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Abstract 

Global warming is of increasing concern due to several greenhouse gases. The 

combustion of fossil fuels is the major contributor to the greenhouse effect. To 

minimalise this effect, alternative energy sources have to be considered. Alternative 

energy sources should not only be environmentally friendly, but also renewable 

and/or sustainable. Two such alternative energy sources are hydrogen and solar 

energy.  

The regenerative fuel cell, commonly known as a hydrogen generator, is used to 

produce hydrogen. The current solar/hydrogen system at the Vaal University of 

Technology’s Telkom Centre of Excellence makes use of PV array to supply power 

to an inverter and the inverter is connected to the hydrogen generator. The inverter 

provides the hydrogen generator with 220VAC. The hydrogen generator has its own 

power supply unit to convert the AC power back to DC power. This reduces the 

efficiency of the system because there will be power loss when converting DC power 

to AC power and back to DC power. The hydrogen generator, however, could be 

powered directly from a PV array. However, the hydrogen generator needs specific 

input parameters in order to operate. Three different input voltages with their own 

current rating are required by the hydrogen generator to operate properly. Thus, a 

DC-DC power supply unit needs to be designed to be able to output these parameters 

to the hydrogen generator. It is also important to note that current PV panel 

efficiency is very low; therefore, the DC-DC power supply unit also needs to extract 

the maximum available power from the PV array. In order for the DC-DC power 

supply unit to be able to extract this maximum power, a maximum power point 

tracking algorithm needs to be implemented into the design. The DC-DC power 

supply is designed as a switch mode power supply unit. The reason for this is that the 

efficiency of a switch mode power supply is higher than that of a linear power 

supply. 

To reach the objective the following methodology was followed. The first part of the 

research provided an introduction to PV energy, charge controllers and hydrogen 

generators. The problem statement is included as well as the purpose of this research 
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and how this research was to be carried out. The second part is the literature review. 

This includes the background study of algorithms implemented in MPPT’s; it also 

explains in detail how to design the MPPT DC-DC SMPS. The third part was divided 

into two sections. The first section is the design, programming and manufacturing of 

the MPPT DC-DC SMPS. The second section is the simulation of the system as a 

whole which is the simulation of the PV array connected to the MPPT DC-DC SMPS 

and the hydrogen generator. The fourth part in the research compared the results 

obtained in the simulation and practical setup. The last part of the research provided 

a conclusion along with recommendation made for further research. 

The simulation results showed that the system works with an efficiency of 40,84%. 

This is lower than expected but the design can be optimised to increase efficiency. 

The practical results showed the efficiency to be 38%. The reason for the lower 

efficiency is the simulation used ideal components and parameters, whereas the 

practical design has power losses due to the components not being ideal. 

The design of the DC-DC switch mode power supply, however, indicated that the 

hydrogen generator could be powered from a PV array without using an inverter, 

with great success.  
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CHAPTER 1    INTRODUCTION AND OVERVIEW 

1.1 Global warming and solar energy 

Global warming (greenhouse effect) is becoming an ever-increasing concern for 

humanity. According to Şen (2008), there are several greenhouse gases that 

contribute to the global warming effects in the atmosphere and they are almost 

entirely due to human activities. Fossil fuel combustion is one of the contributing 

factors to the greenhouse effect, along with acid rain, air pollution, climate changes 

and oil spills (Şen, 2008). Thus, it is logical that research in alternative energy 

sources, which are not only environmentally friendly, but also renewable and/or 

sustainable, are of primary concern. Farret and Simões (2006) state that there are 

several renewable energy sources that have been used for thousands of years, one of 

which is solar energy. 

The radiation from the sun, that is capable of producing heat, causing chemical 

reactions or generating electrical energy, is called solar energy (Ashok, 2012). 

According to Şen (2008), solar radiation is the world’s most abundant and permanent 

energy source.  Lynn (2010) states that the sun provides, in about an hour, the 

present energy requirements of earth’s entire population for a whole year. It can be 

seen clearly that solar energy is an important renewable and sustainable alternative 

energy source. But, how will all that energy be harnessed? There are two ways to 

produce electricity from solar energy: solar thermal and photovoltaic (PV) systems. 

The method that is of an increasing interest in electrical power applications, 

according to Kwon et al. (2006), is PV energy. The reason for this increase in 

interest is that it is clean, free, abundant, pollution-free and inexhaustible. The rapid 

growth in solar cells and power electronics technology also contributes to an increase 

in PV energy (Kwon et al., 2006). 

1.2 Photovoltaic energy 

The European Commission (2009) defines PV as the field of technology and research 

related to devices, which convert sunlight (solar radiation) directly into electrical 

energy. PV cells, which are made of semiconductor materials, such as silicon, are the 

basic building blocks of PV technology (European Commission, 2009). The PV cell, 
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which is a semiconductor P-N junction device, converts sunlight into electrical 

energy due to the PV effect shown in Figure 1. The PV effect was discovered in 1839 

by Edmund Becquerel, a French scientist (Solanki, 2009). Sunlight contains photons, 

and these photons contain various amounts of energies depending on different light 

situations. Photons can either be reflected, absorbed or they can pass through when 

they strike the PV cell. For the PV effect to take place, there are three basic 

requirements, namely (1) absorption of photons through the creation of electron-hole 

pairs (EHPs); (2) separation of the these EHPs from each other across the P-N 

junction, resulting in the generation of a potential difference in the PV cell; (3) 

transfer of these separated electrons and holes through electrical terminals to an 

external circuit in the form of electrical current, and thus, power can be extracted 

from the PV cell (Mitchell and Tatro, 2008; Solanki, 2009; de Neufville, 2012). 

 

Figure 1 PV effect 

Fraas and Partain (2010) state that the main characteristic of a PV cell is the 

conversion efficiency of solar energy into electrical energy. Unfortunately, several 

causes place limitations on the PV cell efficiency. One of the limitations is based on 

the properties of the silicon semiconductors used in PV cells. Photons, having energy 

less than 1.12 eV, do not get absorbed in the material due to the band gap of the cell, 
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and photons with energies more than 1.12 eV lose their energy in the form of heat 

dissipation. Other losses include: optical losses, recombination losses and resistive 

losses (Fraas and Partain, 2010). It can be observed that due to all these losses the 

efficiency is greatly reduced. For example, according to Fraas and Partain (2010) the 

theoretical efficiency of a crystalline silicon PV cell is about 29%, the world record 

is 24.3% but average efficiencies for typical industrial PV cells are only in the range 

of 16% to 17%.  

Solanki (2009) explains that solar PV modules/panels are numerous individual PV 

cells collectively connected to each other in a series and/or parallel grid. Lynn (2010) 

then describes a PV array as a group of interconnected modules working together in 

a PV installation. PV systems can either be grid-tied or stand-alone, according to 

Lynn (2010). When PV systems are used for stand-alone applications, a battery (or 

any DC storage component) is normally connected to the system as a back-up source 

to supply the load during the night or overcast days when the PV array is not 

operational (Solanki, 2009). Solanki (2009) explains that where batteries are used, it 

is important to prevent over-charging or deep discharging to prolong battery life. 

This is achieved by using charge controllers.  

1.3 Charge controllers and maximum power point trackers 

IEEE-SA (2003) defines a charge controller as an electrical control device that 

regulates battery charging by voltage control and/or other means. It may also 

incorporate one or more of the following functions: discharge termination, regulation 

voltage temperature compensation, load control and status indication. According to 

Solanki (2009) there are three types of charge controllers: series controllers, shunt 

controllers and maximum power point trackers (MPPTs).  

The first two charge controllers mentioned deliver all the power from the PV array 

into the battery, with low efficiency. It can be concluded that because of the low 

efficiency of PV cells every bit of output power is important. Solanki (2009) explains 

that for the charging to be more efficient, the PV array has to be operated at a point 

where the PV array output power is maximum, in other words at the maximum 

power point (MPP). Figure 2 shows a typical PV array characteristic curve. 
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Figure 2 PV array characteristic curve 

This is where the MPPT fits in. E-Power (2008) explains that MPP tracking is a 

technique used in charge controllers to extract the maximum available power (the 

point on a PV module’s I-V curve, where the product of the voltage and the current is 

a maximum) from the panels, as the maximum power changes according to 

variations in ambient temperature, solar cell temperature and solar radiation. The 

MPPT measures the output of the PV panels, comparing it to a battery’s voltage and 

then setting the highest power that the PV panels can deliver to charge the battery. It 

then converts the power to the optimum voltage to transfer maximum current into the 

battery. 

Currently, there are different kinds of MPP tracking algorithms used in PV systems. 

Esram and Chapman (2007) explain that all the methods vary in their complexity, 

sensors required, convergence speed, cost, effectiveness, implementation hardware, 

popularity and in other aspects. They also range from simplistic to complex; from 

ineffective to effective but simplicity does not necessarily mean ineffective. Xiao et 

al. (2011) mention a comparison study that was presented by Jain and Agarwal 

(2007) and Esram and Chapman (2007), which illustrated MPP tracking methods 

developed before 2006. Some of these techniques are heuristic search (hill climbing, 

perturb and observe); extreme value searching (incremental conductance); linear 
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approximation methods (fractional VOC or fractional ISC); intelligent control (fuzzy 

logic, neural network); linear control techniques (dV/dV or dP/dI feedback control) 

and a few other methods. All these methods have their own advantages, 

disadvantages, effectiveness and reliability.  

Xiao et al. (2011) classifies the latest MPP tracking algorithm developments since 

2006 in the following categories: (1) Real-time identification method, (2) Extremum 

seeking control, (3) Particle swarm optimisation, (4) DIRECT (DIviding 

RECTangles) search algorithm, and (5) Adaptive step-size method.  The importance 

of MPPT originates from the fact that it adjusts the power interfaces to achieve the 

greatest possible power from a PV array during moment to moment variations of 

light level, shading, temperature and PV module characteristics (Xiao et al., 2011). 

Xiao et al. (2011) states, “MPPT has become an essential component to evaluate the 

design performance of PV power systems”. 

Instead of storing the solar energy in batteries, the energy could be converted to 

hydrogen. The stored hydrogen could be manufactured with a regenerative fuel cell. 

1.4  Regenerative fuel cells 

A regenerative fuel cell (RFC) is a device that produces hydrogen (H2). The RFC, 

which can also be referred to as a hydrogen generator (HG), is a fuel cell (FC) 

operating in the reverse mode. A FC, which operates in the forward mode, uses 

hydrogen (H2) and oxygen (O2) to produce electrical energy and water (H2O) (Li et 

al., 2010). In contrast, a RFC uses electrical energy and water to produce H2 and O2. 

A dedicated RFC should not be confused with a unitised RFC (URFC). The RFC 

works only in the reverse mode (electrolyser), whereas the URFC operates in both 

reverse and forward modes (Grigoriev et al., 2011; Van Tonder, 2011).  

The HG that is focused on in this research is the HOGEN® GC 300, which utilises a 

four cell proton exchange membrane (PEM) RFC stack to produce H2, see Figure 3. 

The reason for the choice of this specific HG is that it is currently in use at the Vaal 

University of Technology (VUT), Electronics Department, for their research in a 

solar-hydrogen fuel cell plant.  
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Figure 3 HOGEN® GC 300 

The HOGEN® GC 300 incorporates a power supply of 110-220 VAC, single phase 

and a frequency of 50 or 60 Hz to operate (see Annexure B). The HOGEN® GC 300 

uses a switch-mode power supply (SMPS) to supply DC voltage to the electronic 

components on the printed circuit board (PCB). Figure 4 shows the power supply 

section of the HOGEN® GC 300.  

 

Figure 4 HOGEN® GC 300 power supply and electronics 
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The output voltages of the power supply are indicated in Table 1.  

Table 1 HOGEN® GC 300 power supply output voltages 

Output Voltage (V) Current (A) Power (P) 

Output 1 7,5 20 150 

Output 2 12 4,2 50 

Output 3 5 10 50 

 

The output voltages of the PSU supply specific sections of the HOGEN® GC 300, 

they are as follows: 

 Output 1: Fuel cell stack 

 Output 2: Water circulatory pump 

 Output 3: Microcontroller unit (MCU) and the rest of the electronic 

components and circuitry. 

Figure 5 shows the block diagram of the unmodified HOGEN® GC 300. 

 

Figure 5 HOGEN® GC 300 block diagram 

The work done in this project will bypass the need for a 220 VAC power supply by 

directly powering the PCB in the HG, with DC voltage from a PV panel, through the 

MPPT. 

Commercially available HGs, as in the case with the HOGEN® GC 300, are 

dependent on an input voltage of 220 VAC, although in essence it only requires DC 

voltage to operate. The reason for this is that 220 VAC is fed to the power supply, 
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which converts the AC to a number of DC output voltages as indicated in Table 1, 

which are 7.5 V, 12 V and 5 V. 

1.5  Problem statement 

To power a regenerative hydrogen generator from a PV array is a problem because 

the available HGs make use of 220 VAC. To address the problem of sustainable and 

alternative energy, there is a need to develop technology to power HGs directly from 

PV panels, via a MPPT. Commercially available MPPTs are not designed for a wide 

range of electrical loads and are particularly not designed for HGs. Such MPPTs for 

HGs do not exist, yet it is a crucial link in the sustainable alternative energy chain. 

1.6 Focus and purpose 

The focus and purpose of the research will be on the design and development of a 

MPPT, as indicated in Figure 6. As can be seen, the research forms part of a 

sustainable alternative solar energy system. The research will significantly improve 

the sustainability and efficiency of the integrated alternative energy system at VUT 

and will largely contribute towards the commercialisation of the system. 

 

Figure 6 VUT Sustainable/Alternative Energy System 

In the proposed system for this research the MPPT will replace the HG power supply 

(see Figure 7), thus making the HG independent from grid power as illustrated in 

Figure 6. The hybrid system will consist of a PV array, MPPT, HG and a hydrogen 

storage tank and the FC power plant. The MPPT will deliver optimum power to the 

HG to increase its efficiency. 
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Figure 7 HOGEN GC 300 block diagram with new power supply 

1.7 Objective 

To design and develop dedicated MPPT technology, in order to connect PV panels 

directly to the HG. 

1.7.1 Specific objectives 

1.7.1.1 Gathering of electrical data and information plus analysis of the data 

 Gathering electrical data on RFCs 

 Evaluating data obtained on RFCs 

 Choosing the most suitable MPPT algorithm for this application. 

1.7.1.2 Development of the MPPT 

 Mathematical modelling of the chosen MPPT 

 Designing of the MPPT and programming of the algorithm 

 Running design simulations 

 Evaluating simulation results. 

1.7.1.3 Fabrication and testing of the MPPT 

 Fabricating the MPPT 

 Testing the MPPT in the laboratory and in real time 

 Evaluating the results and comparing results with the simulated results. 

1.7.1.4 Implementation in the VUT hybrid system and testing the system over a 

period of time 

1.7.1.5 Documentation and thesis writing. 
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1.8 Research methodology 

The strategy that was followed in the research study: 

1.8.1 Gathering of electrical data and information plus analysis of the data 

 Taking electrical measurements to determine the electrical requirements of a 

HG 

 These data are an important design parameter of the MPPT. 

 A MPPT algorithm was chosen according to data obtained on the RFC as 

well as on other criteria. 

1.8.2 Development of the MPPT 

 Simulations on the design was done using Mathworks Matlab (Mathematical 

software) and Mathworks Simulink (Simuliink is a logic circuit simulation 

software) 

 Altium Designer (schematic and PCB design software) was used to design 

the circuit. 

 Programming the algorithm on a PIC microcontroller was done using 

Microchip MPlabX (microcontroller programming software). 

 Efficiency was evaluated and adjustments to the circuit design were done. 

1.8.3 Fabrication and testing of the MPPT 

 A CNC machine (Computer Numerical Control) was used to fabricate the 

PCB (printed circuit board) 

 The algorithm was loaded onto the microcontroller using the Microchip 

ICD3 (In-circuit debugger and programmer ) 

 Outdoor testing was done using a PV panel to test the MPPT under real 

world conditions. 

 Efficiency was evaluated and adjustments to the circuit design will be done. 

1.8.4  Implementation in the VUT hybrid system and testing of the system over a 

period of time in order to evaluate overall system efficiency and performance 
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1.8.5 Documentation and thesis writing. 

1.9 Summary 

This chapter explained the impact of global warming and the need for alternative 

energy sources. An overview of PV energy was also given and how to extract 

maximum power from PV panels to deliver optimum power to the HG. The purpose 

of the study along with the problem statement was given. Lastly, an overview was 

given to indicate the outline of the research. 

Chapter 2 describes theoretical background study on the MPPT algorithms and DC-

DC SMPS.  
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CHAPTER 2    MAXIMUM POWER POINT TRACKERS 

Introduction 

In order to power a HG from a PV array a summary of PV panel characteristics are 

given. PV panel manufacturers make use of different technologies and materials to 

produce PV panels, which gives each panel a unique characteristic (El Chaar et al., 

2011). Two of the more popular technologies are crystalline and thin-film. Some of 

the materials used for the crystalline technology are mono-crystalline and poly-

crystalline and for thin-film technology, the materials are amorphous silicon and 

cadmium telluride. Table 2 shows the technologies, materials and characteristics 

from different manufacturers for their PV panels. See Annexure A for the PV panel 

datasheets. As seen from Table 2 each PV panel has different characteristics that 

have to be taken into account when designing an efficient MPPT. 

Table 2 PV panel characteristics 

 Cell type Characteristics 

Manufacturer Crystalline Thin-film Power 

(P) 

Effeciency 

(%) 

VMPP 

(V) 

IMPP 

(A) 

VOC 

(V) 

ISC 

(A) 

Solyndra  CIGS 150 N/A 65,70 2,28 91,40 2,72 

CanadianSolar Poly  235 14,61 29,80 7,90 36,90 8,46 

Sharp Poly  235 14,40 29,20 8,05 37,40 8,59 

Sungen  Amorphous 95 N/A 70,00 1,35 90,00 1,67 

Sungen   195 15,30 38,60 5,05 46,10 5,56 

 

 VMPP ≡ Voltage at maximum power point 

 IMPP ≡ Current at maximum power point 

 VOC ≡ Open-circuit voltage 

 ISC ≡ Short-circuit current 

2.1 MPPT classification 

Salas et al. (2006) explains that MPPT algorithms can be classified as either direct 

(not PV panel characteristic dependent) or indirect (PV panel characteristic 

dependent) methods. Indirect methods take measurements such as short-circuit 

current, open-circuit voltage and irradiance, which are indirect occurrences from the 

operating voltage and current, to approximate the optimum voltage from an exact 
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model of the PV panel used, and according to Hohm and Ropp (2003) they are also 

called model-based MPPT algorithms.  

On the other hand, direct methods do not require an exact model of a PV panel to 

operate effectively. Direct methods search for the optimum point from the operating 

voltage and current measurements and their time-derivatives (Leyva et al., 2011).  

Table 3 is adapted from various studies of MPPTs done by Esram and Chapman 

(2007), Hohm and Ropp (2003), Onat (2010c) and Leyva et al. (2011). 

