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Abstract 

The increasing demand for knowledge representation and exchange on the semantic web has 

resulted in an increase in both the number and size of ontologies. This increased features in 

ontologies has made them more complex and in turn difficult to select, reuse and maintain 

them. Several ontology evaluations and ranking tools have been proposed recently. Such 

evaluation tools provide a metrics suite that evaluates the content of an ontology by analysing 

their schemas and instances. The presence of ontology metric suites may enable classification 

techniques in placing the ontologies in various categories or classes. Machine Learning 

algorithms mostly based on statistical methods used in classification of data makes them the 

perfect tools to be used in performing classification of ontologies.  

In this study, popular Machine Learning algorithms including K-Nearest Neighbors, Support 

Vector Machines, Decision Trees, Random Forest, Naïve Bayes, Linear Regression and 

Logistic Regression were used in the classification of ontologies based on their complexity 

metrics. A total of 200 biomedical ontologies were downloaded from the Bio Portal repository. 

Ontology metrics were then generated using the OntoMetrics tool, an online ontology 

evaluation platform. These metrics constituted the dataset used in the implementation of the 

machine learning algorithms.  

The results obtained were evaluated with performance evaluation techniques, namely, 

precision, recall, F-Measure Score and Receiver Operating Characteristic (ROC) curves. The 

Overall accuracy scores for K-Nearest Neighbors, Support Vector Machines, Decision Trees, 

Random Forest, Naïve Bayes, Logistic Regression and Linear Regression algorithms were 

66.67%, 65%, 98%, 99.29%, 74%, 64.67%, and 57%, respectively. From these scores, 

Decision Trees and Random Forests algorithms were the best performing and can be attributed 

to the ability to handle multiclass classifications. 
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CHAPTER 1.  BACKGROUND AND INTRODUCTION 

1.1 INTRODUCTION 

The semantic web is an extension of the current web, where information is represented more 

meaningfully both for humans and computers alike (Taye, 2010). Ontologies are the basic 

building blocks of the semantic web. An ontology is an explicit, formal specification of a shared 

conceptualization of a domain of interest (Horrocks, 2008). Here, ‘formal’ implies that the 

ontology should be machine-readable and ‘shared’ implies that it should be accepted by a group 

or community (Zhao et al., 2009). Ontologies play a role in solving the problem of 

interoperability between applications across different domains, by providing a shared 

understanding of common information (Gruber, 1993). This is in line with the goals of the 

semantic web since it promises to achieve better data automation, reuse, and interoperability 

(Taye, 2010).  

Ever since the introduction of the semantic web, ontologies have been growing in large 

numbers (Zhao et al., 2009). Many ontology libraries currently exist, hosting various ontology 

files such as, Ontolingua, the DAML library, the Protege OWL library, etc (Sridevi & Umarani 

2013). Sridevi & Umarani (2013) also point out that the ontology search facilities provided by 

these libraries are only limited to keyword searches that makes it difficult for a developer to 

select the relevant or the best ontology to work with.  

To achieve the effective level of knowledge reuse, a requirement is that the search engines be 

capable of finding the specific ontologies that the users are looking for (Horrocks, 2008). 

Classification of ontologies makes a significant contribution in providing an understanding that 

will help in the selection of ontologies (Netzer et al., 2009). Various ranking and classification 

efforts including classifying ontologies according to the minimal description logic covering all 

the constructors used have been made (Fábio et al., 2006). Although some ontology search 

engines classify the ontologies only according to specific search terms more is required (Sridevi 

& Umarani, 2013). Artificial intelligence (AI) algorithms have not been used in the 

classification of ontologies even though data mining and machine learning techniques have 

been used in the classification of text documents (Aurangzeb et al., 2010).  

1.2 RATIONAL AND MOTIVATION 

The internet is currently the main source of information for most users (Khani et al., 2012). 

There has been an increase in the number of documents stored on the internet in electronic 

form (Bilski, 2011). A point of consideration is that machines do not understand the published 
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documents that are stored on the web. This makes it difficult for a specific user to extract only 

specific information from the web (Bonino, 2005). Machine learning, which is a branch of AI, 

involves a set of methods that can automatically detect patterns in data, and then use these 

patterns to perform other kinds of decision making under uncertainty, or to predict future data 

(Vandana & Mahender, 2012). Data mining and Machine learning techniques have proven to 

be powerful classification methods (Bilski, 2011).  

With the rise of the Semantic Web, ontologies are becoming the most suitable way of 

representing, dealing and reasoning with large volumes of information in several domains 

(Brewster & O’Hara, 2007). As more information is being converted and integrated into 

Resource Description Framework (RDF) and Web Ontology Language (OWL), carefully 

designed OWL ontologies are essential for the effective management, reuse, and integration of 

these data (Sridevi & Umarani, 2013). The creation, evaluation, and maintenance of ontologies 

have, therefore, become an engineering process that needs to be managed and measured using 

sound and reliable methods (Netzer et al., 2009).  

The evaluation of ontologies entails checking some of its various aspects, including measuring 

its design complexity which occurs as more ontologies are being developed in real-world 

applications (Zhang et al., 2010). Ontology classification work has mainly focused on 

classifying them by considering its expressivity and complexity of reasoning based on the 

description logic ontology (Fábio et al., 2006). 

Various researchers have pointed out the need to classify ontologies to ascertain their selection, 

reuse, maintenance as well as understand them better (Yang et al., 2006a). As pointed out by 

Aurangzeb et al. (2010), data mining and machine learning techniques work in conjunction to 

automatically classify and discover existing patterns in electronic documents. With the 

existence of ontology metrics that specifically checks for the complexity of ontologies, existing 

AI algorithms will, therefore, work best in classifying ontologies based on their complexity 

metrics.  

1.3  PROBLEM STATEMENT 

Recently there has been an expansion of the semantic web. In order to represent and integrate 

knowledge and data in real-world applications, more large-scale ontologies have been 

developed (Gruber, 1993). However, with the production of more ontologies, arises the need 

to measure their complexity to enable the developers to better understand, maintain, reuse and 

select the best-suited ontologies (Zhang et al., 2006b).  
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According to Vandana & Mahender (2012) Classification systems have proved to play a big 

role in the advent of the evolution of the internet since the meaning and accessibility of text 

documents and electronic information have increased (Bilski, 2011). Proper classification of 

the ontology metrics at the ontology-level and class-level requires applications of AI 

algorithms so that the required and desired ontology is retrieved (Srinivasulu et al., 2014).  

This research investigates AI algorithms that are best suited for the classification of semantic 

web ontologies.  The algorithms will then be applied to compute metrics to classify the 

ontologies in a domain based on their complexity metrics. The successful classification of the 

ontologies would help ontology developers in understanding and selecting the best ontologies 

to work with.  

1.4 AIM AND RESEARCH OBJECTIVES 

The aim of this research is to investigate AI algorithms for classifying semantic web ontologies 

based on their complexity metrics.  

The objectives of this research are: 

• To investigate AI algorithms for classification of ontologies. 

• To investigate existing complexity metrics of ontologies. 

• To compute the complexity metrics of selected semantic web ontologies. 

• To implement AI algorithms to classify ontologies based on their complexity.  

• To evaluate the performance of the implemented AI algorithms.  

1.5 RESEARCH METHODOLOGY 

1.5.1. Data Collection 

In this study, a literature search was used to collect the data. Journal articles, conference papers, 

and books that focus on AI classification techniques and design complexity of ontologies were 

targeted. The components making up the dataset were metrics of ontologies obtained from 

available public repositories. Here, public domain ontologies from online repositories was 

downloaded and thereafter their metrics were generated using reliable platforms.   

1.5.2.  Experiments 

1.5.2.1.  Implementation 

The computation of ontology metrics for the selected ontologies and application of AI 

classification algorithms were done using existing semantic web and Machine Learning 
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platforms. Some of the most popular of these platforms include: Sesame, Ontomentrics, Jena 

API and Protégé, etc. (Magkanaraki et al., 2002; Ramanujam et al., 2009; Zhou, 2010).  

In this study, the OntoMetrics platform was used in generating ontology metrics. OntoMetrics 

is a web-based ontology validation platform that allows users to measure the suitability of 

existing ontologies, regarding the requirements of their systems (Lozano-Tello & Gómez-

Pérez, 2004). The platform is therefore very interactive and user-friendly. The implementation 

of Machine Learning algorithms was done using Python’s Jupyter Notebook environment 

which is a web application containing live code, visualizations, and narrative texts. Jupyter 

Notebooks works by encapsulating both documentation and source code along with the source 

code output. The live cells allow text editing as well as the interactive execution of the source 

code cells (Schroder et al., 2019).  

1.5.2.2.  Evaluation 

Various metrics were investigated to evaluate the performance of the implemented AI 

algorithms for classifying semantic web ontologies. Some of the evaluation techniques that 

were used in this study included the Confusion Matrix; precision, recall, F-measure and the 

Receiver Operating curve (ROC) (Maynard et al., 2006).  

• Confusion Matrix - This is a matrix table for measuring the performance of supervised 

Machine Learning algorithms. The rows of the confusion matrix represent the instances of 

the actual class used and the columns, the instances of the predicted class (Luquea et al., 

2019). The elements of a confusion matrix represent the: number of positives correctly 

identified or True Positive (TP), number of negatives identified correctly or True Negative (T 

N), number of negatives incorrectly identified as positive or False Positive (FP) and number 

of positives incorrectly identified as negatives or False Negative (FN). Other evaluation 

techniques that can be obtained from the confusion matrix table include accuracy, precision 

and recall and F-measure (Trajdos & Kurzynski, 2017; Luquea et al., 2019). 

• Accuracy - The accuracy is defined as the ratio of the total number of correct predictions to 

the total number of predictions made. On the other hand, the error rate is the difference in 

accuracy scores.  

• Precision - Precision is defined as the ratio of True Positives (correctly identified items) to 

the sum of True Positives and False Positives. It is a measure of the capacity of the correct 

information returned by the model in percentages. 
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• Recall - Recall is the quotient of True Positives (Correctly identified items) and the sum of 

True Positives and False Positives. It, therefore, measures the capacity of all the relevant 

information that a model has extracted in percentages. 

• F-Measure - F-Measure combines both precision and recall and can be defined as the 

harmonic mean of precision and recall measures.  

• Receiver Operating Characteristic (ROC) Curve - Some classification problems cannot 

be measured with classification scores, mainly when dealing with datasets with heavy class 

imbalance. Receiver Operating Characteristic (ROC) curve is useful in such cases, offering 

the best alternatives (Nazrul, 2018). ROC is a plot of True Positive Rate (TPR), which is 

recall or sensitivity on the x-axis against False Positive Rate (FPR) also known as 1-

specificity on the y-axis.   

After plotting the curve, the model performance is determined by looking at the area under 

the ROC curve (AUC). AUC value of 1 is considered as the best possible that can be obtained 

in a model while the worst is 0.5. The AUC value that is less than 0.5, would call for reversing 

the recommendations of the model with the aim of getting a value that is above 0.5. Using 

ROC curves to check the performance of a model allows for comparison of curves of different 

models directly or for different thresholds, whereas, the AUC can be used as a summary of 

the model skill (Brownlee, 2018.). 

1.6 DISSERTATION OUTLINE 

The rest of this paper has been structured as follows: Chapter 2 is Literature Review and 

presents a background of Semantic Web and Ontologies, Machine Learning Algorithms and 

OntoMetrics platform. The chapter also presents work that are related to classification with the 

most popular Machine Learning algorithms. Chapter 3 is Materials and Methods and Machine 

learning algorithms and performance evaluation techniques are discussed in detail. Chapter 4 

discusses the System Architecture for the classification models built. Experimental results for 

the implementation of the algorithms in classification of ontologies are presented in chapter 5. 

The dataset used in the experiments as well as the software environment used in running the 

experiments are also outlined. Chapter 6 provides the Conclusion and Future Work.   

1.7 ORIGINAL CONTRIBUTIONS 

The contributions of this study are the design and implementation of various artificial 

intelligence models for the cluttering and classification of semantic web ontologies: 
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1. A K-Means model for the clustering of ontologies based on the Graph metrics presented 

in Chapter 5. This work was accepted for presentation and publication in the IEEE 

International Multidisciplinary Information Technology and Engineering Conference, 

Vanderbijlpark, South Africa, November 21 – 22, 2019. 

2. A K-Nearest Neighbours model for classification of ontologies. This work has been 

submitted for review at the 46th International Conference on Current Trends in Theory 

and Practice of Computer Science (SOFSEM 2020), Limassol, Cyprus, January 20-24, 

2020.  

3. A Logistic Regression model for classification of ontologies. This work has been 

submitted for review to 23rd International Conference on Business Information Systems 

(BIS2020), Colorado Springs, USA, June 8 -10, 2020. 

4. A Naïve Bayes model for classification of ontologies. This work has been submitted 

for review to 2020 International Conference on Information Communications 

Technology and Society (ICTAS), Durban, South Africa, March 11-12, 2020. 

5. A Support Vector Machine model for classification of Ontologies. This work has been 

submitted for review to 33rd International Conference on Industrial, 

engineering & Other Applications of Applied Intelligent Systems (IEA/AIE 

2020), Kitakyushu, Japan, July 21-24, 2020.  

 

6. Decision Trees and Random Forest models for classification of ontologies. These are 

presented in Chapter 5. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

In this chapter, a background of the semantic web is discussed. Ontologies, being the basic 

building blocks of the semantic web and the tools and languages used in building the semantic 

web are discussed. Ontology metrics are also introduced in this chapter and the specific metrics 

used in conducting this study, OntoMetrics, is also introduced. The chapter points out the issue 

regarding the complexity of ontologies brought about by the growing number of ontologies and 

how ontology metrics are used in understanding the functionalities of an ontology. The chapter 

further discusses the concept of Classification of ontologies based on their metrics using 

Machine Learning algorithms.  

2.2 The Semantic Web and Ontology 

2.2.1. Semantic Web  

The evolution of the first web known as web 1.0 to web 2.0, the current web, was motivated 

by the increasing need to share resources electronically. Contents on the current web, however, 

are designed specifically for humans and cannot be understood by a computer. Computers, 

therefore, have no reliable way to process the semantics on the web but rather only process 

their syntax (Gruber, 1993). This, with the increasing need for interoperability between 

different web pages, has led to the introduction of a new version of the web known as the 

semantic web.  

The semantic web was introduced by Tim Berners-Lee and is an extension of the current web. 

It seeks to bring structure to the meaningful content of Web pages, creating an environment 

where software agents roaming from page to page can easily carry out sophisticated tasks for 

users (Berners-Lee, 2011). This is achieved by providing a description of its contents and 

services in a way that is machine-readable and one that allows services to be annotated, 

discovered, published, advertised and composed automatically (Taye, 2010). 

The semantic web is not separate from the current web since both are categorized as a set of 

resources that are uniquely identified by the URI. A major dissimilarity between the two, 

however, is that whilst the current web uses HTTP to display contents of a page, the semantic 

web semantically represents data in resources and therefore ensuring machine readability 

(Gerber et al., 2008). 
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2.2.2. Ontology  

The concept of ontology originated from metaphysics and philosophical science. Early 

philosophers defined it as “the science of being” as they sought answers to underlying factors 

like what existence is and the properties that can best describe existence (Gruber, 1993). 

Recently, ontologies have become more formalized conceptual models applied in artificial 

intelligence, information systems, natural language processing, database integration, 

information query systems, agent software systems and web technologies (Yao et al., 2005). 

According to Gruber (1995), ontologies provide an explicit specification of a conceptualization 

and can formally be defined as a representation of knowledge of a specific domain and consists 

of vocabulary representing the domain in form of classes or concepts, properties or 

relationships existing between these classes. 

Formal languages have been established for the encoding of ontology knowledge.  The 

languages fall into three broad categories: vocabularies of natural languages, object-based, and 

description logics (Stevens et al., 2000). Natural languages-based ontology vocabularies are 

loosely structured hierarchies of terms.  Object-based languages also known as frame-based 

ontology languages are rigidly structured with each frame (concept) described by a collection 

of slots (attributes) (Fernández, 1999). Description Logics (DL) languages are based on 

concepts and relations used to automatically classify taxonomies (Gonzalez-Castillo et al., 

2001).  

As the Semantic Web is gaining momentum, more ontologies are being developed to represent 

and integrate knowledge and data. The growth of ontologies in size and numbers makes them 

more complex and difficult to understand. Assessing the quality of an ontology is therefore 

essential to ontology developers since it allows them to identify the areas that may require extra 

work (Jose et al., 2011). This also enables ontology users to know the exact section of the 

ontology that may lead to problems if not addressed and after making comparisons with various 

ontologies, they may be able to choose and work on the best ontologies (Tartir et al., 2005).  

Existing methodologies for building ontologies propose a phase of reusing the ontology as 

indicated by Fernández (1999). However, there are no frameworks that indicate to the user the 

process of choosing ontologies for a new project and no methodologies quantifying the 

suitability of these ontologies for the system (Fernández, 1999). A metric quantifying the 

suitability of an ontology would alleviate the problem by showing how appropriate the 

ontology is to the user. 
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2.2.3. Semantic Web Architecture 

Tim Berbers-Lee (2001), proposed a layered architecture, which adheres to software 

engineering principles and the fundamental aspects of layered architectures, for the semantic 

web The architecture guides ontology developers in the development of the semantic web as 

well as solving any issues regarding the implementation of the semantic web applications. 

Figure 1 shows the semantic web architecture proposed by Tim Berners-Lee.  

 

 

Figure 2:1:Semantic Web Architecture proposed by Tim Berners-Lee (2001) 

 

The URI and Unicode occupies one layer that identifies and locates resources on the web with 

the help of the URIs. The resources can then be identified by these unique names and the 

Unicode is a standard for computer character representation. The second layer is the Extensible 

Markup Language (XML). It is a machine-readable markup language that has its own format. 

Due to its flexible text format, XML describes data in the WWW community and exchanges 

different types of data on the web.  

Resource Description Framework (RDF) is the third layer of the semantic web that provides a 

framework for describing the semantics of information about the resources on the web in a way 

that is understood by machines. Identification of web resources is done with the help of URIs 
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and a graph model is deployed to describe the relations that exist between these resources. The 

fourth layer is Ontology vocabulary that delivers grammar and vocabulary for data on the web 

by breaking down the semantics of data used in keeping ontologies. It, therefore, provides a 

consistent way of communication and common understanding by different parties.  

The fifth layer is represented by Logic and proof that provides logic constraints that checks the 

structure of an ontology. Consistency problems and redundancy are some of the issues that may 

arise, and a reasoner is used to check for these. The last layer of the architecture is Trust. This 

layer checks for the reliability of the information on the web such that it can ensure its quality. 

2.2.4. Semantic Web Tools and Languages  

A classical ontology contains a hierarchical description of important concepts and their 

relations in a domain, task or service. The formality extent that is used in describing intuitively 

these descriptions may vary (Narzary & Nandi, 2014). However, increasing the formality and 

regularity will enable for machine understanding. A powerful ontology language that can be 

used effectively in formalizing the structure of the web is greatly useful and of importance to 

the development of the Semantic Web (Li & Horrocks, 2004).  

The process of developing an ontology consists of some rules that are strictly stipulated by the 

various ontology languages used in developing it. Such guidelines are useful to the ontology 

developers and users in developing the best and effective ontologies and selecting the best 

among the public ontologies to work. Some of the most common guidelines are stated below 

(Berners-Lee, 2011): 

• A language should be well designed for the intuition of human users while maintaining 

its adequate expressive power. 

• A language should be well defined with clearly specified syntax and formal semantics. 

• A language should also be compatible with existing web standards, etc.    

There has been an increase in the development of ontologies within the last decade and to cope 

with this trend various ontology tools and languages have been developed that can suit different 

application domains. Some of these languages are based on the extensible Makeup Language 

(XML) (Connolly et al., 2001). Resource Description Framework (RDF) and Resource 

Description Framework Schema (RDF Schema) languages were created by World Wide Web 

Consortium (W3C) group members. The union of RDF and RDF Schema has enabled the 

creation of supplementary languages which are Ontology Inference Layer (OIL) and Darpa 
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Agent Markup Language (DAML + OIL) and this has led to the improvement of their features 

(Li & Horrocks, 2004).  

XML, RDF, RDFS, DAML+OIL and Web Ontology (OWL) languages have the capability of 

linking content documents and grouping them in a logical and relevant way and are mainly 

used in organizing, integrating and navigating through the Web. They create context-aware 

computing systems whereby users can search for information in an instinctive way (Borgida & 

Patel-Schneider, 1994). A brief description of these languages has been discussed below:  

• eXtensible Markup Language (XML) 

XML is a tag-based language for describing tree structures with a linear syntax. The language 

provides users with a platform for defining their own tags needed for describing the structure 

of the web documents (Klein et al., 2000). In this way, the content of a web document can be 

processed automatically. XML also provides a means for exchanging information over the web 

making it a basic language for the semantic web (Narzary & Nandi, 2014).  

• Resource Description Framework (RDF) 

The structure of information is the main area of focus of the XML language. However, 

information is not only about the structure but also the semantics that lies in it. XML does not 

define the semantics of information in a way that can be understood and processed by a 

machine. Resource Description Framework (RDF) is a language that performs these functions. 

It is an XML application that has been tailored to add meta-information to documents on the 

Web (Lassila & Swick, 1999). It defines a model of data used for describing the semantics of 

data. RDF defines object-property-value-triples that represent the semantics of web resources 

and introduces a standard syntax for them (Narzary & Nandi, 2014). Since RDF statements are 

also resources, statements can be alternatively applied to statements, therefore, allowing for 

nesting properties.  

• Resource Description Framework Schema (RDF Schema) 

RDF Schema is a language encrusted on top of the RDF language. This approach referred to 

as “Semantic Web Stack” has been presented by the W3C organization and Tim Berners-Lee 

and puts together the various concepts that are all related to each other. RDFS also expresses 

class-level relations that describe instance-level relations that belong to the various concepts 

(Haase et al., 2004; Berners-Lee, 2011). RDF Schema uses the same data model used by the 
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various object-oriented paradigms. An example of this is the programming language like Java. 

The model allows for the creation of some specific information within a domain (Brickley & 

Guha, 1999).  

