectifier. Figure 14 shows the synchronous buck converter configuration.

Figure 14 Synchronous buck converter

According to Vazquez et al. (2010), the advantage of the second mosfet (Q2) is that

the voltage drop across the mosfet is much lower than that of the diode, even a

Shottky diode, which has a voltage drop of 0.3 V to 0.4 V. The replacement of the

diode will result in much higher circuit efficiency. It is also important that the two

mosfets are not switched on at the same time in order to prevent a short circuit across

the source (PV panel). Therefore, a ‘dead time’ is built into the switching control,

meaning one mosfet is turned off before the other mosfet is turned on (Siwakoti et

al., 2010). For improved switching, a diode is placed in parallel with the second

mosfet (Q2) to provide a conducting path for the inductor current for the small period

when both mosfets are off (dead time). The diode can either be a Shottky diode or the

mosfet body diode (Vazquez et al., 2010). The mosfet body diode will be chosen is

stead of the Shottky diode in order to maintain a high efficiency.

2.5 Control of the DC-DC SMPS

A DC-DC SMPS can be controlled either by hard-wired analog controllers or by

software driven digital controllers. Software driven digital controllers are preferable

due to less sensitivity to the aging of components and electrical noise and the

adaptability to digital control methods such as the proportional-integral-derivative

control (PID) of the power supply’s response to the load and source variation,

25

interferences, and transients. There are three types of control modes that can be

implemented, namely voltage-mode control (VMC), current-mode control (CMC)

and proportional-integral-derivative (PID) control (Agrawal 2001:473-474).

2.5.1 Voltage-mode control

In the voltage-mode control, the output of the SMPS is divided using a voltage

divider sub-circuit, which is then subtracted from a reference voltage and

compensated using an error amplifier. Next, the error voltage at the output of the

error amplifier is compared to a saw-tooth to generate the driving signal for the

switching transistor. Thus, voltage-mode control is a single loop control technique

(Agrawal 2001:473-474). Figure 15 illustrates the voltage-mode control applied in a

circuit.

Figure 15 Voltage-mode control

Listed below are the advantages and disadvantages of the voltage-mode control:

Advantages:

 Less sensitive to noise because of a large-amplitude ramp waveform, thus a

more stable modulation.

 A single feedback loop makes it easier to design and analyse.

26

 Works over a wide range of duty cycles because it has better cross-regulation

due to the low-impedance output power.

Disadvantages:

 Compensation is complicated due to the fact that the loop gain is proportional

to the input voltage.

 The differences between CCM and DCM create a compensation challenge.

 Slow response to input voltage changes due to the fact that the changes must

first be sensed as an output change and then corrected by the feedback loop.

 Current limiting must be done separately.

2.5.2 Current-mode control

Current-mode control is multi-loop control. The outer loop is a voltage-loop, so the

voltage still has to be sensed and subtracted from a reference voltage and

compensated for, but now the error amplifier output provides a reference for the

inner current loop. In the inner loop a current in the system is sensed (by using a

current sense resistor or otherwise) and compared to the reference (from the voltage

loop) and this is used to generate the switching signal for the transistor. Usually the

inner current loop is faster than the outer voltage loop. Figure 16 illustrates the

current-mode control applied in a circuit.

Figure 16 Current-mode control

27

There are also a number of current-mode control types: peak current-mode control,

average current-mode control and hysteretic current mode control (Agrawal

2001:473-474). The most important aspect in the current-mode control design is to

keep noise off the compensation ramp. Listed below are the advantages and

disadvantages of the current-mode control.

Advantages:

 Due to the fact that the error amplifier is now used to work with the output

current rather than with the voltage, the output inductor effect is minimised

and the filter offers only a single-pole to the feedback loop, resulting in

simpler compensation and higher gain bandwidth.

 It responds immediately to line voltage changes because the inductor current

rises with a slope determined by the difference between the input and output

voltage, thus eliminating not only the delayed response but also the gain

variation with changes in input voltage.

 Inherent cycle-by-cycle current limiting protection, by clamping the

command from the error amplifier, making it immune to over-current damage

from short-circuited outputs or overloads.

 Current sharing when multiple supply units are in parallel.

Disadvantages:

 Circuit analysis is more difficult because of the two feedback loops.

 There is sub-harmonic oscillation instability when approaching a 50% duty

cycle, unless compensation is added.

 Resonances in the power stage can insert noise into the control loop because

the control modulation is based on a signal derived from the output current.

 Another noise source is the leading edge current spike normally caused by

transformer winding capacitance and output rectifier recovery current.

 For multiple outputs, coupled inductors are required to get acceptable cross-

regulation because the control loop is forcing a current drive making the load

regulation worse.

28

Table 5 gives a comprehensive comparison of the two different control modes

(Maniktala, 2012).

Table 5 Comparison of the voltage and current-mode control techniques

 CMC VMC

Rejection of line disturbances

(dynamic line response)

Good (inherent) Very good (with

line feedforward)

Rejection of load disturbances

(dynamic load response)

Good (constant

bandwidth)

Good

Constant frequency Excellent Excellent

Predictable EMI Excellent Excellent

Audible noise suppression Excellent Excellent

Extreme down conversion (buck) Poor Good

Insensitivity to PCB layout Poor Excellent

Excellent stability of loop

responses (tolerances and long-

term drifts)

Excellent Good

Simplicity of compensation Good Poor

IQ (quiescent current) Good Poor

Loop stability with use of output

ceramic caps

Excellent (with type

3 compensation)

Very good

Auto-tuning Complex Very complex

According to Mammano (1994) there are considerations to be made, which would

point to a more optimum solution for a specific application. There will be trade-offs

for either selection, but choosing the optimum solution will increase the efficiency of

the DC-DC SMPS. Choosing a control mode is as follows:

Consider the use of the current-mode control if:

 The output is to be either a very high output voltage or current source

 The fastest possible response time is required for a given frequency

 When the input voltage variation is relatively constrained

 For applications where parallel load sharing is required

29

 Where transformer flux is important in push-pull circuits

 For low-cost applications with the absolute minimum number of components.

Consider the use of the voltage-mode control if:

 The possibility of wide input line and/or output load variations is possible

 With light load conditions, where the current ramp slope is too low for stable

pulse-width modulation (PWM) operation

 Noisy and/or high power applications, where noise on the current waveform

would be difficult to control

 Good cross-regulation with multiple output voltages is required

 Saturable reactor controllers are to be used as auxiliary secondary-side

regulators

 In hardware designs where the complexity of slope compensation and/or dual

feedback loops needs to be avoided.

2.5.3 Proportional-integral-derivative (PID) controller

The PID controller is used in conjunction with either the voltage-mode control or the

current-mode control. The PID controller calculates an error value as the difference

between a measured parameter (value provided by the voltage/current-mode control)

and a desired set point (desired output voltages of the SMPS). The controller then

tries to minimise this error value by adjusting the process through the use of

manipulated values. The PID controller will reduce the rise-time to reach the desired

output, eliminate the steady-state error, increase system stability, reduce the

overshoot and improve the transient response (Ibrahim, 2002). The PID algorithm is

described by the following equation:

      
 p

p p d

i

= + +

t

0

K de t
u t K e t e t dt K T

T dt (4)

Where:

i p

d

() Error signal Integral time constant Proportional gain

() Control input Derivative time constant

e t T K

u t T

  

 

30

Refer to Figure 17. The PID controller is explained as follows: variable e represents

the tracking error, the difference between the set point, which is the desired input

value (r) and the actual measured output (y). This error signal (e) is sent to the PID

controller. The controller then computes the control signal (u), which is the sum of

three terms: the P-term (which is proportional to the error), the I-term (which is

proportional to the integral of the error), and the D-term (which is proportional to the

derivative of the terror). The controller parameters are proportional gain Kp, integral

time Ti, and derivative time Td. The control signal (u) is sent to the plant (which is

the physical parts of the system), for error correction in order to obtain a new output

(y). This process is repeated continuously through the feedback loop.

Figure 17 Unity feedback system (closed loop)

The characteristics of the P, I and D controllers are as follows:

 Proportional control (P): Reduce rise time (response time). Reduce but never

eliminate the steady-state error. An increase in proportional gain will

decrease the rise time but will also increase the overshoot.

 Integral control (I): Eliminating steady-state error, but may also decrease the

transient response. Too much integral action will result in large overshoot and

an oscillation at the output. Large integral action can also increase the system

settling time and decrease rise time.

 Derivative control (D): Increases system stability, reduces the overshoot and

improves the transient response. Increasing the derivative action will decrease

both the system settling time and the overshoot.

The effects of each of the P, I and D controllers on a closed-loop system are

summarised in Table 6.

31

Table 6 Effect of PID controllers on closed-loop system

Close-loop

response
Rise time Overshoot Settling time S-S error

P Decrease Increase Small change Decrease

I Decrease Increase Increase Eliminate

D Small change Decrease Decrease Small change

The P, I and D gains are dependent on each other, thus when changing one of these

parameters has an effect on the other two. The process of setting the optimal gains

for P, I and D to get an ideal response from the control system is called tuning. There

are different methods of tuning but the two most popular methods are the trial and

error method and the Ziegler-Nichols method.

Trial and error method

First, the I and D parameters are set to zero and the P parameter is increased until the

output of the loop oscillates. As the proportional gain is increased, the system

becomes faster, but should not be so fast that the system becomes unstable. Once P

has been set to obtain a desired fast response, the I parameter is increased to stop the

oscillations. The I reduces the steady state error, but increases overshoot. Some

amount of overshoot is always necessary for a fast system so that it could respond to

changes immediately. The I parameter is tweaked to achieve a minimal steady state

error. Once the P and I have been set to get the desired fast control system with

minimal steady state error, the D parameter is increased until the loop is acceptably

quick to its set point. Increasing the D parameter decreases overshoot and yields

higher gain with stability but would cause the system to be highly sensitive to noise.

Thus, a trade-off must be made to one of the characteristics of the control system for

another in order to meet the requirements of the system (Goodwin et al., 2001).

Ziegler-Nichols method

This method of tuning is based on closed-loop test. Referring to Figure 18, the

testing procedure is as follows (Webb and Reis, 2003):

32

Figure 18 Ziegler-Nichols closed-loop tests

 Parameters I and D are set to zero and leave only P in action

 Make a set point step test and observe the response

 Repeat the above test with the added action of either increasing or decreasing

the controller gain until the oscillation is stable. This gain is called the

‘ultimate gain’, Ku.

 Note the period of this steady oscillation and let this be Pu.

 Calculate the controller parameters according to Table 7 below.

Table 7 Ziegler-Nichols tuning, using the oscillation method

Control P I D

P 0,50Ku - -

PI 0,45Ku Pu/1,2 -

PID 0,60Ku Pu/2 Pu/8

After considering all the aspects mentioned above, the voltage-mode control in

conjunction with a PID controller is chosen as the best possible solution for this

specific project (Webb and Reis, 2003). The PID controller will be implemented, not

through hardware but through software, meaning the PID algorithm will be

programmed onto the MCU. The algorithm is as follows:

p i d

pre_error = 0; epsilon = 0,01; = 0,01;

= P; = I; = D

If error > epsilon

dt

K T T

33

p i d

integral integral error ;

derivative (error pre_error) / ;

output error integral derivative;

pre_error error;

end;

dt

dt

K T T

 

 

  



The P, I and D characters will be replaced by the values calculated according to the

Ziegler-Nichols tuning method.

2.6 Synchronous buck converter design equations

Before the SMPS can be designed, calculations need to be done in order to establish

the correct component selections for the three synchronous buck converters

according to the parameters of the system as a whole. The following component

values need to be calculated:

 Inductor value in micro-Henry (µH)

 Input filter capacitor in micro-Farad (µF)

 Output capacitor in micro-Farad (µF)

The system parameters need to be established before any calculations can begin, and

are as follows:

 VIN_MIN : Minimum input to the converter in volt (V)

 VIN_MAX: Maximum input to the converter in volt (V)

 fSW : Converter switching frequency (kHz)

 VOUT : Output voltage of the converter in volt (V)

 IOUT : Output current of the converter in amp (A)

 POUT : Output power of the converter in watt (P)

 Dmax : Maximum duty cycle

First, the load resistance needs to be calculated in order to calculate the inductor

value.

 out

out

=
R

R
I

 (5)

34

Where,

 Load resistance in Ohms ()R  

Once the load resistance is calculated, the inductor value can be calculated as

follows:

min

SW

(1-)
=

2

D R
L

f
 (6)

Where,

min

SW

max

 Minimum inductor value in micro - Henry (H)

 Switching frequency in kilohertz (kHz)

 Maximum duty cycle

L

f

D







To make sure the inductor current is continuous, choose an inductor value 25 percent

larger than the minimum value. Thus,

 min=1,25×L L (7)

Where,

 Inductance in HL 

For the change in the inductor current:

IN_MAX out

L max

SW

-
Δ =

V V
i D

Lf

 
 
 

 (8)

Where,

 L Change in inductor currenti 

The average inductor current must be the same as the average current in the load

resistor and since average capacitor current for steady-state operation is zero:

 out
L R= =

V
I I

R
 (9)

Where,

 L Inductor current in ampere (A)I 

For the maximum and minimum inductor current:

35

L
max L

out out
max

max
out

SW

Δ
= +

2

1
= + (1-)

2

1-1
= +

2

i
I I

V V
D T

R L

D
V

R Lf

 
 
 

 
 
 

 (10)

Where,

max

L

SW

 Maximum inductor current in A

 Inductor current A

 1/

I

I

T f







L
max L

out out
max

max
out

SW

Δ
= -

2

1
= - (1-)

2

1-1
= -

2

i
I I

V V
D T

R L

D
V

R Lf

 
 
 

 
 
 

 (11)

Where,

min Minimum inductor current AI 

The inductor must also be rated for rms current:

2

2

Lrms L=
2 3

LiI I
 

  
 

 (12)

Where,

 Lrms Inductor current root mean squareI 

The output-voltage ripple must also be considered and chosen.

 out max
out 2

(1-)
Δ =

8

V D
V

LCf
 (13)

Where,

 out Peak - to -peak ripple voltage in volt (V)V 

36

The ripple voltage can also be expressed as a fraction of the output voltage:

out max

2
out

(1-)Δ
= , expressed as a percentage (choose manually)

8

DV

V LCf
 (14)

Once the ripple voltage is chosen, the output capacitor can be calculated as follows:

 max
out

2out
SW

out

1-
=

Δ
8

D
C

V
L f

V

 
 
 

 (15)

Where,

out Output capacitance in micro-Farad (F)C 

Peak capacitor current is L

2

i

Maximum equivalent series resistance (ESR) of the capacitor:

 out
C

C

Δ
=

Δ

V
r

i
 (16)

Where,

C

C L

 Capacitor series resistance in

 Change in capacitor current, which is the same as i

r

i

 

  

The input filter capacitor is calculated by the following equation:

 out IN_MAX out

in out

IN_MAX

-
=

V V V
C I

V
 (17)

Where:

 in Input capacitance in FC 

2.7 Summary

This chapter emphasised the need for an adaptable MPPT algorithm to be considered

when choosing the algorithm, because of variable PV panel characteristics. The

chapter differentiated between the different algorithm methods. The P&O algorithm

was chosen based on certain aspects and then explained in detail. A brief overview of

37

the HOGEN® GC 300 was given followed by the operation of the DC-DC SMPS

that is needed to supply the correct DC voltages to the HOGEN® GC 300. The

different control-modes for the DC-DC SMPS are discussed. Also the design

equations for the DC-DC SMPS where included.