Table 3 Direct and indirect MPPT algorithms 

MPPT 
Direct/ 

Indirect 

True 

MPPT 

Analog/ 

Digital 

Periodic 

tuning 

Track 

speed 

Sensed 

parameter 

Efficiency 

(%) 

Perturb & 

observe 
Direct Yes Both No Varies 

Voltage, 

Current 
81,5 - 85 

Constant 

voltage/current 
Indirect No Analog Yes Medium 

Voltage/ 

Current 
73 - 85 

Hill climbing Direct Yes Both No Varies 
Voltage, 

Current 
81,5 - 85 

Fractional VOC Indirect No Both Yes Medium Voltage N/A 

Artificial 

intelligence 
Indirect Yes Both No Fast Varies >95 

Incremental 

conductance 
Direct Yes Digital No Varies 

Voltage, 

Current 
73 - 85 

 

Category descriptions: 

 MPPT: Type of MPPT algorithm. 

 Direct: Not PV panel characteristic dependent and Indirect: PV panel 

characteristic dependent. 

 True MPPT: Tracks the MPP accurately or uses approximations. 

 Analog/Digital: Uses only analog/digital components or both in the circuit. 

 Periodic tuning: The circuit parameters need to be calibrated often in order 

to track the MPP. 

 Track speed: Tracking speed of the MPP. 

 Sensed parameters: What type of sensor the algorithm needs in order to 

track the MPP. 

 Efficiency: Algorithm efficiency for tracking the MPP. 
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Before a MPPT algorithm is selected there are a few criteria that need to be 

considered beforehand in order to make the correct choice of algorithm for a specific 

application. Summarised below is the main criteria when considering a MPPT 

algorithm (Onat, 2010a): 

 Ease of implementation. Methods can be either analog, digital or both. Digital 

MPPT algorithms may require software and programming of a MCU. 

 Required number of sensors. Sensors are either current, voltage or both. 

Voltage sensing is easier and more reliable than current sensors. Current can 

be cumbersome and rather expensive. 

 Partial shading can affect the normal operation of the MPPT. Power loss may 

occur during partial and thus the algorithm must take this into account if 

possible. 

 Cost of the MPPT must be taken into consideration. System features will 

determine most of the cost, such as digital or analog, programming and 

software requirements and number of sensors. Analog algorithms are 

normally cheaper. 

 Different MPPT techniques are more suitable for different applications. 

Depending on the application, the algorithm must match the requirements of 

that application. Different algorithms may have different results depending on 

the application. 

2.2 Direct MPPT algorithms 

Since exact knowledge of a PV panel is needed for the indirect methods to work, the 

research will focus on the direct methods. The methods are perturb and observe, hill 

climbing and incremental conductance. A brief explanation of each is discussed 

below: 

 Perturb and observe 

According to Hohm and Ropp (2003) the most commonly used algorithm in 

commercial MPPTs is the perturb and observe (P&O) method. The structure 

of the P&O algorithm is that of simple regulation with a few parameters of 

measurement. It involves perturbation in the operating voltage of a PV panel. 
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This means it senses the voltage of the PV panel via a voltage sensor and 

periodically increments or decrements the operating voltage and then it 

compares the power obtained in the current cycle with that obtained in the 

previous cycle (de Brito et al., 2011).  

 Hill climbing 

Hill climbing also involves perturbation but it differs from P&O in the sense 

that has perturbation in the duty cycle of the power converter. The duty cycle 

is perturbed, which in turn perturbs the PV panel operating current and 

consequently perturbs the PV panel operating voltage (Esram and Chapman, 

2007).  

 Incremental conductance (IncCond) 

The IncCond method is the same as the P&O method in the sense that it 

monitors both the voltage and current of the PV but there is no need to 

calculate the PV power. The basic principle of IncCond is the fact that the 

power slope of the PV is zero at the MPP (dP/dV = 0), thus the MPP can be 

tracked in terms of the increment in the array conductance (Zegaoui et al., 

2011). 

Comparing the algorithms according to the main criteria described previously along 

with numerous other aspects taken into account, the following should be included 

with the chosen algorithm. 

 It has to be a direct method, meaning it is not model-based and, therefore, 

does not depend of the PV panel characteristics. 

 The algorithm should be easy to implement into a microcontroller. 

 The sensor can be either analog or digital depending on the design. 

 Partial shading problem should be partially eliminated by modifying the 

algorithm. 

 Fast tracking should be achieved with high efficiency by modifying the 

algorithm according. 

The next section will describe the P&O algorithm, as it is the chosen method to be 

implemented into the system. 
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2.3 P&O algorithm 

As described previously the P&O algorithm senses the voltage of the PV panel via a 

voltage sensor and periodically increases/decreases the operating voltage. It then 

compares the power obtained in the current cycle with that obtained in the previous 

cycle. Petreuş et al. (2011) indicate that to adjust the panel voltage, a DC-DC SMPS 

needs to be placed between the PV panel and the load, which is normally a battery 

bank. In this case, the load will not be a battery but the hydrogen generator and 

storage tanks. The algorithm will continuously change the duty cycle to the DC-DC 

SMPS, thus extracting the maximum power available from the PV panel. As Figure 8 

indicates, the DC-DC SMPS input signals are the PV panel voltage VPV and the PV 

panel current IPV, thus the PV panel power is PPV = IPV·VPV.  

 

Figure 8 MPPT scheme of PV system 

Figure 9 is adapted from studies done by Zegaoui et al. (2011) and Onat (2010b), 

which shows a family of P-V characteristic curves, at different irradiance (Irr) levels, 

for uniform irradiance and temperature. Assume the PV array is operating at point A 

in Figure 9. First, the input voltage of the PV array VPV is measured by the voltage 

sensor. VPV is then perturbed by a small increment, and the resulting change in PV 

array power (ΔPPV) is calculated. If ΔPPV is positive, meaning an increase in PV 

array power, then the increase in VPV moved the operating point of the PV array 
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closer to that of the MPP at point B (Femia et al., 2005). Thus, further perturbing the 

VPV in the same direction (with the same algebraic sign) moves the operating point 

closer and closer to the MPP until it reaches the MPP. If the ΔPPV is negative and 

operating at point C, meaning a decrease in PV array power, the operating point 

moved away from the MPP. When this happens the perturbation of VPV is reversed 

(the algebraic sign is reversed) to move back in the direction of the MPP toward 

point D. This process is continuously repeated until the MPP is reached, thus the 

algorithm has a small oscillation about the MPP point resulting in a small percentage 

power loss (Esram and Chapman, 2007).  

 

Figure 9 P-V Characteristic family curve 

The P&O algorithm can be summarised as indicated in Table 4. 

Table 4 Summary of P&O algorithm 

Perturbation Change in Power Next Perturbation 

Positive Positive Positive 

Positive Negative Negative 

Negative Positive Negative 

Negative Negative Positive 
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The P&O algorithm can also be expressed in the form of a flowchart. By using a 

flowchart, the algorithm can easily be programmed onto a MCU. Figure 10 

represents the basic operation principle (Atallah et al., 2014). 

 

Figure 10 Flowchart of the P&O algorithm 

Due to the ease of simplicity and implementation, there are a few drawbacks 

regarding P&O. One of these limitations is that when the irradiance decreases the P-

V curve flattens out, as seen in Figure 9. This occurrence makes it difficult for the 

algorithm to discern the location of the MPP, due to the small change in power 

regarding the perturbation of the voltage. Another small drawback, as mentioned 

earlier, is that the algorithm oscillates around the MPP causing small power losses. 

One last drawback occurs at rapidly changing atmospheric conditions such as the 

irradiance. As seen in Figure 11, when the irradiance increases the power curve is 

shifted from P1 to P2 within the same sampling period. The operating point moves 

from A to C, this shifting of the curve indicates an increase in power, thus the 

perturbation stays the same according to the principles of operation of the P&O 
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algorithm. The operation point will keep diverging from the MPP as the irradiance 

increases (Onat, 2010a; Esram and Chapman, 2007).  

 

Figure 11 Divergence of P&O from MPP 

Despite the abovementioned drawbacks, the P&O is still widely used. Much research 

has been done to improve the efficiency of the P&O algorithm by either completely 

or partially overcoming the drawbacks mentioned. By adding the optimisations that 

follow, the efficiency of the P&O algorithm can be increased to about 95-98%. The 

following are optimisations of the fundamental P&O algorithm to increase efficiency 

(Hohm and Ropp, 2003; Esram and Chapman, 2007): 

 Variable-step perturbations. When the operating point is far from the MPP, 

large perturbation steps are used; as the operating point nears MPP, smaller 

steps are used. This increases the tracking of the MPP. 

 Introduction of a ‘waiting’ function that causes a temporary termination of 

the perturbations if the algebraic sign changes several times in succession, 

indicating that the MPP has been reached. This function reduces the 

oscillation around the MPP in the steady state under constant irradiance 

conditions. This, however, slows the response time to changing atmospheric 

conditions. 

 Optimising the sampling rate as well as introducing a high sampling speed. 

These two optimisation methods are used to overcome the slow response time 
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with the previously mentioned optimisations. However, it will also increase 

the response time according to rapid changing atmospheric conditions. 

2.4 DC-DC Switch Mode Power Supply (SMPS) 

As indicated in Figure 8, a DC-DC SMPS is incorporated between the PV panel and 

the HG. As Kalogirou (2009) explains, the MPP, which is the optimum operating 

voltage, varies according to changes in temperature and irradiance. Thus, the DC 

output voltage from the PV panel is unregulated. DC-DC SMPS play the role of 

converting the unregulated voltage into a controlled and stable output voltage 

(Mohan et al., 2003). 

2.4.1 Types of DC-DC converter topologies 

There are two basic converter topologies, namely step-down voltage (buck) and step-

up (buck). Then, there are two variations of these two topologies, namely buck-boost 

and čuk converters. The advantage of these types of converters is that they do not 

require a transformer. These converter topologies are also non-isolated converters, 

which means the output and input has no dielectric isolation between them. Below 

are short explanations of these converters. 

 Buck converter 

Buck converters are current step-up and voltage step-down devices. The input 

voltage is higher than the output voltage and the input current is lower than 

the output current (Agrawal, 2001). 

 Boost converter 

Boost converters are current step-down and voltage step-up devices. Where 

the input voltage is lower than the output voltage and the input current is 

higher than the output current (Agrawal, 2001). 

 Buck-boost converter 

This type of converter is a combination of a buck topology in cascade with a 

boost topology. Either a step-up or step-down function can be utilised at any 

time (Agrawal, 2001). 
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 Čuk converter 

The čuk converter configuration is almost the same as the buck-boost 

converter and can deliver either the step-up or step-down voltages, but with 

inverted polarity (Agrawal, 2001).  

2.4.2 The buck converter 

The chosen DC-DC converter topology is the buck converter because the voltage 

required by the power supply as indicated in Table 1 is less than that supplied by the 

PV panel.  

In Figure 12 below, the basic buck converter topology is shown. The circuit consists 

of a DC input voltage (unregulated) VPV, a mosfet switch Q, a diode D, an inductor 

L, filter capacitor C, and the HG as the load. Though for clarity the HG structure is 

not shown (Mack, 2005). 

 

Figure 12 Buck converter topology 

It is important to note that according to Janse van Rensburg (2012) the output 

voltage’s magnitude is directly proportional to the duty cycle of the switch Q, which 

is operated at a high frequency. 

For the operation of the buck converter, it is assumed that the circuit is running in the 

steady-state. The steady-state operation has two states, namely: 

 Switch Q closed: If switch Q is closed/turned on, diode D does not conduct, 

because it is reversed biased. The inductor opposes a change in current, thus 
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if switch Q is closed the inductor stores energy in its magnetic field. The 

capacitor opposes a change in voltage, therefore, capacitor charges during 

this stage (Jacob, 2002). 

 Switch Q open: If switch S is open/turned off, diode D is forward biased 

because the polarity of the inductor L is reversed. If switch Q is open, the 

inductor generates current. Also, during this stage the voltage starts to drop, 

therefore, the capacitor discharges, sending current to the HG to hold the 

voltage up (Jacob, 2002). 

Janse van Rensburg (2012) also states that the net charge and discharge over one 

cycle is zero, thus the capacitor voltage stays constant. 

 

Figure 13 Buck converter steady-state operating modes: (a) CCM and (b) DCM 

When running in steady-state, there are two definable operating modes with respect 

to the inductor current iL. If the inductor current always stays positive and never falls 

to zero at any given time during the switching period, it is called the continuous 
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conduction mode (CCM). The other mode is the discontinuous conduction mode 

(DCM). That is where the inductor current goes to zero during each switching period 

(Siwakoti et al., 2010). Figure 13 distinguishes between the two modes. 

The input voltage is chopped into a rectangle by switching switch S on and off. The 

duty cycle of the switch is D, given by 

on

period

=
t

D
T

  (1) 

Where: 

on

period

Duty cycle

Time on

Total time on and off  for Switch S

D

t

T







 

The output voltage across the load is a fraction of the input voltage, and this fraction 

is equal to the duty cycle, therefore, the duty cycle can also be expressed as: 

out

in

 = 
V

D
V

   (2) 

Where: 

out

in

 Voltage across the load (HOGEN GC

 Input voltage (PV panel)

V

V

  


 

Thus, the voltage across the HG can be expressed as: 

          out in=V D V    (3) 

It is important to note that the MPPT must continuously track the MPP with the 

highest possible efficiency. Therefore, the CCM is chosen as the operation mode for 

the buck converter because the inductor current is never zero and constant power will 

be delivered to the HG. 

It must be included that it is possible to go from CCM to DCM. Siwakoti et al. 

(2010) indicates that this happens when the switching frequency is low and/or the 

input current is low. To prevent this situation from happening, the diode is replaced 
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by a second mosfet switch. This new arrangement according to Vazquez et al. (2010) 

is known as synchronous rectification and the second mosfet is called a synchronous 

rectifier. Figure 14 shows the synchronous buck converter configuration. 

 

Figure 14 Synchronous buck converter 

According to Vazquez et al. (2010), the advantage of the second mosfet (Q2) is that 

the voltage drop across the mosfet is much lower than that of the diode, even a 

Shottky diode, which has a voltage drop of 0.3 V to 0.4 V. The replacement of the 

diode will result in much higher circuit efficiency. It is also important that the two 

mosfets are not switched on at the same time in order to prevent a short circuit across 

the source (PV panel). Therefore, a ‘dead time’ is built into the switching control, 

meaning one mosfet is turned off before the other mosfet is turned on (Siwakoti et 

al., 2010). For improved switching, a diode is placed in parallel with the second 

mosfet (Q2) to provide a conducting path for the inductor current for the small period 

when both mosfets are off (dead time). The diode can either be a Shottky diode or the 

mosfet body diode (Vazquez et al., 2010). The mosfet body diode will be chosen is 

stead of the Shottky diode in order to maintain a high efficiency.  

2.5 Control of the DC-DC SMPS 

A DC-DC SMPS can be controlled either by hard-wired analog controllers or by 

software driven digital controllers. Software driven digital controllers are preferable 

due to less sensitivity to the aging of components and electrical noise and the 

adaptability to digital control methods such as the proportional-integral-derivative 

control (PID) of the power supply’s response to the load and source variation, 



25 

 

interferences, and transients. There are three types of control modes that can be 

implemented, namely voltage-mode control (VMC), current-mode control (CMC) 

and proportional-integral-derivative (PID) control (Agrawal 2001:473-474). 

2.5.1 Voltage-mode control 

In the voltage-mode control, the output of the SMPS is divided using a voltage 

divider sub-circuit, which is then subtracted from a reference voltage and 

compensated using an error amplifier. Next, the error voltage at the output of the 

error amplifier is compared to a saw-tooth to generate the driving signal for the 

switching transistor. Thus, voltage-mode control is a single loop control technique 

(Agrawal 2001:473-474). Figure 15 illustrates the voltage-mode control applied in a 

circuit. 

 

Figure 15 Voltage-mode control  

Listed below are the advantages and disadvantages of the voltage-mode control: 

Advantages: 

 Less sensitive to noise because of a large-amplitude ramp waveform, thus a 

more stable modulation.  

 A single feedback loop makes it easier to design and analyse.  
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 Works over a wide range of duty cycles because it has better cross-regulation 

due to the low-impedance output power. 

Disadvantages: 

 Compensation is complicated due to the fact that the loop gain is proportional 

to the input voltage. 

 The differences between CCM and DCM create a compensation challenge. 

 Slow response to input voltage changes due to the fact that the changes must 

first be sensed as an output change and then corrected by the feedback loop. 

 Current limiting must be done separately. 

2.5.2 Current-mode control 

Current-mode control is multi-loop control. The outer loop is a voltage-loop, so the 

voltage still has to be sensed and subtracted from a reference voltage and 

compensated for, but now the error amplifier output provides a reference for the 

inner current loop. In the inner loop a current in the system is sensed (by using a 

current sense resistor or otherwise) and compared to the reference (from the voltage 

loop) and this is used to generate the switching signal for the transistor. Usually the 

inner current loop is faster than the outer voltage loop. Figure 16 illustrates the 

current-mode control applied in a circuit.  

 

Figure 16 Current-mode control 
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There are also a number of current-mode control types: peak current-mode control, 

average current-mode control and hysteretic current mode control (Agrawal 

2001:473-474). The most important aspect in the current-mode control design is to 

keep noise off the compensation ramp. Listed below are the advantages and 

disadvantages of the current-mode control. 

Advantages: 

 Due to the fact that the error amplifier is now used to work with the output 

current rather than with the voltage, the output inductor effect is minimised 

and the filter offers only a single-pole to the feedback loop, resulting in 

simpler compensation and higher gain bandwidth. 

 It responds immediately to line voltage changes because the inductor current 

rises with a slope determined by the difference between the input and output 

voltage, thus eliminating not only the delayed response but also the gain 

variation with changes in input voltage. 

 Inherent cycle-by-cycle current limiting protection, by clamping the 

command from the error amplifier, making it immune to over-current damage 

from short-circuited outputs or overloads. 

 Current sharing when multiple supply units are in parallel. 

Disadvantages: 

 Circuit analysis is more difficult because of the two feedback loops. 

 There is sub-harmonic oscillation instability when approaching a 50% duty 

cycle, unless compensation is added. 

 Resonances in the power stage can insert noise into the control loop because 

the control modulation is based on a signal derived from the output current. 

 Another noise source is the leading edge current spike normally caused by 

transformer winding capacitance and output rectifier recovery current. 

 For multiple outputs, coupled inductors are required to get acceptable cross-

regulation because the control loop is forcing a current drive making the load 

regulation worse. 
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Table 5 gives a comprehensive comparison of the two different control modes 

(Maniktala, 2012). 

Table 5 Comparison of the voltage and current-mode control techniques 

 CMC VMC 

Rejection of line disturbances 

(dynamic line response) 

Good (inherent) Very good (with 

line feedforward) 

Rejection of load disturbances 

(dynamic load response) 

Good (constant 

bandwidth) 

Good 

Constant frequency Excellent Excellent 

Predictable EMI Excellent Excellent 

Audible noise suppression Excellent Excellent 

Extreme down conversion (buck) Poor Good 

Insensitivity to PCB layout Poor Excellent 

Excellent stability of loop 

responses (tolerances and long-

term drifts) 

Excellent Good 

Simplicity of compensation Good Poor 

IQ (quiescent current) Good Poor 

Loop stability with use of output 

ceramic caps 

Excellent (with type 

3 compensation) 

Very good 

Auto-tuning Complex Very complex 

 

According to Mammano (1994) there are considerations to be made, which would 

point to a more optimum solution for a specific application. There will be trade-offs 

for either selection, but choosing the optimum solution will increase the efficiency of 

the DC-DC SMPS. Choosing a control mode is as follows: 

Consider the use of the current-mode control if: 

 The output is to be either a very high output voltage or current source 

 The fastest possible response time is required for a given frequency 

 When the input voltage variation is relatively constrained 

 For applications where parallel load sharing is required 
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 Where transformer flux is important in push-pull circuits 

 For low-cost applications with the absolute minimum number of components. 