• Ontology Inference Layer (OIL) 

OIL has been developed in the context of the European IST project On-To-Knowledge. OIL 

provides modelling primitives used in frame-based and Description Logic oriented ontologies, 

along with a simple and clean semantics (Li & Horrocks, 2004). The syntax of OIL makes use 

of RDF(s) and XML(s) such that it can maintain backward compatibility. The language, 

according to Li & Horrocks (2004), merges three crucial aspects that are provided by different 

communities. First is the Formal semantics and efficient reasoning support provided by 

Description Logics. Second is the Epistemologically rich modelling primitives provided by the 

Frame-based community, and finally a standard proposal for syntactical exchange notations as 

provided by the Web community.  

OIL provides the means for describing structured vocabulary using well-defined semantics. 

This is the main impact that has been brought about by OIL. OIL distinguishes three different 

layers to describe ontologies. These layers are the object level where concrete instances of an 

ontology are described. The first meta-level provides the actual ontological definitions where 

the terminology that may be instantiated at the object level is defined (Horrocks, 2000). The 

second meta-level is the final layer and is concerned with describing the features of an ontology 

such as the name, author, subject, etc. OIL adds a feature, reasoning support on the RDF where 

expressiveness of an ontology is increased to allow functionalities such as automatically 

checking for consistency on ontology data. 

• DARPA Agent Mark-up Language - Ontology Inference Layer (DAML+OIL) 

This is a mark-up language created jointly by the American and European ontology 

communities for the Semantic Web after they merged DAML-ONT and OIL (Horrocks, 2002). 

This language operates by using the standards of the languages that are already in existence 

which are XML and RDF (Connolly et al., 2001). It adds the ontological primitives of object-

oriented and frame-based systems and the formal rigor of expressive description logic.  

DAML+OIL implements an object-oriented approach with the structure of the domain being 

described in classes and properties terms and the set of axioms that assert characteristics of the 

respective classes and properties. The meaning of DAML+OIL is defined by a standard model-

theoretic semantics based on interpretations, where an interpretation consists of a domain of 
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discourse and an interpretation function (Arroyo et al., 2014). DAML+OIL language has been 

accepted and widely used as an ontology language with enough expressiveness throughout the 

research community. 

• Web Ontology Language (OWL) 

OWL is a Web ontology language developed by the W3C Web Ontology Working Group. This 

language aims at making Web resources to be processed more easily in applications by adding 

information about the resources. OWL is mainly applied to situations where information on the 

web documents need to be processed by applications, instead of only being displayed to 

humans. OWL makes it is possible to represent the meaning of terms that are used in 

vocabularies and relationships between those terms (Dean et al., 2003). 

OWL consists of three main components (Arroyo et al., 2014). Firstly, Ontologies are defined 

as a sequence of axioms and facts, plus inclusion references to other ontologies, which are 

included in the ontology. Secondly, Axioms are used to associate class and property IDs with 

either partial or complete specifications of their characteristics and to give other logical 

information about classes and properties. Lastly, Facts state information about individuals in 

the form of a class that the individual belongs to, together with its properties and values. 

Individuals can either be given an individual ID or be anonymous, referred to as blank nodes 

in RDF terms. 

OWL uses additional vocabulary together with formal semantics to provide more facilities than 

XML, RDF, and RDF Schema in expressing meaning and semantics. It, therefore, has greater 

abilities for representing machine-interpretable contents as compared to other languages 

(Arroyo et al., 2014). 

OWL strives to meet the needs of various users. To ensure this usability, OWL has been 

categorized into three sublanguages which are (Rajaei, 2007; Narzary & Nandi, 2014): 

1. OWL-Lite. This consists of RDFS plus equality and 0/1-cardinality. Layered and easy-

going language for tool builders. Developed to capture many of the commonly used 

features of DAML+OIL. It attempts to provide more functionality than RDFS, which 

is important in order to support web applications. 

2. OWL DL. It contains the whole OWL vocabulary that is interpreted under a number of 

simple constraints. Primary among these can be found by the type separation. Class 

identifiers cannot simultaneously be properties or individuals. Similarly, properties 

cannot be individuals. 
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3. OWL Full. This is composed of the complete vocabulary but interpreted more broadly 

than in OWL DL. A class can be treated simultaneously as a collection of individuals 

and as an individual. 

Besides the RDF style syntax, OWL specification also includes an abstract syntax that provides 

a higher level and a way that is much easier in writing ontologies. The language has the 

advantage of allowing a more concise statement of the semantics. An important observation is 

that the OWL abstract syntax has reverted to grouping axioms into frame structures (Rajaei, 

2007). Semantic web languages aim at representing ontologies to allow computer programs to 

inter-operate without pre-existing, outside-of-the-web agreements and since OWL has a degree 

of effective reasoning mechanism, then computer programs can manipulate this 

interoperability information themselves (Narzary & Nandi, 2014). 

2.3 Ontology Metrics  

Ontology metrics are expected to give some insight for ontology developers and users. The 

complexities of ontologies should be managed both in engineering and at the display level to 

make the ontologies more tractable. Recently, real-world ontologies from public domains have 

been collected and used in the computation of metrics from various ontology metrics that have 

been proposed (Horrocks, 2002). Several metrics have proven to have the capability of 

revealing internal structures of ontologies and therefore can be successfully used in ontology 

quality control. 

2.3.1. OntoMetrics  

With the increase in the use of ontologies in various domains, arises a problem of selecting an 

appropriate ontology that can fit a domain of choice. Issues regarding the complexity of an 

ontology and knowledge of its structure pose a great challenge in making selections for 

ontologies. The methodologies for creating an ontology has always had a stage proposing for 

reuse of an ontology but lacks a way for indicating to the users the process followed in choosing 

an appropriate ontology (Fernandez, 1999). Ontology developers have been tasked with 

examining the characteristics of an ontology and basing on their knowledge and intuition, they 

then make selections of ontologies. To manage this, various ontology technological platforms 

have been created recently (Lozano-Tello & Gómez-Pérez, 2004). 

Within the last 2 decades, various platforms that are aimed at managing the task of checking 

the functionality of an ontology have been developed. The Knowledge Systems Laboratory 
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(KSl) of Stanford University developed the Ontolingua Server in 1996 (Farquhar, 1996). 

Ontosaurus was developed in 1997 by the Information Sciences Institute (ISI) from the 

University of South Carolina (Swartout, 1997). WebOnto was developed in the Knowledge 

Media Institute (KMI) of the Open University (UK) (Domingue, 1998); In 2001, IST 

OntoKnowledge project developed OILed (Bechhofer, 2001). OntoEdit platform was then 

developed by the AIFB of the Karlsruhe University (Staab, 2000); Protégé2000 used for 

ontology development and checking ontology metrics was developed by the Stanford Medical 

Informatics (SMI) in the Stanford University (Noy, 2001) amongst others. 

Lozano-Tello & Gómez-Pérez (2004) proposed the Ontometric method which is based on an 

Analytical Hierarchy Process (AHP) and adapts different processes for the reuse of ontologies.  

The Analytic Hierarchy Process (AHP) was developed by Saaty (1977) and is a powerful and 

flexible tool used for decision-making in complex multi-criteria problems. This method allows 

people to gather knowledge about a problem, to quantify subjective opinions and to force the 

comparison of alternatives in relation to established criteria. 

OntoMetrics is a web-based ontology validation platform that allows users to measure the 

suitability of existing ontologies, regarding the requirements of their systems (Lozano-Tello & 

Gómez-Pérez, 2004). The metrics are divided into two categories: schema and instance metrics. 

The quality metrics as an example that can be used to evaluate the success of a schema in 

modelling real-world domains and can aid in reusing an ontology (Gómez-Pérez & Rojas-

Amaya, 1999). In this case, the depth, breadth, and height balance of the schema inheritance 

tree can play a role in a quality assessment. Besides this, the quality of a populated ontology 

(Knowledgebase Metrics) can be measured to check whether it is a rich and accurate 

representation of real-world entities and relations. Lozano-Tello & Gómez-Pérez (2004), 

discussed the following detailed structures of Ontometric platform. 

2.3.1.1. Schema Metrics 

Schema metrics address the design of the ontology. The metrics falling under this category 

indicates richness, width, depth, and inheritance of an ontology schema so that it can be used 

to check whether the ontology design correctly models the knowledge it represents.  

2.3.1.1.1. Relationship Richness.  

It reflects the diversity of relations and their respective placements in the ontology. In this case, 

an ontology that contains many relations besides class-subclass relations is richer than a 

taxonomy that only contains class-subclass relationships. The relationship richness (RR) of a 
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schema is defined as the ratio of the number of relationships (P) defined in the schema, divided 

by the sum of the number of subclasses (SC) (which is the same as the number of inheritance 

relationships) plus the number of relationships.  

𝑷𝑹 =  
|𝑷|

|𝑺𝑪| +  |𝑷|
 

From the formula, the results obtained will be a percentage signifying the number of 

connections that exist between classes that are rich relationships as compared to all the possible 

connections that can include rich relationships and inheritance relationships.  

2.3.1.1.2. Attribute Richness. 

The number of attributes that are defined for each class can indicate the quality of ontology 

design and the amount of information relating to the instance data. The assumption here is that 

the knowledge the ontology conveys is more when the slots are more. The metric is generated 

as the number of attributes for all classes (ATT) divided by the number of classes (C). 

𝑨𝑹 =  
|𝑨𝑻𝑻|

|𝑪|
 

The value obtained here will be a real number representing the average number of attributes 

per class. This value provides an insight into the total amount of knowledge about the classes 

that are in the schema.  

2.3.1.1.3. Inheritance Richness. 

Inheritance Richness outlines the distribution of information across different levels of the 

ontology’s inheritance tree or the fan-out of parent classes. This measure will indicate how well 

knowledge is grouped into different categories and subcategories in the ontology. It is defined 

as the average number of subclasses per class and the number of subclasses is defined as: 

|𝑯𝑪(𝑪𝟏𝑪𝒊)| 

Where H is the number of inheritance relationships. The number of subclasses (C1) for a class 

Ci is defined as: 

𝑰𝑹 =  
∑ 𝑪𝒊 ∈ 𝑪 |𝑯𝑪(𝑪𝟏𝑪𝒊)| 

|𝑪|
 

2.3.1.1.4. Attribute-Class Ratio. 

The relation between classes containing attributes and all classes is represented in this metric. 

The number of attributes are counted to ascertain whether it has enough class attributes or not. 

It is therefore defined by: 
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𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝑪𝒍𝒂𝒔𝒔𝑹𝒂𝒕𝒊𝒐 =
𝑪𝒍𝒂𝒔𝒔𝒆𝒔𝑾𝒊𝒕𝒉𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔

𝑵𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑪𝒍𝒂𝒔𝒔𝒆𝒔
 

2.3.1.1.5. Equivalence Ratio. 

It calculates the ratio between the similar classes and all the classes in ontology. It is 

represented as follows: 

𝑬𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒄𝒆𝑹𝒂𝒕𝒊𝒐 =  
𝑺𝒂𝒎𝒆𝑪𝒍𝒂𝒔𝒔𝒆𝒔

𝑵𝒖𝒎𝒃𝒆𝒓𝑶𝒇𝑨𝒍𝒍𝑪𝒍𝒂𝒔𝒔𝒆𝒔
 

2.3.1.1.6. Axiom / Class Ratio. 

The metric calculates the ratio between axioms and classes. It is therefore generated as the 

average amount of axioms per class: 

𝑨𝒙𝒊𝒐𝒎𝑪𝒍𝒂𝒔𝒔𝑹𝒂𝒕𝒊𝒐 =  
𝑨𝒙𝒊𝒐𝒎𝒔

𝑪𝒍𝒂𝒔𝒔𝒆𝒔
 

2.3.1.1.7. Inverse Relations Ratio. 

It describes the ratio between inverse relations and all the other relations within an ontology 

and it is calculated as follows: 

𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝑹𝒂𝒕𝒊𝒐

=  
𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑶𝒃𝒋𝒆𝒄𝒕𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 + 𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍𝑫𝒂𝒕𝒂𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔

𝑨𝒍𝒍𝑶𝒃𝒋𝒆𝒄𝒕𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔 + 𝑨𝒍𝒍𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒂𝒍𝒅𝒂𝒕𝒂𝑷𝒓𝒐𝒑𝒆𝒓𝒕𝒊𝒆𝒔
 

 

2.3.1.1.6. Class / Relations Ratio. 

This metric is a ratio between the classes and the relations in the ontology. It is calculated as 

follows: 

𝑪𝒍𝒂𝒔𝒔𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝑹𝒂𝒕𝒊𝒐 =  
𝑪𝒍𝒂𝒔𝒔𝒆𝒔

𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑𝒔
 

 

2.3.1.2. Knowledgebase Metrics. 

The way data is organized in an ontology is a significant measure of ontology quality because 

it can indicate the effectiveness of the ontology design and the amount of real-world knowledge 

represented by it.  

2.3.1.2.1. Average Population 

This metric indicates the number of instances compared to the number of classes. The metric 

is useful if the ontology developer is not sure if enough instances were extracted compared to 
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the number of classes. The average population (AP) of classes in a knowledgebase is defined 

as the number of instances of the knowledgebase (I) divided by the number of classes defined 

in the ontology schema (C). 

𝑨𝑷 =  
|𝑰|

|𝑪|
 

The output of the above is a real number which shows how well the data extraction process 

was performed to populate the knowledgebase. 

 

2.3.1.2.2. Class Richness 

The distribution of instances across classes is the focus of this metric. The number of classes 

that have instances in the knowledgebase is compared with the total number of classes. This 

comparison will give an idea of how well the knowledgebase utilizes the knowledge modelled 

by the schema classes. It is therefore defined as the percentage of the number of non-empty 

classes (classes with instances) (C') divided by the total number of classes (C) defined in the 

ontology schema. 

𝑪𝑹 =  
|𝑪′|

|𝑪|
 

2.3.1.3. Graph Metrics 

2.3.1.3.1. Average Depth 

The depth in graphs is a property related to the cardinality of paths existing in the graph. The 

Average depth indicates the degree to which the ontology has vertical modelling of hierarchies 

and is defined by: 

𝒎 =  
𝟏

𝒏𝒑⊆𝒈
∑ 𝑵𝑱∈𝑷

𝑷

𝑱

 

Where: 𝑁𝐽∈𝑃is the cardinality of each path 𝐽 from the set of paths 𝑃 in a graph g and 𝑛𝑝⊆𝑔 is 

the cardinality of𝑃.  

2.3.1.3.2. Average Breadth 

Breadth is the cardinality of levels. The Average breadth indicates the degree at which the 

ontology has horizontal modelling of hierarchies and is defined as follows: 

𝒎 =  
𝟏

𝒏𝑳⊆𝒈
∑ 𝑵𝑱∈𝑳

𝑳

𝒋
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Where: 𝑁𝐽∈𝐿 is the cardinality of each generation 𝑗 from the set of generations 𝐿 in a directed 

graph 𝑔 and 𝑛𝐿⊆𝑔 is the cardinality of𝐿. 

2.3.1.3.3. Average Number of Paths 

This metric is a representation of the quotient of the total number of distinct paths and the 

number of paths of graphs. It is generated as follows: 

𝒎 =  
𝒏𝑫𝑷⊆𝒈

𝒋
 

Where: 𝑛𝐷𝑃⊆𝑔is the cardinality of the set 𝐷𝑃 in the directed graphs 𝑔 and the number of 

graphs𝑗.  

2.4. Related Study  

2.4.1. Ontology Metrics 

Lantow (2016) provided a theoretical background and the possible scenarios for using the 

Onto-Metrics platform. Lantow points out the need to have an automatically calculated metrics 

to be used in evaluating the quality of ontology to avoid the use of major resources in 

ascertaining its quality. Rule-based ontology evaluation technique is used in detecting 

modelling errors and cases of violation of ontology modelling guidelines. Metrics, on the other 

hand, are used as indicators for any quality problems that cannot be detected by the rule-based 

method. Since OntoMetrics platform gives free access to metric calculation and definition then 

it is an important tool evaluation of ontologies through the generation of its metrics.  

A study by Gangemi et al. (2005) investigated the existing ontology-evaluation methods based 

on the perspective of their integration in a single framework. They then set up a formal model 

based on qualitative and quantitative measures for ontologies. The proposed model consists of 

a meta-ontology (O2) which characterizes ontologies as semiotic objects and is complemented 

with an ontology of ontology evaluation and validation - oQual. Basing on O2 and oQual, three 

main types of measures for ontology evaluation are identified. First is structural measures 

which are typical of ontologies represented as graphs. The second is functional measures which 

are related to the intended use of an ontology and of its components. Lastly are usability-related 

measures, that depend on the level of annotation of the considered ontology 

Gavrilova et al. (2012) presented an approach aimed at creating teaching strategies for e-

learning based on the principles of ontological engineering and cognitive psychology. The 

framework proposed seeks to develop a methodology where the design of ontology is evaluated 

by assessing its structure with several quantitative metrics. Visual mind-mapping and concept 
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mapping are used as powerful learning tools where balance clarity and beauty are integrated 

into ontology evaluation procedures. This approach has high applicability in education 

processes and can aid educators and students in creating high-quality ontologies.  

Tartir et al. (2005) introduced OntoQA, which is an approach that analyses ontology schemas 

together with their populations and works by describing them through a well-defined set of 

metrics. Their study was motivated by the fact that the growing number of ontologies in 

different domains have made it difficult for ontology users and developers to determine if a 

certain ontology is suitable for their needs. The set of metrics can highlight key characteristics 

of an ontology schema as well as its population thereby enabling ontology users and developers 

to make an informed decision quickly. 

2.4.2. Machine Learning Classification Techniques  

Machine learning techniques based on statistical methods have been used in handling large 

volumes of data. Machine learning algorithms perform classification of data, which is a process 

of predicting an unknown category label with the aim of creating a distinct boundary between 

the objects based on the attributes and its features (Khan et al., 2010.). Some of the popular 

machine learning algorithms include Naïve Bayes, Support Vector Machines, Decision Trees, 

Random Forests, Logistic Regression, and K-Nearest Neighbours algorithm. 

2.4.2.1. K-Nearest Neighbors 

The research that was done by Destercke (2012) who proposed an approach based on k-Nearest 

Neighbors algorithm that utilizes the imprecise probabilities and lower previsions. The 

approach is robust in the sense that the uncertain data is handled in a generic way and the 

decision rules that have been proposed in the theory enables the user to handle any conflicting 

information that exists between the neighbors. This also applies when there are no existing 

close neighbors. 

The work of Amores et al. (2006) introduced a distance estimation technique by boosting and 

applied it to the KNN classifier. The study did not apply the AdaBoost as it is done usually in 

classification problems. Instead, the proposed technique is used in the learning of the distance 

function which is further used in the KNN algorithm. The results show that the proposed 

method outperformed the AdaBoost and the traditional KNN classifier. 

In Sun & Houng (2010), an adaptive KNN algorithm that seeks to address the limitations of 

the traditional KNN algorithm is proposed. The traditional KNN algorithm normally identifies 

a similar number of nearest neighbors belonging to each sample test set. The algorithm seeks 
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to find the most suitable value of k which is the number of the least near neighbors that can be 

used by the training set to obtain the correct class label. In performing the classification of each 

of the test sets, the value of k is set as the same as the suitable value of k of the nearest neighbors 

in the training set. The results of the experiments show that the adaptive algorithm is much 

better than the traditional KNN algorithm. 

The study by Agrawal (2014), focuses on the issues surrounding the classification of the 

uncertain data using the K-Nearest Neighbors algorithm. Uncertain data consists of tuples with 

different data. Therefore, finding a class of similar tuples is always a complex and tedious 

process. The data attributes with a higher level of uncertainty should be approached differently 

as compared to those with a lower level of uncertainty. The existing techniques used in the 

classification of these data have been underlined and the issues surrounding KNN have also 

been addressed. 

A framework has been introduced by Potamias et al. (2010) that is used in the processing of 

KNN queries in the probabilistic graphs. The proposed framework is designed based on 

sampling techniques and during querying; the search space is eliminated with the use of novel 

techniques. The experimental results perform much better than the previously used techniques 

in identifying the true neighbors in real-world biological data. 

All the research work discussed above have focused on using the KNN algorithm in performing 

classification of data or improving its performances. Of all these, however, there has never 

been any research that is aimed at classifying ontologies using The KNN algorithm. The work 

presented here is the first of its kind in classifying ontologies using the KNN algorithm. 

2.4.2.2. Support Vector Machines  

The application of SVMs for classification has been of interest to authors in various domains. 

Ali et al. (2016) presented a classification technique for feature reviews identification and 

semantic knowledge for opinion mining based on SVM and Fuzzy Domain Ontology (FDO). 

The proposed system collects reviews about a hotel and its features. Thereafter, SVM is applied 

to identify these hotel feature reviews and filter out irrelevant features in these reviews. 

Furthermore, FDO is used to compute the polarity terms of each feature. The experimental 

results show that the combination of FDO and SVM increases the precision rate of reviews and 

word extraction as well as the accuracy of opinion mining. 
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Another study by Vinayagam et al. (2004) developed a large-scale annotation system that 

performs rapid, reliable and accurate function assignments of gene products. In this work, the 

annotation was done through the gene ontology terms by applying SVM to classify the correct 

and false predictions. An organism wise cross-validation technique was done to define the 

confidence estimates. These results showed that the prediction performance was organism-

independent and could manually generate high-quality annotations for other systems.  

A combination approach that enhances the existing sentiment classification approaches based 

on an ontology is proposed in Shein & Nyunt (2010). The main aim of the sentiment 

classification is to aid in extracting the features on which various reviewers express their 

opinions and categorizing them into either positive or negative. The classifications of the 

reviews were made using Natural Language Processing (NLP) techniques, Formal Concept 

Analysis (FCA) ontology-based and the SVM algorithm. 

The authors in Ali et al. (2017), presented an SVM and fuzzy ontology-based semantic 

knowledge system that filters web content automatically and blocks sites containing 

pornographic materials. The system uses a blacklist of censored webpages to classify the 

Uniform Resource Locators (URLs) into adult URLs and medical URLs. Thereafter, the web 

contents are extracted with a fuzzy ontology to determine the type of the website being viewed. 

The evaluation results of the system revealed its efficiency in classifying web content and 

performing automatic detection and blocking. 

In Zhou et al. (2017), an ontology-driven framework that supports SVM-based hyperspectral 

data classification is presented. A dimension reduction algorithm is used to automatically select 

the prominent spectral characteristics for all the land covers in a hyperspectral image. These 

characteristics include the ranks and weights, which indicate the wavebands that distinguish a 

specific land cover mass from others. Thereafter, an ontology called HIC-Ontology is 

developed to represent the extracted spectral characteristics to support the final training and 

classification process. The results showed that the proposed technique achieves better 

performance in the classification of hyperspectral data. 