In Chapter 3, the design, programming and simulation will be shown in regard to the

literature review addressed in this chapter.

38

CHAPTER 3 DESIGN, PROGRAMMING AND SIMULATION

The equations shown in Chapter 2 can now be used to design the DC-DC SMPS. The

DC-DC SMPS is designed with the MPPT algorithm and PID algorithm embedded

into the MCU.

To design the DC-DC SMPS, each section of the circuit has to be calculated first

according to Section 2.6 in Chapter 2 for component selection and then the relevant

schematic of the circuit can be drawn with Altium designer. The main sections of the

design are the following:

 First is the controller circuit. It includes the MCU, which is a dsPIC (digital

signal processing MCU), programming and debugging port, MCU reference

voltage and LEDs for visual representation of certain functions.

 Second is the supply circuit. It includes the following sub-circuits: PV power

in, dsPIC supply offline/online, battery charging, 5V and 3.3V regulation.

 Thirdly are the three separate synchronous buck converters for the three

different output voltages required by the HG and their voltage and current

sensing circuitry.

 Fourthly is the current and voltage sensing circuit of the PV array required

by the MPPT algorithm to calculate and track the MPP.

 Lastly are the three separate voltage-mode control circuits. Each

synchronous buck converter has to have its own control-mode in order to

deliver the correct voltage to the HG.

3.1 Controller and supply circuits

For this circuit no calculations are done but rather the component selection is done

by referring to various datasheets and choices. Figure 19 shows the complete

controller circuit with all its relevant sub-circuits. Each sub-circuit has a specific

purpose in the design, which will be discussed and explained thoroughly.

 Watchdog is the external watchdog circuit. The watchdog will reset the MCU

whenever a problem occurs during the operation of the system. Once the

39

MCU is reset, normal operation will continue. The watchdog IC (integrated

circuit) is a DS1832, which works with 3.3V.

Figure 19 Controller circuit

40

 Programming and debugging port. The ICD 3 will load the C-code onto the

MCU using the programming port. During programming of the C-code, the

debugging feature will be used to load the C-code into the ICD 3 but not onto

the MCU itself, thus enabling to test step by step if the C-code is working as

it would when loaded onto the MCU.

 MCU reference voltage of 1.2V. The LT10041D-1V2 is a 1.2V refernece IC.

The reference voltage will be used by the comparator of the MCU in order to

make certain calculations.

 The power good works in conjunction with the PV input, which is to monitor

the incoming power from the PV array. The MCU will then calculate if the

required power has been achieved and operation of the MPPT can begin.

 The system LEDs sub-circuit is for debugging purposes, but also for visual

representation if the system is operational.

 The filter capacitors are to filter any noise on the analog-to-digital tracks.

 The dsPIC microcontroller section is the most important part because it is the

intelligence of the whole system. A dsPIC33FJ32GS606 is used for all the

calculations such as the PID control and MPPT algorithm handling. The

dsPIC will perform the MPPT algorithm by continueosly sensing the voltage

and current from the PV array through the sensing circuitry, which will be

discussed. The dsPIC will then instruct the mosfet driver IC to switch the

mosfets on/off according to the correct duty cycle and compute the voltage-

mode control parameters along with the PID control so that the SMPS

delivers the correct power. The capacitor values along with the inductor value

connected to the dsPIC is provided by the datasheet.

Figure 20 is the supply circuitry. The circuitry consists of sub-circuits with each sub-

circuit having a different purpose in the supply circuitry. Each sub-circuit is

explained below:

 PV power input sub-circuit is for the PV array input. The output of the PV

array will go through a P-channel and N-channel mosfet. The P-channel

mosfet serves as a small protection for the rest of the circuit for sudden influx

41

in power while the N-channel mosfet is for power-on monitoring. Only once

the PV array reaches a certain output voltage will the system start up and

perform the MPPT.

Figure 20 Supply circuit

 The 5V0 sub-circuit provides the circuit where needed with 5V. The PV array

voltage is connected to the VIN pin of the LM7805 and the output is a

regulated 5V. The capacitor values and where to place them are provided by

the datasheet of the IC.

42

 The dsPIC supply online, dsPIC supply offline and battery charger sub-

circuits are an important part of the circuit. It provides the necessary 3.3V for

the MCU to operate. When the power from the PV array reaches a certain

value the MPPT will start to operate and the synchronous buck converters

will output their selected output values. The output of the 5V synchronous

buck converter is connected to a MIC5239 3.3V regulator IC. The IC will

provide the MCU with the 3.3V in order to operate. However, during low PV

array output power and no working converters, a small lithium battery is

connected with the circuit to power the MCU and keep the MCU ‘awake’ so

as to sense when PV array power has reached the desired power and normal

SMPS functionality can begin again. During operation, the battery charger

sub-circuit will charge the battery to the normal operating voltage. The

capacitor values are provided by the datasheet.

3.2 The synchronous buck converter circuits

Each converter circuit will be calculated and designed separately but datasheet

component values and the rule of thumb will also be used for certain component

values. Each circuit uses a MCP14700 mosfet driver IC to drive the mosfets. All

three circuits are identical except for their component values and output power. As

stated in Chapter 2, all the converters are in the CCM.

The following values were decided upon before any calculations where started:

Table 8 Chosen SMPS parameter values for the calculations

Parameter Value

VIN 14-40 V

VIN_MIN 14 V

VIN_MAX 40 V

fSW 600 kHz

VOUT1 12 V

IOUT1 4,2 A

POUT1 50 W

VOUT2 7.5 V

IOUT2 20 A

POUT2 150 W

VOUT3 5 V

IOUT3 10 A

POUT3 50 W

43

The values in Table 9 were calculated by substituting the values in Table 8 into the

equations explained in Chapter 2.

Table 9 Calculated values for the synchronous buck converters

Figure 21 shows the schematic circuit for the three synchronous buck converter

circuits and where each component is placed within the circuit. By consulting the

MCP14700 IC datasheet the values for two of the capacitors where inserted.

Figure 21 Synchronous buck converter schematic circuit

The 5V to the IC is provided by the 5V regulator IC of the supply circuit. The MCU

provides the high-side and low-side outputs of the PWM and the IC will then switch

the two mosfets on/off accordingly. The sensing resistor is connected to the

corresponding sensing circuitry of each converter in order to sense the voltage and

Parameters 12 V, 4.2 A, 50 W 7.5 V, 20 A, 150 W 5 V, 10 A, 50 W

 Value Value Value

R 2,857 Ω 0,375 Ω 0,5 Ω

D 0,857 0,536 0,357

Lmin 34 µH 14,5 µH 26,79 µH

L 42,5 µH 18,13 µH 33,49 µH

ΔiL 67 mA 224 mA 224 mA

IL 4,2 A 20 A 10A

Imax 4,234 A 20,112 A 10,112

Imin 4,167 A 19,888 A 9,888

ILrms 4,2 A 20 A 10 A
∆Vout

Vout

 0.5% 0.5% 0.5%

ΔVout 600 µV 37,5 mV 0,025 µV

Cout 23,366 µF 1,777 µF 1,333 µF

rC 8,955 mΩ 167,41 mΩ 1,116 Ω

Cin 1,469 F 9,974 F 4,971 F

44

current for the voltage-control mode and PID control and ‘feed’ those values to the

MCU. The MCU will then calculate and adjust the duty cycle to keep the output

power stable.

An important part in designing the converter circuit is the selection of the mosfets.

When choosing the mosfets, there are three important parameters that need to be

considered, namely:

 Drain to source voltage (VGS)

 VGS(th) (only according to the MCP14700 output voltage on the driver pins)

 RDS(on)

Decisions based on known parameter values:

 Choose a mosfet with a VGS that is about two and a half times higher than the

input voltage

 Make sure the driver output is higher than the mosfet VGS(th). For the

MCP14700 the driver output is 5V

 Choose a mosfet with a low RDS(on) value

The sensing resistor of Figure 21 is connected to the circuit showed in Figure 22

below.

Figure 22 Synchronous buck converter sensing schematic circuit

45

The sensing resistor is connected to a MAX4080 current sensing IC. The IC uses an

amplification of 20 in order to sense the current. The output from the IC is then ‘fed’

to and opamp with a certain analog value. Along with the current sense, there is a

voltage-sensing circuit, which outputs a certain value. Both the voltage and the

current sensing outputs are connected to the ADC ports of the MCU. The voltage-

mode control will be implemented by the MCU using the values from the sensing

circuitry.

3.3 The MPPT sensing circuit

Figure 23 is the voltage and current sensing circuitry for the PV array. This sensing

circuit will measure the voltage and current from the PV array and ‘feed’ those

values to the MCU. The MCU will then use these values in order to calculate the

MPP. The MPPT algorithm will then set the correct duty cycle for each converter.

Figure 23 MPPT voltage and current sensing schematic circuit

Figures 24 and 25 show the PCB in a 3D view. The physical properties of the

components such as lengths, widths, heights and outline are rendered in 3D, thus

46

allowing for a real-life perspective of the PCB. This allows for the designing of an

enclosure around the PCB while it is still in the design process, without first having

to manufacture the PCB and then design the enclosure.

Figure 24 PCB 3D view - Top

Figure 25 PCB 3D view - Bottom

47

3.4 Programming

The dsPIC was programmed with the Microchip MPLabX IDE software package.

The c-code was developed specifically for this research by the author. The C-coding

of the dsPIC consists of multiple aspects, which are as follows:

 Setting up the registers

 Setting up the I/O ports (Input/output ports)

 Defining variables

 Setting up the PWMs of the dsPIC

 Reading the PV array voltage and current

 Implementing the MPPT algorithm

 Measuring the output of the DC-DC SMPS

 Implementing the PID algorithm for stable outputs.

See Annexure C for the full dsPIC MCU author C-code.

3.5 Simulation setup

The previous sections considered the design of the DC-DC SMPS. The section is

concerned with the simulation of the system as a whole. The simulation of the design

is done in Simulink. Simulink is a graphical simulation extension of Matlab. The

simulation will not have all the components that are present in the PCB design nor

will it be designed in the exact same manner, but it will return results that will verify

the design. The main Simulink model comprises of various structures. They are as

follows, as seen in Figure 26:

 Irradiance and temperature input

 MPPT algorithm

 PV array

 Synchronous buck converter sections

 HG load section

 Scopes and measurements.

48

Figure 26 Main Simulink PV system model

The whole mode is broken down into subsections, which will be explained

individually. The first section is the PV array input parameters as seen in Figure 27.

49

Figure 27 Signal builder blocks for irradiance and temperature

The signal builder will provide the PV array with the irradiance and temperature

input. Figure 29, the MPPT section, is not in the form of physical components but in

the form of switches and logic operators. Figure 28 contains the MPPT algorithm

subsystem.

Figure 28 MPPT algorithm subsystem

Figure 29 MPPT algorithm logic

50

Figure 29 shows the P&O MPPT algorithm logic as dictated by Figure 10 in Chapter

2. Figure 30 consists of all the equivalent circuits and mathematics that makes up the

PV array. The capacitor acts as an input filter for the synchronous buck converters.

The flag m_PV consists of output parameters from the PV array model. Figures 30,

31 and 32 are what make up the bulk of the PV array. All the parameters that specify

the behaviour of the PV array are entered into these models.

Figure 30 PV array subsystem

The PV module used in the simulation is a Kyocera KD205GX-LP. All the necessary

parameters and values for the simulation are gathered from the datasheet as seen in

Annexure A.

Figure 31 PV array model

Figure 31 is the PV array model, which holds parameter values gathered from the

datasheet of the PV panel used. Figure 32 contains the mathematics relating to the

diode model of the PV panel. The diode equation in Figure 32 is provided by the

Matlab software help file.

51

Figure 32 Diode and Rp model

Figure 33 shows the characteristic curves of one PV panel.

Figure 33 I-V and P-V characteristics of one module at 25°C

52

Figure 34 represents the synchronous buck converter subsystem. The structures of all

three converters look the same except for the values used for the components. The

flag D is the duty cycle input to the converter from the MPPT subsystem. Figure 35

shows the design of the converters in more detail.

Figure 34 Synchronous buck converter subsystem block

Figure 35 Synchronous buck converter subsystem detailed

The design consists of a PWM driver circuit, PID control and the components that

make up a synchronous buck converter. Figure 36 consists of three resistors that will

act as the load. The resistor values are set to the values that will simulate the inputs

of the HG. The values of the resistors are the following:

 R1: 2,875 Ω

 R2: 0,5 Ω

 R3: 0,375 Ω

53

Figure 36 HG subsystem

The system is simulated only for 0.1s with a sample time of 100µs. The reason for

this is that this is a complex system and the time it takes to simulate 0.1s in real-time

is about one minute. Even though the simulation time is short, the full functionality

of the system is simulated and results are obtained.

3.6 Simulation measurements

The simulation of the model is repeated multiple times in order to evaluate the

performance of the system. The results obtained are that of an ideal system with ideal

component parameters. That being the case, the performance evaluation still

illustrates how the system will respond in a practical setting. The simulation focuses

on how many PV panels will be needed in order for the SMPS to supply the required

output values to the HG according to the specifications given in Table 1 of Chapter

1. The simulation will also indicate what the minimum output power of the PV array

should be in order for the SMPS to supply the correct output values.

Table 10 HOGEN® GC 300 power supply output voltages

Output Voltage (V) Current (A) Power (P)

Output 1 7,5 20 150

Output 2 12 4,2 50

Output 3 5 10 50

First, it has to be established what the minimum number of PV panels should be for

the system to operate properly. Thus, multiple repetitions at standard test conditions

(STC) of the simulation are run in order to establish the minimum number of PV

panels needed. The STC are 1000 W/m
2
 irradiance and 25°C temperature. To see if

54

the SMPS is operating normally with the PV array, the total output power of the

SMPS is observed.

Figure 37 Number of PV panels needed for operation

The panels are connected in a parallel connection because a buck topology is used in

the SMPS the voltage from the PV array must not be higher than needed otherwise

the duty cycle will suffer and the SMPS will not be able to handle that low a duty

cycle. The parallel connections will increase the current output from the PV array,

which is more suited to this type of SMPS.

With the minimum number of PV panels established that are required in the array,

the PV characteristic curves of the array can be simulated as indicated in Figure 38.

When the irradiance decreases so will the output power of the PV array, therefore, it

is necessary to determine the minimum irradiance at which the system will still be

operational. Thus, starting the irradiance with 1000 W/m
2
 and then decrementing the

irradiance with 100 W/m
2
 steps until the point where the PSU stops working, will

indicate the estimated range.