Consider the use of the voltage-mode control if: 

 The possibility of wide input line and/or output load variations is possible 

 With light load conditions, where the current ramp slope is too low for stable 

pulse-width modulation (PWM) operation 

 Noisy and/or high power applications, where noise on the current waveform 

would be difficult to control 

 Good cross-regulation with multiple output voltages is required 

 Saturable reactor controllers are to be used as auxiliary secondary-side 

regulators 

 In hardware designs where the complexity of slope compensation and/or dual 

feedback loops needs to be avoided. 

2.5.3 Proportional-integral-derivative (PID) controller 

The PID controller is used in conjunction with either the voltage-mode control or the 

current-mode control. The PID controller calculates an error value as the difference 

between a measured parameter (value provided by the voltage/current-mode control) 

and a desired set point (desired output voltages of the SMPS). The controller then 

tries to minimise this error value by adjusting the process through the use of 

manipulated values. The PID controller will reduce the rise-time to reach the desired 

output, eliminate the steady-state error, increase system stability, reduce the 

overshoot and improve the transient response (Ibrahim, 2002). The PID algorithm is 

described by the following equation: 

             
 p

p p d

i

= + +

t

0

K de t
u t K e t e t dt K T

T dt    (4) 
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i p

d

( )  Error signal          Integral time constant           Proportional gain 

( )  Control input        Derivative time constant
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u t T
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Refer to Figure 17. The PID controller is explained as follows: variable e represents 

the tracking error, the difference between the set point, which is the desired input 

value (r) and the actual measured output (y). This error signal (e) is sent to the PID 

controller. The controller then computes the control signal (u), which is the sum of 

three terms: the P-term (which is proportional to the error), the I-term (which is 

proportional to the integral of the error), and the D-term (which is proportional to the 

derivative of the terror). The controller parameters are proportional gain Kp, integral 

time Ti, and derivative time Td. The control signal (u) is sent to the plant (which is 

the physical parts of the system), for error correction in order to obtain a new output 

(y). This process is repeated continuously through the feedback loop. 

 

Figure 17 Unity feedback system (closed loop) 

The characteristics of the P, I and D controllers are as follows:  

 Proportional control (P): Reduce rise time (response time). Reduce but never 

eliminate the steady-state error. An increase in proportional gain will 

decrease the rise time but will also increase the overshoot. 

 Integral control (I): Eliminating steady-state error, but may also decrease the 

transient response. Too much integral action will result in large overshoot and 

an oscillation at the output. Large integral action can also increase the system 

settling time and decrease rise time. 

 Derivative control (D): Increases system stability, reduces the overshoot and 

improves the transient response. Increasing the derivative action will decrease 

both the system settling time and the overshoot. 

The effects of each of the P, I and D controllers on a closed-loop system are 

summarised in Table 6. 
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Table 6 Effect of PID controllers on closed-loop system 

Close-loop 

response 
Rise time Overshoot Settling time S-S error 

P Decrease Increase Small change Decrease 

I Decrease Increase Increase Eliminate 

D Small change Decrease Decrease Small change 

 

The P, I and D gains are dependent on each other, thus when changing one of these 

parameters has an effect on the other two. The process of setting the optimal gains 

for P, I and D to get an ideal response from the control system is called tuning. There 

are different methods of tuning but the two most popular methods are the trial and 

error method and the Ziegler-Nichols method. 

Trial and error method  

First, the I and D parameters are set to zero and the P parameter is increased until the 

output of the loop oscillates. As the proportional gain is increased, the system 

becomes faster, but should not be so fast that the system becomes unstable. Once P 

has been set to obtain a desired fast response, the I parameter is increased to stop the 

oscillations. The I reduces the steady state error, but increases overshoot. Some 

amount of overshoot is always necessary for a fast system so that it could respond to 

changes immediately. The I parameter is tweaked to achieve a minimal steady state 

error. Once the P and I have been set to get the desired fast control system with 

minimal steady state error, the D parameter is increased until the loop is acceptably 

quick to its set point. Increasing the D parameter decreases overshoot and yields 

higher gain with stability but would cause the system to be highly sensitive to noise. 

Thus, a trade-off must be made to one of the characteristics of the control system for 

another in order to meet the requirements of the system (Goodwin et al., 2001). 

Ziegler-Nichols method 

This method of tuning is based on closed-loop test. Referring to Figure 18, the 

testing procedure is as follows (Webb and Reis, 2003): 
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Figure 18 Ziegler-Nichols closed-loop tests 

 Parameters I and D are set to zero and leave only P in action 

 Make a set point step test and observe the response 

 Repeat the above test with the added action of either increasing or decreasing 

the controller gain until the oscillation is stable. This gain is called the 

‘ultimate gain’, Ku. 

 Note the period of this steady oscillation and let this be Pu. 

 Calculate the controller parameters according to Table 7 below. 

Table 7 Ziegler-Nichols tuning, using the oscillation method 

Control P I D 

P 0,50Ku - - 

PI 0,45Ku Pu/1,2 - 

PID 0,60Ku Pu/2 Pu/8 

 

After considering all the aspects mentioned above, the voltage-mode control in 

conjunction with a PID controller is chosen as the best possible solution for this 

specific project (Webb and Reis, 2003). The PID controller will be implemented, not 

through hardware but through software, meaning the PID algorithm will be 

programmed onto the MCU. The algorithm is as follows: 

p i d

pre_error = 0; epsilon = 0,01; = 0,01; 

= P; = I; = D

If  error > epsilon

dt

K T T  
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p i d

integral integral error ;

derivative (error pre_error) / ;

output error integral derivative;

pre_error error;

end;

dt

dt

K T T

 

 

  



 

The P, I and D characters will be replaced by the values calculated according to the 

Ziegler-Nichols tuning method. 

2.6 Synchronous buck converter design equations 

Before the SMPS can be designed, calculations need to be done in order to establish 

the correct component selections for the three synchronous buck converters 

according to the parameters of the system as a whole. The following component 

values need to be calculated: 

 Inductor value in micro-Henry (µH) 

 Input filter capacitor in micro-Farad (µF) 

 Output capacitor in micro-Farad (µF) 

The system parameters need to be established before any calculations can begin, and 

are as follows: 

 VIN_MIN : Minimum input to the converter in volt (V) 

 VIN_MAX: Maximum input to the converter in volt (V) 

 fSW : Converter switching frequency (kHz) 

 VOUT : Output voltage of the converter in volt (V) 

 IOUT : Output current of the converter in amp (A) 

 POUT : Output power of the converter in watt (P) 

 Dmax : Maximum duty cycle 

First, the load resistance needs to be calculated in order to calculate the inductor 

value.   

 out

out

=
R

R
I

   (5) 
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Where, 

     Load resistance in Ohms ( )R    

Once the load resistance is calculated, the inductor value can be calculated as 

follows: 

         
min

SW

(1- )
=

2

D R
L

f
   (6) 

Where, 

min

SW

max

 Minimum inductor value in micro - Henry ( H)

 Switching frequency in kilohertz (kHz)

 Maximum duty cycle

L

f

D







 

To make sure the inductor current is continuous, choose an inductor value 25 percent 

larger than the minimum value. Thus, 

            min=1,25×L L    (7) 

Where, 

     Inductance in HL   

For the change in the inductor current: 

        
IN_MAX out

L max

SW

-
Δ =

V V
i D

Lf

 
 
 

   (8) 

Where, 

 L  Change in inductor currenti   

The average inductor current must be the same as the average current in the load 

resistor and since average capacitor current for steady-state operation is zero: 

         out
L R= =

V
I I

R
   (9) 

Where, 

  L  Inductor current in ampere (A)I   

For the maximum and minimum inductor current: 
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L
max L

out out
max

max
out

SW

Δ
= +

2

1
= + (1- )

2

1-1
= +

2

i
I I

V V
D T

R L

D
V

R Lf

 
 
 

 
 
 

   (10) 

Where, 

max

L

SW

 Maximum inductor current in A

 Inductor current A

 1/

I

I

T f







 

      

L
max L

out out
max

max
out

SW

Δ
= -

2

1
= - (1- )

2

1-1
= -

2

i
I I

V V
D T

R L

D
V

R Lf

 
 
 

 
 
 

   (11) 

Where, 

min  Minimum inductor current AI   

The inductor must also be rated for rms current: 

      

2

2

Lrms L=
2 3

LiI I
 

  
 

   (12) 

Where, 

         Lrms  Inductor current root mean squareI   

The output-voltage ripple must also be considered and chosen. 

     out max
out 2

(1- )
Δ =

8

V D
V

LCf
   (13) 

Where, 

       out  Peak - to -peak ripple voltage in volt (V)V   
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The ripple voltage can also be expressed as a fraction of the output voltage: 

   
out max

2
out

(1- )Δ
= , expressed as a percentage (choose manually)

8

DV

V LCf
  (14) 

Once the ripple voltage is chosen, the output capacitor can be calculated as follows: 

       max
out

2out
SW

out

1-
=

Δ
8

D
C

V
L f

V

 
 
 

                     (15) 

Where, 

out  Output capacitance in micro-Farad ( F)C   

Peak capacitor current is L

2

i
  

Maximum equivalent series resistance (ESR) of the capacitor: 

         out
C

C

Δ
=

Δ

V
r

i
   (16) 

Where, 

C

C L

 Capacitor series resistance in 

 Change in capacitor current, which is the same as i

r

i

 

  
 

The input filter capacitor is calculated by the following equation: 

       
 out IN_MAX out

in out

IN_MAX

-
=

V V V
C I

V
   (17) 

Where: 

 in  Input capacitance in FC   

2.7 Summary 

This chapter emphasised the need for an adaptable MPPT algorithm to be considered 

when choosing the algorithm, because of variable PV panel characteristics. The 

chapter differentiated between the different algorithm methods. The P&O algorithm 

was chosen based on certain aspects and then explained in detail. A brief overview of 
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the HOGEN® GC 300 was given followed by the operation of the DC-DC SMPS 

that is needed to supply the correct DC voltages to the HOGEN® GC 300. The 

different control-modes for the DC-DC SMPS are discussed. Also the design 

equations for the DC-DC SMPS where included. 

In Chapter 3, the design, programming and simulation will be shown in regard to the 

literature review addressed in this chapter. 
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CHAPTER 3      DESIGN, PROGRAMMING AND SIMULATION 

The equations shown in Chapter 2 can now be used to design the DC-DC SMPS. The 

DC-DC SMPS is designed with the MPPT algorithm and PID algorithm embedded 

into the MCU. 

To design the DC-DC SMPS, each section of the circuit has to be calculated first 

according to Section 2.6 in Chapter 2 for component selection and then the relevant 

schematic of the circuit can be drawn with Altium designer. The main sections of the 

design are the following: 

 First is the controller circuit. It includes the MCU, which is a dsPIC (digital 

signal processing MCU), programming and debugging port, MCU reference 

voltage and LEDs for visual representation of certain functions.  

 Second is the supply circuit. It includes the following sub-circuits: PV power 

in, dsPIC supply offline/online, battery charging, 5V and 3.3V regulation. 

 Thirdly are the three separate synchronous buck converters for the three 

different output voltages required by the HG and their voltage and current 

sensing circuitry. 

 Fourthly is the current and voltage sensing circuit of the PV array required 

by the MPPT algorithm to calculate and track the MPP. 

 Lastly are the three separate voltage-mode control circuits. Each 

synchronous buck converter has to have its own control-mode in order to 

deliver the correct voltage to the HG. 

3.1 Controller and supply circuits 

For this circuit no calculations are done but rather the component selection is done 

by referring to various datasheets and choices. Figure 19 shows the complete 

controller circuit with all its relevant sub-circuits. Each sub-circuit has a specific 

purpose in the design, which will be discussed and explained thoroughly. 

 Watchdog is the external watchdog circuit. The watchdog will reset the MCU 

whenever a problem occurs during the operation of the system. Once the 
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MCU is reset, normal operation will continue. The watchdog IC (integrated 

circuit) is a DS1832, which works with 3.3V. 

 

Figure 19 Controller circuit 
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 Programming and debugging port. The ICD 3 will load the C-code onto the 

MCU using the programming port. During programming of the C-code, the 

debugging feature will be used to load the C-code into the ICD 3 but not onto 

the MCU itself, thus enabling to test step by step if the C-code is working as 

it would when loaded onto the MCU. 

 MCU reference voltage of 1.2V. The LT10041D-1V2 is a 1.2V refernece IC. 

The reference voltage will be used by the comparator of the MCU in order to 

make certain calculations. 

 The power good works in conjunction with the PV input, which is to monitor 

the incoming power from the PV array. The MCU will then calculate if the 

required power has been achieved and operation of the MPPT can begin. 

 The system LEDs sub-circuit is for debugging purposes, but also for visual 

representation if the system is operational. 

 The filter capacitors are to filter any noise on the analog-to-digital tracks. 

 The dsPIC microcontroller section is the most important part because it is the 

intelligence of the whole system. A dsPIC33FJ32GS606 is used for all the 

calculations such as the PID control and MPPT algorithm handling. The 

dsPIC will perform the MPPT algorithm by continueosly sensing the voltage 

and current from the PV array through the sensing circuitry, which will be 

discussed. The dsPIC will then instruct the mosfet driver IC to switch the 

mosfets on/off according to the correct duty cycle and compute the voltage-

mode control parameters along with the PID control so that the SMPS 

delivers the correct power. The capacitor values along with the inductor value 

connected to the dsPIC is provided by the datasheet. 

Figure 20 is the supply circuitry. The circuitry consists of sub-circuits with each sub-

circuit having a different purpose in the supply circuitry. Each sub-circuit is 

explained below: 

 PV power input sub-circuit is for the PV array input. The output of the PV 

array will go through a P-channel and N-channel mosfet. The P-channel 

mosfet serves as a small protection for the rest of the circuit for sudden influx 
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in power while the N-channel mosfet is for power-on monitoring. Only once 

the PV array reaches a certain output voltage will the system start up and 

perform the MPPT. 

 

Figure 20 Supply circuit  

 The 5V0 sub-circuit provides the circuit where needed with 5V. The PV array 

voltage is connected to the VIN pin of the LM7805 and the output is a 

regulated 5V. The capacitor values and where to place them are provided by 

the datasheet of the IC. 
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 The dsPIC supply online, dsPIC supply offline and battery charger sub-

circuits are an important part of the circuit. It provides the necessary 3.3V for 

the MCU to operate. When the power from the PV array reaches a certain 

value the MPPT will start to operate and the synchronous buck converters 

will output their selected output values. The output of the 5V synchronous 

buck converter is connected to a MIC5239 3.3V regulator IC. The IC will 

provide the MCU with the 3.3V in order to operate. However, during low PV 

array output power and no working converters, a small lithium battery is 

connected with the circuit to power the MCU and keep the MCU ‘awake’ so 

as to sense when PV array power has reached the desired power and normal 

SMPS functionality can begin again. During operation, the battery charger 

sub-circuit will charge the battery to the normal operating voltage. The 

capacitor values are provided by the datasheet. 

3.2 The synchronous buck converter circuits 

Each converter circuit will be calculated and designed separately but datasheet 

component values and the rule of thumb will also be used for certain component 

values. Each circuit uses a MCP14700 mosfet driver IC to drive the mosfets. All 

three circuits are identical except for their component values and output power. As 

stated in Chapter 2, all the converters are in the CCM.  

The following values were decided upon before any calculations where started: 

Table 8 Chosen SMPS parameter values for the calculations 

Parameter Value 

VIN 14-40 V 

VIN_MIN 14 V 

VIN_MAX 40 V 

fSW 600 kHz 

VOUT1 12 V 

IOUT1 4,2 A 

POUT1 50 W 

VOUT2 7.5 V 

IOUT2 20 A 

POUT2 150 W 

VOUT3 5 V 

IOUT3 10 A 

POUT3 50 W 
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The values in Table 9 were calculated by substituting the values in Table 8 into the 

equations explained in Chapter 2. 

Table 9 Calculated values for the synchronous buck converters 

 

Figure 21 shows the schematic circuit for the three synchronous buck converter 

circuits and where each component is placed within the circuit. By consulting the 

MCP14700 IC datasheet the values for two of the capacitors where inserted.  

 

Figure 21 Synchronous buck converter schematic circuit  

The 5V to the IC is provided by the 5V regulator IC of the supply circuit. The MCU 

provides the high-side and low-side outputs of the PWM and the IC will then switch 

the two mosfets on/off accordingly. The sensing resistor is connected to the 

corresponding sensing circuitry of each converter in order to sense the voltage and 

Parameters 12 V, 4.2 A, 50 W 7.5 V, 20 A, 150 W 5 V, 10 A, 50 W 

 Value Value Value 

R 2,857 Ω 0,375 Ω 0,5 Ω 

D 0,857 0,536 0,357 

Lmin 34 µH 14,5 µH 26,79 µH 

L 42,5 µH 18,13 µH 33,49 µH 

ΔiL 67 mA 224 mA 224 mA 

IL 4,2 A 20 A 10A 

Imax 4,234 A 20,112 A 10,112 

Imin 4,167 A 19,888 A 9,888 

ILrms 4,2 A 20 A 10 A 
∆Vout

Vout

 0.5% 0.5% 0.5% 

ΔVout 600 µV 37,5 mV 0,025 µV 

Cout 23,366 µF 1,777 µF 1,333 µF 

rC 8,955 mΩ 167,41 mΩ 1,116 Ω 

Cin 1,469 F 9,974 F 4,971 F 
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current for the voltage-control mode and PID control and ‘feed’ those values to the 

MCU. The MCU will then calculate and adjust the duty cycle to keep the output 

power stable.  

An important part in designing the converter circuit is the selection of the mosfets. 

When choosing the mosfets, there are three important parameters that need to be 

considered, namely: 

 Drain to source voltage (VGS) 

 VGS(th) (only according to the MCP14700 output voltage on the driver pins) 

 RDS(on) 

Decisions based on known parameter values: 

 Choose a mosfet with a VGS that is about two and a half times higher than the 

input voltage 

 Make sure the driver output is higher than the mosfet VGS(th). For the 

MCP14700 the driver output is 5V 

 Choose a mosfet with a low RDS(on) value 

The sensing resistor of Figure 21 is connected to the circuit showed in Figure 22 

below.  

 

Figure 22 Synchronous buck converter sensing schematic circuit 
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The sensing resistor is connected to a MAX4080 current sensing IC. The IC uses an 

amplification of 20 in order to sense the current. The output from the IC is then ‘fed’ 

to and opamp with a certain analog value. Along with the current sense, there is a 

voltage-sensing circuit, which outputs a certain value. Both the voltage and the 

current sensing outputs are connected to the ADC ports of the MCU. The voltage-

mode control will be implemented by the MCU using the values from the sensing 

circuitry. 