To the best of our knowledge, no previous study has attempted to apply AI techniques to 

classify ontologies. This is the first study to experiment with the application of an AI algorithm, 

SVMs in this case, to classify semantic web ontologies based on their complexity/graph 

metrics. 
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2.4.2.3. Decision Trees 

Authors have applied the decision tree algorithm to classify data in various domains.  In Yao 

et al. (2005), a robust and practical decision tree improved model R-C4.5 and its simplified 

version are used in the classification of a healthcare dataset to predict inpatient length of stay. 

The model is based on the C4.5 and the attribution selection and partitioning methods. It avoids 

the fragmentation appearances by uniting branches that have poor classification effect. The 

experiments show that the R-C4.5 decision tree model and its simplified version enhances the 

interpretability of splitting attribute selection, reduces the numbers of insignificant or empty 

branches and avoids the appearance of overfitting.   

Another study by Rastogi & Shim (2000) proposed an improved decision tree classifier called 

PUBLIC that works by integrating the second “pruning” phase with the initial “building” 

phase. In PUBLIC, a node is not expanded during the building phase if it is determined that it 

will be pruned during the subsequent pruning phase. In making this determination for a node 

before expansion, the classifier computes the lower bound on the minimum cost subtree rooted 

at the node. The estimate made here shall then be used by the PUBLIC classifier in identifying 

the nodes that are certain to be pruned. The Experimental results obtained from the 

implementation of real-life and synthetic data sets have yielded positive results.  

The work of Chandra & Paul (2006) presented a novel approach for the choice of the split value 

of attributes. In their work, the issue of reducing the number of split points has been addressed. 

This approach was implemented on various datasets that were taken from the UCI machine 

learning data repository. The results obtained from the experiments conducted showed that this 

approach gives a better classification accuracy as compared to already existing Decision Tree 

algorithms such as C4.5, SLIQ, and Elegant Decision Tree Algorithm (EDTA) and at the same 

time the number of split points to be evaluated is much less compared to that of SLIQ and 

EDTA. 

Mehta et al. (1996) discussed issues surrounding the building of a scalable classifier and some 

of the issues discussed including the existence of classification algorithms designed only for 

memory-resident data which limits their suitability for data mining on large datasets. A design 

of SLIQ was presented in this study, which is a decision tree classifier that can handle both 

numerical and categorical attributes. This algorithm uses a novel pre-sorting technique in a 

tree-growth phase which is integrated with a breadth-first tree growing strategy to enable 

classification of disk-resident datasets. SLIQ algorithm also uses an inexpensive tree pruning 
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algorithm which results in a compact and accurate tree making it an attractive tool for data 

mining. 

Chandra et al. (2002) proposed an algorithm, Elegant, that aimed at improving the 

performances of the SLIQ decision tree algorithm proposed by Mehta et al. (1996). A limitation 

of the SLIQ algorithm is that many Gini indices must be computed at each node of the decision 

tree. In order to decide which attribute is to be split at each node, the Gini indices must be 

computed for all the attributes and for each successive pair of values for all patterns which have 

not been classified. In the proposed algorithm, the Gini index is computed not for every 

successive pair of values of an attribute but over different ranges of attribute values. 

Classification accuracy of this technique was compared with the existing SLIQ and the Neural 

Network technique on three real-life datasets consisting of the effect of different chemicals on 

water pollution, Wisconsin Breast Cancer Data, and Image data. It was observed that the 

decision tree constructed using the proposed decision tree algorithm gave far better 

classification accuracy than the classification accuracy obtained using the SLIQ algorithm 

irrespective of the dataset under consideration. 

A study done by Ruggieri (2002) proposed an analytic evaluation of the runtime behavior of 

the C4.5 decision tree algorithm. Three strategies for computing the information gain of 

continuous attributes are implemented. The strategies perform a binary search of the threshold 

in the training set, starting from the local threshold computed at a node. The first strategy 

computes the local threshold using the C4.5 algorithm and sorts the cases by quicksort method. 

The second strategy adopts a counting sort, whereas, the third strategy calculates the local 

threshold using the main memory version of the RainForest algorithm. The results obtained are 

seen to have a performance gain that is up by five times the normal C4.5.  

2.4.2.4. Random Forest 

The Random Forest Algorithm has been used for the classification of data in many domains. 

In Paul et al. (2018), an improved random forest classifier that performs classification with a 

minimum number of trees is proposed. The method removes the unimportant features and 

based on the number of important and unimportant features, a novel theoretical upper limit on 

the number of trees to be added to the forest is formulated to improve the classification 

accuracy. The algorithm is seen to converge with a reduced and important set of features. This 

method was implemented in the classification of histopathological datasets of breast cancer to 

detect the presence of mitotic nuclei. The method is also applied to the industrial datasets of 
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dual-phase steel microstructures to classify different phases. On these benchmark data sets, the 

results obtained show a significant reduction in the average classification error.  

Another study by Xu et al. (2012), proposed an improved random forest algorithm for image 

classification. A novel feature weighting method and tree selection method are developed and 

synergistically served for making random forest framework well suited to classify image data 

with many object categories. The new feature weighting method for subspace sampling and 

tree selection method allows for the reduction of the subspace size thereby improving the 

classification performance without increasing error bound. Experimental results on image 

datasets with diverse characteristics have demonstrated that the proposed method could 

generate a random forest model with higher performance. 

In the work of Alam & Vuong (2013) the random forest algorithm is applied on an android 

feature dataset to classify the applications as either malicious or benign. Since android is the 

most popular smartphone platform today, it makes it the best choice for malware authors to 

obtain secure and private data. Besides the classification of these applications, Alam & Vuong, 

(2013) focused on the detection accuracy of the free parameters of the algorithm. The 

parameters include the number of trees, depth of each tree and number of the random features 

selected. On a 5-fold cross-validation, random forest algorithm performed very well with an 

accuracy of over 99% with an optimal Out-Of-Bag (OOB) error rate (Han et al., 2011) of 

0.0002 for forests with 40 trees or more, and a root mean squared error of 0.0171 for 160 trees. 

An effective classification approach that is based on the random forest algorithm was 

developed by Zawbaa (2015) to classify fruits. Three fruits including apples, strawberry, and 

oranges were analysed and features such as the color, shape and scale-invariant feature 

transform (SIFT) were extracted. Image processing was used in reducing the color indexes. 

The experimental results showed that the random forest produced better classification accuracy 

than other machine learning algorithms.  

A study by Ali et al. (2012) presented an algorithm based on the random forest that classifies 

vehicles detected by a multiple inductive loop system, developed for measuring traffic 

parameters in a heterogeneous and no lane disciplined traffic. Besides the classification of the 

detected vehicles as a bicycle, motorcycle, scooter, car, and bus, the scheme also counts them 

accurately under a mixed traffic condition. The evaluation of the algorithm was based on 

threshold values and signature patterns and the results from the prototype show that the random 

forest algorithm provides better accuracy compared to the threshold-based and signature-based 

methods.  
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2.4.2.5. Logistic Regression  

The Logic Regression algorithm has been applied by authors in many domains. Aborisade & 

Anwar (2018), presented a web-based application for the classification of tweets of netizens 

using the Logistic Regression technique. The application is built on four main processes, 

namely, fetching tweets, pre-processing, text feature extraction and machine learning. Labelled 

tweets are used as training data and in the pre-processing phase involving the removal of URLs, 

punctuation and stop words, tokenization, and stemming. The application then automatically 

converts the pre-processed tweets into a set of features vector using Bag of Words and the 

Logistic Regression algorithm is applied for the classification task. Using Confusion Matrix, 

the results showed that the accuracy of tweets classification into the selected topics is 92% 

which is considered very high.  

Another study done by Indra et al. (2016) discussed the challenges of developing regression 

models that can predict fault-prone object-oriented classes in software projects. In fact, the 

design-complexity metrics have been successful in identifying a fault in software projects; 

however, the distribution of the metric varies across different projects, making it a difficult task 

to achieve predictions. In Indra et al. (2016) the authors used simple log transformations to 

make design-complexity measures more comparable among projects. The findings revealed 

that these transformations were useful in projects where data is not spread as compared to the 

data for building the prediction model. 

Cruz & Ochimizu (2009) designed a pattern recognition system using a logistic regression 

model and few mapping functions. The performance of the proposed logistic regression model 

and mapping functions are assessed with a standard dataset from the UMASS database as well 

as datasets pertaining to wireless sensor network applications. The findings revealed that in 

most cases the recognition accuracy is enhanced by using the proposed mapping functions for 

both binary and multi-class pattern classification problems. 

Rao & Manikandan (2016) did a study on the environment, customs, and health status of a 

community with the aim of finding the critical factors to prevent cerebral infarction. They used 

a rough set theory in reducing the attributes of the dataset and applied the association rules. 

The Logistic Regression was finally used in solving the shortcomings of too many rules causing 

attributes redundancy and reliability framework. The model was very effective in performing 

classification and the findings where the history of other cerebrovascular diseases, alcohol 

consumption, and seasonal change are the significant factors of cerebral infractions. 
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Yang et al. (2010) applied the Logistic Regression technique to classify the electromyography 

signals originating from the hand. The algorithm was implemented in three subjects using 

multinomial logistic regression and optimization heuristic based on gradient descent. The 

results reported an accuracy rate of 90.2%. 

A large-scale analysis of the Logistic Regression algorithm by considering the hard 

classification problem of separating high dimensional Gaussian vectors was performed (Horn 

& Balbinot, 2015). The asymptotic distribution of the Logistic Regression classifier is 

evaluated based on the random matrix theory and high dimensional statistics. The findings 

revealed new insights on the internal mechanism of the Logistic Regression classifier which 

includes the bias in the separating hyperplane and the hyper-parameter tuning. 

Mai et al. (2019) applied Logistic Regression to classify liver patients using gender and 

laboratory medical test data. The classification results showed that the Logistic Regression 

achieved better classification accuracy than other machine learning approaches. 

2.4.2.6. Naïve Bayes  

Authors have implemented the Naïve Bayes algorithm to perform classification in various 

domains. In Patil & Pawar (2012), the Naïve Bayes algorithm is implemented to classify 

websites based on the content of their home pages. The contents of the homepage including the 

title, meta keywords, pages descriptions, anchor labels, and other contents constituted the 

features were used in the classification. 

Weil & Xiang-Yang (2010) proposed a new weighted Naïve Bayesian classifier model based 

on the information gain theory. The proposed model uses information gained from a set of 

attributes in the sample space to perform dimensionality reduction and assign the relative 

weight to each of the classification attributes. This approach strengthens the attributes that have 

a higher relationship and weakens those with lower relationships in the classification. 

Furthermore, the Naïve Bayes classifier is simplified by making it effective and improving its 

classification effect. 

Kharya & Soni (2016), investigated the performance criterion of Naïve Bayes classifier 

considering a new weighted approach in the classification of a breast cancer dataset obtained 

from the UCI machine learning repository. The ranking performance is done in the decision-

making process of the Naïve Bayes algorithm and its performance is improved by incorporating 

a weighted concept. The experimental results showed that a weighted Naïve Bayes approach 

outperforms the original Naïve Bayes. 
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The implementations of the Naïve Bayesian approach for the automatic classification of 

documents was also carried out (Kini et al., 2015). The documents considered were reports of 

technical research and the focus was on their text contents and analysis of results. The study 

aimed to find reliable text extraction techniques that can handle the ever-increasing electronic 

sources. Another study conducted the task of document classification with the Naïve Bayes 

approach (Jadon & Sharma, 2017). The study uses linear and hierarchical approaches to 

improve the efficiency of the classification model. The findings revealed that the hierarchical 

approach outperformed the linear classification technique. 

Permana et al. (2016), used text mining and Naïve Bayes methods as an opinion classifier to 

measure student’s satisfaction for educational institutions. The features used in the research 

were derived from the student’s activities on social media which provides implicit knowledge 

and perspectives for the educational system. Sentiment analysis was used as a text-mining tool 

and the Bayesian classifier had an accuracy of 84% and a 16.49% difference from the existing 

evaluation systems. 

Research by Lee et al. (2011) used a Naïve Bayes Multinomial classifier in the classification 

of twitter trending topics. These trending topics were classified into 18 general categories such 

as sports, politics, technology, and so forth. The experiments were carried out with two topic 

classification approaches, namely, bag-of-words for text classification and network-based 

classification. The text-classification method used word vectors of trending topics definitions 

and tweets, and the tf-idf weights to classify the topics, whereas, the network-based 

classification method-built categories of similar topics based on the number of common 

influential users. A similar study was done by Shubham et al. (2018) where the Naïve Bayes 

algorithm was implemented alongside other classification algorithms to classify tweets into 

different categories such as sports, politics, technology, and many more.  

In light of the above, none of the previous researchers have attempted to classify semantic web 

ontologies with the Naive Bayes algorithm as is done in this study. 

2.5 Conclusion  

In this chapter, the Semantic web and ontologies, the hierarchy of the semantic web architecture 

and the tools and languages used in building ontologies have been discussed. The need for 

using metrics of an ontology in evaluating ontologies is also outlined. In this regard, the 

OntoMetrics platform for online generation of ontology metrics is introduced. Thereafter, the 
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literature on ontology metrics and Machine learning algorithms was presented where work 

related to ontology metrics and Machine Learning algorithms for classification were discussed.  
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CHAPTER 3. : MATERIALS AND METHODS  

3.1 Introduction  

This chapter discusses the Machine Learning techniques used in performing classification in 

detail.  These techniques have been categorized into unsupervised and supervised learning 

where supervised learning uses an existing class label as a basis of classification. Unsupervised 

learning takes data as it is and without relying on some existing or provided labels tries to find 

an existing pattern in the data by learning its inherent structure. In discussing these techniques, 

mathematical and statistical methods making up the algorithms are discussed. Finally, the 

performance measures techniques are discussed where the techniques used in checking the 

performance of an algorithm is presented.  

3.2 Machine Learning classification Techniques  

3.2.1 Linear Regression 

3.2.1.1 Simple Linear Regression 

Problems that are in relation with regression techniques seeks to make a prediction of the value 

of a continuous response variable. Simple linear regression is used to model a linear 

relationship that exists between a response variable and a single explanatory variable (Richard 

et al., 2018). Simple Linear regression makes a major assumption that there exists a linear 

relationship between the response variable and the explanatory variable. It then creates a model 

of this relationship with a linear surface, referred to as a hyperplane which is a subspace of 

ambient space that contains it.  

Two dimensions exist for simple linear regression, both for the response variable and another 

for the explanatory variable. The hyperplane has one dimension which is just one-dimension 

line. Simple linear regression consists of estimators which predict a value based on the data 

that is observed (Amand & Chris, 2018). It also comprises of the fit() and predicts () methods 

that are used to learn the parameters of the model and to make a prediction of the value of a 

response variable. The fit method is implemented by the following equation: 

𝑦 = ∝  + 𝛽𝑥 (3.1) 

Where:  

𝑦  : The predicted value of the response variable. 
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𝑥 : The explanatory variable and the coefficients ∝ and 𝛽 are the parameters of the model 

being learned by the learning algorithm. 

Ordinary least squares is a technique of using training data to obtain the values of the 

parameters for simple linear regression by producing the best fitting model. The error created 

by the model is defined and measured by the term, cost function or a loss function. The 

difference between the predicted and the observed values are termed as residuals or training 

errors (Richard et al., 2018).  

In order to improve the prediction of the model, the best approach is to minimize the sum of 

the residuals. In this way, the model will fit if the response variable values that it predicts does 

not differ much from the observed values of all training examples. The measure is referred to 

as residual sum squares cost function and it basically assesses the fitness of a model by making 

a summation of all the squared residuals for all the training examples (Richard et al., 2018). 

The residual sum of squares is calculated by the following formula:  

𝑆𝑆𝑟𝑒𝑠 =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

 
 

(3.2) 

Where:  

𝑦𝑖 = The observed value  

𝑓(𝑥𝑖) = The predicted value 

3.2.1.2 Multiple linear regression 

Multiple linear regression contains several descriptive variables with each having a coefficient 

unlike having a single descriptive variable with a single coefficient as in simple linear 

regression (Amand & Chris, 2018). Multiple linear regression is represented by the model 

below: 

𝑦 =  𝛼 +  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ +  𝛽𝑛𝑥𝑛 (3.3) 

This model can be given by the formula: 

𝑌 = 𝑋𝛽 (3.4) 

Since the values of Y and X from the training data are known, then the values of 𝛽 can be 

solved as follows: 
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𝛽 = (𝑋𝑇𝑋)−𝐼𝑋𝑇𝑌 (3.5) 

It should also be noted that the value of 𝛽 minimizes the cost function of the model.  

3.2.1.3 Polynomial regression 

This is an advanced model of multiple linear regression that adds terms that contain degrees 

that are more than one to the model. Transforming the training data by adding polynomial terms 

and then fitting them as the case with multiple linear regression results in obtaining the real-

world curvilinear relationships that exists (Richard et al., 2018). A regression that has a third-

order polynomial is depicted by the formula below; 

𝑦 =  𝛼 +  𝛽1𝑥 +  𝛽2𝑥2 +  𝛽3𝑥3 (3.6) 

From the formula above, the descriptive variable or the input data is being transformed and 

then added as a final term to the model so that it can capture the curvilinear relationship. This 

equation is similar to that of multiple linear regression in a vector notation form. The resulting 

quadratic regression of this equation is a smooth curve that fits the training data better than for 

the other regression equations. The quadratic regression model is more accurate than a simple 

linear regression and since it can take any degree the model can be tried with any degree to 

draw comparisons. The implementation of Linear Regression model in classification largely 

depends on the vector space representing the dataset. The dataset might lead to the following 

issues. 

• Over-fitting 

As the degree increases, it will reach a point that the model will fit the training data almost 

exactly. The accuracy of the model with a degree that produces such results, however, is low. 

This is because as the degree increases, the model gets more complex, fitting the training data 

exactly and thus will not provide a correct approximation of the real relationship. This 

shortcoming is termed as over-fitting (Park et al., 2018).  

• Regularization 

This comprises several techniques applied to prevent over-fitting. It works by providing more 

information to an existing problem. This is always in the form of a penalty to act counter to the 

problem. Tikhonov Regularization (Ridge regression) is a method that deals with ill-posed 

problems by giving approximate solutions. It is a popular method for computing an 

approximate solution of linear discrete ill-posed problems with error-contaminated data (Park 
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et al., 2018). It acts on the residual sum of the least-squares function by adding the L2 norm of 

the coefficients, as depicted in the formula below: 

𝑅𝑆𝑆𝑟𝑖𝑑𝑔𝑒 =  ∑(𝑦𝑖 −  𝑥𝑖
𝑇𝛽)2 +  𝜆 ∑ 𝛽𝑗

2

𝑝

𝑗=1

𝑛

𝑖=1

 

 

(3.7) 

Where: 

 𝝀 = Hyper-parameter that controls the strength of the penalty.  

Hyper-parameters are the parameters in a model which are set manually and not automatically 

generated. 𝝀 Is directly proportional to the penalty and an increase in its value results in an 

increase in the cost function. The ridge regression is equal to linear regression when the value 

of 𝝀 is equal to zero (Wang et al., 2018).  

The Least Absolute Shrinkage and Selection Operator (LASSO) is an implementation in sci-

kit learn which penalizes the coefficients by summing their L1 norm and the cost function as 

in the expression below: 

𝑅𝑆𝑆𝑙𝑎𝑠𝑠𝑜 =  ∑(𝑦𝑖 −  𝑥𝑖
𝑇𝛽)2 +  𝜆 ∑ 𝛽𝑗

2

𝑝

𝑗=1

𝑛

𝑖=1

 

 

(3.8) 

 

Comparing the implementation of the two, LASSO leads to sparse parameters where almost all 

the coefficients will become zero while the ridge regression only generates coefficients that are 

small and nonzero (Wang et al., 2018). An implementation known as the elastic net is provided 

by sci-kit learn where it combines the L1 and L2 penalties in LASSO and ridge regression.  

• Gradient Descent 

This is an algorithm that is used as an optimizer to make an estimate of the local minimum that 

a function can generate (Sharma, 2018). The residual sum of the squares cost function is, 

therefore, given by the following equation: 

𝑆𝑆𝑟𝑒𝑠 =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

 
 

(3.9) 
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The best parameters that can be used in linear regression are those that will produce the lowest 

cost function. Gradient descent works by finding the values of those parameters that will 

minimize the values of the cost function by iteratively updating the values of the model’s 

parameters through the computation of the partial derivatives of the cost function (Theodoridis, 

2015).  

The plot of gradient descent is a three-dimensional convex like a bowl, consisting of all the 

possible parameters. The lowest point of the curve will be the local minimum and its points 

being the parameters of the model (Sharma, 2018). Depending on the number of training 

instances, there are two varieties of gradient descent: 

• Batch gradient descent: this type of gradient descent utilizes all the available training 

instances to make updates in the model parameters in each round of iteration. 

• Stochastic Gradient Descent (SGD): in this type, the parameters are only updated after 

a single training instance, which are always randomly selected.  

3.2.1.4 Correlation Coefficients 

 

• Pearson correlation Coefficient 

This type of correlation was introduced by Karl Pearson and it works by measuring the linear 

association between variables that are continuous, displaying the data and fitting a suitable 

curve in it (Dalinina, 2017). It is the ratio of the covariance of two variables representing a set 

of numerical data that is normalized to the square root of their variances as shown in the 

equation below: 

𝑟 =  
𝐶𝑥𝑦

√𝐶𝑥𝑥𝐶𝑦𝑦

=  
𝐶𝑥𝑦

𝜎𝑥𝜎𝑦
 

(3.10) 

It, therefore, quantifies the degree under which a relationship between two variables can be 

described by a line (Chatillon, 1984). Using the two variables X and Y, the formula for 

calculating the Pearson correlation coefficient is as follows: 

𝜌(𝑋, 𝑌) =  
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

∑(𝑋𝑖 − 𝑋̅)2 ∑(𝑌𝑖 − 𝑌̅)2
 

(3.11) 

• Spearman’s Correlation Coefficient 
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A monotonic function is a function that is not affected by the increase in the values of its 

independent variables (Rodgers & Nicewander, 1988). It does not increase or decrease in this 

case. The following diagram shows the three states of monotonic function (increasing, 

decreasing and non-monotonic) 

 

Figure 3:1: States of Monotonic function (increasing, decreasing and non-monotonic)  (Wen 

et al., 2016) 

Spearman’s correlation coefficient measures the strength of a monotonic relationship in paired 

data (Chan, 2003). The computation of spearman’s correlation is on ranks and not scores and 

is given by the following equation: 

𝜌(𝑟𝑎𝑛𝑘𝑥, 𝑟𝑎𝑛𝑘𝑦) =
𝑐𝑜𝑣(𝑟𝑎𝑛𝑘𝑥, 𝑟𝑎𝑛𝑘𝑦)

𝛿𝑟𝑎𝑛𝑘𝑥
𝛿𝑟𝑎𝑛𝑘𝑦

 
(3.12) 

A special case where there are no tied ranks in the dataset applies the following formula: 

𝜌𝑠 = 1 −  
6 ∑ 𝑑𝑖

2

𝑁(𝑁2 − 1)
 

(3.13) 

3.2.2 Logistic Regression 

As discussed earlier, linear regression assumes that whenever there is a change in the 

explanatory variable, then the change results are the same or equivalent amount of change in 

the value of the response variable (Bewick et al., 2005). This kind of assumption is, however, 

invalid if the value of the response variable is a representation of a probability. The main 

difference between non-generalized and generalized linear models is that a generalized model 

does not carry along this assumption by creating a relation between the linear combination of 

the explanatory variables to the response variable by using a link function (Park, 2013).  