55

Figure 38 PV array characteristic curves

The process will be repeated, starting at 700 W/m
2
 and incrementing the irradiance

with 20 W/m
2
 steps until the PSU is operational again. The process is repeated for

the last time starting from 760 W/m2 and decrementing in 1 W/m
2
 steps. From the

repetition of the above process, it is observed that the minimum irradiance required

for the PSU to operate is 756 W/m
2
. Figures 39-41 show the results for the process

followed.

Figure 39 SMPS output power for the irradiance range of 700 W/m2 - 1000 W/m2

56

Figure 40 SMPS output power for the irradiance range of 700 W/m2 - 760 W/m2

Figure 41 SMPS output power for the irradiance range of 755 W/m2 - 760 W/m2

57

After establishing the minimum irradiance level, the efficiency of the system can be

measured. Setting the irradiance to the minimum, the PV array power is measured as

indicated in Figure 42.

Figure 42 PC V array output power at minimum irradiance setting

The SMPS has a total output power of 250 W. With the PV array, output power of

612 W at a minimum irradiance setting the efficiency of the system is as follows:

SMPS power out
= 100%

PV array power out

 = 40,84%

eff 
 (18)

When the system is operating normally between the irradiance range of 756 W/m
2

and 1000 W/m
2
 the behaviour of the DC-DC SMPS when in operation will look like

Figures 44-46. It can also be clearly seen in these figures where the start-up begins

and ends as well as when the steady-state operation begins. The PID algorithm

ensures a fast start-up with a quick transition to the steady-state operation of the DC-

DC SMPS.

58

Figure 43 SMPS voltage output while in operation

Figure 44 SMPS current output while in operation

59

Figure 45 SMPS power output while in operation

3.7 Summary

This chapter discussed the design of the controller, synchronous buck converters and

sensing circuits where designed and implemented. Each section was discussed and

explained how they function in the system. The parameters chosen were used in the

calculations in order to find component values for the circuits. In addition, it was

shown how the simulation model was set up and configured. The results obtained

indicated how many PV panels where needed in the array for the system to operate.

The results also indicated the irradiance range for which the system will operate

normally. From the results, the efficiency of the system could be calculated.

Next, is the comparison of the results from the simulation to that of the DC-DC

SMPS in a practical setup.

60

CHAPTER 4 MEASUREMENTS AND RESULTS

Introduction

This chapter gives an overview of practical results as well as additional results

obtained from the simulation. The simulation and practical results were compared in

order to make a conclusion.

4.1 Simulation results

Additional simulations were carried out on the system by using different PV panels

in the system. These results are important as to the functionality of the system. Table

10 outlines the parameter values of different PV panel models. The PV panels are

connected in parallel in order to increase the current output of the PV array and not

the voltage output. As indicated in Chapter 3, four PV panels are needed in order for

the system to operate. Thus increasing the PV panel amount the current and power

increases but not the voltage. The simulation was repeated multiple times with the

irradiance set to 1000 W/m
2
, and selecting a PV panel model as well as the number

of PV panels used.

As seen in Table 11, the system only operates with four panels for any PV panel

model except for the last PV panel model. After establishing the minimum amount of

PV panels needed, the irradiance is lowered in order to find the minimum irradiance

level at which the system will still operate for each PV model selection. Table 12

lists the results obtained. By inspecting Table 12, it will be noticed that the minimum

PV array output current is not lower than 20,27 A with its respective minimum

irradiance level. The efficiency of the system is also very low and can be contributed

to the values of IMPP in Table 12. Even though all the converters are synchronous

buck converters, which should step-up the current from a very low current value, it

does not. The reason for this can be that the total amount of current drawn by the HG

is 35 A as indicated in Table 1. Thus, the minimum amount of current needed to

step-up from is very high. The system efficiency suffers because of this issue. It can

be concluded that the power rating as well as the voltage rating is not that important

when choosing a PV panel for this system but rather the current rating. The voltage

should be at least 15 V in order to correctly step-down to 12 V, 5 V and 7,5 V, but

61

also the power should be no less than 250 W because the HG requires 250 W. Thus,

when constructing the PV array the output current of the array should not be lower

than 20,27A. The last PV panel does not have results because the system only starts

operating when 15 panels are connected in parallel. Therefore, even though the

voltage is very high and the power rating at four panels are correct, the current is too

low for the DC-DC SMPS to properly step-up the current and operate.

Table 11 Simulation results for different PV panels

 No. panels VOC ISC VMPP IMPP PMPP

Kyocera KD135GX-

LP

1 Panel 22,10 8,37 17,70 7,63 135,04

2 Panels 22,10 16,74 17,70 15,26 270,09

3 Panels 22,10 25,11 17,70 22,89 405,13

4 Panels 22,10 33,48 17,70 30,52 540,17

Kyocera KD205GX-

LP

1 Panel 33,20 8,36 26,60 7,71 205,08

2 Panels 33,20 16,72 26,60 15,42 410,15

3 Panels 33,20 25,08 26,60 23,13 615,23

4 Panels 33,20 33,44 26,60 30,84 820,30

Mitsubishi PV-

UD190MF5

1 Panel 30,80 8,23 24,70 7,71 190,50

2 Panels 30,80 16,47 24,70 15,43 381,01

3 Panels 30,80 24,70 24,70 23,14 571,51

4 Panels 30,80 32,93 24,70 30,85 762,01

Sanyo HIP-

225HDE1

1 Panel 41,80 7,13 33,90 6,63 224,90

2 Panels 41,80 14,27 33,90 13,27 449,80

3 Panels 41,80 21,40 33,90 19,90 674,70

4 Panels 41,80 28,54 33,90 26,54 899,60

BP Solar SX3190

1 Panel 30,60 8,51 24,30 7,83 190,26

2 Panels 30,60 17,02 24,30 15,66 380,52

3 Panels 30,60 25,53 24,30 23,49 570,77

4 Panels 30,60 34,04 24,30 31,32 761,03

First Solar FS-272

1 Panel 94,57 1,18 70,56 1,01 71,33

2 Panels 94,57 2,36 70,56 2,02 142,65

3 Panels 94,57 7,09 70,56 3,03 213,98

4 Panels 94,57 2,36 70,56 4,04 285,30

62

Table 12 DC-DC SMPS running at 1000 W/m2

 1 Panel 2 Panels 3 Panels 4 Panels

YES NO YES NO YES NO YES NO

Kyocera

KD135GX-LP
 x x x x

Kyocera

KD205GX-LP
 x x x x

Mitsubishi PV-

UD190MF5
 x x x x

Sanyo HIP-

225HDE1
 x x x x

BP Solar

SX3190
 x x x x

First Solar FS-

272
 x x x x

Table 13 DC-DC SMPS running for various irradiances with four PV panels

 Irradiance

(W/m
2
)

Irradiance

in %
VMPP IMPP PMPP

Efficiency

(%)

Kyocera

KD135GX-LP
860 86,00% 17,70 26,25 464,55 53,82%

Kyocera

KD205GX-LP
728 72,80% 26,60 22,45 597,18 41,86%

Mitsubishi PV-

UD190MF5
750 75,00% 24,70 23,14 571,51 43,74%

Sanyo HIP-

225HDE1
764 76,40% 33,90 20,27 687,29 36,37%

BP Solar

SX3190
736 73,60% 24,30 23,05 560,12 44,63%

First Solar FS-

272
n/r n/r n/r n/r n/r n/r

When carrying out the practical setup, the PV panels used must meet the

requirements established above.

63

4.2 Experimental setup

The experimental setup was connected as indicated in Figure 46 below.

Figure 46 Experimental setup

The PV array as well as the outputs of the DC-DC SMPS is connected to the current

and voltage-sensing interface (I&V interface) input connectors. This will allow for

64

current and voltage measurements as well as logging these measurements with the

Picolog hardware. The output of the I&V interface is connected to DC loads that

together act as the HG load. The V and I connecters on the I&V interface are

connected to another interface connected to the Picolog. The PV array output from

the I&V interface is then connected to the input of the DC-DC SMPS. The system is

now a closed-loop system. The PV panel chosen for the practical is the Sunmodule

SW 220 poly (see Annexure A) because they are the panels that are used by the

Telkom Centre of Excellence for all research purposes. The PV panels meet the

requirements as mentioned previously. The DC loads are set to the values so as to act

as the HG load.

The irradiance and temperature parameters could not be kept constant as in the

simulation environment but the results obtained where nonetheless acceptable.

4.3 Measurement results

Figure 47 shows the PV array power of the system for a time period during testing.

During this time period, the system was running multiple times. An average of the

results was calculated and the data was plotted in Figures 48-50. Figure 48 is the

output voltage of the DC-DC SMPS. It can be seen that the form of the graphs are

the same as that of the simulation. The voltage outputs are slightly higher than the

preferred 12V, 5V and 7,5V and fluctuate more often. The only major difference is

the time period for which the system was operating. The DC-DC SMPS takes a bit

longer than the simulation to reach a steady-state. The reason for this is that there are

delays from the PCB itself, for instance capacitors that need to be charged and

discharged. In addition, the speed of the MCU needs to be taken into account.

Figure 39 shows the current waveforms. Again, the shapes of the waveforms are the

same as that of the simulation waveform but with slightly lower values than the

preferred 20A, 10A and 4,2A. With real components, there will be differences to that

of the simulation because the simulation uses ideal components. That is why the

output of the DC-DC SMPS is not exactly the same as that of the simulation. The

current output is also a bit lower than expected but still within an acceptable

operating range. Figure 40 is the power output of the DC-DC SMPS. Because the

65

voltage and current is a bit lower than expected the output power is also a little lower

but still acceptable.

Figure 47 Practical PV array power

The average power is around 660 W. Thus, with the output power around 250 W the

total efficiency of the system is 38%. The efficiency is lower than expected.

Figure 48 Simulation and practical results compared for output voltage

66

Figure 49 Simulation and practical results compared for output current

Figure 50 Simulation and practical results compared for output power

The output power for practical Pout3 in Figure 50 is more unstable than the rest of the

output power. It can be reasoned that the DC-DC SMPS has more difficulty at such a

high output power than for the rest.

67

4.4 Summary

In this chapter, the system was tested and measured in a practical environment. The

results obtained were compared to that of the simulation results. The results showed

that the DC-DC SMPS in a practical setup has the same waveforms as the simulation

but with a different time period as well as different output values.

Chapter 5 is the final section in this dissertation. It will contain the conclusions made

from the research as well as recommendations for further research on the DC-DC

SMPS.

68

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

Introduction

The aim was to design a solar driven (PV) power supply unit for a regenerative fuel

cell hydrogen generator. The conclusions have been made based on the results

obtained. The recommendations for future research will also be discussed.

5.1 Conclusions

It was found that PV energy is an important alternative energy source. By combining

PV energy with a hydrogen generator, an independent solar/hydrogen system can be

constructed. However, in order for the hydrogen generator to operate from PV

energy a power supply unit had to be designed according to the hydrogen generator

specifications. In addition, to make sure the PV panels operate at their own

maximum efficiency a MPPT algorithm has to be implemented into the power supply

unit.

5.1.1 Design and simulation

Research into different MPPT algorithms revealed that the perturb and observe

algorithm will be the best option for the design of the DC-DC SMPS. The P&O

algorithm was chosen because it is easy to implement and has a reputation for being

able to track the MPP with very high efficiency. The other advantage of the P&O

algorithm is that it can be programmed onto a MCU instead of being hardware based.

This makes it easier to modify the algorithm as needed and is faster than that of

hardware based algorithms.

The voltage and current requirements of the hydrogen generator showed that a buck

converter topology was needed for the design of the DC-DC SMPS. Therefore,

further research was done in order to optimise the design to fit the system. It was

found that a synchronous buck converter topology was the improved version of the

normal buck converter topology, meaning that the efficiency is higher. The research

also indicated that to stabilise the output of the DC-DC SMPS, a control method was

needed. It was found that the voltage-mode control along with a PID controller was

needed to best stabilise the output of the DC-DC SMPS. The voltage-mode control

69

will try to correct the output voltage to that which is required. On its own, the

voltage-mode control cannot be used and, therefore, the PID controller was used in

conjunction with the voltage-mode control. The PID controller will minimise the

error of the output and the output will be more stable and more accurate. The PID

controller makes very fast adjustments because it is programmed onto the MCU. The

voltage-mode control is hardware based.

After designing the DC-DC SMPS, the whole system was simulated. The reason for

simulation is to be able to observe the system behaviour before manufacturing. The

simulation helped by indicating how many PV panels are needed in the array in order

for the DC-DC SMPS to operate normally. The simulation results also clarified a

very important aspect of the design, which is how big a role the current of the PV

panels play in the choosing of the PV panels. The simulation showed that the current

of the PV array cannot be lower than 20,27A. If the current is lower than this value

the DC-DC SMPS will not operate. With this indication, the system efficiency is

very much lower and not desirable. The power has to be more than 250 W because

that is what is required from the hydrogen generator. The voltage has to be more than

15V for the synchronous buck converter to correctly step-down the voltage. The

simulation, however, does not indicate how the system will behave in a practical

environment.

5.1.2 Practical environment

The practical environment gives precedence to factors not included in the theory or

simulation. The PCB was designed and manufactured keeping in mind how much

current will be conducted along the PCB tracks. The results obtained showed that

both the output current and voltage was slightly lower than that of the simulation but

still within the tolerance range. There was a slight delay in the response of the system

but that is because of the real components used on the PCB and the processing speed

of the MCU. It was also observed and noted that the mosfet driver and mosfets got

very hot after only a few seconds of operation and made the system unstable

afterwards. The efficiency of the system, which is at 38%, is also lower than that of

the simulation efficiency, which is 40%.

70

5.2 Recommendations

The following recommendations regarding further research of the hydrogen

generator DC-DC SMPS are made:

 Further research needs to be done to improve the MPPT algorithm and

optimise it so that it will be able to track the MPP successfully when there is

partial shading.

 Further research needs to be done to improve the converter efficiency and be

able to work with a lower current input from the PV array.

 The simulation needs to be optimised with components that better reflect their

real world counterparts instead of ideal components in order to more

accurately simulate the system.

 The PCB needs to be redesigned with fans included to be able to dissipate the

heat from the components so that the components do not overheat.

71

REFERENCES

AGRAWAL, J. P. 2001. Power electronics systems: theory and design, New Jersey,

Prentice-Hall.

ASHOK, S. 2012. Solar Energy. Encyclopædia Britannica.

ATALLAH, A. M., ABDELAZIZ, A. Y. & JUMAAH, R. S. 2014. Implementation

of perturb and observe mppt of pv system with direct control method using buck and

buck-boost converters. Emerging Trends in Electrical, Electronics &

Instrumentation Engineering: An international Journal, 1, 31-44.

DE BRITO, M. A. G., SAMPAIO, L. P., LUIGI, G., E MELO, G. A. & CANESIN,

C. A. 2011. Comparative analysis of MPPT techniques for PV applications. Clean

Electrical Power (ICCEP), 2011 International Conference on, 14-16 June 2011. 99-

104.

DE NEUFVILLE, J. P. 2012. Photovoltaic effect. AccessScience.

E-POWER. 2008. The Basics of Maximum Power Point Tracking Solar Charge

Controller [Online]. Available: http://www.epowerindia.in/basic_of_maximum.htm

[Accessed 2012-03-07.