3.3 The MPPT sensing circuit 

Figure 23 is the voltage and current sensing circuitry for the PV array. This sensing 

circuit will measure the voltage and current from the PV array and ‘feed’ those 

values to the MCU. The MCU will then use these values in order to calculate the 

MPP. The MPPT algorithm will then set the correct duty cycle for each converter. 

 

Figure 23 MPPT voltage and current sensing schematic circuit 

Figures 24 and 25 show the PCB in a 3D view. The physical properties of the 

components such as lengths, widths, heights and outline are rendered in 3D, thus 
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allowing for a real-life perspective of the PCB. This allows for the designing of an 

enclosure around the PCB while it is still in the design process, without first having 

to manufacture the PCB and then design the enclosure. 

 

Figure 24 PCB 3D view - Top  

 

Figure 25 PCB 3D view - Bottom  
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3.4 Programming 

The dsPIC was programmed with the Microchip MPLabX IDE software package. 

The c-code was developed specifically for this research by the author. The C-coding 

of the dsPIC consists of multiple aspects, which are as follows: 

 Setting up the registers 

 Setting up the I/O ports (Input/output ports) 

 Defining variables 

 Setting up the PWMs of the dsPIC 

 Reading the PV array voltage and current 

 Implementing the MPPT algorithm 

 Measuring the output of the DC-DC SMPS 

 Implementing the PID algorithm for stable outputs. 

See Annexure C for the full dsPIC MCU author C-code. 

3.5 Simulation setup 

The previous sections considered the design of the DC-DC SMPS. The section is 

concerned with the simulation of the system as a whole. The simulation of the design 

is done in Simulink. Simulink is a graphical simulation extension of Matlab. The 

simulation will not have all the components that are present in the PCB design nor 

will it be designed in the exact same manner, but it will return results that will verify 

the design. The main Simulink model comprises of various structures. They are as 

follows, as seen in Figure 26: 

 Irradiance and temperature input 

 MPPT algorithm 

 PV array 

 Synchronous buck converter sections 

 HG load section 

 Scopes and measurements. 
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Figure 26 Main Simulink PV system model 

The whole mode is broken down into subsections, which will be explained 

individually. The first section is the PV array input parameters as seen in Figure 27.  
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Figure 27 Signal builder blocks for irradiance and temperature 

The signal builder will provide the PV array with the irradiance and temperature 

input. Figure 29, the MPPT section, is not in the form of physical components but in 

the form of switches and logic operators. Figure 28 contains the MPPT algorithm 

subsystem. 

 

Figure 28 MPPT algorithm subsystem  

 

Figure 29 MPPT algorithm logic  
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Figure 29 shows the P&O MPPT algorithm logic as dictated by Figure 10 in Chapter 

2. Figure 30 consists of all the equivalent circuits and mathematics that makes up the 

PV array. The capacitor acts as an input filter for the synchronous buck converters. 

The flag m_PV consists of output parameters from the PV array model. Figures 30, 

31 and 32 are what make up the bulk of the PV array. All the parameters that specify 

the behaviour of the PV array are entered into these models. 

 

Figure 30 PV array subsystem  

The PV module used in the simulation is a Kyocera KD205GX-LP. All the necessary 

parameters and values for the simulation are gathered from the datasheet as seen in 

Annexure A. 

 

Figure 31 PV array model 

Figure 31 is the PV array model, which holds parameter values gathered from the 

datasheet of the PV panel used. Figure 32 contains the mathematics relating to the 

diode model of the PV panel. The diode equation in Figure 32 is provided by the 

Matlab software help file. 
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Figure 32 Diode and Rp model 

Figure 33 shows the characteristic curves of one PV panel. 

 

Figure 33 I-V and P-V characteristics of one module at 25°C 
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Figure 34 represents the synchronous buck converter subsystem. The structures of all 

three converters look the same except for the values used for the components. The 

flag D is the duty cycle input to the converter from the MPPT subsystem. Figure 35 

shows the design of the converters in more detail.  

 

Figure 34 Synchronous buck converter subsystem block 

 

Figure 35 Synchronous buck converter subsystem detailed 

The design consists of a PWM driver circuit, PID control and the components that 

make up a synchronous buck converter. Figure 36 consists of three resistors that will 

act as the load. The resistor values are set to the values that will simulate the inputs 

of the HG. The values of the resistors are the following: 

 R1: 2,875 Ω 

 R2: 0,5 Ω 

 R3: 0,375 Ω 
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Figure 36 HG subsystem 

The system is simulated only for 0.1s with a sample time of 100µs. The reason for 

this is that this is a complex system and the time it takes to simulate 0.1s in real-time 

is about one minute. Even though the simulation time is short, the full functionality 

of the system is simulated and results are obtained. 

3.6 Simulation measurements 

The simulation of the model is repeated multiple times in order to evaluate the 

performance of the system. The results obtained are that of an ideal system with ideal 

component parameters. That being the case, the performance evaluation still 

illustrates how the system will respond in a practical setting. The simulation focuses 

on how many PV panels will be needed in order for the SMPS to supply the required 

output values to the HG according to the specifications given in Table 1 of Chapter 

1. The simulation will also indicate what the minimum output power of the PV array 

should be in order for the SMPS to supply the correct output values. 

Table 10 HOGEN® GC 300 power supply output voltages 

Output Voltage (V) Current (A) Power (P) 

Output 1 7,5 20 150 

Output 2 12 4,2 50 

Output 3 5 10 50 

 

First, it has to be established what the minimum number of PV panels should be for 

the system to operate properly. Thus, multiple repetitions at standard test conditions 

(STC) of the simulation are run in order to establish the minimum number of PV 

panels needed. The STC are 1000 W/m
2
 irradiance and 25°C temperature. To see if 
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the SMPS is operating normally with the PV array, the total output power of the 

SMPS is observed. 

 

Figure 37 Number of PV panels needed for operation 

The panels are connected in a parallel connection because a buck topology is used in 

the SMPS the voltage from the PV array must not be higher than needed otherwise 

the duty cycle will suffer and the SMPS will not be able to handle that low a duty 

cycle. The parallel connections will increase the current output from the PV array, 

which is more suited to this type of SMPS. 

With the minimum number of PV panels established that are required in the array, 

the PV characteristic curves of the array can be simulated as indicated in Figure 38. 

When the irradiance decreases so will the output power of the PV array, therefore, it 

is necessary to determine the minimum irradiance at which the system will still be 

operational. Thus, starting the irradiance with 1000 W/m
2
 and then decrementing the 

irradiance with 100 W/m
2
 steps until the point where the PSU stops working, will 

indicate the estimated range.  
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Figure 38 PV array characteristic curves 

The process will be repeated, starting at 700 W/m
2
 and incrementing the irradiance 

with 20 W/m
2
 steps until the PSU is operational again. The process is repeated for 

the last time starting from 760 W/m2 and decrementing in 1 W/m
2
 steps. From the 

repetition of the above process, it is observed that the minimum irradiance required 

for the PSU to operate is 756 W/m
2
. Figures 39-41 show the results for the process 

followed. 

 

Figure 39 SMPS output power for the irradiance range of 700 W/m2 - 1000 W/m2 
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Figure 40 SMPS output power for the irradiance range of 700 W/m2 - 760 W/m2 

 

Figure 41 SMPS output power for the irradiance range of 755 W/m2 - 760 W/m2 
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After establishing the minimum irradiance level, the efficiency of the system can be 

measured. Setting the irradiance to the minimum, the PV array power is measured as 

indicated in Figure 42. 

 

Figure 42 PC V array output power at minimum irradiance setting 

The SMPS has a total output power of 250 W. With the PV array, output power of 

612 W at a minimum irradiance setting the efficiency of the system is as follows: 

     

SMPS power out
= 100%

PV array power out

      = 40,84%

eff 
   (18) 

When the system is operating normally between the irradiance range of 756 W/m
2
 

and 1000 W/m
2
 the behaviour of the DC-DC SMPS when in operation will look like 

Figures 44-46. It can also be clearly seen in these figures where the start-up begins 

and ends as well as when the steady-state operation begins. The PID algorithm 

ensures a fast start-up with a quick transition to the steady-state operation of the DC-

DC SMPS. 
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Figure 43 SMPS voltage output while in operation 

 

Figure 44 SMPS current output while in operation 
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Figure 45 SMPS power output while in operation 

3.7 Summary 

This chapter discussed the design of the controller, synchronous buck converters and 

sensing circuits where designed and implemented. Each section was discussed and 

explained how they function in the system. The parameters chosen were used in the 

calculations in order to find component values for the circuits. In addition, it was 

shown how the simulation model was set up and configured. The results obtained 

indicated how many PV panels where needed in the array for the system to operate. 

The results also indicated the irradiance range for which the system will operate 

normally. From the results, the efficiency of the system could be calculated. 

Next, is the comparison of the results from the simulation to that of the DC-DC 

SMPS in a practical setup. 
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CHAPTER 4    MEASUREMENTS AND RESULTS 

Introduction 

This chapter gives an overview of practical results as well as additional results 

obtained from the simulation. The simulation and practical results were compared in 

order to make a conclusion. 

4.1 Simulation results 

Additional simulations were carried out on the system by using different PV panels 

in the system. These results are important as to the functionality of the system. Table 

10 outlines the parameter values of different PV panel models. The PV panels are 

connected in parallel in order to increase the current output of the PV array and not 

the voltage output. As indicated in Chapter 3, four PV panels are needed in order for 

the system to operate. Thus increasing the PV panel amount the current and power 

increases but not the voltage. The simulation was repeated multiple times with the 

irradiance set to 1000 W/m
2
, and selecting a PV panel model as well as the number 

of PV panels used.  

As seen in Table 11, the system only operates with four panels for any PV panel 

model except for the last PV panel model. After establishing the minimum amount of 

PV panels needed, the irradiance is lowered in order to find the minimum irradiance 

level at which the system will still operate for each PV model selection. Table 12 

lists the results obtained. By inspecting Table 12, it will be noticed that the minimum 

PV array output current is not lower than 20,27 A with its respective minimum 

irradiance level. The efficiency of the system is also very low and can be contributed 

to the values of IMPP in Table 12. Even though all the converters are synchronous 

buck converters, which should step-up the current from a very low current value, it 

does not. The reason for this can be that the total amount of current drawn by the HG 

is 35 A as indicated in Table 1. Thus, the minimum amount of current needed to 

step-up from is very high. The system efficiency suffers because of this issue. It can 

be concluded that the power rating as well as the voltage rating is not that important 

when choosing a PV panel for this system but rather the current rating. The voltage 

should be at least 15 V in order to correctly step-down to 12 V, 5 V and 7,5 V, but 
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also the power should be no less than 250 W because the HG requires 250 W. Thus, 

when constructing the PV array the output current of the array should not be lower 

than 20,27A. The last PV panel does not have results because the system only starts 

operating when 15 panels are connected in parallel. Therefore, even though the 

voltage is very high and the power rating at four panels are correct, the current is too 

low for the DC-DC SMPS to properly step-up the current and operate.  

Table 11 Simulation results for different PV panels 

 No. panels VOC ISC VMPP IMPP PMPP 

Kyocera KD135GX-

LP 

1 Panel 22,10 8,37 17,70 7,63 135,04 

2 Panels 22,10 16,74 17,70 15,26 270,09 

3 Panels 22,10 25,11 17,70 22,89 405,13 

4 Panels 22,10 33,48 17,70 30,52 540,17 

Kyocera KD205GX-

LP 

1 Panel 33,20 8,36 26,60 7,71 205,08 

2 Panels 33,20 16,72 26,60 15,42 410,15 

3 Panels 33,20 25,08 26,60 23,13 615,23 

4 Panels 33,20 33,44 26,60 30,84 820,30 

Mitsubishi PV-

UD190MF5 

1 Panel 30,80 8,23 24,70 7,71 190,50 

2 Panels 30,80 16,47 24,70 15,43 381,01 

3 Panels 30,80 24,70 24,70 23,14 571,51 

4 Panels 30,80 32,93 24,70 30,85 762,01 

Sanyo HIP-

225HDE1 

1 Panel 41,80 7,13 33,90 6,63 224,90 

2 Panels 41,80 14,27 33,90 13,27 449,80 

3 Panels 41,80 21,40 33,90 19,90 674,70 

4 Panels 41,80 28,54 33,90 26,54 899,60 

BP Solar SX3190 

1 Panel 30,60 8,51 24,30 7,83 190,26 

2 Panels 30,60 17,02 24,30 15,66 380,52 

3 Panels 30,60 25,53 24,30 23,49 570,77 

4 Panels 30,60 34,04 24,30 31,32 761,03 

First Solar FS-272 

1 Panel 94,57 1,18 70,56 1,01 71,33 

2 Panels 94,57 2,36 70,56 2,02 142,65 

3 Panels 94,57 7,09 70,56 3,03 213,98 

4 Panels 94,57 2,36 70,56 4,04 285,30 
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Table 12 DC-DC SMPS running at 1000 W/m2 

 1 Panel 2 Panels 3 Panels 4 Panels 

YES NO YES NO YES NO YES NO 

Kyocera 

KD135GX-LP 
 x  x  x x  

Kyocera 

KD205GX-LP 
 x  x  x x  

Mitsubishi PV-

UD190MF5 
 x  x  x x  

Sanyo HIP-

225HDE1 
 x  x  x x  

BP Solar 

SX3190 
 x  x  x x  

First Solar FS-

272 
 x  x  x  x 

 

Table 13 DC-DC SMPS running for various irradiances with four PV panels 

 Irradiance 

(W/m
2
) 

Irradiance 

in % 
VMPP IMPP PMPP 

Efficiency 

(%) 

Kyocera 

KD135GX-LP 
860 86,00% 17,70 26,25 464,55 53,82% 

Kyocera 

KD205GX-LP 
728 72,80% 26,60 22,45 597,18 41,86% 

Mitsubishi PV-

UD190MF5 
750 75,00% 24,70 23,14 571,51 43,74% 

Sanyo HIP-

225HDE1 
764 76,40% 33,90 20,27 687,29 36,37% 

BP Solar 

SX3190 
736 73,60% 24,30 23,05 560,12 44,63% 

First Solar FS-

272 
n/r n/r n/r n/r n/r n/r 

 

When carrying out the practical setup, the PV panels used must meet the 

requirements established above. 
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4.2 Experimental setup 

The experimental setup was connected as indicated in Figure 46 below. 

 

Figure 46 Experimental setup 

The PV array as well as the outputs of the DC-DC SMPS is connected to the current 

and voltage-sensing interface (I&V interface) input connectors. This will allow for 
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current and voltage measurements as well as logging these measurements with the 

Picolog hardware. The output of the I&V interface is connected to DC loads that 

together act as the HG load. The V and I connecters on the I&V interface are 

connected to another interface connected to the Picolog. The PV array output from 

the I&V interface is then connected to the input of the DC-DC SMPS. The system is 

now a closed-loop system. The PV panel chosen for the practical is the Sunmodule 

SW 220 poly (see Annexure A) because they are the panels that are used by the 

Telkom Centre of Excellence for all research purposes. The PV panels meet the 

requirements as mentioned previously. The DC loads are set to the values so as to act 

as the HG load. 

The irradiance and temperature parameters could not be kept constant as in the 

simulation environment but the results obtained where nonetheless acceptable.  

4.3 Measurement results 

Figure 47 shows the PV array power of the system for a time period during testing. 

During this time period, the system was running multiple times. An average of the 

results was calculated and the data was plotted in Figures 48-50. Figure 48 is the 

output voltage of the DC-DC SMPS. It can be seen that the form of the graphs are 

the same as that of the simulation. The voltage outputs are slightly higher than the 

preferred 12V, 5V and 7,5V and fluctuate more often. The only major difference is 

the time period for which the system was operating. The DC-DC SMPS takes a bit 

longer than the simulation to reach a steady-state. The reason for this is that there are 

delays from the PCB itself, for instance capacitors that need to be charged and 

discharged. In addition, the speed of the MCU needs to be taken into account.  

Figure 39 shows the current waveforms. Again, the shapes of the waveforms are the 

same as that of the simulation waveform but with slightly lower values than the 

preferred 20A, 10A and 4,2A. With real components, there will be differences to that 

of the simulation because the simulation uses ideal components. That is why the 

output of the DC-DC SMPS is not exactly the same as that of the simulation. The 

current output is also a bit lower than expected but still within an acceptable 

operating range. Figure 40 is the power output of the DC-DC SMPS. Because the 
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voltage and current is a bit lower than expected the output power is also a little lower 

but still acceptable.  

 

Figure 47 Practical PV array power 

The average power is around 660 W. Thus, with the output power around 250 W the 

total efficiency of the system is 38%. The efficiency is lower than expected. 

 

Figure 48 Simulation and practical results compared for output voltage 
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Figure 49 Simulation and practical results compared for output current 

 

Figure 50 Simulation and practical results compared for output power 

The output power for practical Pout3 in Figure 50 is more unstable than the rest of the 

output power. It can be reasoned that the DC-DC SMPS has more difficulty at such a 

high output power than for the rest. 
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4.4 Summary 

In this chapter, the system was tested and measured in a practical environment. The 

results obtained were compared to that of the simulation results. The results showed 

that the DC-DC SMPS in a practical setup has the same waveforms as the simulation 

but with a different time period as well as different output values. 

Chapter 5 is the final section in this dissertation. It will contain the conclusions made 

from the research as well as recommendations for further research on the DC-DC 

SMPS. 
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CHAPTER 5      CONCLUSIONS AND RECOMMENDATIONS 

Introduction 

The aim was to design a solar driven (PV) power supply unit for a regenerative fuel 

cell hydrogen generator. The conclusions have been made based on the results 

obtained. The recommendations for future research will also be discussed. 

5.1 Conclusions 

It was found that PV energy is an important alternative energy source. By combining 

PV energy with a hydrogen generator, an independent solar/hydrogen system can be 

constructed. However, in order for the hydrogen generator to operate from PV 

energy a power supply unit had to be designed according to the hydrogen generator 

specifications. In addition, to make sure the PV panels operate at their own 

maximum efficiency a MPPT algorithm has to be implemented into the power supply 

unit. 

5.1.1 Design and simulation 

Research into different MPPT algorithms revealed that the perturb and observe 

algorithm will be the best option for the design of the DC-DC SMPS. The P&O 

algorithm was chosen because it is easy to implement and has a reputation for being 

able to track the MPP with very high efficiency. The other advantage of the P&O 

algorithm is that it can be programmed onto a MCU instead of being hardware based. 

This makes it easier to modify the algorithm as needed and is faster than that of 

hardware based algorithms.  

The voltage and current requirements of the hydrogen generator showed that a buck 

converter topology was needed for the design of the DC-DC SMPS. Therefore, 

further research was done in order to optimise the design to fit the system. It was 

found that a synchronous buck converter topology was the improved version of the 

normal buck converter topology, meaning that the efficiency is higher. The research 

also indicated that to stabilise the output of the DC-DC SMPS, a control method was 

needed. It was found that the voltage-mode control along with a PID controller was 

needed to best stabilise the output of the DC-DC SMPS. The voltage-mode control 
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will try to correct the output voltage to that which is required. On its own, the 

voltage-mode control cannot be used and, therefore, the PID controller was used in 

conjunction with the voltage-mode control. The PID controller will minimise the 

error of the output and the output will be more stable and more accurate. The PID 

controller makes very fast adjustments because it is programmed onto the MCU. The 

voltage-mode control is hardware based. 