Logistic regression is a linear model that is generalized and has a response variable that 

describes the probability that the outcome is a positive case. The positive class is only predicted 
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when the value of the response variable is equivalent to or greater than the discrimination 

threshold. If this does not hold, then the prediction made will be for the negative class (Bagley 

et al., 2001). A logistic function is applied in modelling the response variable as a function of 

a linear combination of the explanatory variables (Peng et al., 2002). The function gives a value 

that ranges between zero and one, (0, 1) and is given by the equation below: 

𝐹(𝑡) =  
1

1 +  𝑒−𝑡
 

(3.14) 

 

Whereby, 𝑡 is equivalent to a combination of explanatory variables in a linear pattern for 

logistic regression and is given by the following: 

𝐹(𝑡) =  
1

1 +  𝑒−(𝛽𝑜+ 𝛽𝑥)
 

(3.15) 

 

The equation above is as a result of: 

𝑡 =  𝛽𝑜 +  𝛽𝑥 (3.16) 

The inverse of the logistic function is the Logit function and it makes a linkage back to a linear 

combination of the explanatory variables by: 

𝑔(𝑥) = 𝑙𝑛
𝐹(𝑥)

1 − 𝐹(𝑥)
=  𝛽𝑜 +  𝛽𝑥 

(3.17) 

 

Besides binary classification, a number of classification problems have more than two classes 

of interest in classification. The main objective of multi-class classification is to allocate an 

instance to a single set of classes. Sci-kit-learn library uses one-vs.-all or one-vs.-the-rest 

strategy to support multi-class classification. In this strategy, a single binary classifier is used 

in each possible class.  

3.2.3 K-Nearest Neighbours 

KNN is a supervised learning algorithm that relies on the fact that any objects that are similar 

do exist in proximity (Harrison, 2018). An appropriate distance function is, therefore, chosen 

to find the distance between these objects in a given dataset.   
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• Distance Function 

The distance function is a real-valued function d, whereby for any given coordinates x, y and 

z, the following stands [10]: 

1. 𝑑(𝑥, 𝑦) ≥ 0, and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦  

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) 

3. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)   

Property 1 above shows that the distance is always positive and not negative. It can, however, 

be zero if the coordinates on the plot are the same. Property 2 shows that the distance between 

two points will always be the same regardless of the origin point. Property 3 represents the 

triangle inequality, where, if a third point is introduced, then the distance between the two other 

points cannot be shortened whatsoever.  

• Euclidean distance 

This is the most used distance function in the real world, and it shows how distance is 

perceived. It is represented in Equation (1). 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖

𝑖

)2 
 

(3.18) 

where 𝑥 = 𝑥1, 𝑥2, . . . , 𝑥𝑚 and 𝑦 = 𝑦1, 𝑦2, . . . , 𝑦𝑚 are true representations of the m attribute 

values of two records. After determining the records that are similar the next step is to 

determine the process of combining these records to give a classification decision based on the 

new record. This implemented using a combination function; the most used is the simple Un-

weighted voting (Larose, 2005) in the following steps: 

1. Decide the value of k, i.e., a value representing the total number of records that will 

have the most impact in classifying the records, before running the algorithm.  

2. Perform the comparison between the new record and the k nearest neighbors. The 

comparison involves the k records with the minimum number of distances from the new 

record, based on the Euclidean distance function. 

3. After choosing the k records, then the distance between them and the new record is no 

longer considered since one record will represent one vote.  

Getting the k value entails considering some factors that could produce the best classification 

results. If k is a small value, then the classification results might be inaccurate due to the 
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presence of outliers or abnormal observations (Larose, 2005). This is because the model 

classifier outputs the nearest observation value; this may create what is called overfitting.  

Overfitting is a process whereby, the algorithm tends to memorize the training set rather than 

performing a generalization (Hand et al., 2001). A bigger k value will also smooth out any 

distinctive behavior from the training data set. A much bigger value of k will result in 

overlooking any locally relevant behavior of the training data set.  

Choosing the value of k, therefore, involves voting for the best value that would suit the testing 

samples. Depending on the dataset being used, choosing an even number as the value of k 

would likely lead to a poor accuracy since it would classify the dataset into equal classes (Zhang 

& Zhou, 2005). An odd number as the value would, however, draw a comparison line that 

would make the basis of classification. A dataset can also be used to sort this problem of finding 

the best value of k, by following a cross-validation procedure. The procedure involves trying 

out different values of k with different randomly selected sets of training data. The value of k 

that best minimizes the classification error shall be considered the best value to work with 

(Potamias et al., 2010). 

• Multi-label Classification 

For Multi-label classification, the instances within the training set are associated with some 

label sets; the problem is to forecast label sets of unknown instances (Clare & King, 2001). 

One of the ways of solving the multi-class problem is to decompose it by generating a class of 

multiple classification features that are independent and binary. This way, the classification 

algorithm can then be applied to each of the independent classes (Myles & Hand, 2010).  

Considering an instance 𝑥, and sets of labels associated to it, 𝑌𝑥 ⊆ 𝑦 , and there are k nearest 

neighbors, let 𝑦𝑥

→
represents a category vector for x, and the l-th component  𝑦𝑥

→
(𝑙)(𝑙 ∈ 𝑦)  takes 

the value of 1 if and only if 𝑙 ∈ 𝑌𝑥 otherwise 0 (Zhang & Zhou, 2005). Also, let 𝑁(𝑥) be an 

index set of the k nearest neighbours of x that is in the training set (Zhang & Zhou, 2005). A 

counting vector for its membership is defined in Equation (2).  

𝐶𝑥

→

(𝑙) = ∑ 𝑦𝑥𝛼

→

𝛼∈𝑁(𝑥)

(𝑙), 𝑙 ∈ 𝑦 
(3.19) 

where 𝐶𝑥

→

(𝑙) is the total summation of the neighbors of x that belongs to the l-th class. 
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3.2.4 Decision Trees 

Decision tree classifiers were first used in the 1960s in the field of artificial intelligence (Li et 

al., 2001). Other machine learning classifiers are single staged making tree-based classifiers 

more efficient since decisions are made at multiple stages. Tree classifiers are represented as 

acyclic graphs containing a root node and successive child nodes that have directional branches 

connecting them. Decisions are made at each node based on the attribute value contained by 

the data (Hunt et al., 1996). True or false decisions are made by binary decision tree classifiers 

and complex decisions are made by non-binary decision trees. For such trees, cases traversing 

to the left side are true and cases to the right side are false. Cases traverse downwards the tree 

until it reaches a leaf node and at this point, the data returns a classification result (Lowe, 2015).  

The size of the dataset determines the simplicity of the decision tree as it gets more complex 

with the introduction of more data features. There are several methods for the construction of 

the decision trees and it mostly depends on the application of the tree classifier. One approach 

for the construction of a tree is to apply the feature vectors and divide the data at each node in 

order to get the highest level of information gain at the level of the nodes (Pal & Mather, 2001). 

As indicated in the related study section, there are several algorithms used to build decision 

trees. Some of the famous algorithms include Chi-square–Automatic–Interaction–Detection 

(CHID), Classification - regression tree (CART), Iterative Dichotomiser 3 (ID3) and C4.5 

(Lowe, 2015). CHID is an essential decision tree learning algorithm to handle nominal 

attributes only. It is a supplementation of the automatic interaction detector and theta automatic 

interaction detector procedures. CART is the most popular algorithm in statistical method 

techniques. In the fields of statistics, CART aids decision trees in gaining credibility and 

acceptance in addition to making binary splits on inputs. ID3 is a simple algorithm that has 

been used widely and is among the first algorithms that was proposed. The algorithm uses 

information gain as a splitting criterion and the growth of tree comes to an end when all samples 

have the same class or information gain is not greater than zero. It, however, fails with numeric 

attributes or missing values. It combines C4.5, C4.5-no-pruning, and C4.5-rules. This method 

uses the gain ratio as a splitting criterion and is an optimal choice with numeric attributes or 

missing values (Alsagheer, 2017). 

Test cases are presented at the root node, the start of the tree during its construction and the 

aim is to assign a set of features to the node which splits the data efficiently. The creation of 

more nodes down the tree means that the data is being split till each and each case at the nodes 
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belongs to the same class which is a terminal node (Alsagheer, 2017). There are various 

methods for splitting the data which carries different conditions and hence splitting the data 

differently. The most popular methods are entropy, information gain, Gini and twoing (Lowe, 

2015). 

3.2.4.1 Entropy 

This is basic measure of information and is the most widely used splitting condition. It works 

by splitting the data equally thereby enabling the parent nodes to get the most information gain 

as possible. It is measured in bits and is given by the following equation (1.0) below: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) =  − ∑ 𝑃(𝑥𝑖)

𝑛

𝑖=1

log𝑏 𝑃(𝑥𝑖) 
(3.20) 

Where:  

𝑛  = number of outcomes 

𝑃(𝑥𝑖)  = the probability of the outcome 𝑖 and  

The common values for 𝑏 are 2, 𝑒, and 10. This is because the log of a number that is less than 

one produces a negative number and therefore adding a negative will make it positive. If all 

the cases fall in the same class, then 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)will result in 0 since there is no information 

gain. The current node shall, therefore, be the terminal node, indicating that the classification 

decision has been attained (Han et al., 2012,). 

3.2.4.2 Gini  

This is the expected error rate when randomly selecting a classification decision from a class 

distribution (Duda et al., 2001). This technique splits data by extracting the cases into the 

largest homogenous group that can possibly be achieved and is given by the equation (2.0) 

below: 

𝐺𝑖𝑛𝑖(𝑡) = 1 −  ∑ 𝑃(𝑖|𝑡)2

𝑗

𝑖=1

 

(3.21) 

 

Where: 

𝑗 = the number of classes 
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𝑡 = the subset of instances for the node and  

𝑃(𝑖|𝑡) = the probability of selecting an element of class 𝑖 from the subset of the nodes 

 

The value of Gini impurity is highest when every class contains an equivalent probability of 

being selected. The value is, however, zero when all the elements that are in a set comprised 

of elements of a similar class that is equal to the chance of selecting a single element of that 

class, equal to one. Maximum Gini impurity value is dependent on the number of classes that 

exists and can be calculated by the following equation: 

𝐺𝑖𝑛𝑖𝑚𝑎𝑥 = 1 −  
1

𝑛
 

(3.22) 

3.2.4.3 Twoing.  

This technique works by grouping cases that have similar characteristics at the top of the tree 

and then identifies individual classes at the bottom of the decision tree. During the twoing 

process, the classes are clustered into two super classes having an as-equal-as-possible number 

of cases. Afterward, the best split of the super classes is then found and used as the split at the 

current node. This results in a reduction of class possibilities among cases at each child node 

and a reduction in its impurity (Duda et al., 2001).   

Let’s denote all the classes at the node by 𝑀 where 𝑀 = {1, … , 𝐽}. For each node, divide 𝑀into 

tow classes; 𝑀1and 𝑀2where 𝑀 − 𝑀1 =  𝑀2. The sole aim here is treating it as a two-class 

problem and for any splits, at the node, we compute the change in its impurity, given by 

∆𝑖(𝑠, 𝐷, 𝑀1). We shall then take the split 𝑆 ∗ (𝑀1) which gives the maximum impurity change, 

then we find the superclass 𝑀1 ∗max∆𝑖(𝑠 ∗ (𝑀1), 𝐷, 𝑀1) (Duda et al., 2001). The twoing 

function is therefore given the equation (4.0) below: 

𝑡𝑤𝑜𝑖𝑛𝑔(𝐷) =  
𝑝𝐿𝑃𝑅

4
[∑ | 𝑝(𝑖|𝐷𝐿) −  𝑝(𝑖|𝐷𝑅)|

𝑚

𝑖=1

]

2

 

 

(3.23) 

3.2.5 Random Forest 

Random Forest is a supervised learning algorithm, grown using a collaboration of the bagging 

and ID3 principles and is a collection of many decision trees. For a decision tree, the creation 

of a node entails defining the associated condition about all the features on the dataset. For 

random forest, the creation of the node entails using only a fraction of some features which are 
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randomly selected from a pool of available features, thus the name ‘random forest’ (Ali et al., 

2012). Attaining good classification accuracy is a key and some of the essential features are 

low bias and low correlation between the constituent trees. In order to attain a low bias, the 

trees are grown to maximum depth and for a low correlation, the process of randomization is 

done by selecting random subset features that will split a node and also apply it to training 

samples in order to build the tree (Verikas et al., 2011). 

According to Cutler et al. (2011) for any p-dimensional random vector  𝑋 = (𝑋1, … , 𝑋𝑃)𝑇 as a 

representation of the real-valued input variables, with a variable Y, that is random and is a 

representation of the real-valued response, then there is an assumption of the existence of an 

unknown joint distribution𝑃𝑋𝑌(𝑋, 𝑌). The main aim here is finding a prediction function 𝑓(𝑋) 

that will be used in predicting the value of Y. This prediction function is determined by a loss 

function, 𝐿(𝑌, 𝑓(𝑋)) and is defined solely to minimize the value of the expected loss, 

represented by the equation below: 

𝐸𝑋𝑌(𝐿(𝑌, 𝑓(𝑋))) (3.24) 

Where: 

𝑋𝑌: is the expectation with respect to the joint distribution of X and Y.  

Instinctively, 𝐿(𝑌, 𝑓(𝑋)) measures the closeness there is between the prediction function  𝑓(𝑋) 

and Y. This is done by penalizing the values of 𝑓(𝑋) that distant from Y. For regression, the 

main choice of L has squared error loss, depicted by the equation below: 

𝐿(𝑌, 𝑓(𝑋)) = (𝑌 − 𝑓(𝑋))2 (3.25) 

For classification, the choice of L is zero-one loss function, as is depicted by the equation 

below: 

𝐿(𝑌, 𝑓(𝑋)) = 𝐼(𝑌 ≠ 𝑓(𝑋)) = {
𝑂, 𝑖𝑓 𝑌 = 𝑓(𝑋)
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.26) 

 

The underlying conditions are minimizing the value of 𝐸𝑋𝑌 (𝐿(𝑌, 𝑓(𝑋))) in regression 

problems, for squared error loss results in the conditional prospect as a regression function: 

𝑓(𝑥) = 𝐸(𝑌|𝑋 = 𝑥) (3.27) 
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For classification problems, denoting the possible values of Y by𝓎, then by minimizing the 

value of 𝐸𝑋𝑌 (𝐿(𝑌, 𝑓(𝑋))) results in the following: 

𝑓(𝑥) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦 ∈ 𝓎
𝐸(𝑌 = 𝑦|𝑋 = 𝑥) (3.28) 

This is the Bayes rule equation.  

An ensemble works by constructing a function f that is in a term called the “base 

learners”ℎ1(𝑥), … , ℎ𝑗(𝑥). A combination of the base learners results in an ensemble predictor, 

𝑓(𝑥). In a regression problem, the base learners are averaged by the following equation: 

𝑓(𝑥) =  
1

𝐽
∑ ℎ𝑗(𝑥

𝐽

𝑗=1

) 

(3.29) 

While in a classification problem, 𝑓(𝑥) is the predicted class: 

𝑓(𝑥) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦 ∈ 𝓎
∑ 𝐼(𝑦 =  ℎ𝑗(𝑥

𝐽

𝑗=1

)) 

(3.30) 

The jth base learner consists of a tree that is denoted byℎ𝑗(𝑋, 𝛩𝑗), and 𝛩𝑗 consists of a random 

variable that is independent for j = 1, …, J.  

3.2.6 Naïve Bayes 

Naïve Bayes classifier draws its applications from the Bayes theorem (Bayesian) in statistics 

and is characterized by assumptions that are fully independent. Its assumption is based on the 

fact that a certain feature in a class is not related to the presence or absence of another feature 

(Russek et al., 1983).  

• A probabilistic model of Naïve Bayes.  

Zhang & Gao (2011) looked into a Naïve Bayes classifier for Text classification. Let 𝐷 =

 〈𝑑𝑖〉 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2, … , 𝑛, represents a dataset to be classified, and 𝑑𝑖 is an actual value in the 

dataset and there exists predefined classes, which is a set of 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑘}. Here, the 

classification of the data includes assigning a label of the class 𝑐𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑗 =  1,2, … 𝑘 from 

the set C to a dataset. The Bayes classifier is represented by the equation below: 
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𝑃(𝑐𝑗|𝐷) =  
𝑃(𝑐𝑗)𝑃(𝐷|𝑐𝑗)

𝑃(𝐷)
 

(3.31) 

Where:  

𝑃(𝑐𝑗): The preceding information of the appearing probability of the class 𝑐𝑗 

𝑃(𝐷): The information that is obtained from the observations that make up the knowledge from 

the values in the dataset to be classified  

𝑃(𝐷|𝑐𝑗): This is the distribution probability of dataset 𝐷 in the class spaces.  

Bayes classifier works by integrating this information and thereafter computing the posteriori 

separately of the dataset 𝐷 that falls directly into each of the classes 𝑐𝑗 and proceeds by 

assigning the dataset to the class that has the highest probability, as shown by the equation 

below: 

 𝑐 ∗ (𝐷) =
arg max 𝑃(𝑐𝑗|𝐷)

𝑗
 

(3.32) 

An assumption is made here that the components 𝑑𝑖of the dataset 𝐷 are independent with each 

other since the conditional probability, represented here by 𝑃(𝐷|𝑐𝑗) cannot be directly 

computed practically (Zhang & Gao, 2011). Therefore, the following will hold: 

𝑃(𝐷|𝑐𝑗) =  ∏ 𝑃(𝑑𝑖|𝑐𝑗)

𝑖

 
(3.33) 

Equation 6.13 is a representation of a naive Bayes model and this will have an impact on 

equation 6.11, as depicted by the equation below: 

𝑃(𝑐𝑗|𝐷) =  
𝑃(𝑐𝑗) ∏ 𝑃(𝑑𝑖|𝑐𝑗)𝑖

𝑃(𝐷)
 

(3.34) 

The sample information 𝑃(𝐷) is identical to each of the class 𝑐𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑗 =  1,2, … 𝑘, then 

equation 6.12 will change to: 

𝑐 ∗ (𝐷) = (
arg 𝑚𝑎𝑥

𝑗
)  𝑃(𝑐𝑗) ∏ 𝑃(𝑑𝑖|𝑐𝑗)

𝑖

 
(3.35) 

3.2.7 Support Vector Machines 

Support Vector Machines is a Supervised Machine learning algorithm with applications in 

mathematical and engineering problems. This technique performs classification by 
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constructing an N-dimensional hyperplane, which optimally separates the data into two 

categories or classes.  

• Linearly Separable Binary Classification  

Fletcher (2009) explained the linearly separable binary classification technique using Support 

Vector machines. Assume that there is a set S that comprises of points 𝑋𝑖  ∈  𝑅𝑛 where i = 1, 

2,…, N and the points have D attributes. Each point of 𝑋𝑖belongs to any of the classes, and 

given a label 𝑦𝑖  ∈  {−1, 1}.  The training data shall, therefore, be of the form: 

{𝑋𝑖, 𝑦𝑖} 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 … 𝐿, 𝑦𝑖  ∈  {−1, 1}, 𝑥 

∈  𝑅𝐷 

(3.36) 

The assumption made here is that the data is separated linearly and therefore, we can draw a 

line on a graph of 𝑥1 vs 𝑥2 that will separate the two classes when D =2 and a hyperplane on 

graphs of 𝑥1, 𝑥2, … , 𝑥𝐷 only when D > 2. This hyperplane is represented by the equation 𝒘. 𝑥 +

𝑏 = 0, where: 

𝒘 Is normal to the plane. 

𝒃

|| 𝒘 ||
Represents the perpendicular distance from the hyperplane to the origin.  

Support Vectors are closest to the separating hyperplane and Support Vector Machines seeks 

to position this hyperplane in a manner that will make it as far as possible from the closest 

members of the two classes (James et al., 2009). The figure below shows a hyperplane that is 

through two classes that are separable.  

 

Figure 3:2: A Hyperplane between two separable (Smola & Scholkopf, 2004).  
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Based on the Figure 3.2, the process of implementing a Support Vector Machine entails 

selecting the variable w and b. In this way, the training data shall be described by: 

𝒙𝒊. 𝒘 + 𝑏 ≥ +1      𝑓𝑜𝑟 𝑦𝑖 =  +1 (3.37) 

𝒙𝒊. 𝒘 + 𝑏 ≤ −1      𝑓𝑜𝑟 𝑦𝑖 =  −1 (3.38) 

The equation resulting after combining the two equations is: 

𝒚𝒊(𝒙𝒊. 𝒘 + 𝑏) −  1  ≥ 0 ∀𝑖    (3.39) 

In the figure above, 𝒅𝟏is the distance from the point 𝑯𝟏to the hyperplane and 𝒅𝟐 is the distance 

from 𝑯𝟐 to the hyperplane as well. The equidistance of the hyperplane from 𝑯𝟏to 𝑯𝟐 is the 

Support Vector Machine’s margin. This margin has to be maximized such that the hyperplane 

may be positioned to be quite far from the support vectors (Smola & Scholkopf, 2004). 