EL CHAAR, L., LAMONT, L. A. & EL ZEIN, N. 2011. Review of photovoltaic

technologies. Renewable and Sustainable Energy Reviews, 15, 2165-2175.

ESRAM, T. & CHAPMAN, P. L. 2007. Comparison of Photovoltaic Array

Maximum Power Point Tracking Techniques. IEEE Transactions on Energy

Conversion, 22, 439-449.

EUROPEAN COMMISSION 2009. Photovoltaic Solar Energy: development and

current research. Belgium.

72

FARRET, F. A. & SIMÕES, M. G. 2006. Intergration of Alternative Sources of

Energy, Hoboken, NJ, Wiley.

FEMIA, N., PETRONE, G., SPAGNUOLO, G. & VITELLI, M. 2005. Optimization

of perturb and observe maximum power point tracking method. Power Electronics,

IEEE Transactions on, 20, 963-973.

FRAAS, L. M. & PARTAIN, L. D. 2010. Solar Cells and Their Applications. 2nd ed.

Hoboken, NJ: Wiley.

GOODWIN, G. C., GRAEBE, S. F. & SALGADO, M. E. 2001. Control System

Design, Prentice Hall.

GRIGORIEV, S. A., MILLET, P., POREMBSKY, V. I. & FATEEV, V. N. 2011.

Development and preliminary testing of a unitized regenerative fuel cell based on

PEM technology. International Journal of Hydrogen Energy, 36, 4164-4168.

HOHM, D. P. & ROPP, M. E. 2003. Comparative study of maximum power point

tracking algorithms. Progress in Photovoltaics: Research and Applications, 11, 47-

62.

IBRAHIM, D. 2002. Microcontroller-based Temperature Monitoring and Control,

Newnes.

IEEE-SA 2003. IEEE Guide for Selection, Charging, Test, and Evaluation of Lead-

Acid Batteries Used in Stand-Alone Photovoltaic (PV) Systems. New York, NY:

IEEE.

JACOB, J. M. 2002. Power electronics: principles and applications, New York,

Delmar.

73

JAIN, S. & AGARWAL, V. 2007. Comparison of the performance of maximum

power point tracking schemes applied to single-stage grid-connected photovoltaic

systems. IET Electric Power Applications, 1, 753-762.

JANSE VAN RENSBURG, J. F. 2012. Industrial power electronics, Gauteng,

Lerato printers.

KALOGIROU, S. A. 2009. Solar energy engineering: processes and systems,

Massachusetts, Elsevier Inc.

KWON, J., NAM, K. & KWON, B. 2006. Photovoltaic Power Conditioning System

With Line Connection. IEEE Transactions on Industrial Electronics, 53, 1048-1054.

LEYVA, R., ARTILLAN, P., CABAL, C., ESTIBALS, B. & ALONSO, C. 2011.

Dynamic performance of maximum power point tracking circuits using sinusoidal

extremum seeking control for photovoltaic generation. International Journal of

Electronics, 98, 529-542.

LI, H., KNIGHTS, S., SHI, Z., VAN ZEE, J. W. & ZHANG, J. 2010. Proton

Exchange Membrane Fuels Cells: contamination and mitigation strategies. NW:

Taylor and Francis Group.

LYNN, P. A. 2010. Electricity from Sunlight: an introduction to photovoltaics,

Chichester, West Sussex, U.K., Wiley.

MACK, R. A. 2005. Demystifying switching power supplies, Massachusetts,

Elsevier.

MAMMANO, R. 1994. Switching Power Supply Topology Voltage Mode vs.

Current Mode. DN-62. Unitrode.

MANIKTALA, S. 2012. Voltage-Mode, Current-Mode (and Hysteretic Control).

Microsemi.

74

MITCHELL, K. W. & TATRO, M. L. 2008. Solar cell. AccessScience.

MOHAN, N., UNDELAND, T. M. & ROBBINS, W. 2003. Power electronics

converters, applications and design, New Jersey, Wiley.

ONAT, N. 2010a. Recent Developments in Maximum Power Point Tracking

Technologies for Photovoltaic Systems. International Journal of Photoenergy, 2010,

11.

ONAT, N. 2010b. Recent Developments in Maximum Power Point Tracking

Technologies for Photovoltaic Systems. International Journal of Photoenergy, 2010.

ONAT, N. 2010c. Recent Developments in Maximum Power Point Tracking

Technologies for Photovoltaic Systems. International Journal of Photoenergy.

PETREUŞ, D., PĂTĂRĂU, T., DĂRĂBAN, S., MOREL, C. & MORLEY, B. 2011.

A novel maximum power point tracker based on analog and digital control loops.

Solar Energy, 85, 588-600.

SALAS, V., OLÍAS, E., BARRADO, A. & LÁZARO, A. 2006. Review of the

maximum power point tracking algorithms for stand-alone photovoltaic systems.

Solar Energy Materials and Solar Cells, 90, 1555-1578.

ŞEN, Z. 2008. Solar Energy Fundamentals and Modeling Techniques: atmosphere,

environment, climate change and renewable energy, London, Springer-Verlag.

SIWAKOTI, Y. P., CHHETRI, B. B., ADHIKARY, B. & BISTA, D. 2010.

Microcontroller based intelligent DC/DC converter to track Maximum Power Point

for solar photovoltaic module. Innovative Technologies for an Efficient and Reliable

Electricity Supply (CITRES).

SOLANKI, C. S. 2009. Solar Photovoltaics: fundamentals, technologies and

applications, New Delhi, PHI Learning.

75

VAN TONDER, P. J. M. 2011. Optimization of water, temperature and voltage

management on a regenerative fuel cell. MTech Research, Vaal University of

Technology.

VAZQUEZ, N., HERNANDEZ, C. & VAZQUEZ, E. 2010. A DC/DC Converter for

Clean-Energy Applications [Online]. Sciyo. Available: http://www.intechopen.com

/books/clean-energy-systems-and-experiences/a-dc-dc-converter-for-clean-energy-

applications [Accessed 2013-10-11 2013].

WEBB, J. W. & REIS, R. A. 2003. Programmable Logic Controllers: Principles and

Applications, Prentice Hall.

XIAO, W., ELNOSH, A., KHADKIKAR, V. & ZEINELDIN, H. 2011. Overview of

maximum power point tracking technologies for photovoltaic power systems.

IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society,

7-10 November 2011 Melbourne, Australia. Red Hook, NY: IEEE, 3900-3905.

ZEGAOUI, A., AILLERIE, M., PETIT, P., SAWICKI, J. P., JAAFAR, A.,

SALAME, C. & CHARLES, J. P. 2011. Comparison of Two Common Maximum

Power Point Trackers by Simulating of PV Generators. Energy Procedia, 6, 678-687.

76

ANNEXURE INDEX

ANNEXURE A PV panel datasheets 77

ANNEXURE B HOGEN® GC 300 technical specifications 91

ANNEXURE C dsPIC MCU author C-code 92

77

PV panel datasheets ANNEXURE A

78

79

80

81

82

83

84

85

86

87

88

89

90

91

HOGEN® GC 300 technical specifications ANNEXURE B

92

dsPIC MCU author C-code ANNEXURE C

// Main file

// File: MPPT_DC-DC.c

// Author: Neil J.v Rensburg

#include <33FJ32GS606.h>

#define USE_PWM1

#define USE_PWM2

#define USE_PWM3

#define _SINGLE_CLK

// FUSES

// DSPIC33FJ64GS606 Configuration Bit Settings

#fuses NOWRTB,NOBSS

#fuses NOWRT,NOPROTECT

#fuses NOIESO

#fuses NOPR,OSCIO

#fuses NOWINDIS,NOWDT

#fuses PUT32,SS1NORM,QEINORM

#use delay(clock=80MHz, internal=4MHz)

////////////////////// DEFINES ////////////////////////////

#include <stdio.h>

#include <stdlib.h>

#include <MATH.H>

#include "MPPT_PWM.h"

#include "pid.c"

#define MAX_OUTPUTS (3)

WORD wCurLimTimer[3] = {0,0,0};

BYTE bCurrentLimitFlg[3] = {0,0,0};

BYTE bADCDone = 0;

BYTE bMainIncomerADDone = 0;

WORD wStartIncomingADTimer = cINTER_ADC_CHN_DELAY;

sPIDSTRUCT sPidMem[MAX_OUTPUTS];

float fMPPTDuty = 0.0;

WORD wFilter1[cFILTER_CNT] = {0};

WORD wFilter2[cFILTER_CNT] = {0};

WORD wFilter3[cFILTER_CNT] = {0};

WORD wFilter4[cFILTER_CNT] = {0};

WORD wIFilter1[cFILTER_CNT] = {0};

WORD wIFilter2[cFILTER_CNT] = {0};

WORD wIFilter3[cFILTER_CNT] = {0};

WORD wFilter0[cFILTER_CNT] = {0};

WORD wIFilter0[cFILTER_CNT] = {0};

93

int8 iwFilterIdx1 = 0;

int8 iwFilterIdx2 = 0;

int8 iwFilterIdx3 = 0;

int8 iwFilterIdx4 = 0;

int8 iwFilterIdx0 = 0;

int8 iwFilterIdxI0 = 0;

float fDuty[3] = {10.0,10.0,10.0};

float output;

float fVInFiltered;

float fIInFiltered;

int8 iFilterDone = 0;

BYTE bSecTgl = 0 , bPwmOn = 0;

sANAENG sAnaVals[10];

int main(int argc, char** argv)

{

 int8 iIdx;

 vKickWdt ();

 delay_cycles (100);

 vKickWdt ();

 vSetupBoard ();

 vKickWdt ();

 delay_cycles (100);

 vKickWdt ();

 vSwitchPower (1);

 output_bit (LED_SYS,bSecTgl);

 while (1)

 {

 vKickWdt ();

 delay_us (1);

 if ((bADCDone & 0x0F) == 0x0F){

 vKickWdt ();

 vDoEngConv (&bADCDone);

 vDoMPPTControl ();

 for (iIdx = 0; iIdx < 3; iIdx++)

 {

 vDoPwmVOutControl (iIdx);

 }

 PWMCON2FLTIEN = 0;

 PWMCON2CLIEN = 0;

 PWMCON2TRGIEN = 0;

 PWMCON1FLTIEN = 0;

 PWMCON1CLIEN = 0;

 PWMCON1TRGIEN = 0;

 PWMCON3FLTIEN = 0;

 PWMCON3CLIEN = 0;

 PWMCON3TRGIEN = 0;

94

 }

 if ((fVInFiltered > (cVIN_MIN_SW_ON + cVIN_MIN_SW_ON_HYST)) &&

(bPwmOn==0))

 {

 int i;

 for (i = 0; i < 3; i++)

 vClearPidNvStruct (&sPidMem[i]);

 vStartPWM ();

 bPwmOn = 1;

 }

 if ((fVInFiltered < (cVIN_MIN_SW_ON - cVIN_MIN_SW_ON_HYST)) &&

(bPwmOn==1))

 {

 vStopPWM ();

 bPwmOn = 0;

 }

 if (0)

 { // if PV_IN_PRE_SW is above VIN_MIN_SW_ON, it is safe to switch on VIN.

 if (sAnaVals[8].fConverted >= cVIN_MIN_SW_ON) vSwitchPower(1);

 else vSwitchPower(0);

 bMainIncomerADDone = 0;

 }

 output_bit(LED_SYS,bSecTgl);

 }

 return (0);//EXIT_SUCCESS);

}

void vSetupBoard (void)

{

 vStopPWM ();

 delay_cycles (100);

 vInitClock ();

 delay_cycles (100);

 vSetupPins ();

 delay_cycles (100);

 vSetupPWM ();

 delay_cycles (100);

 delay_cycles (100);

 vKickWdt ();

 vSetupADC ();

 delay_cycles (100);

 vSetupTimers ();

 delay_cycles (100);

 vSetupInterrupts();

 vSetupStruct();

}

void vSwitchPower (int8 bState)

{

 if (bState) output_bit (POWERON,1);

95

 else output_bit (POWERON,0);

}

void vSetupStruct(void)

{

 int i;

 memset (sAnaVals,0,sizeof(sANAENG)*10);

 sAnaVals[0].wRawHigh = 373;

 sAnaVals[0].fEngHigh = 4.2;

 sAnaVals[1].wRawHigh = 1024;

 sAnaVals[1].fEngHigh = 30.932;

 sAnaVals[2].wRawHigh = 373;

 sAnaVals[2].fEngHigh = 10.0;

 sAnaVals[3].wRawHigh = 1024;

 sAnaVals[3].fEngHigh = 13.062;

 sAnaVals[4].wRawHigh = 1024;

 sAnaVals[4].fEngHigh = 17.719;

 sAnaVals[5].wRawHigh = 373;

 sAnaVals[5].fEngHigh = 20.0;

 sAnaVals[6].wRawHigh = 1024;

 sAnaVals[6].fEngHigh = 42.786;

 sAnaVals[7].wRawHigh = 1024;

 sAnaVals[7].fEngLow = -0.100;

 sAnaVals[7].fEngHigh = 28.406;

 sAnaVals[8].wRawHigh = 1024;

 sAnaVals[8].fEngHigh = 42.9;

 sAnaVals[9].wRawHigh = 1024;

 sAnaVals[9].fEngHigh = 0.0;

 for (i = 0; i < 3; i++)

 vClearPidNvStruct (&sPidMem[i]);

 //PID P, I, D values

 sPidMem[0].fKp = 0.4;

 sPidMem[0].fKi = 0.05;

 sPidMem[0].fKd = 0.1;

 sPidMem[1].fKp = 0.35;

 sPidMem[1].fKi = 0.015;

 sPidMem[1].fKd = 0.05;

 sPidMem[2].fKp = 0.33;

 sPidMem[2].fKi = 0.005;

 sPidMem[2].fKd = 0.07;

}

void vInitClock (void)

{

 setup_oscillator(OSC_INTERNAL);

 delay_cycles (100);

 ACLKCONASRCSEL = 0;

 FRCSEL = 1;

 delay_cycles (100);

 ENAPLL = 1;

96

 delay_cycles (100);

 SELACLK = 1;

 delay_cycles (100);

 APSTSCLR2 = 1; APSTSCLR1 = 1; APSTSCLR0 = 0;

 delay_cycles (100);

 while (APLLCK == 0);

 delay_cycles (100);

}

void vSetupPins (void)

{

 ADPCFGPCFG0 = ADPCFGPCFG1 = ADPCFGPCFG2 = ADPCFGPCFG3 =

ADPCFGPCFG4 = ADPCFGPCFG5 = ADPCFGPCFG8 = 0;

 ADPCFGPCFG12 = ADPCFGPCFG13 = ADPCFGPCFG14 = ADPCFGPCFG15 = 0;

 set_tris_b (0xFFFF);

 set_tris_c (0xFFFF);

 set_tris_d (0xF9F0);

 set_tris_e (0xFFC0);

 set_tris_f (0xFFF7);

 set_tris_g (0xFFFF);

 output_high (LED_PWM1_OC);

 output_high (LED_PWM2_OC);

 output_high (LED_PWM3_OC);

 output_high (LED_PWM1_GD);

 output_high (LED_PWM2_GD);

 output_high (LED_PWM3_GD);

 output_high (LED_SYS);

 output_high (DEBUG_PIN);