After designing the DC-DC SMPS, the whole system was simulated. The reason for 

simulation is to be able to observe the system behaviour before manufacturing. The 

simulation helped by indicating how many PV panels are needed in the array in order 

for the DC-DC SMPS to operate normally. The simulation results also clarified a 

very important aspect of the design, which is how big a role the current of the PV 

panels play in the choosing of the PV panels. The simulation showed that the current 

of the PV array cannot be lower than 20,27A. If the current is lower than this value 

the DC-DC SMPS will not operate. With this indication, the system efficiency is 

very much lower and not desirable. The power has to be more than 250 W because 

that is what is required from the hydrogen generator. The voltage has to be more than 

15V for the synchronous buck converter to correctly step-down the voltage. The 

simulation, however, does not indicate how the system will behave in a practical 

environment.  

5.1.2 Practical environment 

The practical environment gives precedence to factors not included in the theory or 

simulation. The PCB was designed and manufactured keeping in mind how much 

current will be conducted along the PCB tracks. The results obtained showed that 

both the output current and voltage was slightly lower than that of the simulation but 

still within the tolerance range. There was a slight delay in the response of the system 

but that is because of the real components used on the PCB and the processing speed 

of the MCU. It was also observed and noted that the mosfet driver and mosfets got 

very hot after only a few seconds of operation and made the system unstable 

afterwards. The efficiency of the system, which is at 38%, is also lower than that of 

the simulation efficiency, which is 40%. 
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5.2 Recommendations 

The following recommendations regarding further research of the hydrogen 

generator DC-DC SMPS are made: 

 Further research needs to be done to improve the MPPT algorithm and 

optimise it so that it will be able to track the MPP successfully when there is 

partial shading. 

 Further research needs to be done to improve the converter efficiency and be 

able to work with a lower current input from the PV array. 

 The simulation needs to be optimised with components that better reflect their 

real world counterparts instead of ideal components in order to more 

accurately simulate the system. 

 The PCB needs to be redesigned with fans included to be able to dissipate the 

heat from the components so that the components do not overheat. 
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HOGEN® GC 300 technical specifications     ANNEXURE B 
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dsPIC MCU author C-code        ANNEXURE C 

// Main file 

// File:   MPPT_DC-DC.c 

// Author: Neil J.v Rensburg 

 

#include <33FJ32GS606.h> 

#define USE_PWM1 

#define USE_PWM2 

#define USE_PWM3 

#define _SINGLE_CLK 

 

// FUSES 

// DSPIC33FJ64GS606 Configuration Bit Settings 

#fuses NOWRTB,NOBSS             

#fuses NOWRT,NOPROTECT           

#fuses NOIESO                    

#fuses NOPR,OSCIO                

#fuses NOWINDIS,NOWDT 

#fuses PUT32,SS1NORM,QEINORM 

#use delay(clock=80MHz, internal=4MHz) 

 

////////////////////// DEFINES //////////////////////////// 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <MATH.H> 

#include "MPPT_PWM.h" 

#include "pid.c" 

#define MAX_OUTPUTS     (3) 

 

 

WORD  wCurLimTimer[3] = {0,0,0}; 

BYTE  bCurrentLimitFlg[3] = {0,0,0}; 

BYTE  bADCDone      = 0; 

BYTE  bMainIncomerADDone = 0; 

WORD  wStartIncomingADTimer = cINTER_ADC_CHN_DELAY; 

 

sPIDSTRUCT  sPidMem[MAX_OUTPUTS]; 

float fMPPTDuty = 0.0; 

 

WORD wFilter1[cFILTER_CNT] = {0}; 

WORD wFilter2[cFILTER_CNT] = {0}; 

WORD wFilter3[cFILTER_CNT] = {0}; 

WORD wFilter4[cFILTER_CNT] = {0}; 

WORD wIFilter1[cFILTER_CNT] = {0}; 

WORD wIFilter2[cFILTER_CNT] = {0}; 

WORD wIFilter3[cFILTER_CNT] = {0}; 

WORD wFilter0[cFILTER_CNT]  = {0}; 

WORD wIFilter0[cFILTER_CNT] = {0}; 
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int8  iwFilterIdx1 = 0; 

int8  iwFilterIdx2 = 0; 

int8  iwFilterIdx3 = 0; 

int8  iwFilterIdx4 = 0; 

int8  iwFilterIdx0 = 0; 

int8  iwFilterIdxI0 = 0; 

float fDuty[3] = {10.0,10.0,10.0}; 

float output; 

 

float fVInFiltered; 

float fIInFiltered; 

int8  iFilterDone = 0; 

BYTE  bSecTgl = 0 , bPwmOn = 0; 

sANAENG sAnaVals[10]; 

 

int main(int argc, char** argv) 

{ 

    int8 iIdx; 

    vKickWdt        (); 

    delay_cycles    (100); 

    vKickWdt        (); 

    vSetupBoard     (); 

    vKickWdt        (); 

    delay_cycles    (100); 

    vKickWdt        (); 

    vSwitchPower    (1); 

    output_bit      (LED_SYS,bSecTgl); 

 

    while (1) 

    { 

        vKickWdt    (); 

        delay_us    (1); 

 

        if ((bADCDone & 0x0F) == 0x0F){ 

                vKickWdt        (); 

                vDoEngConv      (&bADCDone); 

                vDoMPPTControl  (); 

            for (iIdx = 0; iIdx < 3; iIdx++) 

            { 

                vDoPwmVOutControl        (iIdx); 

            } 

             

            PWMCON2FLTIEN = 0; 

            PWMCON2CLIEN = 0; 

            PWMCON2TRGIEN = 0; 

            PWMCON1FLTIEN = 0; 

            PWMCON1CLIEN = 0; 

            PWMCON1TRGIEN = 0; 

            PWMCON3FLTIEN = 0; 

            PWMCON3CLIEN = 0; 

            PWMCON3TRGIEN = 0; 
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        } 

 

        if ((fVInFiltered > (cVIN_MIN_SW_ON + cVIN_MIN_SW_ON_HYST)) && 

(bPwmOn==0)) 

        { 

            int i; 

            for (i = 0; i < 3; i++) 

                vClearPidNvStruct  (&sPidMem[i]); 

            vStartPWM       (); 

            bPwmOn          = 1; 

        } 

        if ((fVInFiltered < (cVIN_MIN_SW_ON - cVIN_MIN_SW_ON_HYST)) && 

(bPwmOn==1)) 

        { 

            vStopPWM        (); 

            bPwmOn          = 0; 

        } 

        if (0) 

        {   // if PV_IN_PRE_SW is above VIN_MIN_SW_ON, it is safe to switch on VIN. 

            if (sAnaVals[8].fConverted >= cVIN_MIN_SW_ON)   vSwitchPower(1); 

            else                                            vSwitchPower(0); 

            bMainIncomerADDone = 0; 

        } 

        output_bit(LED_SYS,bSecTgl); 

    } 

    return (0);//EXIT_SUCCESS); 

} 

 

void    vSetupBoard         (void) 

{ 

    vStopPWM        (); 

    delay_cycles    (100); 

    vInitClock      (); 

    delay_cycles    (100); 

    vSetupPins      (); 

    delay_cycles    (100); 

    vSetupPWM       (); 

    delay_cycles    (100); 

    delay_cycles    (100); 

    vKickWdt        (); 

    vSetupADC       (); 

    delay_cycles    (100); 

    vSetupTimers    (); 

    delay_cycles    (100); 

    vSetupInterrupts(); 

    vSetupStruct(); 

} 

 

void vSwitchPower  (int8 bState) 

{ 

    if (bState) output_bit      (POWERON,1); 
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    else        output_bit      (POWERON,0); 

} 

 

void vSetupStruct(void) 

{ 

    int i; 

   memset (sAnaVals,0,sizeof(sANAENG)*10); 

   sAnaVals[0].wRawHigh = 373; 

   sAnaVals[0].fEngHigh = 4.2;          

   sAnaVals[1].wRawHigh = 1024; 

   sAnaVals[1].fEngHigh = 30.932; 

   sAnaVals[2].wRawHigh = 373; 

   sAnaVals[2].fEngHigh = 10.0; 

   sAnaVals[3].wRawHigh = 1024; 

   sAnaVals[3].fEngHigh = 13.062; 

   sAnaVals[4].wRawHigh = 1024; 

   sAnaVals[4].fEngHigh = 17.719; 

   sAnaVals[5].wRawHigh = 373; 

   sAnaVals[5].fEngHigh = 20.0; 

   sAnaVals[6].wRawHigh = 1024;             

   sAnaVals[6].fEngHigh = 42.786;          

   sAnaVals[7].wRawHigh = 1024;                    

   sAnaVals[7].fEngLow  = -0.100;    

   sAnaVals[7].fEngHigh = 28.406;     

   sAnaVals[8].wRawHigh = 1024; 

   sAnaVals[8].fEngHigh = 42.9;     

   sAnaVals[9].wRawHigh = 1024; 

   sAnaVals[9].fEngHigh = 0.0; 

    

     for (i = 0; i < 3; i++) 

        vClearPidNvStruct  (&sPidMem[i]); 

   //PID P, I, D values 

   sPidMem[0].fKp       = 0.4; 

   sPidMem[0].fKi       = 0.05; 

   sPidMem[0].fKd       = 0.1; 

   sPidMem[1].fKp       = 0.35; 

   sPidMem[1].fKi       = 0.015; 

   sPidMem[1].fKd       = 0.05; 

   sPidMem[2].fKp       = 0.33; 

   sPidMem[2].fKi       = 0.005; 

   sPidMem[2].fKd       = 0.07; 

} 

 

void   vInitClock          (void) 

{ 

    setup_oscillator(OSC_INTERNAL); 

    delay_cycles    (100); 

    ACLKCONASRCSEL = 0; 

    FRCSEL = 1; 

    delay_cycles    (100); 

    ENAPLL = 1; 
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    delay_cycles    (100); 

    SELACLK = 1; 

    delay_cycles    (100); 

    APSTSCLR2 = 1; APSTSCLR1 = 1; APSTSCLR0 = 0; 

    delay_cycles    (100); 

    while (APLLCK == 0); 

    delay_cycles    (100); 

} 

 

void     vSetupPins      (void) 

{ 

    ADPCFGPCFG0 = ADPCFGPCFG1 = ADPCFGPCFG2 = ADPCFGPCFG3 = 

ADPCFGPCFG4 = ADPCFGPCFG5 = ADPCFGPCFG8 = 0; 

    ADPCFGPCFG12 = ADPCFGPCFG13 = ADPCFGPCFG14 = ADPCFGPCFG15 = 0; 

    set_tris_b      (0xFFFF); 

    set_tris_c      (0xFFFF); 

    set_tris_d      (0xF9F0); 

    set_tris_e      (0xFFC0); 

    set_tris_f      (0xFFF7); 

    set_tris_g      (0xFFFF); 

    output_high     (LED_PWM1_OC); 

    output_high     (LED_PWM2_OC); 

    output_high     (LED_PWM3_OC); 

    output_high     (LED_PWM1_GD); 

    output_high     (LED_PWM2_GD); 

    output_high     (LED_PWM3_GD); 

    output_high     (LED_SYS); 

    output_high     (DEBUG_PIN); 

 

} 

 

void    vSetupPWM       (void) 

{ 

//  General PWM Registers 

    PTCON2 = 0; 

    delay_cycles(100); 

    PTPER = PWM_PERIOD; 

    SEVTCMP = 0; 

    PTCONPTSIDL = 0; 

 

    PWMCON1MDCS = 0; 

//  PWM1 

#ifdef USE_PWM1 

    delay_cycles(100); 

    PWMCON1FLTIEN = 0; 

    PWMCON1CLIEN = 0; 

    PWMCON1TRGIEN = 0; 

    PWMCON1MTBS = 0; 

    PWMCON1CAM = 0; 

    PWMCON1XPRES = 0; 

#ifdef SINGLE_CLK 
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    PWMCON1ITB = 0; 

#else 

    PWMCON1ITB = 1; 

#endif 

    PWMCON1MDCS = 0; 

    PWMCON1DTC1 = 0; PWMCON1DTC0 = 0; 

    PWMCON1IUE = 0; 

    PDC1 = (PWM_PERIOD/10); 

#ifndef SINGLE_CLK 

    PHASE1 =  PWM_PERIOD+100; 

    SPHASE1 = PWM_PERIOD+100; 

#endif 

    DTR1 = 120; 

    ALTDTR1 = 150; 

    delay_cycles(100); 

    IOCON1 = 0; 

    IOCON1PMOD1 = IOCON1PMOD0 = 0; 

    delay_cycles(100); 

    IOCON1POLH = 0; 

    IOCON1POLL = 0; 

    delay_cycles(100); 

    IOCON1PENH = 1; 

    IOCON1PENL = 1; 

    delay_cycles(100); 

#endif 

    //  PWM2 

#ifdef USE_PWM2 

    PWMCON2FLTIEN = 0; 

    PWMCON2CLIEN = 0; 

    PWMCON2TRGIEN = 0; 

    PWMCON2MTBS = 0; 

    PWMCON2CAM = 0; 

    PWMCON2XPRES = 0; 

    PWMCON2ITB = 0; 

    PWMCON2MDCS = 0; 

    PWMCON2DTC1 = 0;PWMCON2DTC0 = 0; 

    PWMCON2IUE = 0; 

    PDC2 = (PWM_PERIOD/10); 

    PHASE2 =  0; 

    SPHASE2 = 0; 

    DTR2 = 180; 

    ALTDTR2 = 120; 

    delay_cycles    (100); 

//    IOCON1 = 0; 

    IOCON2PMOD1 = IOCON2PMOD0 = 0; 

     delay_cycles(100); 

    IOCON2POLH = 0; 

    IOCON2POLL = 0; 

    delay_cycles(100); 

    IOCON2PENH = 1; 

    IOCON2PENL = 1; 
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    delay_cycles(100); 

#endif 

    //  PWM3 

#ifdef USE_PWM3 

    PWMCON3FLTIEN = 0; 

    PWMCON3CLIEN = 0; 

    PWMCON3TRGIEN = 0; 

    PWMCON3MTBS = 0; 

    PWMCON3CAM = 0; 

    PWMCON3XPRES = 0; 

    PWMCON3ITB = 0; 

    PWMCON3MDCS = 0; 

    PWMCON3DTC1 = 0;PWMCON3DTC0 = 0; 

    PWMCON3IUE = 0; 

    PDC3 = (PWM_PERIOD/10); 

    DTR3 = 180; 

    ALTDTR3 = 150; 

    delay_cycles    (100); 

    IOCON3PMOD1 = IOCON3PMOD0 = 0; 

    delay_cycles    (100); 

    IOCON3POLH = 0; 

    IOCON3POLL = 0; 

    delay_cycles    (100); 

    IOCON3PENH = 1; 

    IOCON3PENL = 1; 

    delay_cycles    (100); 

#endif 

    //Additional registers 

    PTCONPTSIDL = 0; 

    PTCONSYNCOEN = 1; 

    delay_cycles(255); 

} 

 

void vStartPWM       (void) 

{ 

    IOCON1PENH      = 1; 

    IOCON1PENL      = 1; 

    IOCON2PENH      = 1; 

    IOCON2PENL      = 1; 

    IOCON3PENH      = 1; 

    IOCON3PENL      = 1; 

    PTCONPTEN       = 1;         // Enable the PWM Module 

} 

 

void vStopPWM       (void) 

{ 

    PTCON           = 0;         // Disable the PWM Module 

    IOCON1PENH      = 0; 

    IOCON1PENL      = 0; 

    IOCON2PENH      = 0; 

    IOCON2PENL      = 0; 
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    IOCON3PENH      = 0; 

    IOCON3PENL      = 0; 

} 

 

 

 

void   vSetupADC        (void) 

{ 

    setup_high_speed_adc    (ADC_OFF); 

    setup_high_speed_adc_pair(0, INDIVIDUAL_SOFTWARE_TRIGGER); 

    setup_high_speed_adc_pair(1, INDIVIDUAL_SOFTWARE_TRIGGER); 

    setup_high_speed_adc_pair(2, INDIVIDUAL_SOFTWARE_TRIGGER); 

    setup_high_speed_adc_pair(6, INDIVIDUAL_SOFTWARE_TRIGGER); 

    setup_high_speed_adc_pair(7, INDIVIDUAL_SOFTWARE_TRIGGER); 

    setup_adc_ports         

(sAN0|sAN1|sAN2|sAN3|sAN4|sAN5|sAN12|sAN13|sAN14|sAN15); 

 

   ADCONORDER =  0; 

   ADCONASYNCSAMP = 0; 

   ADCONSEQSAMP =  1 ; 

 

    setup_high_speed_adc    (ADC_CLOCKED_BY_PRI_PLL|ADC_CLOCK_DIV_6); 

 

} 

 

 

void    vSetupTimers    (void) 

{ 

         setup_timer1   (TMR_INTERNAL|TMR_DIV_BY_64,625); 

} 

 

void    vSetupInterrupts    (void) 

{ 

    enable_interrupts(INT_TIMER1); 

    enable_interrupts(INTR_GLOBAL); 

} 

 

 

#define cMS_RELOAD_VAL      (1) 

#define cSEC_RELOAD_VAL     (1000) 

BYTE bMsCntr = cMS_RELOAD_VAL; 

WORD wSecCntr = cSEC_RELOAD_VAL; 

// 

#INT_TIMER1 

void vT1_ISR    (void) 

{ 

    if (bMsCntr) {--bMsCntr;return;} 

    bMsCntr         = cMS_RELOAD_VAL; 

    // millisecond code 

    if (wCurLimTimer[0]) wCurLimTimer[0]--; 

    if (wCurLimTimer[0] == 1)  bCurrentLimitFlg[0] = 0; 
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    if (wCurLimTimer[1]) wCurLimTimer[1]--; 

    if (wCurLimTimer[1] == 1)  bCurrentLimitFlg[1] = 0; 

    if (wCurLimTimer[2]) wCurLimTimer[2]--; 

    if (wCurLimTimer[2] == 1)  bCurrentLimitFlg[2] = 0; 

    if (wStartIncomingADTimer) wStartIncomingADTimer--; 

    if (wStartIncomingADTimer == 1) 

    { 

        IFS6ADCP0IF = 0;                    

        ADCP0IE = 1; 

        ADCPC0SWTRG0 = 1;         

    } 

#endif 

    // one second code 

    if (wSecCntr) {--wSecCntr;return;} 

    wSecCntr         = cSEC_RELOAD_VAL; 

    bSecTgl         ^= 0x01; 

} 

 

unsigned int32 ulWaitForPair0= 0; 

 

#INT_ADCP0 

void vADCP0_ISR (void) 

{ 

    static int8 bState = 0; 

    int16 wTmp; 

 

    if (ADCPC0PEND1!=0) 

    { 

        ADCP0IE = 1; 

        ADCPC0SWTRG0 = 1;        

        ulWaitForPair0++; 

        output_high(LED_PWM3_GD); 

        return; 

    } 

    wTmp = (unsigned int16)ADCBUF0; 

    wTmp = (unsigned int16)ADCBUF1; 

 

        switch (bState) 

    { 

        case 0: 

            IFS7ADCP2IF = 0; 

            ADCP2IE = 1; 

            ADCPC1SWTRG2 = 1;        

            bState++; 

            break; 