Applying vector geometry on this indicates that this margin is equivalent to 
𝟏

|| 𝒘 ||
  and 

maximizing it is same as finding: 

min‖𝒘‖  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝒚𝒊(𝒙𝒊. 𝒘 + 𝑏) −  1  ≥ 0 ∀𝑖     (3.40) 

Minimizing ‖𝒘‖ is same as minimizing
1

2
‖𝒘‖𝟐 and for that, we have to find the value of the 

following equation: 

𝑚𝑖𝑛
1

2
‖𝒘‖𝟐 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝒚𝒊(𝒙𝒊. 𝒘 + 𝑏) −  1  ≥ 0 ∀𝑖 

(3.41) 

Finding the values of the constraints that are in the minimization equation above needs the 

allocation of the Lagrange multipliers 𝜶, where𝛼𝑖  ≥  0 ∀𝑖: 

𝐿𝑃 ≡  
1

2
‖𝒘‖2 −  𝛼[𝒚𝒊(𝒙𝒊. 𝒘 + 𝑏) −  1  ≥ 0 ∀𝑖 ] 

 

 ≡  
1

2
‖𝒘‖2 −  ∑ 𝛼𝑖

𝐿

𝑖=1

[𝒚𝒊(𝒙𝒊. 𝒘 + 𝑏) −  1] 
 

≡  
1

2
‖𝒘‖2 −  ∑ 𝛼𝑖

𝐿

𝑖=1

𝒚𝒊(𝒙𝒊. 𝒘 + 𝑏) + ∑ 𝛼𝑖

𝐿

𝑖=1

 

 

(3.42) 

The values of w and b minimize while the value of 𝛼 maximizes. Finding these values entails 

differentiating 𝐿𝑃 with respect to w and b and setting the derivatives to zero. The resulting 

equations are as follows: 
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𝐿𝐷 ≡  ∑ 𝛼𝑖

𝐿

𝑖=1

−  
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗

𝑖,𝑗

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑖  ≥  0 ∀𝑖, ∑ 𝛼𝑖𝑦𝑖 = 0

𝐿

𝑖=1

 

 

≡ ∑ 𝛼𝑖

𝐿

𝑖=1

−  
1

2
∑ 𝛼𝑖𝐻𝑖𝑗𝛼𝑗  𝑤ℎ𝑒𝑟𝑒 𝐻𝑖𝑗 ≡  𝑦𝑖𝑦𝑗𝑥𝑖. 𝑥𝑗

𝑖,𝑗

 

 

≡ ∑ 𝛼𝑖

𝐿

𝑖=1

−  
1

2
∑ 𝛼𝑇

𝑖,𝑗

𝑯𝜶 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑖  ≥ 0 ∀𝑖, ∑ 𝛼𝑖𝑦𝑖

𝐿

𝑖=1

= 0 

(3.43) 

 

This resulting outcome, 𝐿𝐷 is the Dual form of the primary𝐿𝑃 . This development, shifting from 

minimizing the value of 𝐿𝑃 to maximizing value of𝐿𝐷 , results in finding the value of: 

𝑚𝑎𝑥

𝛼
[∑ 𝛼𝑖 −   

1

2
𝛼𝑇𝐻𝛼

𝐿

𝑖=1

]  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑖  ≥  0 ∀𝑖 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑦𝑖

𝐿

𝑖=1

= 0 

(3.44) 

A data point that is a Support Vector 𝑥𝑠 will have the form: 

𝑦𝑠(∑ 𝛼𝑚𝑦𝑚

𝑚∈𝑆

𝑥𝑚. 𝑥𝑠 + 𝑏) = 1 
(3.45) 

Where S here is the set of indices of the Support Vectors and can be determined by finding the 

indices I where 𝛼𝑖 > 0. Multiplying all through by 𝑦𝑠 to obtain 𝑦𝑠
2 = 1 which is the same as 

the equation above, we get: 

𝑦𝑠
2(∑ 𝛼𝑚𝑦𝑚

𝑚∈𝑆

𝑥𝑚. 𝑥𝑠 + 𝑏) = 𝑦𝑠 
(3.46) 

𝑏 = 𝑦𝑠 −  ∑ 𝛼𝑚𝑦𝑚

𝑚∈𝑆

𝑥𝑚. 𝑥𝑠 
(3.47) 

 

An average over all the Support vectors in S: 

 

𝑏 =  
1

𝑁𝑠
∑ (𝑦𝑠 − ∑ 𝛼𝑚𝑦𝑚

𝑚∈𝑆

𝑥𝑚. 𝑥𝑠)

𝑠 ∈𝑆

 
(3.48) 
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The variables w and b define the separating hyperplane’s optimal orientation, which is our 

Support Vector Machine.  

• Support Vector Machine in Classification 

Fletcher, (2009), points out that the process of implanting Support Vector Machine on a 

classification problem, entails the following steps: 

• First, we create H, where𝐻𝑖𝑗 ≡  𝑦𝑖𝑦𝑗𝑥𝑖 . 𝑥𝑗.  

• The value of 𝛼 is determined such that: 

∑ 𝛼𝑖 −   
1

2
𝛼𝑇𝑯𝜶

𝐿

𝑖=1

 

Is maximized, which is subject to the underlying constraints: 

𝛼𝑖  ≥  0 ∀𝑖 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑦𝑖

𝐿

𝑖=1

= 0 

• Compute the value of : 

𝑤 =  ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝐿

𝑖=1

 

• Determine the set of Support Vectors S by finding the indices such that 𝛼𝑖  ≥ 0 

• Calculate the value of b by: 

𝑏 =  
1

𝑁𝑠
∑ (𝑦𝑠 − ∑ 𝛼𝑚𝑦𝑚

𝑚∈𝑆

𝑥𝑚. 𝑥𝑠)

𝑠 ∈𝑆

 

 

• Finally, a new point 𝑥′ is classified by evaluating 𝑦′ = 𝑠𝑔𝑛(𝑤. 𝑥′ + 𝑏) 

3.3 Performance Measures 

3.3.1 Confusion Matrix 

This is a matrix table for measuring the performance of supervised Machine Learning 

algorithms. The rows of the confusion matrix represent the instances of the actual class used 

and the columns instances of the predicted class (Luquea et al., 2019). These representations 

of the rows and columns can also be vice versa. A classification problem with M classes will, 

therefore, require a confusion matrix size of MxM.  
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Figure 3:3: Confusion Matrix Table (Trajdos & Kurzynski, 2017). 

 

The elements of a confusion matrix represent the: number of positives correctly identified or 

True Positive (TP), number of negatives identified correctly or True Negative (TN), number of 

negatives incorrectly identified as positive or False Positive (FP) and number of positives 

incorrectly identified as negatives or False Negative (FN). 

Different measures of comparisons of a model can be obtained from the confusion matrix. One 

such measure is accuracy. The accuracy can be defined as the ratio of the total number of 

correct predictions made to the total number of predictions (Luquea et al., 2019). It is a popular 

measure used in checking the accuracy of the models being built; however, it cannot be used 

in measuring the performance of an imbalanced dataset. In fact, in such a dataset, the model 

will end up misidentifying the positive classes and yet depict high levels of accuracy. Such a 

scenario indicates that the accuracy metric does not consider pure randomness. On the other 

hand, the error rate is the difference in accuracy (Trajdos & Kurzynski, 2017). Equations below 

represent the accuracy and the error rate, respectively.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

3.3.2 Precision and Recall 

Precision is defined as the ratio of True Positives (correctly identified items) to the sum of True 

Positives and False Positives. It is the measure of the capacity of the correct information 

returned by the model, in percentages.  
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Recall, on the other hand, is the quotient of True Positives (Correctly identified items) and the 

sum of True Positives and False Positives. It, therefore, measures the capacity of all the relevant 

information that a model has extracted, in percentages. A striking feature of the two measures 

is that they are inversely proportional and the increase in the precision level of the model results 

in a decrease of its recall measure and vice versa (Luquea et al., 2019). F-Measure combines 

the two and all the equations are represented in Equations below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

3.3.3 Receiver Operating Characteristic (ROC) Curves 

Some classification problems cannot be measured with classification scores, mostly when 

dealing with datasets with heavy class imbalance. Receiver Operating Characteristic (ROC) 

curves are useful in such cases, offering the best alternatives (Nazrul, 2018). ROC is a plot of 

True Positive Rate (TPR), on the x-axis against False Positive Rate (FPR) also known as 1-

specificity on the y-axis. These two measures are defined in Equations below. 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

After plotting the curve, the model performance is determined by looking at the area under the 

ROC curve (AUC). An AUC value of 1 is considered as the best possible that can be obtained 

in a model while the worst is 0.5. An AUC value that is less than 0.5, would call for reversing 

the recommendations of the model with the aim of getting a value that is above 0.5. Using ROC 

curves to check the performance of a model allows for comparison of curves of different 

models directly or for different thresholds whereas the AUC can be used as a summary of the 

model skill (Brownlee, 2018).  

3.4 Conclusion  

This chapter presented the popular Machine Learning algorithm methods that were used in this 

study in performing the classification of ontologies. The Performance evaluation techniques 
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methods have also been presented. Each algorithm has been described by discussing its 

mathematical structure and equations used in building them. The next chapter presents the 

experimental results that were obtained from the implementation of these algorithms.  
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CHAPTER 4. : SYSTEMS ARCHITECTURE 

4.1 Introduction 

This chapter discusses the architectures for the implementation of the AI classification models 

that will be built in this study. The chapter first introduces the software environment under 

which the experiments shall be conducted. System architecture for the implementation of AI 

classification algorithms is then discussed where the steps followed in its implementation are 

discussed. Flow charts describing the implementation of the classification algorithms are also 

discussed in the later section of this chapter. 

4.2 Architecture for the Implementation of AI Classification Algorithms.  

The process of implementing a classification algorithm in a classification problem entails a set 

of steps. An architecture of a model stipulates the flow of the working of the model from the 

initial stage to the final stages. Understanding the architecture of a model helps in identifying 

any arising issues during the working of the model (Mone, 2019). The following steps are 

followed in the implementation of the AI algorithms for this experiment. Subsections for each 

of the steps indicated below have been broadly discussed in the section to follow: 

1. Data collection: The dataset used in this experiment consists of the complexity metrics, 

generated from the OntoMetrics platform.  

2. Preparation of the input data: Raw data collected cannot be used in implementing the 

algorithms for classification and should be converted to a format that the algorithms 

can be able to take it in training the model.  

3. Analyzing the input data: Before the implementation of the AI algorithm, the data is 

explored to check for any patterns that will aid in the implementation. Checking the 

correlation between the features, for example, allows us to do away with the features 

that are less correlated and focusing more on features that are highly correlated.  

4. Training the Algorithm: The analyzed data is fed to the algorithm after splitting it into 

training and testing set with a specified ratio. The algorithm will then extract knowledge 

or information from the data.  

5. Testing the algorithm: After extracting the information from the training phase, the 

algorithm shall then be tested by checking its’ accuracy to check whether the results 

obtained are the desired results.  



24 | P a g e  

6. Using the Algorithm: If the algorithm has a higher accuracy and the output results are 

as desired, then the algorithm is used in making various predictions or making decisions 

as it was intended to perform. However, if the results obtained are unexpected then the 

training phase is repeated, but with different ratios.  

A flow chart shows a step by step detailed workflow of the implementation of the AI algorithms 

in classification is shown in the diagram below: 

 

Figure 4:1: Implementation of AI Algorithms workflow  
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4.2.1. Raw Data Collection / Data Acquisition  

This is the first step of the architecture where enough data is collected from the relevant sources 

and supplied into the classification model. Data can be in different sources such as ERP 

databases, mainframe devices or Internet of Things (IoT) devices (Sapp, 2017).  

 

Figure 4:2: Data Acquisition (Garner, 2017)  

 

The data used in the experiment comprises the metrics generated from the OntoMetrics 

platform and is used as a training data set for the model. The dataset has a total of ten features 

belonging to the respective ontology complexity metrics. The file containing the dataset, in 

CSV format, is uploaded to the Python's Jupyter notebook platform where the AI algorithms 

shall be implemented in a classifier model. The classification results are displayed as the 

output. This (Jupyter Notebook) Integrated Development Environment (IDE) platform is a 

web-based platform that allows for line by line recall and hence is interactive and it documents 

all the aspects of the workflow being done (Pandey, 2018).  

The IDE uses inbuilt libraries for performing data analysis, implementation of the algorithms 

and for evaluation of the algorithm performances. The screenshot below shows the libraries 

that have been used in the experiments.  



26 | P a g e  

 

Figure 4:3:  Libraries for data analysis, implementation of the algorithms and for evaluation 

of the algorithm performances 

 

The libraries represented by KNeighborsClassifier, SVC, GaussinNB, LogisticRegression, 

DecisionTreeClassifier, and RandomForestClassifier are inbuilt classification algorithms. 

Classification_report, confusion_matrix, AUC, roc_curve, and model selection are libraries 

used for algorithm evaluation performances.  

4.2.2. Data Pre-processing 

Any data that is generated is not always perfect since some may contain irrelevant variables, a 

small number of samples, missing values and outliers. Data pre-processing seeks to increase 

the ability of the classification and predictive models by working on the irrelevant features that 

are contained in data (Castrounis, 2016). Various approaches exist that aim at sorting out the 

imperfections: such as imputations of missing values, removing of superimposed noise through 

smoothing and exclusion of outliers (Hang et al., 2016). These techniques improve the quality 

of data in its own unique way. The following figure shows the data pre-processing architecture: 
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Figure 4:4: Data Pre-processing (Gartner, 2017) 

  

4.2.2.1. Missing Data 

Missing values is one of the most common issues faced when doing data analysis. There are 

several causes of missing values in a dataset and since it affects the performance of a 

classification algorithm, it is best to handle these missing values before the implementation of 

the algorithm (Swalin, 2018). The dataset used in the experiment was checked to ascertain 

whether it had missing values and since there were indeed missing values, appropriate 

techniques for handling missing values were applied. Some ontologies might not contain all 

the complexity metrics being generated for this experiment and since the data scarcity is 

minimal, then the missing values are replaced by some statistics.  
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4.2.2.2. Feature Extraction 

Every feature set distribution type cannot have a perfect method to be used in feature 

distribution. Most of the supervised algorithms are based on a priori knowledge of the cluster 

distributions (Molder, 2004). Feature Extraction is a preprocessing technique that aims at 

reducing the feature space dimensions. Through Feature Extraction, the class distributions in a 

multidimensional space of feature sets are separated distinctively. It also aids in the creation of 

a connection between the feature data set and the classification systems in the case of a large 

data set (Lerner et al., 1999). In the experiment, the correlation between the attributes has been 

checked to determine the attributes that are highly correlated then focus on only them.  

4.2.3. Sampling  

For any learning algorithm, performance mainly relies on the training set that has been used in 

building the classifier. The detection rate of classifiers is increased by providing them with a 

good training sample to work with. These samples also immensely decrease the false positive 

rate of the classifiers. According to Takizawa & Nakajima (2000) samples that are in the 

indeterminate area are of great use in the building of a learning algorithm to active learning. 

Lyhyaoui et al. (1999) also came up with a sample selection approach that uses clustering 

techniques to choose or select a boundary sample. 

4.2.4. Training set 

The next step in the architecture is the process of splitting the dataset into training and testing 

sets according to a specified ratio. In order to train a classification model, the Artificial 

Intelligence algorithm must be provided with enough data to learn from. In this case, the 

training data contains all the information being sought after by the classification algorithm. The 

training set is obtained by dividing the dataset with a given ratio, and the remaining being the 

test set that will be used to test the performance of the algorithm. Since the learning algorithm 

must find the underlying patterns in the dataset, then the training set must be larger than the 

test set (Al-Masri, 2018). In the experiments, different ratios have been used to fit the 

implementation of the algorithm.  

4.2.5. Pre-processing 

Any datasets used in the implementation of Classification algorithms can have multiple 

features or dimensions in its structure. The best method of dealing with this problem is by pre-
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processing the data; it entails cleaning up the data either by normalization or scaling techniques 

such that the data can have a relatively similar magnitude (Zhang et al., 2013).  

4.2.5.1. Feature Selection  

The process of building a classification model requires using part of the dataset to act as the 

training set and part of it as the testing set. A given dataset contains some elements of irrelevant 

or redundant features making up the dataset (Kira & Rendell, 1992).  Building the classification 

model with these features in existence in the dataset will lead to the delay in the learning 

algorithm's running time as indicated by Hall & Smith (1999). Removing these redundant 

features, therefore, reduces the running time and produces a more general concept (Dash & 

Liu, 1997). The underlying concept of the classification problem is attained by this method 

since it picks up a subset of features that are only of relevance to the desired result (Kohavi & 

Sommerfield, 1995).  

4.2.5.2. Feature Scaling  

Data Scaling and Normalization are pre-processing techniques that aim at consolidating data 

into ranges that are quite appropriate for the implementation of AI algorithms. Classification 

models that are created from scaled data always portray a higher accuracy performance as 

compared to the ones obtained from unscaled data (Hang et al., 2016).  

4.2.6. Learning Algorithm 

The learning algorithm / Data modelling phase of the architecture is a phase where the selected 

Artificial Intelligence algorithms are implemented. In the experiments, Classification 

algorithms are built at this stage and the dataset should have been prepared enough for the 

implementation (Funke, 2019). The learning algorithms here are inbuilt and are therefore 

always available to perform the classification exercise. The main objective, in this case, is to 

perform classification of the data being fed to the classification model which has been trained 

to solve the specific problem.  
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Figure 4:5: Learning Algorithm / Data Modelling phase (Gartner, 2017) 

 

The algorithm being the building block of the model shall execute the classification process 

repeatedly thereby performing testing and tuning of the experimental results until the desired 

results are obtained (Sapp, 2017).  

4.2.7. Performance Evaluation / Post-Processing  

4.2.7.1. Performance Metrics 

During the classification of data, evaluation metrics play a role in obtaining optimal or desired 

results. The metrics measure the performance of the classifier according to a specified 

measurement (Hossin & Sulaiman, 2015). The existing evaluation metrics are broadly 

categorized into threshold, probability, and ranking metric types according to its aims. Based 

on these types of metrics, it can be used to measure and summarize the quality of trained 

classifier by testing it with unseen data (Caruana & Niculescu-Mizil, 2004). In this way, 

accuracy and error rates are commonly applied. 
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4.2.7.2. Model Selection  

Evaluation metrics used for model selection is used to determine the best classifier among the 

different types of the trained classifiers that focuses on the best performance in the future, 

which will create an optimal model during testing with the unseen data (Caruana & Niculescu-

Mizil, 2004). 

4.2.7.3. Cross-Validation 

The process of model selection by validation is by splitting the training set to be used in 

evaluating the relative generalization performance of the models. More often, the training data 

is always less and therefore degrading the performance of the classifier (Guyon et al., 2006). 

Cross-validation is one of the ways used in splitting the data. The technique entails partitioning 

the training data into a certain value of disjoint subsets each of roughly equal sizes. In most 

cases, the variance of the results might be big, and this can be reduced by performing multiple 

K-fold cross-validations and thereafter averaging the results. When dealing with datasets that 

have heavy imbalances, classification scores cannot be the most appropriate technique to be 

used. The Receiver Operating Curve plots the True Positive Rate (TPR), on the x-axis against 

False Positive Rate (FPR) on the y-axis. The model performance here is determined by 

checking the area under the curve. 

4.3 Artificial Intelligence Classification Algorithms Flow Charts 

4.3.1. K-Nearest Neighbors 

The K-Nearest neighbor algorithm can be used for either classification, estimation or prediction 

and is an example of instance-based learning. The algorithm first loads all the data points that 

are in the dataset in its memory or makes a plotting of the data in an n-dimensional space 

(Harrison, 2018). Each point on the plotting area represents a label in the dataset. A test sample, 

which represents a set of training data shall also be plotted within the same n-dimensional 

space. It will then make a search for its k nearest neighbors based on a specific distance measure 

out of the training samples (Denoeux, 1995).  Figure 4.6 shows the flow chart for the 

implementation of the K-Nearest Neighbors algorithm in this study. 

The implementation of the K-Nearest neighbor algorithm relies solely on the distance between 

the data points. The flow chart below shows a step by step implementation of the algorithm: 
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Figure 4:6: Implementation of K-Nearest Neighbors Algorithm for Classification 

 

The importation of the necessary libraries is preceded by splitting the dataset into the training 

and testing set and here, a ratio of 0.25 is used. The value of k is first initialized and different 

values of k were tried. The Euclidean distance between the new input and each training sample 

given in the algorithm is then calculated (Larose, 2005). Sorting out the distance of each 

training sample from the input data is done and the k nearest neighbors are chosen to the input 

data. After choosing the neighbors new input data is given various labels according to the 

classification model, which is majority among the neighbors. Their evaluation accuracy scores 

were then taken to ascertain the value of k that produces the highest accuracy score (Schaffer, 

1994).  
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4.3.2. Logistic Regression 

Logistic regression classifies data by finding the regression coefficients of the data being 

classified and then uses it to find whether there exists a relationship between it. The flowchart 

below shows its implementation: 

 

 

 

Figure 4:7: Logistic Regression Algorithm Flow Chart 

 

4.3.3. Naïve Bayes 

The process of performing classification can be broadly placed in two stages: the training phase 

and the testing phase. In the training phase, the sample data is provided to the classifier where 

the classifier shall then learn a class prediction model basing on the labelled data. For the testing 

phase, the unlabelled features are provided to the classifier where it will apply the classification 

model in determining the classes of the unseen data (Jadon & Sharma, 2017).  
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With Naive Bayes, the training data is used in estimating the features and probabilities which 

will give the ability to create new instances from the Bayes rule extracted from the estimates 

to find the conditional probability. Conditional independent rule is applied to reduce the 

parameters modelling the existing conditions (Zhang & Gao, 2011). Building the model 

requires the calculation of its probabilities which shall be used in calculating the Area Under 

the Curve (AUC) for its evaluation. Upon evaluation of the model, it is then used in the 

classification of data. Figure 4.8 below shows the flowchart of the Naïve Bayes classifier.  

 

Figure 4:8: Naive Bayes Algorithm Classification Flow Chart 

 

Naive Bayes is a probabilistic model based on the Bayes Theorem. The Model examines the 

likelihood of the features appearing in the predicted classes. With Naive Bayes, the training 

data is used in estimating the features and probabilities which will give the ability to create new 

instances from the Bayes rule extracted from the estimates to find the conditional probability 

(Zhang & Gao, 2011).  Conditional independent is applied to reduce the parameters modelling 

the existing conditions. 
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4.3.4. Decision Trees 

Decision tree classifiers were first used in the 1960s in the field of artificial intelligence (Li et 

al., 2001). Other machine learning classifiers are single staged, making tree-based classifiers 

more efficient since decisions are made at multiple stages. Tree classifiers are represented as 

acyclic graphs containing a root node and successive child nodes that have directional branches 

connecting them. Decisions are made at each node based on the attribute value contained by 

the data (Hunt et al., 1996). True or false decisions are made by binary decision tree classifiers 

and complex decisions are made by non-binary decision trees. For such trees, cases traversing 

to the left side are true and cases to the right side are false. Cases traverse downwards the tree 

until it reaches a leaf node and at this point, the data returns a classification result (Lowe, 2015). 