}

void vSetupPWM (void)

{

// General PWM Registers

 PTCON2 = 0;

 delay_cycles(100);

 PTPER = PWM_PERIOD;

 SEVTCMP = 0;

 PTCONPTSIDL = 0;

 PWMCON1MDCS = 0;

// PWM1

#ifdef USE_PWM1

 delay_cycles(100);

 PWMCON1FLTIEN = 0;

 PWMCON1CLIEN = 0;

 PWMCON1TRGIEN = 0;

 PWMCON1MTBS = 0;

 PWMCON1CAM = 0;

 PWMCON1XPRES = 0;

#ifdef SINGLE_CLK

97

 PWMCON1ITB = 0;

#else

 PWMCON1ITB = 1;

#endif

 PWMCON1MDCS = 0;

 PWMCON1DTC1 = 0; PWMCON1DTC0 = 0;

 PWMCON1IUE = 0;

 PDC1 = (PWM_PERIOD/10);

#ifndef SINGLE_CLK

 PHASE1 = PWM_PERIOD+100;

 SPHASE1 = PWM_PERIOD+100;

#endif

 DTR1 = 120;

 ALTDTR1 = 150;

 delay_cycles(100);

 IOCON1 = 0;

 IOCON1PMOD1 = IOCON1PMOD0 = 0;

 delay_cycles(100);

 IOCON1POLH = 0;

 IOCON1POLL = 0;

 delay_cycles(100);

 IOCON1PENH = 1;

 IOCON1PENL = 1;

 delay_cycles(100);

#endif

 // PWM2

#ifdef USE_PWM2

 PWMCON2FLTIEN = 0;

 PWMCON2CLIEN = 0;

 PWMCON2TRGIEN = 0;

 PWMCON2MTBS = 0;

 PWMCON2CAM = 0;

 PWMCON2XPRES = 0;

 PWMCON2ITB = 0;

 PWMCON2MDCS = 0;

 PWMCON2DTC1 = 0;PWMCON2DTC0 = 0;

 PWMCON2IUE = 0;

 PDC2 = (PWM_PERIOD/10);

 PHASE2 = 0;

 SPHASE2 = 0;

 DTR2 = 180;

 ALTDTR2 = 120;

 delay_cycles (100);

// IOCON1 = 0;

 IOCON2PMOD1 = IOCON2PMOD0 = 0;

 delay_cycles(100);

 IOCON2POLH = 0;

 IOCON2POLL = 0;

 delay_cycles(100);

 IOCON2PENH = 1;

 IOCON2PENL = 1;

98

 delay_cycles(100);

#endif

 // PWM3

#ifdef USE_PWM3

 PWMCON3FLTIEN = 0;

 PWMCON3CLIEN = 0;

 PWMCON3TRGIEN = 0;

 PWMCON3MTBS = 0;

 PWMCON3CAM = 0;

 PWMCON3XPRES = 0;

 PWMCON3ITB = 0;

 PWMCON3MDCS = 0;

 PWMCON3DTC1 = 0;PWMCON3DTC0 = 0;

 PWMCON3IUE = 0;

 PDC3 = (PWM_PERIOD/10);

 DTR3 = 180;

 ALTDTR3 = 150;

 delay_cycles (100);

 IOCON3PMOD1 = IOCON3PMOD0 = 0;

 delay_cycles (100);

 IOCON3POLH = 0;

 IOCON3POLL = 0;

 delay_cycles (100);

 IOCON3PENH = 1;

 IOCON3PENL = 1;

 delay_cycles (100);

#endif

 //Additional registers

 PTCONPTSIDL = 0;

 PTCONSYNCOEN = 1;

 delay_cycles(255);

}

void vStartPWM (void)

{

 IOCON1PENH = 1;

 IOCON1PENL = 1;

 IOCON2PENH = 1;

 IOCON2PENL = 1;

 IOCON3PENH = 1;

 IOCON3PENL = 1;

 PTCONPTEN = 1; // Enable the PWM Module

}

void vStopPWM (void)

{

 PTCON = 0; // Disable the PWM Module

 IOCON1PENH = 0;

 IOCON1PENL = 0;

 IOCON2PENH = 0;

 IOCON2PENL = 0;

99

 IOCON3PENH = 0;

 IOCON3PENL = 0;

}

void vSetupADC (void)

{

 setup_high_speed_adc (ADC_OFF);

 setup_high_speed_adc_pair(0, INDIVIDUAL_SOFTWARE_TRIGGER);

 setup_high_speed_adc_pair(1, INDIVIDUAL_SOFTWARE_TRIGGER);

 setup_high_speed_adc_pair(2, INDIVIDUAL_SOFTWARE_TRIGGER);

 setup_high_speed_adc_pair(6, INDIVIDUAL_SOFTWARE_TRIGGER);

 setup_high_speed_adc_pair(7, INDIVIDUAL_SOFTWARE_TRIGGER);

 setup_adc_ports

(sAN0|sAN1|sAN2|sAN3|sAN4|sAN5|sAN12|sAN13|sAN14|sAN15);

 ADCONORDER = 0;

 ADCONASYNCSAMP = 0;

 ADCONSEQSAMP = 1 ;

 setup_high_speed_adc (ADC_CLOCKED_BY_PRI_PLL|ADC_CLOCK_DIV_6);

}

void vSetupTimers (void)

{

 setup_timer1 (TMR_INTERNAL|TMR_DIV_BY_64,625);

}

void vSetupInterrupts (void)

{

 enable_interrupts(INT_TIMER1);

 enable_interrupts(INTR_GLOBAL);

}

#define cMS_RELOAD_VAL (1)

#define cSEC_RELOAD_VAL (1000)

BYTE bMsCntr = cMS_RELOAD_VAL;

WORD wSecCntr = cSEC_RELOAD_VAL;

//

#INT_TIMER1

void vT1_ISR (void)

{

 if (bMsCntr) {--bMsCntr;return;}

 bMsCntr = cMS_RELOAD_VAL;

 // millisecond code

 if (wCurLimTimer[0]) wCurLimTimer[0]--;

 if (wCurLimTimer[0] == 1) bCurrentLimitFlg[0] = 0;

100

 if (wCurLimTimer[1]) wCurLimTimer[1]--;

 if (wCurLimTimer[1] == 1) bCurrentLimitFlg[1] = 0;

 if (wCurLimTimer[2]) wCurLimTimer[2]--;

 if (wCurLimTimer[2] == 1) bCurrentLimitFlg[2] = 0;

 if (wStartIncomingADTimer) wStartIncomingADTimer--;

 if (wStartIncomingADTimer == 1)

 {

 IFS6ADCP0IF = 0;

 ADCP0IE = 1;

 ADCPC0SWTRG0 = 1;

 }

#endif

 // one second code

 if (wSecCntr) {--wSecCntr;return;}

 wSecCntr = cSEC_RELOAD_VAL;

 bSecTgl ^= 0x01;

}

unsigned int32 ulWaitForPair0= 0;

#INT_ADCP0

void vADCP0_ISR (void)

{

 static int8 bState = 0;

 int16 wTmp;

 if (ADCPC0PEND1!=0)

 {

 ADCP0IE = 1;

 ADCPC0SWTRG0 = 1;

 ulWaitForPair0++;

 output_high(LED_PWM3_GD);

 return;

 }

 wTmp = (unsigned int16)ADCBUF0;

 wTmp = (unsigned int16)ADCBUF1;

 switch (bState)

 {

 case 0:

 IFS7ADCP2IF = 0;

 ADCP2IE = 1;

 ADCPC1SWTRG2 = 1;

 bState++;

 break;

 case 1:

 IFS6ADCP1IF = 0;

 ADCP1IE = 1;

 ADCPC0SWTRG1 = 1;

 bState++;

101

 break;

 case 2:

 IFS7ADCP7IF = 0;

 ADCP7IE = 1;

 ADCPC3SWTRG7 = 1;

 bState++;

 break;

 case 3:

 IFS7ADCP6IF = 0;

 ADCPC3SWTRG6 = 1;

 ADCP6IE = 1;

 bState = 0;

 break;

 }

 IFS6ADCP0IF = 0;

 ADCP0IE = 0;

 ADCPC0SWTRG0 = 0;

 output_high(LED_PWM3_GD);

}

unsigned int32 ulWaitForPair1= 0;

#INT_ADCP1

void vADCP1_ISR (void)

{

 int16 wVoltTmp,wTmp;

 if (ADCPC0PEND1!=0)

 {

 ADCP1IE = 1;

 ADCPC0SWTRG1 = 1;

 ulWaitForPair1++;

 output_high(LED_PWM1_GD);

 return;

 }

 wVoltTmp = (unsigned int16)ADCBUF2;

 if (sAnaVals[0].sRawVal == 0)

 wIFilter1[iwFilterIdx1] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[0].sRawVal +10;

 if (wVoltTmp < wTmp)

 wIFilter1[iwFilterIdx1] = wVoltTmp;

 else

 wIFilter1[iwFilterIdx1] = wTmp;

 }

102

 wVoltTmp = (unsigned int16)ADCBUF3;

 if (sAnaVals[1].sRawVal == 0)

 wFilter1[iwFilterIdx1] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[1].sRawVal +10;

 if (wVoltTmp < wTmp)

 wFilter1[iwFilterIdx1] = wVoltTmp;

 else

 wFilter1[iwFilterIdx1] = wTmp;

 }

 if (++iwFilterIdx1 > cFILTER_CNT) iwFilterIdx1 = 0;

 bADCDone |= cADCP1DONE;

 IFS6ADCP1IF = 0;

 ADCP1IE = 0;

 output_high(LED_PWM1_GD);

}

unsigned int32 ulWaitForPair2= 0;

#INT_ADCP2

void vADCP2_ISR (void)

{

 int16 wVoltTmp,wTmp;

 if (ADCPC1PEND2!=0)

 {

 ADCP2IE = 1;

 ADCPC1SWTRG2 = 1;

 ulWaitForPair2++;

 return;

 }

 wVoltTmp = (unsigned int16)ADCBUF5;

 if (sAnaVals[3].sRawVal == 0)

 wFilter2[iwFilterIdx2] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[3].sRawVal +10;

 if (wVoltTmp < wTmp)

 wFilter2[iwFilterIdx2] = wVoltTmp;

 else

 wFilter2[iwFilterIdx2] = wTmp;

 }

 wVoltTmp = (unsigned int16)ADCBUF4;

 if (sAnaVals[2].sRawVal == 0)

 wIFilter2[iwFilterIdx2] = wVoltTmp;

 else

103

 {

 wTmp = sAnaVals[2].sRawVal +10;

 if (wVoltTmp < wTmp)

 wIFilter2[iwFilterIdx2] = wVoltTmp;

 else

 wIFilter2[iwFilterIdx2] = wTmp;

 }

 if (++iwFilterIdx2 > cFILTER_CNT) iwFilterIdx2 = 0;

 bADCDone |= cADCP2DONE;

 IFS7ADCP2IF = 0;

 ADCP2IE = 0;

 }

unsigned int32 ulWaitForPair4= 0;

#INT_ADCP4

void vADCP4_ISR (void)

{

 if (ADCPC2PEND4!=0)

 {

 ADCP4IE = 1;

 ADCPC2SWTRG4 = 1;

 ulWaitForPair4++;

 output_high(LED_PWM3_GD);

 return;

 }

 wFilter4[iwFilterIdx4] = (unsigned int16)ADCBUF8;

 if (++iwFilterIdx4 > cFILTER_CNT) iwFilterIdx4 = 0;

 bADCDone |= cADCP4DONE;

 IFS7ADCP4IF = 0;

 ADCP4IE = 0;

 output_high(LED_PWM3_GD);

 }

unsigned int32 ulWaitForPair6= 0;

#INT_ADCP6

void vADCP6_ISR (void)

{

 int16 wVoltTmp,wTmp;

 if (ADCPC3PEND6!=0)

 {

 ADCP6IE = 1;

 ADCPC3SWTRG6 = 1;

 ulWaitForPair6++;

 return;

104

 }

#ifdef BRD_V2

 wVoltTmp = (unsigned int16)ADCBUF13;

 if (sAnaVals[6].sRawVal == 0)

 wFilter0[iwFilterIdx0] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[6].sRawVal +10;

 if (wVoltTmp < wTmp)

 wFilter0[iwFilterIdx0] = wVoltTmp;

 else

 wFilter0[iwFilterIdx0] = wTmp;

 }

 wVoltTmp = (unsigned int16)ADCBUF12;

 if (sAnaVals[7].sRawVal == 0)

 wIFilter0[iwFilterIdx0] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[7].sRawVal +10;

 if (wVoltTmp < wTmp)

 wIFilter0[iwFilterIdxI0] = wVoltTmp;

 else

 wIFilter0[iwFilterIdxI0] = wTmp;

 }

#endif

 if (++iwFilterIdx0 > cFILTER_CNT) iwFilterIdx0 = 0;

 if (++iwFilterIdxI0 > cFILTER_CNT) iwFilterIdxI0 = 0;

 bADCDone |= cADCP6DONE;

 IFS7ADCP6IF = 0;

 ADCP6IE = 0;

}

unsigned int32 ulWaitForPair7= 0;

#INT_ADCP7

void vADCP7_ISR (void)

{

 int16 wVoltTmp,wTmp;

 if (ADCPC3PEND7!=0)

 {

 ADCP7IE = 1;

 ADCPC3SWTRG7 = 1;

 ulWaitForPair7++;

 return;

 }

105

#ifdef BRD_V2

 wVoltTmp = (unsigned int16)ADCBUF15;

 if (sAnaVals[4].sRawVal == 0)

 wFilter3[iwFilterIdx3] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[4].sRawVal +10;

 if (wVoltTmp < wTmp)

 wFilter3[iwFilterIdx3] = wVoltTmp;

 else

 wFilter3[iwFilterIdx3] = wTmp;

 }

 wVoltTmp = (unsigned int16)ADCBUF14;

 if (sAnaVals[5].sRawVal == 0)

 wIFilter3[iwFilterIdx3] = wVoltTmp;

 else

 {

 wTmp = sAnaVals[5].sRawVal +10;

 if (wVoltTmp < wTmp)

 wIFilter3[iwFilterIdx3] = wVoltTmp;

 else

 wIFilter3[iwFilterIdx3] = wTmp;

 }

 if (++iwFilterIdx3 > cFILTER_CNT) iwFilterIdx3 = 0;

 bADCDone |= cADCP7DONE;

 ADCP7IE = 0;

 IFS7ADCP7IF = 0;

}

void vDoMPPTControl (void)

{

 float fPIn,fPDiff,fVDiff,fVInFilteredLoc;

 static float fStepAdj = PWM_MPPT_STEP;

 static float fPInLast = 0.0;

 static float fVInLast = 0.0;

 int8 bSign;

 static int8 bSignLast;

 //

 fVInFilteredLoc = floor(fVInFiltered);