 

        case 1: 

            IFS6ADCP1IF = 0;                     

            ADCP1IE = 1; 

            ADCPC0SWTRG1 = 1;        

            bState++; 
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            break; 

 

        case 2: 

            IFS7ADCP7IF = 0;                   

            ADCP7IE = 1; 

            ADCPC3SWTRG7 = 1;       

            bState++; 

            break; 

 

        case 3: 

            IFS7ADCP6IF = 0; 

            ADCPC3SWTRG6 = 1;       

            ADCP6IE = 1; 

            bState = 0; 

            break; 

 

    } 

    IFS6ADCP0IF = 0;                        

    ADCP0IE = 0; 

    ADCPC0SWTRG0 = 0; 

    output_high(LED_PWM3_GD); 

} 

 

 

unsigned int32 ulWaitForPair1= 0; 

 

#INT_ADCP1 

void vADCP1_ISR (void) 

{ 

    int16 wVoltTmp,wTmp; 

 

    if (ADCPC0PEND1!=0) 

    { 

        ADCP1IE = 1; 

        ADCPC0SWTRG1 = 1;        

        ulWaitForPair1++; 

        output_high(LED_PWM1_GD); 

        return; 

    } 

 

    wVoltTmp =  (unsigned int16)ADCBUF2; 

    if (sAnaVals[0].sRawVal == 0) 

        wIFilter1[iwFilterIdx1] = wVoltTmp; 

    else 

    { 

        wTmp = sAnaVals[0].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wIFilter1[iwFilterIdx1] = wVoltTmp; 

        else 

            wIFilter1[iwFilterIdx1] = wTmp; 

    } 
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    wVoltTmp = (unsigned int16)ADCBUF3; 

    if (sAnaVals[1].sRawVal == 0) 

        wFilter1[iwFilterIdx1] = wVoltTmp; 

    else 

    { 

        wTmp = sAnaVals[1].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wFilter1[iwFilterIdx1] = wVoltTmp; 

        else 

            wFilter1[iwFilterIdx1] = wTmp; 

    } 

 

    if (++iwFilterIdx1 > cFILTER_CNT) iwFilterIdx1 = 0; 

    bADCDone |= cADCP1DONE;             

 

    IFS6ADCP1IF = 0;                        

    ADCP1IE = 0; 

    output_high(LED_PWM1_GD); 

} 

 

unsigned int32 ulWaitForPair2= 0; 

#INT_ADCP2 

void vADCP2_ISR (void) 

{ 

    int16 wVoltTmp,wTmp; 

 

    if (ADCPC1PEND2!=0) 

    { 

        ADCP2IE = 1; 

        ADCPC1SWTRG2 = 1; 

        ulWaitForPair2++; 

        return; 

    } 

 

  

    wVoltTmp = (unsigned int16)ADCBUF5; 

    if (sAnaVals[3].sRawVal == 0) 

        wFilter2[iwFilterIdx2] = wVoltTmp; 

    else 

    { 

        wTmp = sAnaVals[3].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wFilter2[iwFilterIdx2] = wVoltTmp; 

        else 

            wFilter2[iwFilterIdx2] = wTmp; 

    } 

 

    wVoltTmp = (unsigned int16)ADCBUF4; 

    if (sAnaVals[2].sRawVal == 0) 

        wIFilter2[iwFilterIdx2] = wVoltTmp; 

    else 
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    { 

        wTmp = sAnaVals[2].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wIFilter2[iwFilterIdx2] = wVoltTmp; 

        else 

            wIFilter2[iwFilterIdx2] = wTmp; 

    } 

 

    if (++iwFilterIdx2 > cFILTER_CNT) iwFilterIdx2 = 0; 

    bADCDone |= cADCP2DONE; 

 

    IFS7ADCP2IF = 0;                       

    ADCP2IE = 0; 

 } 

 

unsigned int32 ulWaitForPair4= 0; 

#INT_ADCP4 

void vADCP4_ISR (void) 

{ 

  

    if (ADCPC2PEND4!=0) 

    { 

        ADCP4IE = 1; 

        ADCPC2SWTRG4 = 1; 

        ulWaitForPair4++; 

        output_high(LED_PWM3_GD); 

        return; 

    } 

  

    wFilter4[iwFilterIdx4] = (unsigned int16)ADCBUF8; 

 

    if (++iwFilterIdx4 > cFILTER_CNT) iwFilterIdx4 = 0; 

    bADCDone |= cADCP4DONE;                  

    IFS7ADCP4IF = 0;                        

    ADCP4IE = 0; 

    output_high(LED_PWM3_GD); 

 } 

 

unsigned int32 ulWaitForPair6= 0; 

#INT_ADCP6 

void vADCP6_ISR (void) 

{ 

    int16 wVoltTmp,wTmp; 

 

    if (ADCPC3PEND6!=0) 

    { 

        ADCP6IE = 1; 

        ADCPC3SWTRG6 = 1;        

        ulWaitForPair6++; 

 

        return; 
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    } 

 

#ifdef BRD_V2 

    wVoltTmp = (unsigned int16)ADCBUF13; 

    if (sAnaVals[6].sRawVal == 0) 

        wFilter0[iwFilterIdx0] = wVoltTmp; 

    else 

    { 

        wTmp = sAnaVals[6].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wFilter0[iwFilterIdx0 ] = wVoltTmp; 

        else 

            wFilter0[iwFilterIdx0 ] = wTmp; 

    } 

 

    wVoltTmp = (unsigned int16)ADCBUF12; 

    if (sAnaVals[7].sRawVal == 0) 

        wIFilter0[iwFilterIdx0] = wVoltTmp; 

    else 

    { 

                wTmp = sAnaVals[7].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wIFilter0[iwFilterIdxI0 ] = wVoltTmp; 

        else 

            wIFilter0[iwFilterIdxI0 ] = wTmp; 

    } 

#endif 

 

    if (++iwFilterIdx0  > cFILTER_CNT) iwFilterIdx0  = 0; 

 

    if (++iwFilterIdxI0  > cFILTER_CNT) iwFilterIdxI0  = 0; 

    bADCDone |= cADCP6DONE;              

 

    IFS7ADCP6IF = 0;                       

    ADCP6IE = 0; 

} 

 

unsigned int32 ulWaitForPair7= 0; 

#INT_ADCP7 

void vADCP7_ISR (void) 

{ 

    int16 wVoltTmp,wTmp; 

     

    if (ADCPC3PEND7!=0) 

    { 

        ADCP7IE = 1; 

        ADCPC3SWTRG7 = 1;        

        ulWaitForPair7++; 

 

        return; 

    } 
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#ifdef BRD_V2 

 

    wVoltTmp = (unsigned int16)ADCBUF15; 

    if (sAnaVals[4].sRawVal == 0) 

        wFilter3[iwFilterIdx3] = wVoltTmp; 

    else 

    { 

        wTmp = sAnaVals[4].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wFilter3[iwFilterIdx3] = wVoltTmp; 

        else 

            wFilter3[iwFilterIdx3] = wTmp; 

    } 

 

    wVoltTmp = (unsigned int16)ADCBUF14; 

    if (sAnaVals[5].sRawVal == 0) 

        wIFilter3[iwFilterIdx3] = wVoltTmp; 

    else 

    { 

        wTmp = sAnaVals[5].sRawVal +10; 

        if (wVoltTmp < wTmp) 

            wIFilter3[iwFilterIdx3] = wVoltTmp; 

        else 

            wIFilter3[iwFilterIdx3] = wTmp; 

    } 

 

    if (++iwFilterIdx3 > cFILTER_CNT) iwFilterIdx3 = 0; 

    bADCDone |= cADCP7DONE;                 

 

    ADCP7IE = 0; 

    IFS7ADCP7IF = 0; 

 

} 

 

void    vDoMPPTControl  (void) 

{ 

    float fPIn,fPDiff,fVDiff,fVInFilteredLoc; 

    static float fStepAdj = PWM_MPPT_STEP; 

    static float fPInLast = 0.0; 

    static float fVInLast = 0.0; 

    int8 bSign; 

    static int8 bSignLast; 

    // 

    fVInFilteredLoc  = floor(fVInFiltered); 

    // 

    fPIn    = fVInFilteredLoc * fIInFiltered; 

    fPDiff  = fPIn - fPInLast; 

    fVDiff  = fVInFilteredLoc - fVInLast; 

    // 

    output_toggle(LED_PWM3_OC); 
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    if ((fPDiff == 0.0) && (fVDiff == 0.0)) return;  

    // Do P&O 

    output_toggle(LED_PWM2_OC); 

    if (fPDiff > 0.0) 

    { 

        if (fVDiff > 0.0)       bSign = 1; 

        else                    bSign = -1; 

    } 

    else 

    { 

        if (fVDiff > 0.0)       bSign = -1; 

        else                    bSign = 1; 

    } 

    // dynamically adjust the step size for as long as sign stays the same 

    if (bSign == bSignLast) 

    { 

        fStepAdj = fStepAdj + PWM_MPPT_STEP; 

        if (fStepAdj > cP_O_MAX_ADJ) fStepAdj = cP_O_MAX_ADJ; 

    } 

    else 

    { 

        fStepAdj = PWM_MPPT_STEP; 

    } 

    bSignLast = bSign; 

    // 

    fMPPTDuty     += fStepAdj * (float)bSign; 

    if (fMPPTDuty < cP_O_MIN_ADJ) fMPPTDuty = cP_O_MIN_ADJ; 

    if (fMPPTDuty > cP_O_MAX_ADJ) fMPPTDuty = cP_O_MAX_ADJ; 

    fPInLast     = fPIn; 

    fVInLast     = fVinFiltered; 

} 

void    vDoPwmVOutControl   (int8 iIdx) 

{ 

    float fVInNom,fIInMax,fCurrentV,fCurrentI,fTmp,fIOvr; 

    float output;   //PID Variable 

 

    unsigned int16 wLed; 

    // 

    if (!iFilterDone) return; 

 

    switch (iIdx) 

    { 

        default: return; 

#ifdef USE_PWM1 

        case 0: 

            fVInNom = 12.0;     fIInMax = 4.2; 

            fCurrentI = sAnaVals[0].fConverted; 

            fCurrentV = sAnaVals[1].fConverted; 

            wLed      = LED_PWM1_GD; 

            fIOvr     = c4_2A_OVR_CUR; 

            break; 
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#endif 

#ifdef USE_PWM2 

        case 1: 

            fVInNom = 5.0;      fIInMax = 10.0; 

            fCurrentI = sAnaVals[2].fConverted; 

            fCurrentV = sAnaVals[3].fConverted; 

            wLed      = LED_PWM2_GD; 

            fIOvr     = c10A_OVR_CUR; 

            break; 

#endif 

#ifdef USE_PWM3 

        case 2: 

            fVInNom = 7.5;      fIInMax = 20.0; 

            fCurrentV = sAnaVals[4].fConverted; 

            fCurrentI = sAnaVals[5].fConverted; 

            wLed    = LED_PWM3_GD; 

            fIOvr   = c20A_OVR_CUR; 

            iFilterDone = 0; 

            break; 

#endif 

    } 

    if (fCurrentV == 0.0) fCurrentV = 0.1; 

    disable_interrupts(GLOBAL); 

#ifdef DO_PID_CONTROL 

#ifdef USE_MPPT 

    sPidMem[iIdx].setpoint = fVInNom + (fVInNom * (fMPPTDuty/100.0)); 

    sPidMem[iIdx].setpoint = fVInNom; 

#endif  //USE_MPPT 

    output =  PIDcal(&sPidMem[iIdx], fCurrentV); 

    fDuty[iIdx]     = fDuty[iIdx] + output; 

#endif  //DO_PID_CONTROL 

    enable_interrupts(GLOBAL); 

    if (fDuty[iIdx] < PWM_MIN) fDuty[iIdx] =  PWM_MIN; 

    if (fDuty[iIdx] > PWM_MAX) fDuty[iIdx] = PWM_MAX; 

    fTmp = fDuty[iIdx]; 

 

    if ( fTmp <  3.0)   fTmp =  3.0; 

    if ( fTmp > 97.0)   fTmp = 97.0; 

 

    if ((iIdx < 0) && (iIdx > 2))  return; 

    if (bPwmOn == 0) 

    { 

        fDuty[iIdx]     = 1.0; 

        vSetDuty (iIdx,fDuty[iIdx]); 

        return; 

    } 

    vSetDuty(iIdx, fTmp);                

 

    switch (iIdx) 

    { 

      case 0:     wLed = LED_PWM1_OC; break; 
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      case 1:     wLed = LED_PWM1_OC; break; 

      case 2:     wLed = LED_PWM1_OC; break; 

    } 

 

unsigned int16  wRunFilter  (WORD *wFilterData) 

{ 

    int8 iCnt; 

    int32 lTmp = 0; 

    WORD wFilteredVal; 

 

    for (iCnt = 0; iCnt < cFILTER_CNT ; iCnt++,wFilterData++) 

        lTmp += *wFilterData; 

    wFilteredVal = lTmp / cFILTER_CNT; 

    iFilterDone = 1; 

    return wFilteredVal; 

} 

 

void vDoEngConv          (BYTE *bPairsDone) 

{ 

    if (*bPairsDone & cADCP1DONE) 

    { 

        sAnaVals[0].sRawVal = wRunFilter(wIFilter1); 

        vCalcEng(0); 

        sAnaVals[1].sRawVal = wRunFilter(wFilter1); 

 

          vCalcEng(1); 

        *bPairsDone &= ~cADCP1DONE; 

    } 

    if (*bPairsDone & cADCP2DONE) 

    { 

        sAnaVals[2].sRawVal = wRunFilter(wIFilter2); 

        vCalcEng(2); 

 

        sAnaVals[3].sRawVal = wRunFilter(wFilter2); 

        vCalcEng(3); 

        *bPairsDone &= ~cADCP2DONE; 

    } 

    if (*bPairsDone & cADCP6DONE) 

    { 

 

        sAnaVals[6].sRawVal = wRunFilter(wFilter0); 

        vCalcEng(6); 

        fVInFiltered = sAnaVals[6].fConverted; 

 

        sAnaVals[7].sRawVal = wRunFilter(wIFilter0); 

        vCalcEng(7); 

        fIInFiltered = sAnaVals[7].fConverted; 

 

 

        *bPairsDone &= ~cADCP6DONE; 

        bMainIncomerADDone = 1; 
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    } 

    if (*bPairsDone & cADCP7DONE) 

    { 

 

        sAnaVals[4].sRawVal = wRunFilter(wFilter3); 

        vCalcEng(4); 

 

        sAnaVals[5].sRawVal = wRunFilter(wIFilter3); 

         vCalcEng(5); 

        *bPairsDone &= ~cADCP7DONE; 

    } 

    if (*bPairsDone & cADCP4DONE) 

    { 

   } 

        sAnaVals[8].sRawVal = wRunFilter(wFilter4); 

        vCalcEng(8); 

        *bPairsDone &= ~cADCP7DONE; 

        bMainIncomerADDone = 1; 

    } 

 

    return; 

} 

 

void vCalcEng   (int8 iIdx)  

{ 

    WORD wRawSpan,wTmpVal,wRawVal; 

    float fEngSpan,fTmpVal; 

    // Do Eng Conv on 2 consecutive channels 

    wRawVal = sAnaVals[iIdx].sRawVal; 

    wRawSpan = sAnaVals[iIdx].wRawHigh - sAnaVals[iIdx].wRawLow; 

    if (wRawSpan == 0)wRawSpan = 1024; 

    fEngSpan = sAnaVals[iIdx].fEngHigh - sAnaVals[iIdx].fEngLow; 

     if (fEngSpan <= 0.0) fEngSpan = 100.0; 

     if (sAnaVals[iIdx].sRawVal <= sAnaVals[iIdx].wRawLow) {sAnaVals[iIdx].fConverted 

=sAnaVals[iIdx].fEngLow;return;} 

    wTmpVal = (sAnaVals[iIdx].sRawVal - sAnaVals[iIdx].wRawLow); 

    fTmpVal = (float)wTmpVal * fEngSpan; 

    fTmpVal /= (float)wRawSpan; 

    fTmpVal += sAnaVals[iIdx].fEngLow; 

    if (fTmpVal < 0.0) fTmpVal = 0.0; 

    sAnaVals[iIdx].fConverted = fTmpVal; 

 

   return; 

} 

 

 

#ifdef USE_HIST 

 

WORD wPrevPDCVal[3][HIST_COUNT] = {0,0,0}; 

WORD wPrevValTemp[HIST_COUNT+1] = {0,0,0}; 

WORD bHistValIdx[3]             = {0,0,0}; 
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// 

WORD wAddHistVal   (BYTE bIdx, WORD wVal) 

{ 

    int8 bTmp; 

    unsigned long ulAveVal = 0; 

    // 

    if ( bHistValIdx[bIdx] < HIST_COUNT) 

    { 

        wPrevPDCVal[bIdx][bHistValIdx[bIdx]]   = wVal; 

        bHistValIdx[bIdx]++; 

        return wVal; 

    } 

    memcpy (wPrevValTemp,&wPrevPDCVal[bIdx][0],HIST_COUNT<<1); 

    wPrevValTemp[HIST_COUNT] = wVal; 

    memcpy (&wPrevPDCVal[bIdx][0],wPrevValTemp+1,HIST_COUNT<<1); 

    for (bTmp = 0; bTmp < HIST_COUNT; bTmp++) 

        ulAveVal        += wPrevPDCVal[bIdx][bTmp]; 

    ulAveVal            = ulAveVal / HIST_COUNT; 

    return              ((WORD)ulAveVal); 

} 

#endif 

 

void vSetDuty   (BYTE bIdx,float fVal) 

{ 

     WORD wTmp,wDtMax; 

     switch (bIdx) 

     { 

        case 0: 

 

            wDtMax = (DTR1 > ALTDTR1 ? DTR1 : ALTDTR1); 

            wTmp = (WORD)((float)(PWM_PERIOD) * (fVal/100.0)); 

            if (wTmp <= wDtMax + 30) wTmp = wDtMax + 30; 

            if (wTmp >= PWM_PERIOD - wDtMax - 60) wTmp = PWM_PERIOD - wDtMax - 

60; 

#ifdef USE_HIST 

            wTmp                = wAddHistVal (bIdx,wTmp); 

#endif 

            PDC1 = wTmp; 

 

            break; 

        case 1: 

 

            wDtMax = (DTR2 > ALTDTR2 ? DTR2 : ALTDTR2); 

            wTmp = (WORD)((float)(PWM_PERIOD) * (fVal/100.0)); 

            if (wTmp <= wDtMax + 10) wTmp = wDtMax + 10; 

            if (wTmp >= PWM_PERIOD - wDtMax - 10) wTmp = PWM_PERIOD - wDtMax - 

10; 

#ifdef USE_HIST 

            wTmp                = wAddHistVal (bIdx,wTmp); 

#endif 

            PDC2 = wTmp; 
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            break; 

        case 2: 

 

            wDtMax = (DTR3 > ALTDTR3 ? DTR3 : ALTDTR3); 

            wTmp = (WORD)((float)(PWM_PERIOD) * (fVal/100.0)); 

            if (wTmp <= wDtMax + 10) wTmp = wDtMax + 10; 

            if (wTmp >= PWM_PERIOD - wDtMax - 10) wTmp = PWM_PERIOD - wDtMax - 

10; 