Figure 4.9 below is a flow chart for the implementation of a decision tree algorithm.  

 

Figure 4:9: A Flow Chart Representation for Decision Tree Algorithm 

 

The implementation of the Decision trees algorithm relies on the learning strategy of the ID3 

algorithm. This algorithm performs the process of splitting the data based on the best attribute 

and placing it on the right leaf nodes. The algorithm learns from the dataset when to stop 
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performing the splitting process. Information theory is a concept used in determining the best 

attribute when splitting the dataset and it measures the difference in information right before 

and after splitting, recording this as information gain (Rastogi & Shim, 1998).  

The ID3 algorithm plays a role in deciding the best feature to perform in the splitting of the 

dataset based on the calculation of its information gain. The set that has a higher information 

gain is regarded as the best feature to split. The dataset shall then be split into subsets that are 

based on the best feature and ultimately the process of checking whether all the data in the 

subset belongs to the same class (Srikant, 1997). If it does, then the process is stopped and the 

classifer is evaluated for its accuracy. If different classes exist then the system goes back to 

making decisions of feature and dataset split, producing more branches to the tree.  

4.3.5. Random Forest  

The Radom forest algorithm uses the bootstrap resampling method to extract multiple samples 

from the original samples and construct sub-datasets. It then uses the sub dataset to form the 

base decision tree and train it. In the decision tree training, random forest aids in randomly 

selecting attributes. It first selects the attributes of the nodes in the random selection of a K 

attribute subset, and then from the subset to select an optimal attribute for node splitting, which 

can make each decision tree different from each other. The classification results are then 

obtained by the voting method, such that the classification performance is enriched (Man et al., 

2018). Figure 4.10 below is a flow chart for the Random Forest algorithm.  
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Figure 4:10: A Flow Chart Representation for Random Forest Algorithm 

 

Random forest differs from Decision trees by the number of trees in its model having multiple 

trees and each of the trees depending on the collection of random variables of certain training 

points (Segal & Xiao 2011). The step of checking whether all the subsets in the dataset belong 

to the same class in Decision Trees is preceded by building the next split or branch and in 

Random forest, a variable subset is chosen at this step. For each variable chosen, sorting is 

done by the computation of the Gini index at each and every split point. The split with the 

highest Gini index value is then chosen at this step and the process is repeated (Delgado-Gomez 

et al., 2018). The process of choosing the best split and its repetition leads to the creation of 

multiple trees in the model.  

4.3.6. Support Vector Machines 

The process of building a Support Vector Machine classifier to solve classification problems 

is a stepwise procedure. After identifying the underlying problem, the data collected shall be 
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used as input samples. Exploratory analysis of data is then performed to understand all the 

components of the dataset. Data pre-processing is then done to ensure that only important 

features are being used as in building the classification model. The data is split into testing and 

training sets based on a given ratio and then the model is built using the inbuilt libraries. Before 

it is deployed, the model is evaluated to check whether it is viable in performing the 

classification of data (Jottrand, 2005). The flow chart in Figure 4.11 shows the stepwise 

implementation of SVM.  

 

Figure 4:11: Support Vector Machines Algorithm Flow Chart 

 

The inbuilt support vector machines classifier is imported as a library in pythons’ Sci-Kit-Learn 

environment as ‘from sklearn.svm import SVC’. This is imported alongside other libraries such 

as evaluation and scientific computing libraries. After data preparation, the dataset is split into 

training and testing sets using a ratio of 0.20. Support Vector Machines classification model is 

then built by creating a method for the imported library. Since it’s a linear SVM model, then 

the method creates a parameter, indicating that the kernel is of linear type, and setting the 

probability as true, since it shall be used in testing the model performances (Fletcher 2008).  

The built model is then preceded by fitting the model into the training set since the algorithm 

will learn from the set. After building the classifier, it can now be used to perform classification. 

A method is therefore created that will use predict() function in the data. The model is finally 
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evaluated to check its performance accuracy and this will be used in deciding whether to use 

the algorithm as a classifier.  

4.4 Conclusion 

This chapter presented the system architecture for the implementation of AI algorithms to be 

used in the classification of ontologies based on ontology metrics. The chapter stipulates the 

steps followed in the implementation of each AI algorithm from the initial stage of data 

acquisition, data preparation, building the model, model performance evaluation and finally 

the use of the final model. In discussing these steps, flowcharts have been used to show the 

flow of processes and tools used in each step. The next chapter presents Experimental analysis 

where the results of the implementation of AI algorithms in the classification of ontologies are 

discussed in detail.  
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CHAPTER 5. EXPERIMENTS AND DISCUSSION  

5.1 Introduction  

In this chapter, the process of data acquisition and the method of metrics generation making up 

the dataset have been outlined. The software environment under which the experiments were 

conducted is also stated. The experiments conducted, which include the implementation of 

machine learning algorithms (K-Nearest Neighbors, Support Vector Machines, Naïve Bayes, 

Logistic Regression, Linear Regression, Decision Trees and Random Forest) are discussed in 

detail. The performance evaluation techniques for each algorithm implemented are discussed 

and the results obtained in terms of the accuracy are discussed. Besides the accuracies, the ROC 

curves used in checking the performance of classification algorithms are also discussed.  

5.2 Software Environment  

The experiments have been conducted using HP Pavilion dv6 computer, Intel(R) Core (TM) 

i5-2410M, CPU @ 2.30GHz 2.30 GHz, 6.00 GB RAM, 64-bit Windows 10 operating system, 

x64-based processor and hard drive size of 500GB. Python software, version 3.7.0 and Jupyter 

Notebooks version 5.0.0 have been used in running the experiments. 

5.3.Dataset 

The dataset used in the experiments comprises of 200 ontologies and 17 metrics for each 

ontology. Ontologies were obtained from the National Center for Biomedical Ontology 

(NCBO) which is a Bio Portal web platform that provides access to more than 600 ontologies 

of the biomedical domain.   

After randomly downloading the ontologies, their complexity metrics were computed using the 

OntoMetrics platform. This platform provides a collection of ontology metrics that can be 

broadly classified into the schema, knowledgebase, and graph metrics. The generated ontology 

metrics comprises the dataset used in this study. The metrics include: Number of Classes (noc), 

Attribute Richness (ar), Inheritance Richness (ir), Relationship Richness (rr), Equivalence 

Ratio (er), Axiom Class Ratio (acr), Inverse Relations Ratio (irr), Class Relations Ratio (crr), 

Average Population (ap), Class Richness (cr), Absolute Root Cardinality (arc), Absolute Leaf 

Cardinality (alc), Average Depth (ad), Maximal Depth (md), Average Breadth (ab), Maximal 

Breadth (mb) and Average Number of Paths (anp) as shown in the Appendix (you must label 

the Appendix such A, B etc. 
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Before commencing the process of building the classification models, a classification rule is 

laid down that is in line with this multiclass classification. As mentioned earlier, the metrics 

generated from the OntoMetrics platform lies in the broad categories of the schema, 

knowledgebase and graph metrics. However, in evaluating an ontology, the metrics considered 

are measured against the quality properties of an ontology. There are four quality dimensions 

use in evaluating and ontology which correlate with the ontology metrics obtained with 

OntoMetrics (Fonou-Dombeu & Viriri, 2019). The correlation of ontology metrics and the four 

ontology quality dimensions have been used in defining a classification rule making up the 

decision class in the classification. The quality dimensions together with the metrics with 

higher correlation are: 

• Accuracy – it indicates the extent to which an ontology represents a real-world domain. 

This criterion correlates with the following metrics Attribute Richness (ar), Inheritance 

Richness (ir), Relationship Richness (rr), Equivalence Ratio (er), Average Depth (ad), 

Maximal Depth (md), Average Breadth (ab), Maximal Breadth (mb) and Average 

Number of Paths (anp). 

• Understandability – it checks for the comprehensiveness of the concepts, relations and 

properties in an ontology. Understandability correlates with the Absolute Leaf 

Cardinality (alc) metric. 

• Cohesion – This criterion checks for any similarities between the ontologies. This 

quality dimension is achieved by the metrics Absolute Root Cardinality (arc) and 

Absolute Leaf Cardinality (alc). 

• Conciseness – This measures the extent to which an ontology is of importance within 

the domain it specifies. Conciseness is attained by the Average Population (ap) and 

Class Richness (cr) metrics. 

The variation in the attainability of these quality dimensions make the metrics in the dataset 

more suitable to form a classification rule or a class label. In this case, the classification rule 

has been made by conducting a search of the ontology metrics that correlate with the quality 

dimensions. Four class labels each representing the quality criteria have been specified.  The 

classes have been labelled 0 for accuracy, 1 for understandability, 2 for cohesion, and 3 for 

conciseness.  
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5.4 Results and Discussions   

5.4.1. K-Nearest Neighbors  

K-Nearest Neighbors (kNN) is an instance-based learning algorithm. Instead of constructing a 

general internal model the kNN algorithm stores instances of the training data. In the model, 

classification is computed from a majority vote of the nearest neighbors of each data point.  

The KNeighborsClassifier Python function is used to build the model and the value of k is 

dependent on the size of the dataset. A large value of k suppresses the noise effects in the 

classifier but makes classification less distinct. A ratio of 0.3 has been used in splitting the 

dataset into training and testing sets in the experiment.  

The parameters used in building the model include the Leaf_size, metric, metric params, n-

jobs, algorithm, n_neighbors, p and weight. The algorithm parameter computes the nearest 

neighbor and, in this experiment, it’s been set to ‘auto’ which automatically decides on the 

most appropriate algorithm to be used based on the values passed to the ‘fit’ method. The 

Leaf_size parameter affects the speed of the model construction and the memory needed to 

store the tree. The metric specifies the distance function used and, in this experiment, 

Minkowski metric has been used. The p is the power parameter for the Minkowski metric and 

has been set to 2 in this experiment. The n_jobs parameter is the number of parallel jobs to run 

for neighbors’ search and the non-option set in this experiment shows that it does not affect the 

fit method used in constructing the classification model. 

Different values of k were used to check the most suitable value that produced the highest 

accuracy score. The respective precision recall and f-measure score values of the model are 

given in Table 5.1 which show that, as the value of k increases, the accuracy scores decreases. 

This is attributed to the increase in outliers as the value of the nearest neighbors increases.  
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Table 5:1: The Performance Scores for the Different k Values  

 K-Nearest Neighbors  

No. of K Class Labels Accuracy Precision  Recall  F- Measure 

5 0 66.67 0.59 0.71 0.65 

1 66.67 0.50 0.59 0.54 

2 66.67 0.75 0.43 0.55 

3 66.67 0.93 0.93 0.93 

10 0 63.33 0.56 0.71 0.63 

1 63.33 0.50 0.41 0.45 

2 63.33 0.64 0.50 0.56 

3 63.33 0.93 0.93 0.87 

15 0 60.00 0.44 0.50 0.47 

1 60.00 0.50 0.53 0.51 

2 60.00 0.55 0.43 0.48 

3 60.00 0.93 0.93 0.93 

20 0 61.67 0.53 0.57 0.55 

1 61.67 0.56 0.59 0.57 

2 61.67 0.45 0.36 0.40 

3 61.67 0.88 0.93 0.90 

30 0 56.67 0.45 0.64 0.53 

1 56.67 0.47 0.41 0.44 

2 56.67 0.55 0.43 0.48 

3 56.67 0.86 0.80 0.83 
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For k=5 in Table 5.1, the model displayed an accuracy of 66.67% and the average precision, 

recall, and F- Measure scores of 69%, 67%, and 67%, respectively. The confusion matrix for 

the kNN classification model for k = 5 is shown in Figure 5.1.  

 

Figure 5:1: Confusion Matrix for kNN 

 

In Figure 5.1, the actual values of the class labels 0, 1, 2 and 3 that were predicted correctly are 

10, 10, 6 and 14, respectively. The values on the other cells were misclassified by the model. 

The total number of the values in the confusion matrix in Figure 5.1 is 60, which is the size of 

testing set, obtained from a 30% split ratio.  

The ROC curves were also used in checking the performance of the kNN model. Two sets of 

ROC curves were generated where one is the macro average curve for the four class labels and 

the other is the ROC curves for the individual class labels. The curves are as shown in Figures 

5.2 and 5.3.  
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Figure 5:2: Macro-Average ROC Curve for kNN 

  

 

Figure 5:3: ROC Curves for Each Class Labels for kNN 

 

The ROC curves evaluate a model by checking the area under the curve. The macro average 

area under the curve for all the classes is 0.78. The area under the curves for the class labels 0, 

1, 2, and 3 are 0.78, 0.68, 0.69 and 0.96, respectively. Since these scores are evaluated on the 
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range of 0 to 1, the scores obtained from kNN model show that the algorithm makes a good 

classification model.  

5.4.2. Support Vector Machines 

This is a Machine Learning algorithm that can be used for classification, regression and outlier 

detection. The algorithm performs classification by creating a hyperplane between the vector 

points and thereafter finding the minimum distance between the hyperplane separating the 

vector points. It is effective in spaces with high dimensional prospects and consists of different 

kernels that can be specified for a specific decision function.  

The implementation of the algorithm is done using the SVC inbuilt Python function. For this 

experiment, classification commences by splitting the dataset into the training and testing set 

using a ratio of 0.30. Some of the parameters utilized include C which is the penalty parameter 

of the error term and has been set to the default value of 1.0. The other parameter is the 

random_state  which is the seed of the pseudo-random number generator; it is used when 

shuffling the data for probability estimates; in the experiment, it has been set to 0 since the 

model will calculate the probabilities for performing predictions. The probability parameter 

has been set to True. Different kernels were used in implementing Support Vector Machines 

and include Linear, Polynomial, RBF and Sigmoid kernels. The performance of the 

classification model according to each kernel is given in Table 5.2.  
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Table 5:2: The Performance of the different kernels  

  Naïve Bayes   

Kernel Class Label Precision Recall F-Measure Support  

Linear 0 0.48 0.93 0.63 14 

1 0.60 0.18 0.27 17 

2 0.85 0.79 0.81 14 

3 0.93 0.93 0.93 15 

Average/Total 0.71 0.68 0.65 60 

Polynomial 0 0.25 0.93 0.40 14 

1 0.00 0.00 0.00 17 

2 0.00 0.00 0.00 14 

3 1.00 0.53 0.70 15 

Average/Total 0.31 0.35 0.27 60 

RBF 0 0.39 0.43 0.60 14 

1 0.00 0.82 0.72 17 

2 0.89 0.86 0.75 14 

3 0.78 0.87 0.90 15 

Average/Total 0.52 0.61 0.58 60 

Sigmoid 0 0.34 0.93 0.50 14 

1 1.00 0.06 0.11 17 

2 0.67 0.29 0.40 14 

3 0.87 0.87 0.87 15 

Average/Total 0.74 0.52 0.52 60 
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The Linear kernel displayed the best results amongst the kernels used in the experiment and 

was selected for performance evaluations with the confusion matrix and ROC curves. The 

confusion matrix for the classifier is shown in Figure 5.4. In the confusion matrix table, the 

number of ontologies supplied by the model with the class labels 0, 1, 2 and 3 that were 

predicted correctly by the model were 13, 3, 11 and 14, respectively. The values tabulated on 

the other cells were misclassified by the model.  

 

Figure 5:4: Confusion Matrix for SVM Classifier 

 

The model was also evaluated using the ROC curves. Figure 5.5 shows the ROC curves for 

each of the class labels used in the dataset. The area under the curves for the class labels 0, 1, 

2 and 3 are 0.81, 0.56, 0.87 and 0.96, respectively. Furthermore, Figure 5.6 shows that the area 

under the curve for the macro average of the four-class labels is 0.8.  
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Figure 5:5: ROC Curves for Each Class Labels for SVM Classifier 

 

 

Figure 5:6: Macro Average ROC Curve for SVM 
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5.4.3. Logistic Regression  

Logistic regression is a linear machine learning classification model where the probabilities 

describing the possible outcomes of a single trial are modelled using a logistic function. The 

Python LogisticRegression function was used in building the model; the function can either be 

used in binary, One-vs-Rest (OVR) or multinomial logistic regression using an elastic-Net 

regularization. The Elastic-Net regularization is used in minimizing the cost function and 

solving optimization problems in the model.  

The dataset is first split into training and testing set with a ratio of 0.3 . The parameters used in 

the Python LogisticRegression function in building the model include the penalty, which 

specifies the norm for penalization and allows for regularization. The C parameter is the inverse 

of the regularization strength and must always be a positive float. This is because smaller C 

values specify stronger regularization. Intercept scaling is useful when the solver ‘liblinear’ is 

used, therefore, it is set to be true. The synthetic feature weight is dependent on the 

regularizations made just like other features. The class weight is associated with the classes 

that are in the form {class_labels: weight} and should have at least one weight. The “balanced” 

mode uses the y values to automatically adjust weights that are inversely proportional to class 

frequencies in the input data. These parameters have been outlined in Table 5.3 after a 

randomized search was conducted to ascertain the best parameters to work with.  

Table 5:3: Randomized Search Results showing the performance of the different parameters 

used  

Model 

Rank 

Mean 

Validation 

Score 

Std  Penalty Intercept Scaling Class 

Weight 

C 

1 0.753 0.046 11 379190882.0128173 Balanced 20.99578965767907 

2 0.747 0.087 11 1933.430800622057 Balanced 80740365128.85052 

3 0.547 0.040 12 1.572605035563863e-

14 

Balanced 118797549.0713333 

4 0.253 0.005 12 7025620.200406866 Balanced 1846.4035763068719 

5 0.253 0.005 12 3560862102085029.5 Balanced 2.2768568864827288e-

07 
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The best parameters obtained from the search were the penalty: l1, intercept_scaling: 

379190882.0128173, class_weight: balanced and C: 20.99578965767907. These parameters 

were used in building the Logistic Regression model in this experiment. The model took a 

running time of 0:00:00.566853 and an overall accuracy score of 64% was obtained and upon 

doing 10-fold cross-validation, the accuracy slightly improved to 64.67%. A detailed 

performance measurement of the model is depicted by the confusion matrix table in Figure 5.7. 

 

Figure 5:7: Confusion Matrix for Logistic Regression Classifier 

 

From the confusion matrix table (Figure 5.7), the number of actual values of ontologies with 

the class labels 0, 1, 2 and 3 were predicted correctly by the model are 12, 3, 3 and 10, 

respectively. The values on the other cells in the table were misclassified by the model. 

Focusing on these misclassified values, it can be pointed out that there are some cells in the 

table with rather large numbers such as 8 and 3. These values contribute to the accuracy values 

depicted by the model. The table sums to a total of 60 which is the representation of the 30% 

used as the testing set. 

The results obtained from the confusion matrix are captured in Table 5.4. It is shown that the 

average precision, recall and F-Measure scores for Logistic Regression model are 53%, 56% 

and 52%, respectively.  
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Table 5:4: Precision, Recall, and F -Measure Scores for Logistic Regression  

 Logistic Regression  

Class Label Precision Recall F-Measure Support  

0 0.52 0.86 0.65 14 

1 0.38 0.23 0.29 13 

2 0.50 0.35 0.33 12 

3 0.77 0.91 0.83 11 

Macro Avg. 0.54 0.56 0.53 50 

Average/Total 0.53 0.56 0.52 50 

 

The ROC curves were also used in evaluating the performance of the model. On these curves, 

a general curve of the average of all the classes are generated and curves for the respective 

classes are also generated. The area under the curves for the class labels 0, 1, 2 and 3 are 0.78, 

0.55, 0.59 and 0.92, respectively are shown in Figure 5.8. The macro average area under the 

curve for the average of the four-class labels is 0.71 as shown in Figure 5.9.  

 

Figure 5:8: ROC Curves for Each Class Label for Logistic Regression Classifier 
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Figure 5:9: Macro Average ROC Curve for Logistic Regression Classifier 

  

5.4.4. Decision Trees  

Decision Trees is a non-parametric supervised learning technique that creates a classification 

model that learns the decision rules from the data then predicts the target variable value. The 

Python DecisionTreeClassifier function is used in this experiment to perform a multiclass 

classification with four classes.  

The DecisionTreeClassifier function takes as parameters two arrays X and Y comprising of the 

training and testing sets, respectively. The training set is of the size [n_samples, n_features] 

whereas the testing set is of the size [n_samples] and stores the class labels of the training 

samples. In this experiment, a ratio of 0.3 has been used in splitting the dataset into these two 

sets where the training set, takes 70% and makes up 140 ontologies on the dataset whereas the 

testing set is 30% and comprises 60 ontologies.   

The building of the model is preceded by fitting it to the training and testing sets. The 

probabilities of each of the class labels are also predicted and are the fraction of the training 

samples of a particular class on one leaf. A plot of the tree able to view the specific features 

that have been used in building the model is shown in Figure 5.10. The total samples indicated 

at the parent node are 140 which is the size of the training set after splitting the dataset with 

70%. The initial entropy for the parent node is 0.742 and the  values used are [46, 31, 30, 33]. 
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The decision node takes 10 values and forms a logic test of less than or equals to -0.478. The 

model takes these values because it’s not homogeneous and as it splits the dataset further, 

metrics with similar characteristics are grouped together and becomes homogenous which 

explains the zero values of the entropies in the edge nodes. 

 

Figure 5:10: Structure of the Decision Tree used in the Classification 

 

A summary of the performance of the Decision Tree model can be viewed using the confusion 

matrix table. The table gives a summary of the actual values supplied into the model and the 

values that have been predicted by the model. The Figure 5.11 shows the confusion matrix 

generated for a Decision Tree model. The actual values with the labels 0, 1, 2 and 3 that have 

been correctly classified are 13, 17, 14 and 15, respectively. Only one class label of 0 has been 

predicted by the model as a label with 2 hence misclassified. 
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Figure 5:11: Confusion Matrix for Decision Tree Classifier 

  

From the confusion matrix table, more performance evaluation summaries can be deducted. 