 //

 fPIn = fVInFilteredLoc * fIInFiltered;

 fPDiff = fPIn - fPInLast;

 fVDiff = fVInFilteredLoc - fVInLast;

 //

 output_toggle(LED_PWM3_OC);

106

 if ((fPDiff == 0.0) && (fVDiff == 0.0)) return;

 // Do P&O

 output_toggle(LED_PWM2_OC);

 if (fPDiff > 0.0)

 {

 if (fVDiff > 0.0) bSign = 1;

 else bSign = -1;

 }

 else

 {

 if (fVDiff > 0.0) bSign = -1;

 else bSign = 1;

 }

 // dynamically adjust the step size for as long as sign stays the same

 if (bSign == bSignLast)

 {

 fStepAdj = fStepAdj + PWM_MPPT_STEP;

 if (fStepAdj > cP_O_MAX_ADJ) fStepAdj = cP_O_MAX_ADJ;

 }

 else

 {

 fStepAdj = PWM_MPPT_STEP;

 }

 bSignLast = bSign;

 //

 fMPPTDuty += fStepAdj * (float)bSign;

 if (fMPPTDuty < cP_O_MIN_ADJ) fMPPTDuty = cP_O_MIN_ADJ;

 if (fMPPTDuty > cP_O_MAX_ADJ) fMPPTDuty = cP_O_MAX_ADJ;

 fPInLast = fPIn;

 fVInLast = fVinFiltered;

}

void vDoPwmVOutControl (int8 iIdx)

{

 float fVInNom,fIInMax,fCurrentV,fCurrentI,fTmp,fIOvr;

 float output; //PID Variable

 unsigned int16 wLed;

 //

 if (!iFilterDone) return;

 switch (iIdx)

 {

 default: return;

#ifdef USE_PWM1

 case 0:

 fVInNom = 12.0; fIInMax = 4.2;

 fCurrentI = sAnaVals[0].fConverted;

 fCurrentV = sAnaVals[1].fConverted;

 wLed = LED_PWM1_GD;

 fIOvr = c4_2A_OVR_CUR;

 break;

107

#endif

#ifdef USE_PWM2

 case 1:

 fVInNom = 5.0; fIInMax = 10.0;

 fCurrentI = sAnaVals[2].fConverted;

 fCurrentV = sAnaVals[3].fConverted;

 wLed = LED_PWM2_GD;

 fIOvr = c10A_OVR_CUR;

 break;

#endif

#ifdef USE_PWM3

 case 2:

 fVInNom = 7.5; fIInMax = 20.0;

 fCurrentV = sAnaVals[4].fConverted;

 fCurrentI = sAnaVals[5].fConverted;

 wLed = LED_PWM3_GD;

 fIOvr = c20A_OVR_CUR;

 iFilterDone = 0;

 break;

#endif

 }

 if (fCurrentV == 0.0) fCurrentV = 0.1;

 disable_interrupts(GLOBAL);

#ifdef DO_PID_CONTROL

#ifdef USE_MPPT

 sPidMem[iIdx].setpoint = fVInNom + (fVInNom * (fMPPTDuty/100.0));

 sPidMem[iIdx].setpoint = fVInNom;

#endif //USE_MPPT

 output = PIDcal(&sPidMem[iIdx], fCurrentV);

 fDuty[iIdx] = fDuty[iIdx] + output;

#endif //DO_PID_CONTROL

 enable_interrupts(GLOBAL);

 if (fDuty[iIdx] < PWM_MIN) fDuty[iIdx] = PWM_MIN;

 if (fDuty[iIdx] > PWM_MAX) fDuty[iIdx] = PWM_MAX;

 fTmp = fDuty[iIdx];

 if (fTmp < 3.0) fTmp = 3.0;

 if (fTmp > 97.0) fTmp = 97.0;

 if ((iIdx < 0) && (iIdx > 2)) return;

 if (bPwmOn == 0)

 {

 fDuty[iIdx] = 1.0;

 vSetDuty (iIdx,fDuty[iIdx]);

 return;

 }

 vSetDuty(iIdx, fTmp);

 switch (iIdx)

 {

 case 0: wLed = LED_PWM1_OC; break;

108

 case 1: wLed = LED_PWM1_OC; break;

 case 2: wLed = LED_PWM1_OC; break;

 }

unsigned int16 wRunFilter (WORD *wFilterData)

{

 int8 iCnt;

 int32 lTmp = 0;

 WORD wFilteredVal;

 for (iCnt = 0; iCnt < cFILTER_CNT ; iCnt++,wFilterData++)

 lTmp += *wFilterData;

 wFilteredVal = lTmp / cFILTER_CNT;

 iFilterDone = 1;

 return wFilteredVal;

}

void vDoEngConv (BYTE *bPairsDone)

{

 if (*bPairsDone & cADCP1DONE)

 {

 sAnaVals[0].sRawVal = wRunFilter(wIFilter1);

 vCalcEng(0);

 sAnaVals[1].sRawVal = wRunFilter(wFilter1);

 vCalcEng(1);

 *bPairsDone &= ~cADCP1DONE;

 }

 if (*bPairsDone & cADCP2DONE)

 {

 sAnaVals[2].sRawVal = wRunFilter(wIFilter2);

 vCalcEng(2);

 sAnaVals[3].sRawVal = wRunFilter(wFilter2);

 vCalcEng(3);

 *bPairsDone &= ~cADCP2DONE;

 }

 if (*bPairsDone & cADCP6DONE)

 {

 sAnaVals[6].sRawVal = wRunFilter(wFilter0);

 vCalcEng(6);

 fVInFiltered = sAnaVals[6].fConverted;

 sAnaVals[7].sRawVal = wRunFilter(wIFilter0);

 vCalcEng(7);

 fIInFiltered = sAnaVals[7].fConverted;

 *bPairsDone &= ~cADCP6DONE;

 bMainIncomerADDone = 1;

109

 }

 if (*bPairsDone & cADCP7DONE)

 {

 sAnaVals[4].sRawVal = wRunFilter(wFilter3);

 vCalcEng(4);

 sAnaVals[5].sRawVal = wRunFilter(wIFilter3);

 vCalcEng(5);

 *bPairsDone &= ~cADCP7DONE;

 }

 if (*bPairsDone & cADCP4DONE)

 {

 }

 sAnaVals[8].sRawVal = wRunFilter(wFilter4);

 vCalcEng(8);

 *bPairsDone &= ~cADCP7DONE;

 bMainIncomerADDone = 1;

 }

 return;

}

void vCalcEng (int8 iIdx)

{

 WORD wRawSpan,wTmpVal,wRawVal;

 float fEngSpan,fTmpVal;

 // Do Eng Conv on 2 consecutive channels

 wRawVal = sAnaVals[iIdx].sRawVal;

 wRawSpan = sAnaVals[iIdx].wRawHigh - sAnaVals[iIdx].wRawLow;

 if (wRawSpan == 0)wRawSpan = 1024;

 fEngSpan = sAnaVals[iIdx].fEngHigh - sAnaVals[iIdx].fEngLow;

 if (fEngSpan <= 0.0) fEngSpan = 100.0;

 if (sAnaVals[iIdx].sRawVal <= sAnaVals[iIdx].wRawLow) {sAnaVals[iIdx].fConverted

=sAnaVals[iIdx].fEngLow;return;}

 wTmpVal = (sAnaVals[iIdx].sRawVal - sAnaVals[iIdx].wRawLow);

 fTmpVal = (float)wTmpVal * fEngSpan;

 fTmpVal /= (float)wRawSpan;

 fTmpVal += sAnaVals[iIdx].fEngLow;

 if (fTmpVal < 0.0) fTmpVal = 0.0;

 sAnaVals[iIdx].fConverted = fTmpVal;

 return;

}

#ifdef USE_HIST

WORD wPrevPDCVal[3][HIST_COUNT] = {0,0,0};

WORD wPrevValTemp[HIST_COUNT+1] = {0,0,0};

WORD bHistValIdx[3] = {0,0,0};

110

//

WORD wAddHistVal (BYTE bIdx, WORD wVal)

{

 int8 bTmp;

 unsigned long ulAveVal = 0;

 //

 if (bHistValIdx[bIdx] < HIST_COUNT)

 {

 wPrevPDCVal[bIdx][bHistValIdx[bIdx]] = wVal;

 bHistValIdx[bIdx]++;

 return wVal;

 }

 memcpy (wPrevValTemp,&wPrevPDCVal[bIdx][0],HIST_COUNT<<1);

 wPrevValTemp[HIST_COUNT] = wVal;

 memcpy (&wPrevPDCVal[bIdx][0],wPrevValTemp+1,HIST_COUNT<<1);

 for (bTmp = 0; bTmp < HIST_COUNT; bTmp++)

 ulAveVal += wPrevPDCVal[bIdx][bTmp];

 ulAveVal = ulAveVal / HIST_COUNT;

 return ((WORD)ulAveVal);

}

#endif

void vSetDuty (BYTE bIdx,float fVal)

{

 WORD wTmp,wDtMax;

 switch (bIdx)

 {

 case 0:

 wDtMax = (DTR1 > ALTDTR1 ? DTR1 : ALTDTR1);

 wTmp = (WORD)((float)(PWM_PERIOD) * (fVal/100.0));

 if (wTmp <= wDtMax + 30) wTmp = wDtMax + 30;

 if (wTmp >= PWM_PERIOD - wDtMax - 60) wTmp = PWM_PERIOD - wDtMax -

60;

#ifdef USE_HIST

 wTmp = wAddHistVal (bIdx,wTmp);

#endif

 PDC1 = wTmp;

 break;

 case 1:

 wDtMax = (DTR2 > ALTDTR2 ? DTR2 : ALTDTR2);

 wTmp = (WORD)((float)(PWM_PERIOD) * (fVal/100.0));

 if (wTmp <= wDtMax + 10) wTmp = wDtMax + 10;

 if (wTmp >= PWM_PERIOD - wDtMax - 10) wTmp = PWM_PERIOD - wDtMax -

10;

#ifdef USE_HIST

 wTmp = wAddHistVal (bIdx,wTmp);

#endif

 PDC2 = wTmp;

111

 break;

 case 2:

 wDtMax = (DTR3 > ALTDTR3 ? DTR3 : ALTDTR3);

 wTmp = (WORD)((float)(PWM_PERIOD) * (fVal/100.0));

 if (wTmp <= wDtMax + 10) wTmp = wDtMax + 10;

 if (wTmp >= PWM_PERIOD - wDtMax - 10) wTmp = PWM_PERIOD - wDtMax -

10;

#ifdef USE_HIST

 wTmp = wAddHistVal (bIdx,wTmp);

#endif

 PDC3 = wTmp;

 break;

 }

}

void vSetPwmOff (unsigned int8 bIdx)

{

 switch (bIdx)

 {

 case 0:

 IOCON1PENH = IOCON1PENL = 0;

 output_high (PWM1H);

 output_low (PWM1L);

 break;

 case 1:

 IOCON2PENH = IOCON2PENL = 0;

 output_high (PWM2H);

 output_low (PWM2L);

 break;

 case 2:

 IOCON3PENH = IOCON3PENL = 0;

 output_high (PWM3H);

 output_low (PWM3L);

 break;

 }

}

void vSetPwmOn (unsigned int8 bIdx)

{

 switch (bIdx)

 {

 case 0: IOCON1PENH = IOCON1PENL = 1; break;

 case 1: IOCON2PENH = IOCON2PENL = 1; break;

 case 2: IOCON3PENH = IOCON3PENL = 1; break;

 }

112

}

#INT_CMP1

void vISR_Comp1 (void)

{

 wCurLimTimer[0] = cCURRENT_LIMIT_TIME;

 bCurrentLimitFlg[0] = 1;

}

#INT_CMP2

void vISR_Comp2 (void)

{

 wCurLimTimer[1] = cCURRENT_LIMIT_TIME;

 bCurrentLimitFlg[1] = 1;

}

#INT_CMP3

void vISR_Comp3 (void)

{

 wCurLimTimer[2] = cCURRENT_LIMIT_TIME;

 bCurrentLimitFlg[2] = 1;

}

//Header file

// File: MPPT_DC-DC.h

// Author: Neil J.v Rensburg

#ifndef MPPT_PWM

#define MPPT_PWM

#ifdef __cplusplus

extern "C" {

#endif

#define BRD_V2

#define USE_HIST

#define NEW_AD_RES_VALS

#define USE_MPPT

#define DO_PID_CONTROL

#define cONE_SEC (300)

#define cINTER_ADC_CHN_DELAY (10)

#define cOVER_CURRENT_DELAY (1000)

#define c4_2A_OVR_CUR (4.8)

#define c10A_OVR_CUR (11.0)

#define c20A_OVR_CUR (22.0)

#define START_PAIR1 (0)

#define WAIT_PAIR2 (1)

#define START_PAIR2 (2)

113

#define WAIT_PAIR3 (3)

#define START_PAIR3 (4)

#define WAIT_PAIR4 (5)

#define START_PAIR4 (6)

#define WAIT_PAIR5 (7)

#define START_PAIR5 (8)

#define WAIT_PAIR1 (9)