#ifdef USE_HIST 

            wTmp                = wAddHistVal (bIdx,wTmp); 

#endif 

            PDC3 = wTmp; 

    

            break; 

    } 

 

} 

 

void    vSetPwmOff  (unsigned int8 bIdx) 

{ 

    switch (bIdx) 

    { 

        case 0: 

            IOCON1PENH = IOCON1PENL = 0; 

            output_high     (PWM1H); 

            output_low      (PWM1L); 

            break; 

 

        case 1: 

            IOCON2PENH = IOCON2PENL = 0; 

            output_high     (PWM2H); 

            output_low      (PWM2L); 

            break; 

 

        case 2: 

            IOCON3PENH = IOCON3PENL = 0; 

            output_high     (PWM3H); 

            output_low      (PWM3L); 

            break; 

    } 

} 

 

void    vSetPwmOn  (unsigned int8 bIdx) 

{ 

    switch (bIdx) 

    { 

        case 0:   IOCON1PENH = IOCON1PENL = 1;            break; 

        case 1:   IOCON2PENH = IOCON2PENL = 1;            break; 

        case 2:   IOCON3PENH = IOCON3PENL = 1;            break; 

    } 
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} 

 

#INT_CMP1 

void vISR_Comp1 (void) 

{ 

    wCurLimTimer[0] = cCURRENT_LIMIT_TIME; 

    bCurrentLimitFlg[0] = 1; 

} 

 

#INT_CMP2 

void vISR_Comp2 (void) 

{ 

    wCurLimTimer[1] = cCURRENT_LIMIT_TIME; 

    bCurrentLimitFlg[1] = 1; 

} 

 

#INT_CMP3 

void vISR_Comp3 (void) 

{ 

    wCurLimTimer[2] = cCURRENT_LIMIT_TIME; 

    bCurrentLimitFlg[2] = 1; 

} 

 

//Header file 

// File:   MPPT_DC-DC.h 

// Author: Neil J.v Rensburg 

 

#ifndef MPPT_PWM 

#define MPPT_PWM 

 

#ifdef __cplusplus 

extern "C" { 

#endif 

 

#define BRD_V2 

#define USE_HIST              

#define NEW_AD_RES_VALS  

#define USE_MPPT 

#define DO_PID_CONTROL 

 

#define cONE_SEC                (300) 

#define cINTER_ADC_CHN_DELAY    (10) 

 

#define cOVER_CURRENT_DELAY     (1000) 

#define c4_2A_OVR_CUR           (4.8) 

#define c10A_OVR_CUR            (11.0) 

#define c20A_OVR_CUR            (22.0) 

 

#define START_PAIR1             (0) 

#define WAIT_PAIR2              (1) 

#define START_PAIR2             (2) 
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#define WAIT_PAIR3              (3) 

#define START_PAIR3             (4) 

#define WAIT_PAIR4              (5) 

#define START_PAIR4             (6) 

#define WAIT_PAIR5              (7) 

#define START_PAIR5             (8) 

#define WAIT_PAIR1              (9) 

 

    ////////////PINS/////////////////// 

 

#ifdef BRD_V2 

#define ADCIS1          PIN_B2 

#define ADCVMC1         PIN_B3 

#define ADCIS2          PIN_B4 

#define ADCVMC2         PIN_B5 

#define VIN_PWR_GOOD    PIN_B8 

#define ADCCSMPP        PIN_B12 

#define ADCVSMPP        PIN_B13 

#define ADCIS3          PIN_B14 

#define ADCVMC3         PIN_B15 

 

#define LED_PWM1_OC     PIN_C13 

#define LED_PWM1_GD     PIN_C14 

#define LED_PWM2_GD     PIN_D0 

#define LED_SYS         PIN_D1 

#define CHRG_ON         PIN_D3 

#define LED_PWM3_OC     PIN_D9 

#define LED_PWM3_GD     PIN_D10 

#define LED_PWM2_OC     PIN_D11 

 

#define DEBUG_PIN       PIN_B0 

 

#define COMPVREF        PIN_B11 

#define WDK             PIN_D2 

#define POWERON         PIN_F3 

 

#define PWM1L           PIN_E0 

#define PWM1H           PIN_E1 

#define PWM2L           PIN_E2 

#define PWM2H           PIN_E3 

#define PWM3L           PIN_E4 

#define PWM3H           PIN_E5 

 

 

/////////////////////Special Function Registers/////////////////// 

#WORD PLLFBD       = 0x0746 

#WORD CLKDIV       = 0x0744  

#BIT  PLLPOST1     = CLKDIV.6 

#BIT  PLLPOST0     = CLKDIV.5 

#BIT  PLLPRE4      = CLKDIV.4 

#BIT  PLLPRE3      = CLKDIV.3 
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#BIT  PLLPRE2      = CLKDIV.2 

#BIT  PLLPRE1      = CLKDIV.1 

#BIT  PLLPRE0      = CLKDIV.0 

#WORD ACLKCON      = 0x0750  

#BIT  FRCSEL       = ACLKCON.6 

#BIT  SELACLK      = ACLKCON.7 

#BIT  APSTSCLR0    = ACLKCON.8 

#BIT  APSTSCLR1    = ACLKCON.9 

#BIT  APSTSCLR2    = ACLKCON.10 

#BIT  ENAPLL       = ACLKCON.15 

#BIT  APLLCK       = ACLKCON.14 

#WORD OSCCON       = 0x0742 

#BIT OSWEN         = OSCCON.0 

#BIT LOCK          = OSCCON.5 

#BIT NOSC2         = OSCCON.10 

#BIT NOSC1         = OSCCON.9 

#BIT NOSC0         = OSCCON.8 

#BIT COSC2         = OSCCON.14 

#BIT COSC1         = OSCCON.13 

#BIT COSC0         = OSCCON.12 

 

#WORD ACLKCON            = 0x0750  

#BIT ACLKCONENAPLL       = ACLKCON.15 

#BIT ACLKCONAPLLCK       = ACLKCON.14 

#BIT ACLKCONSELACLK      = ACLKCON.13 

 

#BIT ACLKCONAPSTSCLR2    = ACLKCON.10 

#BIT ACLKCONAPSTSCLR1    = ACLKCON.9 

#BIT ACLKCONAPSTSCLR0    = ACLKCON.8 

#BIT ACLKCONASRCSEL      = ACLKCON.7 

#BIT ACLKCONFRCSEL       = ACLKCON.6         

 

#WORD CLKDIV  = 0x0744 

#BIT  CLKDIVPLLPOST1     = CLKDIV.7         

#BIT  CLKDIVPLLPOST0     = CLKDIV.6         

#BIT  CLKDIVPLLPRE4      = CLKDIV.4          

#BIT  CLKDIVPLLPRE3      = CLKDIV.3           

#BIT  CLKDIVPLLPRE2      = CLKDIV.2          

#BIT  CLKDIVPLLPRE1      = CLKDIV.1          

#BIT  CLKDIVPLLPRE0      = CLKDIV.0           

 

#WORD OSCCON             = 0x0742 

#BIT  OSCCONLOCK         = OSCCON.5 

 

 

#word  PTCON           = 0x0400 

#BIT   PTCONPTEN       = PTCON.15 

#BIT   PTCONPTSIDL     = PTCON.13 

#BIT   PTCONSYNCOEN    = PTCON.8 

#BIT   PTCONSEVTPS3    = PTCON.3 

#BIT   PTCONSEVTPS2    = PTCON.2 
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#BIT   PTCONSEVTPS1    = PTCON.1 

#BIT   PTCONSEVTPS0    = PTCON.0 

 

#word  PTCON2          = 0x0402 

#word  PTPER           = 0x0404 

#word  SEVTCMPL        = 0x0406 

#word  SEVTCMPH        = 0x0407 

#word  SEVTCMP         = 0x0406 

#word  MDC             = 0x040A 

#word  STCON           = 0x040E 

 

#BIT   STCONSEIEN      = STCON.11 

#BIT   STCONSYNCOEN    = STCON.8 

#BIT   STCONSYNCEN     = STCON.7 

 

#BIT   STCONSEVTPS3    = STCON.3 

#BIT   STCONSEVTPS2    = STCON.2 

#BIT   STCONSEVTPS1    = STCON.1 

#BIT   STCONSEVTPS0    = STCON.0 

#word  STCON2          = 0x0410 

#word  STPER           = 0x0412 

#word  SSEVTCMP        = 0x0414 

#word  CHOP            = 0x041A 

 

// 

//  PWM1 

// 

#word  PWMCON1        = 0x0420    

#BIT   PWMCON1FLTSTAT = PWMCON1.15 

#BIT   PWMCON1CLSTAT  = PWMCON1.14 

#BIT   PWMCON1TRGSTAT = PWMCON1.13 

#BIT   PWMCON1FLTIEN  = PWMCON1.12 

#BIT   PWMCON1CLIEN   = PWMCON1.11 

#BIT   PWMCON1TRGIEN  = PWMCON1.10 

#BIT   PWMCON1ITB     = PWMCON1.9 

#BIT   PWMCON1MDCS    = PWMCON1.8 

#BIT   PWMCON1DTC1    = PWMCON1.7 

#BIT   PWMCON1DTC0    = PWMCON1.6 

#BIT   PWMCON1DTCP    = PWMCON1.5 

#BIT   PWMCON1MTBS    = PWMCON1.3 

#BIT   PWMCON1CAM     = PWMCON1.2 

#BIT   PWMCON1XPRES   = PWMCON1.1 

#BIT   PWMCON1IUE     = PWMCON1.0 

 

#word  IOCON1         = 0x0422     

#bit   IOCON1PENH     = IOCON1.15 

#bit   IOCON1PENL     = IOCON1.14 

#bit   IOCON1POLH     = IOCON1.13 

#bit   IOCON1POLL     = IOCON1.12 

#bit   IOCON1PMOD1    = IOCON1.11 

#bit   IOCON1PMOD0    = IOCON1.10 
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#bit   IOCON1OVRENH   = IOCON1.9 

#bit   IOCON1OVRENL   = IOCON1.8 

#bit   IOCON1OVRDAT1  = IOCON1.7 

#bit   IOCON1OVRDAT0  = IOCON1.6 

#bit   IOCON1FLTDAT1  = IOCON1.5 

#bit   IOCON1FLTDAT0  = IOCON1.4 

#bit   IOCON1CLDAT1   = IOCON1.3 

#bit   IOCON1CLDAT0   = IOCON1.1 

#bit   IOCON1OSYNC    = IOCON1.0 

 

#word  FCLCON1         = 0x0424  

#bit   FCLCON1IFLTMOD  = FCLCON1.15 

#bit   FCLCON1CLSRC4   = FCLCON1.14 

#bit   FCLCON1CLSRC3   = FCLCON1.13 

#bit   FCLCON1CLSRC2   = FCLCON1.12 

#bit   FCLCON1CLSRC1   = FCLCON1.11 

#bit   FCLCON1CLSRC0   = FCLCON1.10 

#bit   FCLCON1CLPOL    = FCLCON1.9 

#bit   FCLCON1CLMOD    = FCLCON1.8 

#bit   FCLCON1FLTSRC4  = FCLCON1.7 

#bit   FCLCON1FLTSRC3  = FCLCON1.6 

#bit   FCLCON1FLTSRC2  = FCLCON1.5 

#bit   FCLCON1FLTSRC1  = FCLCON1.4 

#bit   FCLCON1FLTSRC0  = FCLCON1.3 

#bit   FCLCON1FLTPOL   = FCLCON1.2 

#bit   FCLCON1FLTMOD1  = FCLCON1.1 

#bit   FCLCON1FLTMOD0  = FCLCON1.0 

 

#word  PDC1         = 0x0426  

#word  PHASE1       = 0x0428  

#word  DTR1         = 0x042A  

#word  ALTDTR1      = 0x042C 

#word  SDC1         = 0x042E  

#word  SPHASE1      = 0x0430 

#word  TRIG1        = 0x0432 

#word  TRGCON1      = 0x0434 

#bit   TRGCON1TRGDIV3   = TRGCON1.15 

#bit   TRGCON1TRGDIV2   = TRGCON1.14 

#bit   TRGCON1TRGDIV1   = TRGCON1.13 

#bit   TRGCON1TRGDIV0   = TRGCON1.12 

#bit   TRGCON1TRGSTRT5  = TRGCON1.5 

#bit   TRGCON1TRGSTRT4  = TRGCON1.4 

#bit   TRGCON1TRGSTRT3  = TRGCON1.3 

#bit   TRGCON1TRGSTRT2  = TRGCON1.2 

#bit   TRGCON1TRGSTRT1  = TRGCON1.1 

#bit   TRGCON1TRGSTRT0  = TRGCON1.0 

 

#word  STRIG1       = 0x0436 

#word  PWMCAP1      = 0x0438 

#word  LEBCON1      = 0x043A 

#word  LEBDLY1      = 0x043C 
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#word  AUXCON1      = 0x043E 

 

// 

//  PWM2 

// 

#word PWMCON2         = 0x0440  

#BIT   PWMCON2FLTSTAT = PWMCON2.15 

#BIT   PWMCON2CLSTAT  = PWMCON2.14 

#BIT   PWMCON2TRGSTAT = PWMCON2.13 

#BIT   PWMCON2FLTIEN  = PWMCON2.12 

#BIT   PWMCON2CLIEN   = PWMCON2.11 

#BIT   PWMCON2TRGIEN  = PWMCON2.10 

#BIT   PWMCON2ITB     = PWMCON2.9 

#BIT   PWMCON2MDCS    = PWMCON2.8 

#BIT   PWMCON2DTC1    = PWMCON2.7 

#BIT   PWMCON2DTC0    = PWMCON2.6 

#BIT   PWMCON2DTCP    = PWMCON2.5 

#BIT   PWMCON2MTBS    = PWMCON2.3 

#BIT   PWMCON2CAM     = PWMCON2.2 

#BIT   PWMCON2XPRES   = PWMCON2.1 

#BIT   PWMCON2IUE     = PWMCON2.0 

 

#word IOCON2          = 0x0442  

#bit   IOCON2PENH     = IOCON2.15 

#bit   IOCON2PENL     = IOCON2.14 

#bit   IOCON2POLH     = IOCON2.13 

#bit   IOCON2POLL     = IOCON2.12 

#bit   IOCON2PMOD1    = IOCON2.11 

#bit   IOCON2PMOD0    = IOCON2.10 

#bit   IOCON2OVRENH   = IOCON2.9 

#bit   IOCON2OVRENL   = IOCON2.8 

#bit   IOCON2OVRDAT1  = IOCON2.7 

#bit   IOCON2OVRDAT0  = IOCON2.6 

#bit   IOCON2FLTDAT1  = IOCON2.5 

#bit   IOCON2FLTDAT0  = IOCON2.4 

#bit   IOCON2CLDAT1   = IOCON2.3 

#bit   IOCON2CLDAT0   = IOCON2.2 

#bit   IOCON2SWAP     = IOCON2.1 

#bit   IOCON2OSYNC    = IOCON2.0 

 

#word FCLCON2          = 0x0444 

#bit   FCLCON2IFLTMOD  = FCLCON2.15 

#bit   FCLCON2CLSRC4   = FCLCON2.14 

#bit   FCLCON2CLSRC3   = FCLCON2.13 

#bit   FCLCON2CLSRC2   = FCLCON2.12 

#bit   FCLCON2CLSRC1   = FCLCON2.11 

#bit   FCLCON2CLSRC0   = FCLCON2.10 

#bit   FCLCON2CLPOL    = FCLCON2.9 

#bit   FCLCON2CLMOD    = FCLCON2.8 

#bit   FCLCON2FLTSRC4  = FCLCON2.7 

#bit   FCLCON2FLTSRC3  = FCLCON2.6 
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#bit   FCLCON2FLTSRC2  = FCLCON2.5 

#bit   FCLCON2FLTSRC1  = FCLCON2.4 

#bit   FCLCON2FLTSRC0  = FCLCON2.3 

#bit   FCLCON2FLTPOL   = FCLCON2.2 

#bit   FCLCON2FLTMOD1  = FCLCON2.1 

#bit   FCLCON2FLTMOD0  = FCLCON2.0 

 

#word PDC2          = 0x0446  

#word PHASE2        = 0x0448  

#word DTR2          = 0x044A  

#word ALTDTR2       = 0x044C 

#word SDC2          = 0x044E  

#word SPHASE2       = 0x0450 

#word TRIG2         = 0x0452  

#word TRGCON2       = 0x0454  

#bit   TRGCON2TRGDIV3   = TRGCON2.15 

#bit   TRGCON2TRGDIV2   = TRGCON2.14 

#bit   TRGCON2TRGDIV1   = TRGCON2.13 

#bit   TRGCON2TRGDIV0   = TRGCON2.12 

#bit   TRGCON2TRGSTRT5  = TRGCON2.5 

#bit   TRGCON2TRGSTRT4  = TRGCON2.4 

#bit   TRGCON2TRGSTRT3  = TRGCON2.3 

#bit   TRGCON2TRGSTRT2  = TRGCON2.2 

#bit   TRGCON2TRGSTRT1  = TRGCON2.1 

#bit   TRGCON2TRGSTRT0  = TRGCON2.0 

 

#word STRIG2        = 0x0456  

#word PWMCAP2       = 0x0458  

#word LEBCON2       = 0x045A  

#word LEBDLY2       = 0x045C  

#word AUXCON2       = 0x045E  

// 

//  PWM3 

// 

#word PWMCON3         = 0x0460  

#BIT   PWMCON3FLTSTAT = PWMCON3.15 

#BIT   PWMCON3CLSTAT  = PWMCON3.14 

#BIT   PWMCON3TRGSTAT = PWMCON3.13 

#BIT   PWMCON3FLTIEN  = PWMCON3.12 

#BIT   PWMCON3CLIEN   = PWMCON3.11 

#BIT   PWMCON3TRGIEN  = PWMCON3.10 

#BIT   PWMCON3ITB     = PWMCON3.9 

#BIT   PWMCON3MDCS    = PWMCON3.8 

#BIT   PWMCON3DTC1    = PWMCON3.7 

#BIT   PWMCON3DTC0    = PWMCON3.6 

#BIT   PWMCON3DTCP    = PWMCON3.5 

#BIT   PWMCON3MTBS    = PWMCON3.3 

#BIT   PWMCON3CAM     = PWMCON3.2 

#BIT   PWMCON3XPRES   = PWMCON3.1 

#BIT   PWMCON3IUE     = PWMCON3.0 
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#word IOCON3          = 0x0462  

#bit   IOCON3PENH     = IOCON3.15 

#bit   IOCON3PENL     = IOCON3.14 

#bit   IOCON3POLH     = IOCON3.13 

#bit   IOCON3POLL     = IOCON3.12 

#bit   IOCON3PMOD1    = IOCON3.11 

#bit   IOCON3PMOD0    = IOCON3.10 

#bit   IOCON3OVRENH   = IOCON3.9 

#bit   IOCON3OVRENL   = IOCON3.8 

#bit   IOCON3OVRDAT1  = IOCON3.7 

#bit   IOCON3OVRDAT0  = IOCON3.6 

#bit   IOCON3FLTDAT1  = IOCON3.5 

#bit   IOCON3FLTDAT0  = IOCON3.4 

#bit   IOCON3CLDAT1   = IOCON3.3 

#bit   IOCON3CLDAT0   = IOCON3.2 

#bit   IOCON3SWAP     = IOCON3.1 

#bit   IOCON3OSYNC    = IOCON3.0 

 