These are the precision, recall and F-Measure scores of each class label used in building the 

model. These values have been tabulated on Table 5.5 and the overall average of the precision, 

recall, and F-Measure are all 0.98. Ontologies that have been predicted into the class labels 0, 

1, 2 and 3 are 14, 17, 14 and 15, respectively. 
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Table 5:5: Precision, Recall and F -Measure Scores for Decision Trees  

 Decision Trees  

Class Label Precision Recall F-Measure Support  

0 1.00 0.93 0.96 14 

1 1.00 1.00 1.00 17 

2 0.93 1.00 0.97 14 

3 1.00 1.00 1.00 15 

Macro Avg. 0.98 0.98 0.98 60 

Average/Total 0.98 0.98 0.98 60 

 

Testing the functionality of the algorithm using the ROC curve, the overall area under the curve 

for the model is 0.99.  ROC curves for each of the class labels were also generated to further 

check the model. For the area under the curve for the class labels 0, 1, 2 and 3 are 0.96, 1.00, 

0.99 and 1.00, respectively. These values are as shown in the Figures 5.12 and 5.13.  

 

Figure 5:12: ROC Curves for Each Class Label for Decision Tree Classifier 
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Figure 5:13: Macro Average ROC Curve for Decision Tree Classifier 

 

5.4.5. Random Forest  

Random forest is an ensemble machine learning method, that is implemented by building 

multiple numbers of decision trees during the training phase and giving an output of the average 

of the individual trees in the forest’s prediction. The Python RandomForestClassifier() function 

is used in building the model for classification.  

A ratio of 0.3 has been used in splitting the dataset into the training and testing set. From this 

ratio, a total of 140 ontologies made up the training set whereas 60 ontologies fall into the 

testing set. The construction of the tree entails splitting the nodes and the best split is obtained 

from either all input features or a random subset of size max_features. The two sources of 

randomness are used to reduce the variance of the forest estimator. The discrete decision trees 

have high variance and always tend to overfit. The use of randomness in forests yield decision 

trees with decoupled prediction errors. The average of these predictions cancels out some errors 

in the model and by so doing, the model achieves a reduced variance by combining diverse 

trees, sometimes at the cost of a slight increase in bias. This variance reduction is often 

significant, hence yielding an overall better model.  

The main parameters adjusted in the model are n_estimators and max_features. The 

n_estimators defines the number of trees in the forest and conventionally, a large number gives 
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a better model, and, in this experiment, 10 trees have been used in building the model. The 

max_features parameter defines the size of the random subsets of features to be considered 

when splitting a node. The lower the value, the greater the reduction of variance which will 

result in a good model and for most empirical good default values, it is set at 

max_features=None as is the case in this experiment.  

The max_depth parameter is the depth of the tree and has been set to none to allow the model 

to accommodate as more trees as possible. The bootstrap samples are used by default 

(bootstrap=True) while the default strategy for extra-trees is to use the whole dataset 

(bootstrap=False) which has been used in this experiment. Since bootstrap has been set as false 

in this case, the generalization accuracy cannot be estimated on the left out or out-of-bag 

samples and is the reason why the was set to oob_score=False.  

The confusion matrix is used in evaluating the overall performance of the model. The confusion 

matrix shows the actual and the predicted classes of ontologies bearing in mind that it is a 

multiclass classification. Figure 5.14 shows the confusion matrix of the Random Forest 

classifier.  

 

Figure 5:14: Confusion Matrix for Random Forest classifier 
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From the confusion matrix table in Figure 5.14, the left side shows the actual values whereas 

the values cutting across the table are predicted values. Figure 5.14 shows that the number of 

ontologies with the class labels 0, 1, 2 and 3 predicted correctly by the model are 13, 16, 10 

and 13, respectively. These numbers of correctly predicted ontologies appear on the right 

diagonal of the confusion matrix in Figure 5.14. The values on the other cells in Figure 5.14 

were misclassified. The confusion matrix table sums to a total of 60 which is the representation 

of the 30% used as the testing set. Out of the confusion matrix table, precision, recall and F-

Measure scores are tabulated. For the Random Forest model, the scores are tabulated in Table 

5.6.  

Table 5:6: Precision, Recall, and F -Measure Scores for Random Forest  

 Random Forest  

Class Label Precision Recall F-Measure Support  

0 0.87 0.93 0.90 14 

1 0.89 0.94 0.91 17 

2 0.83 0.71 0.77 14 

3 0.87 0.87 0.87 15 

Macro Avg. 0.86 0.86 0.86 60 

Average/Total 0.87 0.87 0.86 60 

 

A randomized search has been performed on the model using the RandomizedSearchCV 

function. This entails searching the correct or the desired hyperparameter that will find the 

highest precision and accuracy of the model. In this search, random combinations of the 

parameters were used in finding the best solution for the model that was built. As a result of 

randomly selecting the values at each instance, the whole of the action space will most likely 

be reached because of randomness since it takes plenty of time to cover all the space available. 

In this search there are higher chances of finding the most optimal parameter that will give the 

best results. The RandomizedSearchCV took 5.04 seconds for 10 candidates parameter settings. 

The results of the model are as shown in Table 5.7. 
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Table 5:7: Randomized Search Results showing the performance for the different parameters 

used for Random Forest Classifier  

Mode

l 

Rank 

Mean 

Validatio

n Score 

Std  Bootstra

p 

Criterio

n 

Max 

dept

h 

Max 

feature

s 

Min 

Sample

s Leaf 

Min 

Sample

s Split 

1 0.986 0.01

0 

True Gini None 7 5 13 

2 0.986 0.01

0 

True Gini 10 8 7 5 

3 0.979 0.01

8 

True Gini None 8 2 6 

4 0.971 0.02

7 

False entropy None 8 4 3 

5 0.971 0.02

1 

False entropy 10 6 7 3 

  

After this search, the model took a running time of 0:00:00.146909 and displayed an overall 

accuracy of 96.67% which is regarded as a good accuracy score. To obtain the best accuracy 

results, the parameters are cross validated with a specified fold. In this experiment, 10 cross-

validation folds were performed, and the overall accuracy reached 99.29%.  

Upon testing the functionality of the algorithm using the ROC curves in Figures 5.15 and 5.16, 

the macro-average area under the curve for the Random Forest Model is 0.89. The ROC curve 

for each of the classes (0,1,2 and 3) was calculated as in Figure 5.15. The areas under the curves 

for these classes are 0.96, 0.89, 0.84 and 0.87, respectively. These results indicate that model 

performs well in classifying ontologies. 
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Figure 5:15: ROC Curves for Each Class Label for Random Forest Classifier  

 

 

Figure 5:16: Macro Average ROC Curve for Random Forest Classifier 

 

5.4.6. Naïve Bayes  

Naïve Bayes is a supervised machine learning algorithm that contains methods based on the 

Bayes’ probabilistic theorem while keeping a ‘naive’ assumption of conditional independence 
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between every pair of features given the value of the class variable. The Python GaussianNB 

function is used in building a classification model.  

The initial phase of conducting this experiment is splitting the dataset into the training and 

testing sets. 70% of the dataset, comprising of 140 ontologies has been set as the training set 

while 30% is the test set which is comprised of 60 ontologies. The model is then built by fitting 

the training and testing sets into the classifier.  

The confusion matrix was used in evaluating the performance of the Naïve Bayes classifier as 

shown in Figure 5.17. On the confusion matrix table, the number of ontologies with the class 

labels represented by 0, 1, 2 and 3 that have been correctly predicted by the classifier are 6, 14, 

12 and 13, respectively. The values on the other cells represent misclassification by the 

classifier and explain the reason why the model is not 100% accurate. 

 

 

Figure 5:17: Confusion Matrix for Naive Bayes Classifier 

 

Out of the confusion matrix, we can tabulate the precision, recall and F-Measure scores of the 

model that is shown on Table 5.8. The average precision recall and F-Measure scores of the 

Naïve Bayes classifier are 0.80, 0.75 and 0.74, respectively and all the 60 ontologies that were 

set aside for testing set have been predicted here.  
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Table 5:8: Precision, Recall and F-Measure Scores for Naive Bayes Classifier  

 Naïve Bayes   

Class Label Precision Recall F-Measure Support  

0 1.00 0.43 0.60 14 

1 0.64 0.82 0.72 17 

2 0.67 0.86 0.75 14 

3 0.93 0.87 0.90 15 

Macro Avg. 0.81 0.74 0.74 60 

Average/Total 0.80 0.75 0.74 60 

 

Naïve Bayes Classifier is a probabilistic algorithm, and this makes its fit to use a Receiver 

Operating Characteristic (ROC) Curve in measuring its performances as in Figures 5.18 and 

5.19. The overall average of the Area under the Curve for all the classes is 0.83. The individual 

area under the curves for the class labels 0, 1, 2 and 3 are 0.71, 0.82, 0.86 and 0.92, respectively. 

Since these values are closer to 1, suggesting that the algorithm performed well in classifying 

the ontologies using its metrics making it a good classifier.   

 

Figure 5:18: ROC Curves for Each Class Label for Naïve Bayes Classifier 
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Figure 5:19: Macro Average ROC Curve for Naive Bayes Classifier 

 

5.4.7. Linear Regression 

Linear Regression is a machine learning technique, mainly used in regression analysis but also 

used in solving classification tasks. The algorithm uses the Python LinearRegression() function 

in building a classification model and contains a number of parameters that all perform 

classification.  

In this experiment, a ratio of 0.3 has been used in splitting the dataset into the training and 

testing sets. Some of the parameters used by the Linear Regression model include copy_X, 

fit_intercept, n_jobs and normalize. The parameter copy_X is used to allow for the creation of 

X values and will only copy if it is set to true else will overwrite. Check this in the experiment, 

it was specified to True. The Fit_intercept parameter calculates the intercept of the model and 

is set to the default true allow for the calculations. The n_jobs parameter specifies the number 

of jobs to be used for computation. The Normalize parameter is ignored when fit_intercept is 

set to False. If True, the regressors X will be normalized before regression by subtracting the 

mean and dividing by the l2-norm. 

Since the algorithm performs classification by building regression models, the confusion 

matrix and ROC curves cannot be used in evaluating the performance of the algorithm. Some 

of the techniques that have been used here include Mean Absolute Error (MAE), Mean Squared 
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Error (MSE), Root Mean Squared Error (RMSE), Median Absolute Error (MAE), Explained 

Variance Score (EVS) and the R2 Score. These evaluation techniques evaluate the algorithm 

by finding a center of optimization, thereby, finding the errors that exist in the model. The 

scores obtained from these performance evaluation techniques are shown in Table 5.9.  

Table 5:9: Performance Scores for Linear Regression  

Linear Regression 

Performance Metric Score 

Mean Absolute Error (MAE) 0.6387547898451156 

Mean Squared Error (MSE) 0.6020058170067685 

Root Mean Squared Error (RMSE) 0.7992213647326475 

Median Absolute Error (MAE 0.6267950618182005 

Explained Variance Score (EVS) 0.506690664026025 

R2 Score 0.5052006983506012 

 

These scores give the error of a classification model and high values indicate that the model is 

inaccurate in performing classification. The values in this table, however, are close to zero 

hence the model is slightly accurate.  

5.4.Conclusion  

This chapter presented the experimental results for the implementation of Machine learning 

algorithms. Here, the process of building the model has been stipulated where the ratio used in 

splitting the data into training and testing sets is. Performance evaluations of each algorithm 

have also been discussed where the confusion matrix and ROC curve results have been 

discussed.  
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CHAPTER 6. : CONCLUSION AND FUTURE WORK 

6.1.Summary of the Study 

This study aimed at developing Machine Learning models for the classification of ontologies 

based on their complexity metrics. The main idea in this study is the fact that as ontologies 

grow in numbers and size, they tend to get more complex. Therefore, they become difficult to 

select, reuse and maintain them. A total of 200 ontologies obtained from the National Center 

for Biomedical Ontologies (NCBO) repository were used in the experiments in this study. The 

metrics of these ontologies have been used to form the dataset for the classifications of 

ontologies with Machine Learning algorithms.   

The implementation of Machine Learning algorithms was done using python environment and 

specifically Jupyter Notebook in Anaconda Package. Prior to the building of the model, 

exploratory data analysis was done on the dataset to eliminate noises. The dataset was first split 

into the training and testing sets with a ratio of 0.3. The building of machine learning models 

were carried out with existing functions of each algorithm. The functions used in building the 

models consist of different specific parameters used in achieving classifications. During 

classification, a randomized search was done on the algorithms with a higher number of 

parameters to determine the parameters that produce the best results.  

The performance of each model was evaluated to ascertain its accuracy scores. Various 

techniques were used to evaluate the performances of the machine learning models including 

precision, recall, f-measure scores, and ROC curves.   

6.2. Limitations  

During this study, some challenges occurred which may have affected the process of 

classification of ontologies.  

• The implementation of classification algorithms was only limited to ontologies with 

less than 10,000 classes. This was because the OntoMetrics platform used in generating 

the ontology metrics cannot handle large ontologies of more than 20 000 classes.  

• Python’s Jupyter notebook used in the implementation of Machine Learning algorithms 

is constantly being updated with more libraries added to the environment. This affects 

the results obtained after implementing the algorithms. This includes exploratory data 

analysis phase, model fitting and data visualizations.  
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6.3.Recommendations and Future Work 

This study focused on the ontologies that were obtained from the NCBO Bio Portal repository. 

The respective metrics were generated only from OntoMetrics online platform. Future research 

could focus on using ontologies from different repositories. The implementation of platforms 

that can generate ontology metrics of very large ontologies could also bring an impact to future 

research.  

The Machine Learning models created in this study from Python language using the Jupyter 

Notebook environment. Several inbuilt libraries that are integrated into the Notebook 

environment were used in the process. However, there are other Platforms that can be used in 

implementing classification using Machine Learning algorithms. These platforms include R, 

Hadoop, Orange, Weka, etc. and could be used in the future in performing classification of 

ontologies.  

In this study, seven Machine Learning algorithms were implemented in the classification of 

ontologies. These algorithms have been used widely in performing most classification tasks 

and have provided excellent results. However, there are more powerful and advanced Machine 

Learning algorithms that can handle datasets having both multiclass and multilabel attributes. 

The future direction of this work can investigate the implementation of these algorithms in the 

classification of ontologies. Some of these algorithms include Apriori, AdaBoost, Gradient 

Boosting and Deep Learning using Neural Networks among others. 

6.4.Conclusion  

This study led to the classification of ontologies based on their complexity metrics using 

machine learning algorithms. Clustering analysis using the K-Means algorithm was first 

implemented followed by Machine Learning classification algorithms.  

The classification models were evaluated using performance evaluation techniques including 

precision, recall, F-Measure scores as well as The ROC curves. A summary of the results 

obtained for each algorithm is as follows: the accuracy scores for K-Nearest Neighbors, 

Support Vector Machines, Decision Trees, Random Forest, Naïve Bayes, Logistic Regression 

and Linear Regression algorithms were 66.67%, 65%, 98%, 99.29%, 74%, 64.67%, and 57%, 

respectively. From these scores, Decision Trees and Random Forests algorithms were the best 

performing and can be attributed to the ability to handle multiclass classifications. 
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APPENDIX: Complexity Metrics of Biomedical Ontologies forming the dataset. 

Index 
noc 

ar ir rr Acr er a/cr irr c/rr ap cr arc alc ad md ab mb anp QR 

O1 
93 

0 1.0332 0.0204 0 0 9.8495 1 0.9490 0.0000 0 1 66 3.1546 5 3.4643 31 19.4000 2 

O2 
410 

0 1.3585 0.0559 0 0.03415 4.3659 0.05263 0.6949 0.0585 0 86 301 2.0929 4 4.0357 86 113.0000 3 

O3 
1086 

0.0313 1.0617 0.0368 0 0.0046 6.4715 0.025 0.9073 0.0000 0 11 829 5.2694 12 4.1724 109 100.8333 1 

O4 
19 

0 0.9474 0.0000 0 0 8.9474 0 1.0556 0.8421 0.10526 1 17 2.789474 3 6.3333 16 6.333333 4 

O5 
533 

0 0.9493 0.0000 0 0 8.4822 0 1.05336 0.0000 0 27 483 2.2439 3 10.4510 27 177.6667 3 

O6 
14 

0 0.0000 1.0000 0 0 2.7143 0 14.0000 0.0000 0 14 14 14.0000 1 14.0000 14 14.0000 2 

O7 
636 

0 0.9984 0.0031 0 0.00315 9.2736 0 0.9984 0.0000 0 1 496 5.1053 8 4.5106 53 79.5000 3 

O8 
116 

0 1.0000 0.0000 0 0 6.7759 0 1.0000 1.0948 0.87931 1 84 5.3 8 3.5294 37 15.0000 4 

O9 
295 

0.0847 1.2780 0.0981 0 0.00678 4.8949 0.30435 0.7057 0.0000 0 3 212 4.7257 8 3.7895 16 36.0000 1 

O10 
12 

1 0.8333 0.5455 0 0.33333 77.8333 0.5 0.5455 13.4167 0.58333 2 7 2.5833 4 2.0 3 3.0000 4 

O11 
245 

0 2.9714 0.0055 0 0 12.5265 0 0.3347 0.0000 0 3 243 1.9883 2 85.3333 242 128.0000 2 

O12 
466 

0.0064 6.0193 0.0046 0 0 13.7060 0 0.1654 1.2339 0.01502 26 447 1.9756 2 53.2000 119 532.0000 4 

O13 
414 

0.5242 1.5048 0.2773 0 0.09662 11.9300 0.26761 0.4803 0.0338 0.00725 16 298 5.2024 11 3.5714 35 38.6364 4 

O14 
1712 

0.0035 1.1454 0.5090 0 1.17056 7.1507 0.03448 0.4286 0.0403 0.00935 1 1328 7.2350 14 4.8115 74 155.0000 4 

O15 
17 

0.7059 3.7059 0.1923 0 0 16.2353 0.46667 0.2179 0.0000 0 6 9 2.6296 4 2.0769 6 6.7500 1 

O16 
35 

0 0.9714 0.3462 0 0 16.4286 0 0.6731 0.0000 0 1 21 4.3143 6 2.3333 4 5.8333 2 

O17 
118 

0.0254 1.1017 0.5357 0 0.13559 5.1017 0.375 0.4214 0.0000 0 17 80 5.1422 8 3.4590 17 26.3750 1 

O18 
41 

0 0.4146 0.4516 0 0 209.0732 0.5 1.3226 11.5854 0.17073 24 24 1.4146 2 2.2778 24 20.5000 4 

O19 
295 

0 1.9559 0.0103 0 0.00339 3.9220 0 0.5060 0.0000 0 9 218 3.5014 5 4.5309 35 73.4000 2 

O20 
80 

0 1.7750 0.2565 0 0.0375 25.0000 0.23913 0.4188 0.0000 0 2 42 5.7875 10 2.0513 15 8.0000 2 

O21 
2154 

0 1.2498 0.0633 0 0.05618 9.5399 0 0.7495 0.0000 0 59 1058 6.5636 10 2.0779 59 707.3000 3 



87 | P a g e  

O22 
4530 

0 1.0987 0.0000 0 0 5.3024 0 0.9102 0.0000 0 7 3626 5.2839 10 5.2785 80 606.5000 3 

O23 
113 

0 2.6903 0.0098 0 0 13.1062 0 0.3681 0.0000 0 5 112 1.9558 2 56.5000 108 56.5000 2 

O24 
5 

0 0.8000 0.4286 0 0 5.2000 0.33333 0.7143 0.0000 0 1 3 2.0 3 1.6667 3 1.6667 1 

O25 
501 

0 0.9860 0.0000 0 0 1.0000 0 1.0142 0.0000 0 7 494 1.9860 2 62.6250 170 250.5000 3 

O26 
148 

0.0473 1.3986 0.1375 0 0.00676 4.8108 0 0.6167 0.0135 0.01351 5 81 4.4298 6 3.3529 15 19.0000 4 

O27 
134 

0.2239 1.8582 0.4196 0 0.15672 7.4030 0.33824 0.3124 0.0597 0.07463 6 18 2.0000 4 3.8333 6 5.7500 4 

O28 
121 

0 0.9917 0.0000 0 0 5.0826 0 1.0083 0.0000 0 1 87 4.6281 6 3.4571 9 20.1667 2 

O29 
32 

0.3125 1.6563 0.3205 0 0.25 9.2500 0 0.4103 0.4063 0.125 6 11 1.5000 2 6.0000 6 6.0000 4 

O30 
37 

0 0.9730 0.0000 0 0 2.9730 0 1.0278 0.0000 0 1 31 2.8108 3 5.2857 11 12.3333 2 

O31 
155 

0 1.0645 0.0179 0 0 4.2774 0.33333 0.9226 0.0000 0 1 95 5.0934 8 2.7164 15 22.7500 1 

O32 
399 

0.0025 1.2757 0.1148 0 0.08521 4.0226 0.06061 0.6939 0.1153 0.05263 21 262 4.7884 8 3.1844 25 56.1250 4 

O33 
243 

0 1.2469 0.6513 0 0.11523 25.5761 0.18251 0.2796 0.0823 0.01646 2 100 9.3420 37 1.7953 9 8.2973 4 

O34 
131 

0 1.0305 0.0000 0 0 7.1374 0 0.9704 0.0000 0 6 102 3.3688 7 4.3243 18 22.8571 2 

O35 
117 

0.1026 1.1453 0.3300 0 0.13675 7.6239 0.35088 0.5850 0.1453 0.08547 36 74 2.5364 5 2.7455 36 30.2000 4 

O36 
2 

5.5 0.0000 1.0000 0 0 146.0000 0.06897 0.0690 4.5000 1 2 2 1.0000 2 2.0000 2 2.0000 2 

O37 
576 

0 1.0538 0.0000 0 0 3.6910 0 0.9489 0.0000 0 1 545 3.6003 6 19.0000 240 101.3333 3 

O38 
104 

0.7404 1.1250 0.6366 0 0 10.2404 0.13158 0.3230 0.0000 0 2 78 4.6827 9 3.8519 22 11.5556 2 

O39 
300 

0.05 0.9067 0.2381 0 0.03 8.0867 0 0.8403 0.7033 0.14 32 220 3.2609 7 3.7375 32 42.7143 4 

O40 
2270 

0.0026 1.7762 0.0771 0 0.09912 8.7533 0.2549 0.5196 0.0203 0.00308 1 1418 12.1887 20 2.5172 129 306.6000 4 

O41 
265 

0.0679 1.3132 0.2073 0 0.15849 4.9472 0.41667 0.6036 0.0000 0 3 214 5.2325 7 5.2115 23 38.7143 1 