 ////////////PINS///////////////////

#ifdef BRD_V2

#define ADCIS1 PIN_B2

#define ADCVMC1 PIN_B3

#define ADCIS2 PIN_B4

#define ADCVMC2 PIN_B5

#define VIN_PWR_GOOD PIN_B8

#define ADCCSMPP PIN_B12

#define ADCVSMPP PIN_B13

#define ADCIS3 PIN_B14

#define ADCVMC3 PIN_B15

#define LED_PWM1_OC PIN_C13

#define LED_PWM1_GD PIN_C14

#define LED_PWM2_GD PIN_D0

#define LED_SYS PIN_D1

#define CHRG_ON PIN_D3

#define LED_PWM3_OC PIN_D9

#define LED_PWM3_GD PIN_D10

#define LED_PWM2_OC PIN_D11

#define DEBUG_PIN PIN_B0

#define COMPVREF PIN_B11

#define WDK PIN_D2

#define POWERON PIN_F3

#define PWM1L PIN_E0

#define PWM1H PIN_E1

#define PWM2L PIN_E2

#define PWM2H PIN_E3

#define PWM3L PIN_E4

#define PWM3H PIN_E5

/////////////////////Special Function Registers///////////////////

#WORD PLLFBD = 0x0746

#WORD CLKDIV = 0x0744

#BIT PLLPOST1 = CLKDIV.6

#BIT PLLPOST0 = CLKDIV.5

#BIT PLLPRE4 = CLKDIV.4

#BIT PLLPRE3 = CLKDIV.3

114

#BIT PLLPRE2 = CLKDIV.2

#BIT PLLPRE1 = CLKDIV.1

#BIT PLLPRE0 = CLKDIV.0

#WORD ACLKCON = 0x0750

#BIT FRCSEL = ACLKCON.6

#BIT SELACLK = ACLKCON.7

#BIT APSTSCLR0 = ACLKCON.8

#BIT APSTSCLR1 = ACLKCON.9

#BIT APSTSCLR2 = ACLKCON.10

#BIT ENAPLL = ACLKCON.15

#BIT APLLCK = ACLKCON.14

#WORD OSCCON = 0x0742

#BIT OSWEN = OSCCON.0

#BIT LOCK = OSCCON.5

#BIT NOSC2 = OSCCON.10

#BIT NOSC1 = OSCCON.9

#BIT NOSC0 = OSCCON.8

#BIT COSC2 = OSCCON.14

#BIT COSC1 = OSCCON.13

#BIT COSC0 = OSCCON.12

#WORD ACLKCON = 0x0750

#BIT ACLKCONENAPLL = ACLKCON.15

#BIT ACLKCONAPLLCK = ACLKCON.14

#BIT ACLKCONSELACLK = ACLKCON.13

#BIT ACLKCONAPSTSCLR2 = ACLKCON.10

#BIT ACLKCONAPSTSCLR1 = ACLKCON.9

#BIT ACLKCONAPSTSCLR0 = ACLKCON.8

#BIT ACLKCONASRCSEL = ACLKCON.7

#BIT ACLKCONFRCSEL = ACLKCON.6

#WORD CLKDIV = 0x0744

#BIT CLKDIVPLLPOST1 = CLKDIV.7

#BIT CLKDIVPLLPOST0 = CLKDIV.6

#BIT CLKDIVPLLPRE4 = CLKDIV.4

#BIT CLKDIVPLLPRE3 = CLKDIV.3

#BIT CLKDIVPLLPRE2 = CLKDIV.2

#BIT CLKDIVPLLPRE1 = CLKDIV.1

#BIT CLKDIVPLLPRE0 = CLKDIV.0

#WORD OSCCON = 0x0742

#BIT OSCCONLOCK = OSCCON.5

#word PTCON = 0x0400

#BIT PTCONPTEN = PTCON.15

#BIT PTCONPTSIDL = PTCON.13

#BIT PTCONSYNCOEN = PTCON.8

#BIT PTCONSEVTPS3 = PTCON.3

#BIT PTCONSEVTPS2 = PTCON.2

115

#BIT PTCONSEVTPS1 = PTCON.1

#BIT PTCONSEVTPS0 = PTCON.0

#word PTCON2 = 0x0402

#word PTPER = 0x0404

#word SEVTCMPL = 0x0406

#word SEVTCMPH = 0x0407

#word SEVTCMP = 0x0406

#word MDC = 0x040A

#word STCON = 0x040E

#BIT STCONSEIEN = STCON.11

#BIT STCONSYNCOEN = STCON.8

#BIT STCONSYNCEN = STCON.7

#BIT STCONSEVTPS3 = STCON.3

#BIT STCONSEVTPS2 = STCON.2

#BIT STCONSEVTPS1 = STCON.1

#BIT STCONSEVTPS0 = STCON.0

#word STCON2 = 0x0410

#word STPER = 0x0412

#word SSEVTCMP = 0x0414

#word CHOP = 0x041A

//

// PWM1

//

#word PWMCON1 = 0x0420

#BIT PWMCON1FLTSTAT = PWMCON1.15

#BIT PWMCON1CLSTAT = PWMCON1.14

#BIT PWMCON1TRGSTAT = PWMCON1.13

#BIT PWMCON1FLTIEN = PWMCON1.12

#BIT PWMCON1CLIEN = PWMCON1.11

#BIT PWMCON1TRGIEN = PWMCON1.10

#BIT PWMCON1ITB = PWMCON1.9

#BIT PWMCON1MDCS = PWMCON1.8

#BIT PWMCON1DTC1 = PWMCON1.7

#BIT PWMCON1DTC0 = PWMCON1.6

#BIT PWMCON1DTCP = PWMCON1.5

#BIT PWMCON1MTBS = PWMCON1.3

#BIT PWMCON1CAM = PWMCON1.2

#BIT PWMCON1XPRES = PWMCON1.1

#BIT PWMCON1IUE = PWMCON1.0

#word IOCON1 = 0x0422

#bit IOCON1PENH = IOCON1.15

#bit IOCON1PENL = IOCON1.14

#bit IOCON1POLH = IOCON1.13

#bit IOCON1POLL = IOCON1.12

#bit IOCON1PMOD1 = IOCON1.11

#bit IOCON1PMOD0 = IOCON1.10

116

#bit IOCON1OVRENH = IOCON1.9

#bit IOCON1OVRENL = IOCON1.8

#bit IOCON1OVRDAT1 = IOCON1.7

#bit IOCON1OVRDAT0 = IOCON1.6

#bit IOCON1FLTDAT1 = IOCON1.5

#bit IOCON1FLTDAT0 = IOCON1.4

#bit IOCON1CLDAT1 = IOCON1.3

#bit IOCON1CLDAT0 = IOCON1.1

#bit IOCON1OSYNC = IOCON1.0

#word FCLCON1 = 0x0424

#bit FCLCON1IFLTMOD = FCLCON1.15

#bit FCLCON1CLSRC4 = FCLCON1.14

#bit FCLCON1CLSRC3 = FCLCON1.13

#bit FCLCON1CLSRC2 = FCLCON1.12

#bit FCLCON1CLSRC1 = FCLCON1.11

#bit FCLCON1CLSRC0 = FCLCON1.10

#bit FCLCON1CLPOL = FCLCON1.9

#bit FCLCON1CLMOD = FCLCON1.8

#bit FCLCON1FLTSRC4 = FCLCON1.7

#bit FCLCON1FLTSRC3 = FCLCON1.6

#bit FCLCON1FLTSRC2 = FCLCON1.5

#bit FCLCON1FLTSRC1 = FCLCON1.4

#bit FCLCON1FLTSRC0 = FCLCON1.3

#bit FCLCON1FLTPOL = FCLCON1.2

#bit FCLCON1FLTMOD1 = FCLCON1.1

#bit FCLCON1FLTMOD0 = FCLCON1.0

#word PDC1 = 0x0426

#word PHASE1 = 0x0428

#word DTR1 = 0x042A

#word ALTDTR1 = 0x042C

#word SDC1 = 0x042E

#word SPHASE1 = 0x0430

#word TRIG1 = 0x0432

#word TRGCON1 = 0x0434

#bit TRGCON1TRGDIV3 = TRGCON1.15

#bit TRGCON1TRGDIV2 = TRGCON1.14

#bit TRGCON1TRGDIV1 = TRGCON1.13

#bit TRGCON1TRGDIV0 = TRGCON1.12

#bit TRGCON1TRGSTRT5 = TRGCON1.5

#bit TRGCON1TRGSTRT4 = TRGCON1.4

#bit TRGCON1TRGSTRT3 = TRGCON1.3

#bit TRGCON1TRGSTRT2 = TRGCON1.2

#bit TRGCON1TRGSTRT1 = TRGCON1.1

#bit TRGCON1TRGSTRT0 = TRGCON1.0

#word STRIG1 = 0x0436

#word PWMCAP1 = 0x0438

#word LEBCON1 = 0x043A

#word LEBDLY1 = 0x043C

117

#word AUXCON1 = 0x043E

//

// PWM2

//

#word PWMCON2 = 0x0440

#BIT PWMCON2FLTSTAT = PWMCON2.15

#BIT PWMCON2CLSTAT = PWMCON2.14

#BIT PWMCON2TRGSTAT = PWMCON2.13

#BIT PWMCON2FLTIEN = PWMCON2.12

#BIT PWMCON2CLIEN = PWMCON2.11

#BIT PWMCON2TRGIEN = PWMCON2.10

#BIT PWMCON2ITB = PWMCON2.9

#BIT PWMCON2MDCS = PWMCON2.8

#BIT PWMCON2DTC1 = PWMCON2.7

#BIT PWMCON2DTC0 = PWMCON2.6

#BIT PWMCON2DTCP = PWMCON2.5

#BIT PWMCON2MTBS = PWMCON2.3

#BIT PWMCON2CAM = PWMCON2.2

#BIT PWMCON2XPRES = PWMCON2.1

#BIT PWMCON2IUE = PWMCON2.0

#word IOCON2 = 0x0442

#bit IOCON2PENH = IOCON2.15

#bit IOCON2PENL = IOCON2.14

#bit IOCON2POLH = IOCON2.13

#bit IOCON2POLL = IOCON2.12

#bit IOCON2PMOD1 = IOCON2.11

#bit IOCON2PMOD0 = IOCON2.10

#bit IOCON2OVRENH = IOCON2.9

#bit IOCON2OVRENL = IOCON2.8

#bit IOCON2OVRDAT1 = IOCON2.7

#bit IOCON2OVRDAT0 = IOCON2.6

#bit IOCON2FLTDAT1 = IOCON2.5

#bit IOCON2FLTDAT0 = IOCON2.4

#bit IOCON2CLDAT1 = IOCON2.3

#bit IOCON2CLDAT0 = IOCON2.2

#bit IOCON2SWAP = IOCON2.1

#bit IOCON2OSYNC = IOCON2.0

#word FCLCON2 = 0x0444

#bit FCLCON2IFLTMOD = FCLCON2.15

#bit FCLCON2CLSRC4 = FCLCON2.14

#bit FCLCON2CLSRC3 = FCLCON2.13

#bit FCLCON2CLSRC2 = FCLCON2.12

#bit FCLCON2CLSRC1 = FCLCON2.11

#bit FCLCON2CLSRC0 = FCLCON2.10

#bit FCLCON2CLPOL = FCLCON2.9

#bit FCLCON2CLMOD = FCLCON2.8

#bit FCLCON2FLTSRC4 = FCLCON2.7

#bit FCLCON2FLTSRC3 = FCLCON2.6

118

#bit FCLCON2FLTSRC2 = FCLCON2.5

#bit FCLCON2FLTSRC1 = FCLCON2.4

#bit FCLCON2FLTSRC0 = FCLCON2.3

#bit FCLCON2FLTPOL = FCLCON2.2

#bit FCLCON2FLTMOD1 = FCLCON2.1

#bit FCLCON2FLTMOD0 = FCLCON2.0

#word PDC2 = 0x0446

#word PHASE2 = 0x0448

#word DTR2 = 0x044A

#word ALTDTR2 = 0x044C

#word SDC2 = 0x044E

#word SPHASE2 = 0x0450

#word TRIG2 = 0x0452

#word TRGCON2 = 0x0454

#bit TRGCON2TRGDIV3 = TRGCON2.15

#bit TRGCON2TRGDIV2 = TRGCON2.14

#bit TRGCON2TRGDIV1 = TRGCON2.13

#bit TRGCON2TRGDIV0 = TRGCON2.12

#bit TRGCON2TRGSTRT5 = TRGCON2.5

#bit TRGCON2TRGSTRT4 = TRGCON2.4

#bit TRGCON2TRGSTRT3 = TRGCON2.3

#bit TRGCON2TRGSTRT2 = TRGCON2.2

#bit TRGCON2TRGSTRT1 = TRGCON2.1

#bit TRGCON2TRGSTRT0 = TRGCON2.0

#word STRIG2 = 0x0456

#word PWMCAP2 = 0x0458

#word LEBCON2 = 0x045A

#word LEBDLY2 = 0x045C

#word AUXCON2 = 0x045E

//

// PWM3

//

#word PWMCON3 = 0x0460

#BIT PWMCON3FLTSTAT = PWMCON3.15

#BIT PWMCON3CLSTAT = PWMCON3.14

#BIT PWMCON3TRGSTAT = PWMCON3.13

#BIT PWMCON3FLTIEN = PWMCON3.12

#BIT PWMCON3CLIEN = PWMCON3.11

#BIT PWMCON3TRGIEN = PWMCON3.10

#BIT PWMCON3ITB = PWMCON3.9

#BIT PWMCON3MDCS = PWMCON3.8

#BIT PWMCON3DTC1 = PWMCON3.7

#BIT PWMCON3DTC0 = PWMCON3.6

#BIT PWMCON3DTCP = PWMCON3.5

#BIT PWMCON3MTBS = PWMCON3.3

#BIT PWMCON3CAM = PWMCON3.2

#BIT PWMCON3XPRES = PWMCON3.1

#BIT PWMCON3IUE = PWMCON3.0

119

#word IOCON3 = 0x0462

#bit IOCON3PENH = IOCON3.15

#bit IOCON3PENL = IOCON3.14

#bit IOCON3POLH = IOCON3.13

#bit IOCON3POLL = IOCON3.12

#bit IOCON3PMOD1 = IOCON3.11

#bit IOCON3PMOD0 = IOCON3.10

#bit IOCON3OVRENH = IOCON3.9

#bit IOCON3OVRENL = IOCON3.8

#bit IOCON3OVRDAT1 = IOCON3.7

#bit IOCON3OVRDAT0 = IOCON3.6

#bit IOCON3FLTDAT1 = IOCON3.5

#bit IOCON3FLTDAT0 = IOCON3.4

#bit IOCON3CLDAT1 = IOCON3.3

#bit IOCON3CLDAT0 = IOCON3.2

#bit IOCON3SWAP = IOCON3.1

#bit IOCON3OSYNC = IOCON3.0

#word FCLCON3 = 0x0464

#bit FCLCON3IFLTMOD = FCLCON3.15

#bit FCLCON3CLSRC4 = FCLCON3.14

#bit FCLCON3CLSRC3 = FCLCON3.13

#bit FCLCON3CLSRC2 = FCLCON3.12

#bit FCLCON3CLSRC1 = FCLCON3.11

#bit FCLCON3CLSRC0 = FCLCON3.10

#bit FCLCON3CLPOL = FCLCON3.9

#bit FCLCON3CLMOD = FCLCON3.8

#bit FCLCON3FLTSRC4 = FCLCON3.7

#bit FCLCON3FLTSRC3 = FCLCON3.6

#bit FCLCON3FLTSRC2 = FCLCON3.5

#bit FCLCON3FLTSRC1 = FCLCON3.4

#bit FCLCON3FLTSRC0 = FCLCON3.3

#bit FCLCON3FLTPOL = FCLCON3.2

#bit FCLCON3FLTMOD1 = FCLCON3.1

#bit FCLCON3FLTMOD0 = FCLCON3.0

#word PDC3 = 0x0466

#word PHASE3 = 0x0468

#word DTR3 = 0x046A

#word ALTDTR3 = 0x046C

#word SDC3 = 0x046E