#word FCLCON3          = 0x0464  

#bit   FCLCON3IFLTMOD  = FCLCON3.15 

#bit   FCLCON3CLSRC4   = FCLCON3.14 

#bit   FCLCON3CLSRC3   = FCLCON3.13 

#bit   FCLCON3CLSRC2   = FCLCON3.12 

#bit   FCLCON3CLSRC1   = FCLCON3.11 

#bit   FCLCON3CLSRC0   = FCLCON3.10 

#bit   FCLCON3CLPOL    = FCLCON3.9 

#bit   FCLCON3CLMOD    = FCLCON3.8 

#bit   FCLCON3FLTSRC4  = FCLCON3.7 

#bit   FCLCON3FLTSRC3  = FCLCON3.6 

#bit   FCLCON3FLTSRC2  = FCLCON3.5 

#bit   FCLCON3FLTSRC1  = FCLCON3.4 

#bit   FCLCON3FLTSRC0  = FCLCON3.3 

#bit   FCLCON3FLTPOL   = FCLCON3.2 

#bit   FCLCON3FLTMOD1  = FCLCON3.1 

#bit   FCLCON3FLTMOD0  = FCLCON3.0 

 

#word PDC3          = 0x0466  

#word PHASE3        = 0x0468  

#word DTR3          = 0x046A  

#word ALTDTR3       = 0x046C 

#word SDC3          = 0x046E  

#word SPHASE3       = 0x0470 

#word TRIG3         = 0x0472 

#word TRGCON3       = 0x0474 

#bit   TRGCON3TRGDIV3   = TRGCON3.15 

#bit   TRGCON3TRGDIV2   = TRGCON3.14 

#bit   TRGCON3TRGDIV1   = TRGCON3.13 

#bit   TRGCON3TRGDIV0   = TRGCON3.12 

#bit   TRGCON3TRGSTRT5  = TRGCON3.5 

#bit   TRGCON3TRGSTRT4  = TRGCON3.4 

#bit   TRGCON3TRGSTRT3  = TRGCON3.3 



120 

 

#bit   TRGCON3TRGSTRT2  = TRGCON3.2 

#bit   TRGCON3TRGSTRT1  = TRGCON3.1 

#bit   TRGCON3TRGSTRT0  = TRGCON3.0 

 

#word STRIG3        = 0x0476 

#word PWMCAP3       = 0x0478 

#word LEBCON3       = 0x047A  

#word LEBDLY3       = 0x047C  

#word AUXCON3       = 0x047E 

 

//ADC SFR's 

 

#WORD   ADCON          = 0x0300        

#BIT    ADCONADON      = ADCON.15 

#BIT    ADCONADSIDL    = ADCON.13 

#BIT    ADCONSLOWCLK    = ADCON.12 

#BIT    ADCONGSWTRG     = ADCON.10 

#BIT    ADCONFORM        = ADCON.8 

#BIT    ADCONEIE         = ADCON.7 

#BIT    ADCONORDER      = ADCON.6 

#BIT    ADCONSEQSAMP    = ADCON.5 

#BIT    ADCONASYNCSAMP  = ADCON.4 

#BIT    ADCONADCS2      = ADCON.2 

#BIT    ADCONADCS1      = ADCON.1 

#BIT    ADCONADCS0      = ADCON.0 

 

#WORD   IFS5           = 0x008E    

#BIT    IFS5PWM2IF     = IFS5.15 

#BIT    IFS5PWM1IF     = IFS5.14 

#BIT    IFS5ADCP12IF   = IFS5.13 

#BIT    IFS5ADCP11IF   = IFS5.4 

#BIT    IFS5ADCP10IF   = IFS5.3 

#BIT    IFS5ADCP9IF    = IFS5.2 

#BIT    IFS5ADCP8IF    = IFS5.1 

 

#WORD   IFS6        = 0x0090     

#BIT    IFS6ADCP1IF = IFS6.15 

#BIT    IFS6ADCP0IF = IFS6.14 

#BIT    IFS6AC4IF   = IFS6.9 

#BIT    IFS6AC3IF   = IFS6.8 

#BIT    IFS6AC2IF   = IFS6.7 

#BIT    IFS6PWM9IF  = IFS6.6 

#BIT    IFS6PWM8IF  = IFS6.5 

#BIT    IFS6PWM7IF  = IFS6.4 

#BIT    IFS6PWM6IF  = IFS6.3 

#BIT    IFS6PWM5IF  = IFS6.2 

#BIT    IFS6PWM4IF  = IFS6.1 

#BIT    IFS6PWM3IF  = IFS6.0 

 

#WORD   IFS7        = 0x0092     

#BIT    IFS7ADCP7IF = IFS7.5 
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#BIT    IFS7ADCP6IF = IFS7.4 

#BIT    IFS7ADCP5IF = IFS7.3 

#BIT    IFS7ADCP4IF = IFS7.2 

#BIT    IFS7ADCP3IF = IFS7.1 

#BIT    IFS7ADCP2IF = IFS7.0 

 

#WORD   IPC27         = 0x00DA     

#BIT    IPC27ADCP1IP2 = IPC27.14 

#BIT    IPC27ADCP1IP1 = IPC27.13 

#BIT    IPC27ADCP1IP0 = IPC27.12 

#BIT    IPC27ADCP0IP2 = IPC27.10 

#BIT    IPC27ADCP0IP1 = IPC27.9 

#BIT    IPC27ADCP0IP0 = IPC27.8 

 

 

#WORD   IPC28         = 0x00DC     

#BIT    IPC28ADCP5IP2 = IPC28.14 

#BIT    IPC28ADCP5IP1 = IPC28.13 

#BIT    IPC28ADCP5IP0 = IPC28.12 

#BIT    IPC28ADCP4IP2 = IPC28.10 

#BIT    IPC28ADCP4IP1 = IPC28.9 

#BIT    IPC28ADCP4IP0 = IPC28.8 

#BIT    IPC28ADCP3IP2 = IPC28.6 

#BIT    IPC28ADCP3IP1 = IPC28.5 

#BIT    IPC28ADCP3IP0 = IPC28.4 

#BIT    IPC28ADCP2IP2 = IPC28.2 

#BIT    IPC28ADCP2IP1 = IPC28.1 

#BIT    IPC28ADCP2IP0 = IPC28.0 

 

#WORD   IPC29         = 0x00DE     

#BIT    IPC29ADCP7IP2 = IPC29.6 

#BIT    IPC29ADCP7IP1 = IPC29.5 

#BIT    IPC29ADCP7IP0 = IPC29.4 

#BIT    IPC29ADCP6IP2 = IPC29.2 

#BIT    IPC29ADCP6IP1 = IPC29.1 

#BIT    IPC29ADCP6IP0 = IPC29.0 

 

#WORD   IEC6          = 0x00A0     

#BIT    IEC6ADCP0IE   = IEC6.15 

#BIT    IEC6ADCP1IE   = IEC6.14 

 

#WORD   IEC7          = 0x00A2    

#BIT    IEC7ADCP4IE   = IEC7.2 

 

#WORD   ADPCFG       = 0x0302    

#BIT    ADPCFGPCFG0  = ADPCFG.0 

#BIT    ADPCFGPCFG1  = ADPCFG.1 

#BIT    ADPCFGPCFG2  = ADPCFG.2 

#BIT    ADPCFGPCFG3  = ADPCFG.3 

#BIT    ADPCFGPCFG4  = ADPCFG.4 

#BIT    ADPCFGPCFG5  = ADPCFG.5 
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#BIT    ADPCFGPCFG8  = ADPCFG.8 

#BIT    ADPCFGPCFG9  = ADPCFG.9 

#BIT    ADPCFGPCFG12 = ADPCFG.12 

#BIT    ADPCFGPCFG13 = ADPCFG.13 

#BIT    ADPCFGPCFG14 = ADPCFG.14 

#BIT    ADPCFGPCFG15 = ADPCFG.15 

 

#WORD   ADPCFG2      = 0x0304     

 

#WORD   ADSTAT       = 0x0306    

#BIT    ADSTATP0RDY  = ADSTAT.0 

#BIT    ADSTATP1RDY  = ADSTAT.1 

#BIT    ADSTATP2RDY  = ADSTAT.2 

#BIT    ADSTATP4RDY  = ADSTAT.4 

#BIT    ADSTATP6RDY  = ADSTAT.6 

#BIT    ADSTATP7RDY  = ADSTAT.7 

 

#WORD   ADCPC0        = 0x030A     

#BIT    ADCPC0IRQEN0   = ADCPC0.7 

#BIT    ADCPC0SWTRG0   = ADCPC0.5 

#BIT    ADCPC0TRGSRC04 = ADCPC0.4 

#BIT    ADCPC0TRGSRC03 = ADCPC0.3 

#BIT    ADCPC0TRGSRC02 = ADCPC0.2 

#BIT    ADCPC0TRGSRC01 = ADCPC0.1 

#BIT    ADCPC0TRGSRC00 = ADCPC0.0 

#BIT    ADCPC0IRQEN1   = ADCPC0.15 

#BIT    ADCPC0PEND1    = ADCPC0.14 

#BIT    ADCPC0SWTRG1   = ADCPC0.13 

#BIT    ADCPC0TRGSRC14 = ADCPC0.12 

#BIT    ADCPC0TRGSRC13 = ADCPC0.11 

#BIT    ADCPC0TRGSRC12 = ADCPC0.10 

#BIT    ADCPC0TRGSRC11 = ADCPC0.9 

#BIT    ADCPC0TRGSRC10 = ADCPC0.8 

 

#WORD   ADCPC1         = 0x030C    

#BIT    ADCPC1IRQEN2   = ADCPC1.7 

#BIT    ADCPC1PEND2    = ADCPC1.6 

#BIT    ADCPC1SWTRG2   = ADCPC1.5 

#BIT    ADCPC1TRGSRC24 = ADCPC1.4 

#BIT    ADCPC1TRGSRC23 = ADCPC1.3 

#BIT    ADCPC1TRGSRC22 = ADCPC1.2 

#BIT    ADCPC1TRGSRC21 = ADCPC1.1 

#BIT    ADCPC1TRGSRC20 = ADCPC1.0 

 

#WORD   ADCPC2         = 0x030E     

#BIT    ADCPC2IRQEN4   = ADCPC2.8 

#BIT    ADCPC2PEND4    = ADCPC2.6 

#BIT    ADCPC2SWTRG4   = ADCPC2.5 

#BIT    ADCPC2TRGSRC44 = ADCPC2.4 

#BIT    ADCPC2TRGSRC43 = ADCPC2.3 

#BIT    ADCPC2TRGSRC42 = ADCPC2.2 
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#BIT    ADCPC2TRGSRC41 = ADCPC2.1 

#BIT    ADCPC2TRGSRC40 = ADCPC2.0 

 

#WORD   ADCPC3         = 0x0310   

#BIT    ADCPC3IRQEN7   = ADCPC3.15 

#BIT    ADCPC3PEND7    = ADCPC3.14 

#BIT    ADCPC3SWTRG7   = ADCPC3.13 

#BIT    ADCPC3TRGSRC74 = ADCPC3.12 

#BIT    ADCPC3TRGSRC73 = ADCPC3.11 

#BIT    ADCPC3TRGSRC72 = ADCPC3.10 

#BIT    ADCPC3TRGSRC71 = ADCPC3.9 

#BIT    ADCPC3TRGSRC70 = ADCPC3.8 

#BIT    ADCPC3IRQEN6   = ADCPC3.7 

#BIT    ADCPC3PEND6    = ADCPC3.6 

#BIT    ADCPC3SWTRG6   = ADCPC3.5 

#BIT    ADCPC3TRGSRC64 = ADCPC3.4 

#BIT    ADCPC3TRGSRC63 = ADCPC3.3 

#BIT    ADCPC3TRGSRC62 = ADCPC3.2 

#BIT    ADCPC3TRGSRC61 = ADCPC3.1 

#BIT    ADCPC3TRGSRC60 = ADCPC3.0 

 

#WORD   ADCBUF0  = 0x0340  

#WORD   ADCBUF1  = 0x0342  

#WORD   ADCBUF2  = 0x0344  

#WORD   ADCBUF3  = 0x0346  

#WORD   ADCBUF4  = 0x0348  

#WORD   ADCBUF5  = 0x034A  

#WORD   ADCBUF6  = 0x034C  

#WORD   ADCBUF7  = 0x034E  

#WORD   ADCBUF8  = 0x0350 

#WORD   ADCBUF9  = 0x0352  

#WORD   ADCBUF10 = 0x0354  

#WORD   ADCBUF11 = 0x0356  

#WORD   ADCBUF12 = 0x0358  

#WORD   ADCBUF13 = 0x035A  

#WORD   ADCBUF14 = 0x035C  

#WORD   ADCBUF15 = 0x035E  

#WORD   ADCBUF24 = 0x0370  

#WORD   ADCBUF25 = 0x0372  

 

#WORD   IEC6     = 0x00A0  

#BIT    ADCP1IE  = IEC6.15 

#BIT    ADCP0IE  = IEC6.14 

 

#WORD   IEC7    = 0x00A2  

#BIT    ADCP7IE = IEC7.5 

#BIT    ADCP6IE = IEC7.4 

#BIT    ADCP5IE = IEC7.3 

#BIT    ADCP4IE = IEC7.2 

#BIT    ADCP3IE = IEC7.1 

#BIT    ADCP2IE = IEC7.0 
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//Comparator SFR's 

 

#byte  CMPCON1          = 0x0540 

#bit   CMPCON1CMPON     = CMPCON1.15 

#bit   CMPCON1CMPSIDL   = CMPCON1.13 

#bit   CMPCON1DACOE     = CMPCON1.8 

#bit   CMPCON1INSEL1    = CMPCON1.7 

#bit   CMPCON1INSEL0    = CMPCON1.6 

#bit   CMPCON1EXTREF    = CMPCON1.5 

#bit   CMPCON1CMPSTAT   = CMPCON1.3 

#bit   CMPCON1CMPPOL    = CMPCON1.1 

#bit   CMPCON1RANGE     = CMPCON1.0 

 

#byte  CMPDAC1          = 0x0542  

 

#byte  CMPCON2          = 0x0544  

#bit   CMPCON2CMPON     = CMPCON2.15 

#bit   CMPCON2CMPSIDL   = CMPCON2.13 

#bit   CMPCON2DACOE     = CMPCON2.8 

#bit   CMPCON2INSEL1    = CMPCON2.7 

#bit   CMPCON2INSEL0    = CMPCON2.6 

#bit   CMPCON2EXTREF    = CMPCON2.5 

#bit   CMPCON2CMPSTAT   = CMPCON2.3 

#bit   CMPCON2CMPPOL    = CMPCON2.1 

#bit   CMPCON2RANGE     = CMPCON2.0 

 

#byte  CMPDAC2          = 0x0546 

 

#byte  CMPCON3          = 0x0548  

#bit   CMPCON3CMPON     = CMPCON3.15 

#bit   CMPCON3CMPSIDL   = CMPCON3.13 

#bit   CMPCON3DACOE     = CMPCON3.8 

#bit   CMPCON3INSEL1    = CMPCON3.7 

#bit   CMPCON3INSEL0    = CMPCON3.6 

#bit   CMPCON3EXTREF    = CMPCON3.5 

#bit   CMPCON3CMPSTAT   = CMPCON3.3 

#bit   CMPCON3CMPPOL    = CMPCON3.1 

#bit   CMPCON3RANGE     = CMPCON3.0 

 

#byte  CMPDAC3          = 0x054A  

     

#byte  CMPCON4          = 0x054c  

#bit   CMPCON4CMPON     = CMPCON4.15 

#bit   CMPCON4CMPSIDL   = CMPCON4.13 

#bit   CMPCON4DACOE     = CMPCON4.8 

#bit   CMPCON4INSEL1    = CMPCON4.7 

#bit   CMPCON4INSEL0    = CMPCON4.6 

#bit   CMPCON4EXTREF    = CMPCON4.5 

#bit   CMPCON4CMPSTAT   = CMPCON4.3 

#bit   CMPCON4CMPPOL    = CMPCON4.1 
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#bit   CMPCON4RANGE     = CMPCON4.0 

 

#byte  CMPDAC4          = 0x054E 

     

  //////////////////////////DEFINES//////////////////////////// 

 

#define cADCP1DONE      (0x01) 

#define cADCP2DONE      (0x02) 

#define cADCP6DONE      (0x04) 

#define cADCP7DONE      (0x08) 

#define cADCP4DONE      (0x10) 

 

#define cCURRENT_LIMIT_TIME         (1000) 

#define cINCOMER_TIMER_VAL          (1000) 

 

#define PWM_PERIOD  1580  

 

#define PWM_MIN         ( 3.0) 

#define PWM_MAX         (97.0) 

 

#define PWM_MPPT_STEP   (1.0) 

#ifdef NEW_AD_RES_VALS 

#define cP_O_MIN_ADJ    (-30.0) 

#define cP_O_MAX_ADJ    ( 30.0) 

 

#else 

#define cP_O_MIN_ADJ    (-10.0) 

#define cP_O_MAX_ADJ    ( 10.0) 

#endif 

 

#define cVIN_MIN_SW_ON          (8.0) 

#define cVIN_MIN_SW_ON_HYST     (cVIN_MIN_SW_ON / 10.0) 

 

#define cFILTER_CNT     (55) 

#define HIST_COUNT      (2) 

 

////////////////////////////TYPES//////////////////////////// 

 

typedef unsigned int16  WORD; 

 

typedef struct 

{ 

    WORD  wRawLow; 

    WORD  wRawHigh; 

    float fEngLow; 

    float fEngHigh; 

    float fConverted; 

    float fFiltered; 

 

    unsigned int16  sRawVal; 

}  sANAENG,*psANAENG; 
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typedef struct 

{ 

    float fKp;      // constants for PID 

    float fKd; 

    float fKi; 

    // 

    float pre_error; 

    float integral; 

    float error; 

    float derivative; 

    float output; 

    float setpoint; 

 

} sPIDSTRUCT, *psPIDSTRUCT; 

   

////////////////////////////Prototypes//////////////////////////// 

 

void    vSetupBoard         (void); 

void    vInitClock          (void); 

void    vSwitchPower        (int8 bState); 

void    vSetupStruct        (void); 

void    vSetupPins          (void); 

void    vSetupPWM           (void); 

void    vStartPWM           (void); 

void    vStopPWM            (void); 

void    vSetupADC           (void); 

void    vInitADC            (void); 

void    vSetupTimers        (void); 

void    vSetupInterrupts    (void); 

void    vDoPwmVOutControl   (int8 iIdx); 

void    vDoMPPTControl      (void); 

void    vDoEngConv          (BYTE *bPairsDone); 

void    vCalcEng            (int8 iIdx); 

void    vKickWdt            (void); 

void    vSetDuty            (BYTE bIdx,float fVal); 

void    vDoFiltering        (psANAENG psEngTbl); 

void    vSetPwmOn           (unsigned int8 bIdx); 

void    vSetPwmOff          (unsigned int8 bIdx); 

// 

float   PIDcal          (psPIDSTRUCT sPidMem,float actual_position); 

#ifdef __cplusplus 

} 

#endif 

#endif 
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