#word SPHASE3 = 0x0470

#word TRIG3 = 0x0472

#word TRGCON3 = 0x0474

#bit TRGCON3TRGDIV3 = TRGCON3.15

#bit TRGCON3TRGDIV2 = TRGCON3.14

#bit TRGCON3TRGDIV1 = TRGCON3.13

#bit TRGCON3TRGDIV0 = TRGCON3.12

#bit TRGCON3TRGSTRT5 = TRGCON3.5

#bit TRGCON3TRGSTRT4 = TRGCON3.4

#bit TRGCON3TRGSTRT3 = TRGCON3.3

120

#bit TRGCON3TRGSTRT2 = TRGCON3.2

#bit TRGCON3TRGSTRT1 = TRGCON3.1

#bit TRGCON3TRGSTRT0 = TRGCON3.0

#word STRIG3 = 0x0476

#word PWMCAP3 = 0x0478

#word LEBCON3 = 0x047A

#word LEBDLY3 = 0x047C

#word AUXCON3 = 0x047E

//ADC SFR's

#WORD ADCON = 0x0300

#BIT ADCONADON = ADCON.15

#BIT ADCONADSIDL = ADCON.13

#BIT ADCONSLOWCLK = ADCON.12

#BIT ADCONGSWTRG = ADCON.10

#BIT ADCONFORM = ADCON.8

#BIT ADCONEIE = ADCON.7

#BIT ADCONORDER = ADCON.6

#BIT ADCONSEQSAMP = ADCON.5

#BIT ADCONASYNCSAMP = ADCON.4

#BIT ADCONADCS2 = ADCON.2

#BIT ADCONADCS1 = ADCON.1

#BIT ADCONADCS0 = ADCON.0

#WORD IFS5 = 0x008E

#BIT IFS5PWM2IF = IFS5.15

#BIT IFS5PWM1IF = IFS5.14

#BIT IFS5ADCP12IF = IFS5.13

#BIT IFS5ADCP11IF = IFS5.4

#BIT IFS5ADCP10IF = IFS5.3

#BIT IFS5ADCP9IF = IFS5.2

#BIT IFS5ADCP8IF = IFS5.1

#WORD IFS6 = 0x0090

#BIT IFS6ADCP1IF = IFS6.15

#BIT IFS6ADCP0IF = IFS6.14

#BIT IFS6AC4IF = IFS6.9

#BIT IFS6AC3IF = IFS6.8

#BIT IFS6AC2IF = IFS6.7

#BIT IFS6PWM9IF = IFS6.6

#BIT IFS6PWM8IF = IFS6.5

#BIT IFS6PWM7IF = IFS6.4

#BIT IFS6PWM6IF = IFS6.3

#BIT IFS6PWM5IF = IFS6.2

#BIT IFS6PWM4IF = IFS6.1

#BIT IFS6PWM3IF = IFS6.0

#WORD IFS7 = 0x0092

#BIT IFS7ADCP7IF = IFS7.5

121

#BIT IFS7ADCP6IF = IFS7.4

#BIT IFS7ADCP5IF = IFS7.3

#BIT IFS7ADCP4IF = IFS7.2

#BIT IFS7ADCP3IF = IFS7.1

#BIT IFS7ADCP2IF = IFS7.0

#WORD IPC27 = 0x00DA

#BIT IPC27ADCP1IP2 = IPC27.14

#BIT IPC27ADCP1IP1 = IPC27.13

#BIT IPC27ADCP1IP0 = IPC27.12

#BIT IPC27ADCP0IP2 = IPC27.10

#BIT IPC27ADCP0IP1 = IPC27.9

#BIT IPC27ADCP0IP0 = IPC27.8

#WORD IPC28 = 0x00DC

#BIT IPC28ADCP5IP2 = IPC28.14

#BIT IPC28ADCP5IP1 = IPC28.13

#BIT IPC28ADCP5IP0 = IPC28.12

#BIT IPC28ADCP4IP2 = IPC28.10

#BIT IPC28ADCP4IP1 = IPC28.9

#BIT IPC28ADCP4IP0 = IPC28.8

#BIT IPC28ADCP3IP2 = IPC28.6

#BIT IPC28ADCP3IP1 = IPC28.5

#BIT IPC28ADCP3IP0 = IPC28.4

#BIT IPC28ADCP2IP2 = IPC28.2

#BIT IPC28ADCP2IP1 = IPC28.1

#BIT IPC28ADCP2IP0 = IPC28.0

#WORD IPC29 = 0x00DE

#BIT IPC29ADCP7IP2 = IPC29.6

#BIT IPC29ADCP7IP1 = IPC29.5

#BIT IPC29ADCP7IP0 = IPC29.4

#BIT IPC29ADCP6IP2 = IPC29.2

#BIT IPC29ADCP6IP1 = IPC29.1

#BIT IPC29ADCP6IP0 = IPC29.0

#WORD IEC6 = 0x00A0

#BIT IEC6ADCP0IE = IEC6.15

#BIT IEC6ADCP1IE = IEC6.14

#WORD IEC7 = 0x00A2

#BIT IEC7ADCP4IE = IEC7.2

#WORD ADPCFG = 0x0302

#BIT ADPCFGPCFG0 = ADPCFG.0

#BIT ADPCFGPCFG1 = ADPCFG.1

#BIT ADPCFGPCFG2 = ADPCFG.2

#BIT ADPCFGPCFG3 = ADPCFG.3

#BIT ADPCFGPCFG4 = ADPCFG.4

#BIT ADPCFGPCFG5 = ADPCFG.5

122

#BIT ADPCFGPCFG8 = ADPCFG.8

#BIT ADPCFGPCFG9 = ADPCFG.9

#BIT ADPCFGPCFG12 = ADPCFG.12

#BIT ADPCFGPCFG13 = ADPCFG.13

#BIT ADPCFGPCFG14 = ADPCFG.14

#BIT ADPCFGPCFG15 = ADPCFG.15

#WORD ADPCFG2 = 0x0304

#WORD ADSTAT = 0x0306

#BIT ADSTATP0RDY = ADSTAT.0

#BIT ADSTATP1RDY = ADSTAT.1

#BIT ADSTATP2RDY = ADSTAT.2

#BIT ADSTATP4RDY = ADSTAT.4

#BIT ADSTATP6RDY = ADSTAT.6

#BIT ADSTATP7RDY = ADSTAT.7

#WORD ADCPC0 = 0x030A

#BIT ADCPC0IRQEN0 = ADCPC0.7

#BIT ADCPC0SWTRG0 = ADCPC0.5

#BIT ADCPC0TRGSRC04 = ADCPC0.4

#BIT ADCPC0TRGSRC03 = ADCPC0.3

#BIT ADCPC0TRGSRC02 = ADCPC0.2

#BIT ADCPC0TRGSRC01 = ADCPC0.1

#BIT ADCPC0TRGSRC00 = ADCPC0.0

#BIT ADCPC0IRQEN1 = ADCPC0.15

#BIT ADCPC0PEND1 = ADCPC0.14

#BIT ADCPC0SWTRG1 = ADCPC0.13

#BIT ADCPC0TRGSRC14 = ADCPC0.12

#BIT ADCPC0TRGSRC13 = ADCPC0.11

#BIT ADCPC0TRGSRC12 = ADCPC0.10

#BIT ADCPC0TRGSRC11 = ADCPC0.9

#BIT ADCPC0TRGSRC10 = ADCPC0.8

#WORD ADCPC1 = 0x030C

#BIT ADCPC1IRQEN2 = ADCPC1.7

#BIT ADCPC1PEND2 = ADCPC1.6

#BIT ADCPC1SWTRG2 = ADCPC1.5

#BIT ADCPC1TRGSRC24 = ADCPC1.4

#BIT ADCPC1TRGSRC23 = ADCPC1.3

#BIT ADCPC1TRGSRC22 = ADCPC1.2

#BIT ADCPC1TRGSRC21 = ADCPC1.1

#BIT ADCPC1TRGSRC20 = ADCPC1.0

#WORD ADCPC2 = 0x030E

#BIT ADCPC2IRQEN4 = ADCPC2.8

#BIT ADCPC2PEND4 = ADCPC2.6

#BIT ADCPC2SWTRG4 = ADCPC2.5

#BIT ADCPC2TRGSRC44 = ADCPC2.4

#BIT ADCPC2TRGSRC43 = ADCPC2.3

#BIT ADCPC2TRGSRC42 = ADCPC2.2

123

#BIT ADCPC2TRGSRC41 = ADCPC2.1

#BIT ADCPC2TRGSRC40 = ADCPC2.0

#WORD ADCPC3 = 0x0310

#BIT ADCPC3IRQEN7 = ADCPC3.15

#BIT ADCPC3PEND7 = ADCPC3.14

#BIT ADCPC3SWTRG7 = ADCPC3.13

#BIT ADCPC3TRGSRC74 = ADCPC3.12

#BIT ADCPC3TRGSRC73 = ADCPC3.11

#BIT ADCPC3TRGSRC72 = ADCPC3.10

#BIT ADCPC3TRGSRC71 = ADCPC3.9

#BIT ADCPC3TRGSRC70 = ADCPC3.8

#BIT ADCPC3IRQEN6 = ADCPC3.7

#BIT ADCPC3PEND6 = ADCPC3.6

#BIT ADCPC3SWTRG6 = ADCPC3.5

#BIT ADCPC3TRGSRC64 = ADCPC3.4

#BIT ADCPC3TRGSRC63 = ADCPC3.3

#BIT ADCPC3TRGSRC62 = ADCPC3.2

#BIT ADCPC3TRGSRC61 = ADCPC3.1

#BIT ADCPC3TRGSRC60 = ADCPC3.0

#WORD ADCBUF0 = 0x0340

#WORD ADCBUF1 = 0x0342

#WORD ADCBUF2 = 0x0344

#WORD ADCBUF3 = 0x0346

#WORD ADCBUF4 = 0x0348

#WORD ADCBUF5 = 0x034A

#WORD ADCBUF6 = 0x034C

#WORD ADCBUF7 = 0x034E

#WORD ADCBUF8 = 0x0350

#WORD ADCBUF9 = 0x0352

#WORD ADCBUF10 = 0x0354

#WORD ADCBUF11 = 0x0356

#WORD ADCBUF12 = 0x0358

#WORD ADCBUF13 = 0x035A

#WORD ADCBUF14 = 0x035C

#WORD ADCBUF15 = 0x035E

#WORD ADCBUF24 = 0x0370

#WORD ADCBUF25 = 0x0372

#WORD IEC6 = 0x00A0

#BIT ADCP1IE = IEC6.15

#BIT ADCP0IE = IEC6.14

#WORD IEC7 = 0x00A2

#BIT ADCP7IE = IEC7.5

#BIT ADCP6IE = IEC7.4

#BIT ADCP5IE = IEC7.3

#BIT ADCP4IE = IEC7.2

#BIT ADCP3IE = IEC7.1

#BIT ADCP2IE = IEC7.0

124

//Comparator SFR's

#byte CMPCON1 = 0x0540

#bit CMPCON1CMPON = CMPCON1.15

#bit CMPCON1CMPSIDL = CMPCON1.13

#bit CMPCON1DACOE = CMPCON1.8

#bit CMPCON1INSEL1 = CMPCON1.7

#bit CMPCON1INSEL0 = CMPCON1.6

#bit CMPCON1EXTREF = CMPCON1.5

#bit CMPCON1CMPSTAT = CMPCON1.3

#bit CMPCON1CMPPOL = CMPCON1.1

#bit CMPCON1RANGE = CMPCON1.0

#byte CMPDAC1 = 0x0542

#byte CMPCON2 = 0x0544

#bit CMPCON2CMPON = CMPCON2.15

#bit CMPCON2CMPSIDL = CMPCON2.13

#bit CMPCON2DACOE = CMPCON2.8

#bit CMPCON2INSEL1 = CMPCON2.7

#bit CMPCON2INSEL0 = CMPCON2.6

#bit CMPCON2EXTREF = CMPCON2.5

#bit CMPCON2CMPSTAT = CMPCON2.3

#bit CMPCON2CMPPOL = CMPCON2.1

#bit CMPCON2RANGE = CMPCON2.0

#byte CMPDAC2 = 0x0546

#byte CMPCON3 = 0x0548

#bit CMPCON3CMPON = CMPCON3.15

#bit CMPCON3CMPSIDL = CMPCON3.13

#bit CMPCON3DACOE = CMPCON3.8

#bit CMPCON3INSEL1 = CMPCON3.7

#bit CMPCON3INSEL0 = CMPCON3.6

#bit CMPCON3EXTREF = CMPCON3.5

#bit CMPCON3CMPSTAT = CMPCON3.3

#bit CMPCON3CMPPOL = CMPCON3.1

#bit CMPCON3RANGE = CMPCON3.0

#byte CMPDAC3 = 0x054A

#byte CMPCON4 = 0x054c

#bit CMPCON4CMPON = CMPCON4.15

#bit CMPCON4CMPSIDL = CMPCON4.13

#bit CMPCON4DACOE = CMPCON4.8

#bit CMPCON4INSEL1 = CMPCON4.7

#bit CMPCON4INSEL0 = CMPCON4.6

#bit CMPCON4EXTREF = CMPCON4.5

#bit CMPCON4CMPSTAT = CMPCON4.3

#bit CMPCON4CMPPOL = CMPCON4.1

125

#bit CMPCON4RANGE = CMPCON4.0

#byte CMPDAC4 = 0x054E

 //////////////////////////DEFINES////////////////////////////

#define cADCP1DONE (0x01)

#define cADCP2DONE (0x02)

#define cADCP6DONE (0x04)

#define cADCP7DONE (0x08)

#define cADCP4DONE (0x10)

#define cCURRENT_LIMIT_TIME (1000)

#define cINCOMER_TIMER_VAL (1000)

#define PWM_PERIOD 1580

#define PWM_MIN (3.0)

#define PWM_MAX (97.0)

#define PWM_MPPT_STEP (1.0)

#ifdef NEW_AD_RES_VALS

#define cP_O_MIN_ADJ (-30.0)

#define cP_O_MAX_ADJ (30.0)

#else

#define cP_O_MIN_ADJ (-10.0)

#define cP_O_MAX_ADJ (10.0)

#endif

#define cVIN_MIN_SW_ON (8.0)

#define cVIN_MIN_SW_ON_HYST (cVIN_MIN_SW_ON / 10.0)

#define cFILTER_CNT (55)

#define HIST_COUNT (2)

////////////////////////////TYPES////////////////////////////

typedef unsigned int16 WORD;

typedef struct

{

 WORD wRawLow;

 WORD wRawHigh;

 float fEngLow;

 float fEngHigh;

 float fConverted;

 float fFiltered;

 unsigned int16 sRawVal;

} sANAENG,*psANAENG;

126

typedef struct

{

 float fKp; // constants for PID

 float fKd;

 float fKi;

 //

 float pre_error;

 float integral;

 float error;

 float derivative;

 float output;

 float setpoint;

} sPIDSTRUCT, *psPIDSTRUCT;

////////////////////////////Prototypes////////////////////////////

void vSetupBoard (void);

void vInitClock (void);

void vSwitchPower (int8 bState);

void vSetupStruct (void);

void vSetupPins (void);

void vSetupPWM (void);

void vStartPWM (void);

void vStopPWM (void);

void vSetupADC (void);

void vInitADC (void);

void vSetupTimers (void);

void vSetupInterrupts (void);

void vDoPwmVOutControl (int8 iIdx);

void vDoMPPTControl (void);

void vDoEngConv (BYTE *bPairsDone);

void vCalcEng (int8 iIdx);

void vKickWdt (void);

void vSetDuty (BYTE bIdx,float fVal);

void vDoFiltering (psANAENG psEngTbl);

void vSetPwmOn (unsigned int8 bIdx);

void vSetPwmOff (unsigned int8 bIdx);

//

float PIDcal (psPIDSTRUCT sPidMem,float actual_position);

#ifdef __cplusplus

}

#endif

#endif

Neil JVR
Rectangle

Neil JVR
Rectangle