O42 2098 0 1.0381 0.0000 0 0 27.0119 0 0.9633 0.0000 0 2 1462 7.0782 12 3.3581 35 199.2500 3 

O43 
246 

0.065 0.9919 0.2673 0 0 8.1057 0 0.7387 0.0000 0 2 180 3.7439 6 3.6716 14 41.0000 1 

O44 
322 

0.1087 0.9969 0.0000 0 0 20.7547 0 1.0031 0.0000 0 1 255 4.7391 5 4.7353 29 64.4000 2 



88 | P a g e  

O45 
1388 

0.0029 1.3429 0.0661 0 0.0353 4.9820 0.31818 0.6954 0.0000 0 11 831 11.1169 21 2.7370 80 75.3333 1 

O46 
243 

0 0.9835 0.0245 0 0 7.6543 0 0.9918 0.0000 0 7 130 3.3951 7 2.1316 20 34.7143 2 

O47 
243 

0.3909 0.9588 0.0934 0 0.04938 4.3663 0 0.9455 0.0000 0 10 171 2.4495 4 7.0714 29 49.5000 1 

O48 
1056 

0.0009 1.4612 0.0134 0 0.00663 4.3987 0.07143 0.6752 0.0000 0 3 937 6.0928 9 8.8000 360 117.3333 1 

O49 
308 

0 1.6071 0.0120 0 0 21.6526 0 0.6148 0.0000 0 8 34 2.4727 4 3.4375 8 13.7500 2 

O50 
289 

0.0761 0.9965 0.0619 0 0 17.3391 0 0.9414 0.7128 0.43599 1 214 8.6747 13 3.8026 22 22.2308 4 

O51 
1018 

0.0069 0.9912 0.0059 0 0 10.7318 0 1.0030 0.9322 0.00098 9 789 2.6699 6 4.4261 429 169.6667 4 

O52 
27 

0.1852 1.0741 0.3556 0 0.07407 5.2593 0.14286 0.6000 0.0000 0 15 17 2.1176 4 2.8333 15 8.5000 2 

O53 
280 

0.1107 0.9964 0.2828 0 0 3.9250 0 0.7198 0.0750 0.01429 1 228 3.8036 7 5.2830 19 40.0000 4 

O54 
3359 

0 2.7681 0.0425 0 0.08961 18.9443 0.10714 0.3459 0.0030 0.0003 1 1716 15.7023 27 2.2093 165 1068.0741 4 

O55 
227 

0 0.9648 0.0000 0 0 1.0000 0 1.0365 0.0000 0 8 219 1.9648 2 25.2222 57 113.5000 2 

O56 
448 

0 0.9888 0.0000 0 0 1.0000 0 1.0113 0.0000 0 5 443 1.9888 2 74.6667 155 224.0000 3 

O57 
250 

0 1.4640 0.0292 0 0 7.6800 0 0.6631 0.0000 0 3 157 5.9340 12 2.8235 13 24.0000 2 

O58 
483 

0 0.8054 0.1432 0 0.03727 7.2919 0.02174 1.0639 0.0062 0.00414 119 262 2.2451 6 3.9444 119 59.1667 4 

O59 
230 

0 0.9217 0.0320 0 0.01739 3.3435 0 1.0502 0.0043 0.00435 21 183 3.2251 7 4.8125 25 33.0000 4 

O60 
10031 

0.0001 1.1931 0.0155 0 0.01117 8.0726 0.06667 0.8251 0.0000 0 64 7369 11.8479 18 3.8664 115 738.0556 1 

O61 
431 

0 1.2320 0.0797 0 0 11.3341 0.32609 0.7470 0.0000 0 1 287 6.2082 12 3.1534 26 42.8333 2 

O62 6623 0 1.5556 0.0006 0 0 7.0314 0 0.6424 0.0000 0 2 4903 7.4353 16 3.8317 258 495.2500 3 

O63 
388 

0 1.0773 0.0302 0 0 12.9716 0.23077 0.9002 0.0000 0 1 256 5.1158 8 3.0870 26 52.8750 3 

O64 
124 

0 1.1290 0.1463 0 0 3.0806 0 0.7561 0.0000 0 37 102 3.1969 6 5.7727 37 21.1667 2 

O65 
16 

0 0.8750 0.0667 0 0 2.1875 0 1.0667 0.0000 0 2 13 2.6250 3 4.0000 12 5.3333 3 

O66 
280 

0 1.2500 0.0000 0 0 5.0036 0 0.8000 0.0000 0 1 230 3.0123 7 4.6782 204 58.1429 2 

O67 
224 

0.0089 1.7634 0.1203 0 0.04018 5.1473 0.45455 0.4989 0.2634 0.07589 10 186 4.2731 6 5.8205 38 37.8333 4 



89 | P a g e  

O68 
92 

0 1.6196 0.0132 0 0 9.0652 0 0.6093 0.0000 0 1 58 4.6644 7 4.1714 12 20.8571 2 

O69 
1864 

0.0005 1.4211 0.0275 0 0.01019 4.6786 0.05128 0.6843 0.0300 0.00215 176 1471 3.2610 7 5.9618 176 289.5714 4 

O70 
114 

0 0.9298 0.0000 0 0 1.0000 0 1.0755 0.0000 0 8 106 1.9298 2 12.6667 36 57.0000 3 

O71 
149 

0 1.0470 0.0877 0 0.05369 2.5101 0 0.8713 0.0000 0 20 93 3.3029 7 3.0702 20 25.0000 2 

O72 
96 

0 0.9479 0.0000 0 0 7.2604 0 1.0549 0.0000 0 5 67 3.1979 6 3.2000 14 16.0000 3 

O73 
337 

1.2997 3.0119 0.1563 0 0.04154 21.3561 0.01149 0.2801 2.5638 0.10089 16 98 2.2923 4 3.9394 34 32.5000 4 

O74 
25 

0.52 0.3600 0.7273 0 0 32.4000 0 0.7576 4.0000 0.08 16 20 1.4400 3 4.1667 16 8.3333 4 

O75 
12 

0.3333 0.0000 1.0000 0 0 8.2500 0 0.7059 0.4167 0.08333 12 12 1.0000 1 12.0000 12 12.0000 4 

O76 
480 

0 0.9813 0.0000 0 0 1.0000 0 1.0191 0.0000 0 9 471 1.9813 2 48.0000 123 240.0000 3 

O77 
188 

0.3351 0.6064 0.5366 0 0 11.6755 0.18182 0.7642 0.0000 0 75 169 1.6720 3 9.4500 75 63.0000 1 

O78 
2082 

0.0014 0.0000 0.0000 0 0 5.0029 0 0.0000 0.0000 0 2082 2082 1.0000 1 2082.0000 2082 2082.0000 3 

O79 
736 

0.0611 1.2432 0.6391 0 0.00544 10.5530 0.17143 0.2903 0.0000 0 14 488 4.5136 8 2.9558 34 92.0000 1 

O80 
107 

0 0.9626 0.3869 0 0.16822 371.5888 0 0.6369 0.0000 0 31 65 3.3706 8 2.6481 31 17.8750 2 

O81 
1575 

0 3.2248 0.0105 0 0 12.2489 0 0.3068 0.0076 0 1 1141 6.4848 12 3.8460 34 172.7500 3 

O82 
813 

0 1.6384 0.2653 0 0.55105 26.0074 0 0.4484 0.0000 0 7 325 6.9151 13 1.6485 22 216.4615 2 

O83 
160 

0 0.9813 0.2341 0 0.0375 7.9313 0 0.7805 0.0000 0 18 113 2.9600 5 3.9474 18 30.0000 2 

O84 
46 

0 0.9783 0.0000 0 0 2.9130 0 1.0222 0.0000 0 9 29 2.6901 5 2.2188 9 14.2000 3 

O85 
295 

0.0068 1.0407 0.1050 0 0 2.7966 0 0.8601 0.0000 0 6 220 3.4058 5 4.1184 23 62.6000 1 

O86 
2274 

0.0022 0.9897 0.1612 0 0.14565 7.1701 0.14583 0.8475 0.0451 0.01413 21 1199 8.6450 31 2.8692 25 59.4194 4 

O87 
710 

0.0014 2.7268 0.0593 0 0.04085 14.0761 0.22581 0.3450 0.1775 0.00704 11 144 3.1574 8 3.6481 18 24.6250 4 

O88 
18 

0 0.5714 0.1579 0 0 2.2143 0 1.4737 0.0000 0 14 16 1.6071 4 2.1538 14 7.0000 2 

O89 
407 

0 0.9803 0.0245 0 0 7.8919 0 0.9951 0.0000 0 8 355 3.0098 5 7.6792 76 81.4000 2 

O90 
102 

0.0098 1.1275 0.3072 0 0 8.5098 0 0.6145 0.0000 0 3 65 3.7059 7 2.6842 8 14.5714 1 



90 | P a g e  

O91 
414 

0 0.9976 0.0000 0 0 5.8578 0 1.0024 0.0000 0 1 310 4.2072 9 3.9151 31 46.1111 3 

O92 
483 0.0683 1.0207 0.0257 

0 
0 5.1553 0 0.9545 0.1077 0.0021 

8 388 
4.1282 

8 
5.1296 

65 
69.2500 4 

O93 
253 0 1.0909 0.0417 

0 
0 11.9368 0.5 0.8785 0.0000 0 

11 184 
3.5176 

6 
3.9020 

35 
66.3333 2 

O94 
375 0 4.7680 0.0022 

0 
0 15.6933 0 0.2093 0.0000 0 

3 370 
2.0053 

3 
62.5000 

365 
125.0000 3 

O95 
125 0.48 0.9440 0.0992 

0 
0 4.4320 0 0.9542 0.2720 0.016 

7 105 
2.5680 

5 
5.9524 

50 
25.0000 4 

O96 
3398 0.0024 1.5986 0.1447 

0 
0.2298 10.8808 0.2347 0.5350 0.0883 0.0147 

1 2617 
8.7522 

18 
4.4846 

78 
210.7778 4 

O97 
279 0 0.9892 0.8292 

0 
0 71.1147 0.2542 0.1726 0.8602 0.0108 

3 44 
1.9348 

2 
15.3333 

41 
23.0000 4 

O98 
3580 0.0025 0.9978 0.0000 

0 
0 11.2838 0 1.0022 0.0000 0 

8 2362 
13.4950 

41 
2.9368 

66 
87.3171 3 

O99 
5221 0 2.1628 0.0212 

0 
0.0349 6.9213 0 0.4526 0.0142 0.0002 

420 4315 
4.5569 

12 
6.0586 

420 
430.6667 4 

O100 
2948 0.0078 4.0468 0.0374 

0 
0.1174 19.1859 0.1102 0.2379 0.0302 0 

1 1575 
10.1197 

18 
2.4021 

58 
254.8889 1 

O101 
1662 0.0096 1.2365 0.1034 

0 
0.0126 3.9284 0.0939 0.7251 0.0578 0.0072 

1 1147 
10.5305 

17 
3.8298 

36 
171.4118 4 

O102 
390 0.0026 1.2051 0.3535 

0 
0.2564 5.9538 0.3537 0.5365 0.0000 0 

64 202 
3.4308 

11 
2.7895 

64 
28.9091 1 

O103 
625 0 0.9056 0.0471 

0 
0.0368 6.5184 0 1.0522 0.0000 0 

109 505 
5.8481 

10 
5.1803 

109 
63.2000 3 

O104 
779 0.0077 1.5340 0.0940 

0 
0.1053 9.8973 0.2087 0.5906 0.0321 0.0103 

1 564 
8.5381 

12 
3.7838 

27 
70.0000 4 

O105 
23 0.0435 0.8696 0.1667 

0 
0 3.6087 0 0.9583 0.0000 0 

8 12 
2.3478 

5 
1.9167 

8 
4.6000 1 

O106 
100 0 1.0400 0.0370 

0 
0 2.8100 0 0.9259 0.0000 0 

1 66 
5.4752 

8 
2.8857 

7 
12.6250 3 

O107 
858 0 1.6970 0.2349 

0 
0.4242 10.0478 0.253 0.4509 0.0140 0.0023 

2 624 
10.2029 

19 
3.1953 

153 
64.5789 4 

O108 
1251 0 1.1103 0.0746 

0 
0.044 5.8409 0.0769 0.8334 0.0000 0 

8 1003 
6.8268 

12 
5.0400 

123 
115.5000 3 

O109 
127 0.0315 1.1654 0.1345 

0 
0.0236 9.1969 0.125 0.7427 0.0236 0.0079 

23 97 
3.6850 

6 
4.0968 

23 
21.1667 4 

O110 
108 0 1.0000 0.0000 

0 
0 3.0556 0 1.0000 0.0000 0 

1 76 
3.7248 

5 
3.2647 

10 
21.8000 2 

O111 
6567 0 2.0649 0.0065 

0 
0.0005 14.0641 0.2361 0.4811 0.0012 0 

1 5338 
12.7558 

21 
3.9140 

266 
361.9524 3 

O112 
3214 0.0006 2.0737 0.0802 

0 
0.0364 10.4182 0.2244 0.4436 0.0078 0.0025 

4 2539 
9.6996 

36 
5.1438 

441 
104.3056 4 

O113 
228 0.0132 1.9825 0.0642 

0 
0.0307 9.8289 0.375 0.4721 0.1491 0.0526 

1 131 
9.8333 

35 
2.3265 

34 
6.5143 4 



91 | P a g e  

O114 
4566 0.0007 1.4807 0.0111 

0 
0.012 8.6577 0 0.6678 0.0000 0 

142 3517 
7.0284 

12 
4.3893 

142 
381.5000 1 

O115 
1555 0.0013 2.7008 0.0796 

0 
0.1428 15.4727 0.1319 0.3380 0.0141 0.0006 

13 82 
3.0500 

7 
2.3729 

15 
20.0000 4 

O116 
1617 0.0025 1.2202 0.1278 

0 
0.1033 9.9270 0.3077 0.7149 0.1373 0.0192 

1 1292 
7.7411 

17 
4.8696 

93 
98.8235 4 

O117 
2965 0 1.1133 0.0362 

0 
0.0331 9.1646 0 0.8657 0.0000 0 

5 2022 
7.0858 

12 
3.2143 

65 
266.2500 3 

O118 
4427 0.0005 1.2268 0.0046 

0 
0 8.3183 0 0.8114 0.0000 0 

8 3626 
4.3160 

10 
5.5245 

1044 
754.1000 1 

O119 
632 0 0.9842 0.5079 

0 
0.9968 6.4367 0 0.5000 0.0000 0 

10 515 
4.4557 

8 
5.3559 

43 
79.0000 3 

O120 
2270 0.0026 1.7762 0.0771 

0 
0.0991 8.7533 0.2549 0.5196 0.0203 0.0031 

1 1418 
12.1887 

20 
2.5172 

129 
306.6000 4 

O121 
2920 0.0017 1.0764 0.1308 

0 
0.099 8.0555 0.2529 0.8075 0.0051 0.0003 

130 2168 
8.3331 

14 
4.0825 

187 
215.5000 4 

O122 
519 0 1.1503 0.4215 

0 
0.0619 8.9884 0.3846 0.5029 0.0385 0.0077 

1 410 
5.7458 

11 
4.7411 

173 
48.2727 4 

O123 
1234 0.0016 1.2091 0.0681 

0 
0.0567 6.7723 0.225 0.7708 0.0332 0.0065 

1 908 
8.6035 

17 
3.7105 

119 
91.2353 4 

O124 
655 0 1.0458 0.0015 

0 
0 6.8382 0 0.9548 0.0015 0 

22 422 
7.0303 

11 
2.8788 

26 
69.0909 3 

O125 
128 0.0938 1.1172 0.5719 

0 
0.1719 9.2969 0.0455 0.3832 1.2891 0.4688 

33 81 
3.4688 

8 
2.6667 

33 
16.0000 4 

O126 
455 0 0.7099 0.1739 

0 
0.0901 24.9429 0 1.1637 0.0022 0 

152 327 
1.6017 

3 
11.9667 

152 
119.6667 3 

O127 
1544 0.0006 1.2429 0.1509 

0 
0.0317 8.1729 0.434 0.6832 0.0000 0 

9 1032 
7.3995 

13 
3.0205 

118 
124.0000 1 

O128 
1565 0 1.4479 0.0535 

0 
0.046 5.3252 0.0833 0.6537 0.0000 0 

7 1323 
6.8258 

12 
7.1057 

147 
156.9167 3 

O129 
840 0.0012 1.0679 0.0197 

0 
0.0131 5.5869 0 0.9118 0.4476 0.0048 

57 651 
3.8036 

7 
5.0567 

69 
203.7143 4 

O130 
5475 0.0005 2.4504 0.0134 

0 
0 3.4853 0 0.4026 0.0000 0 

4 4095 
4.2990 

10 
4.7117 

2155 
519.7000 1 

O131 
1596 0.0163 0.9981 0.1531 

0 
0.0006 16.8371 0.0508 0.8485 3.0119 0.0094 

4 1313 
6.6510 

9 
5.6218 

20 
343.5556 4 

O132 
1307 0.0015 1.0803 0.1437 

0 
0.0145 6.1163 0.243 0.7926 0.0000 0 

5 691 
7.8355 

12 
3.4490 

118 
104.3333 1 

O133 
1771 0.004 0.9938 0.0000 

0 
0 8.9842 0 1.0063 0.0000 0 

11 1353 
4.3473 

9 
4.2267 

50 
196.7778 3 

O134 
1551 0 0.8124 0.0889 

0 
0.0393 5.5500 0 1.1215 0.0000 0 

348 943 
4.4464 

11 
4.4021 

348 
114.4545 3 

O135 
2261 0 1.4534 0.2387 

0 
0.2834 4.6799 0 0.5238 0.0000 0 

3 336 
2.9974 

4 
7.3076 

69 
97.0000 2 

O136 
22 4.9091 0.2727 0.8500 

0 
0 35.3182 0.0593 0.5500 0.0000 0 

16 20 
1.2727 

2 
7.3333 

16 
11.0000 1 



92 | P a g e  

O137 
399 0.0023 1.2757 0.1148 

0 
0.0852 4.0226 0.0606 0.6939 0.1153 0.0526 

21 262 
4.7884 

8 
3.1844 

25 
56.1250 4 

O138 
374 0 0.9947 0.0700 

0 
0 9.4064 0 0.9350 0.0000 0 

2 320 
5.2112 

8 
6.8000 

206 
46.7500 2 

O139 162 0 0.9815 0.0063 0 0 8.8951 0 1.0125 0.0000 0 3 113 4.4630 8 3.2400 14 62.5000 2 

O140 143 0.1329 1.3147 0.1005 0 0 4.7413 0 0.6842 0.1888 0.02797 8 103 2.9580 5 3.4878 18 28.6000 4 

O141 308 0 1.1266 0.0086 0 0 5.9351 0 0.8800 0.0000 0 1 1 1.0000 1 1.0000 1 1.0000 1 

O142 525 0 2.1010 0.0063 0 0 7.0076 0 0.4730 0.0000 0 47 409 2.9854 5 14.9375 158 95.6000 3 

O143 567 0 1.5979 0.1100 0 0.00529 3.3139 0 0.5570 0.0000 0 6 393 6.1190 9 4.5559 40 144.7778 2 

O144 2265 0 1.4534 0.2387 0 0.28344 4.6799 0 0.5238 0.0000 0 3 336 2.9974 4 7.3208 69 97.0000 2 

O145 162 0.0062 0.9506 0.1492 0 0 4.9877 0.22222 0.8950 0.0000 0 41 70 2.5385 8 2.4375 41 14.6250 1 

O146 822 0 0.9903 0.0000 0 0 1.0000 0 1.0098 0.0000 0 8 814 1.9903 2 91.3333 324 411.0000 3 

O147 1812 0 0.9950 0.0050 0 0.0011 4.0364 0 1.0000 0.0000 0 11 1364 4.7674 10 4.0401 98 181.4000 3 

O148 442 0.0181 1.0068 0.0389 0 0 4.7557 0.04 0.9546 0.0000 0 4 297 5.1236 11 3.0530 36 41.9091 1 

O149 12 0 0.0000 0.0000 0 0 5.3333 0 0.0000 0.0000 0 12 12 1.0000 1 12.0000 12 12.0000 2 

O150 138 0.0362 0.9928 0.0352 0 0 5.3696 0 0.9718 0.0000 0 1 113 4.0435 6 5.3077 28 23.0000 1 

O151 408 0 1.2206 0.2709 0 0.27696 3.3652 0.05714 0.5974 0.0000 0 48 265 5.0119 10 3.8550 48 50.5000 2 

O152 199 0 1.1960 0.0518 0 0.00503 7.9196 0 0.7928 0.0151 0.0201 8 181 3.1910 4 10.4737 81 49.7500 4 

O153 3639 0 2.2473 0.0007 0 0 8.1434 0 0.4446 0.0000 0 6 3508 2.3776 8 27.5682 1467 454.8750 3 

O154 285 0 1.2877 0.0000 0 0 5.6386 0 0.7766 0.0000 0 4 207 5.3481 8 3.8966 17 84.7500 2 

O155 83 0 1.0120 0.0562 0 0 4.2771 0 0.9326 0.0000 0 4 59 4.0341 6 3.5200 8 14.6667 1 

O156 276 0.0217 1.1087 0.1429 0 0 2.5435 0.125 0.7731 0.0000 0 8 193 3.6737 7 3.3140 15 40.7143 1 

O157 46 0.2826 0.8261 0.4063 0 0 13.4565 0 0.7188 1.3696 0.15217 8 35 2.3478 4 3.8333 8 11.5000 4 

O158 1097 0 0.9927 0.0000 0 0 4.8560 0 1.0073 0.0000 0 9 767 4.0437 8 3.3172 18 137.2500 2 

O159 54 0 2.6852 0.0203 0 0 8.5185 0 0.3649 0.0000 0 1 53 1.9815 2 27.0000 53 27.0000 2 



93 | P a g e  

O160 51 0.1961 0.3529 0.6538 0 0.05882 6.2941 0.06061 0.9808 1.1373 0.5098 34 44 1.5400 3 7.1429 34 16.6667 4 

O161 756 0 1.0066 0.0000 0 0 4.1429 0 0.9934 0.0000 0 5 553 4.8893 8 3.7463 28 96.0000 3 

O162 552 0 1.3297 0.0081 0 0 6.5453 0 0.7459 0.0000 0 1 1 1.0000 1 1.0000 1 1.0000 2 

O163 1897 0 0.9995 0.0000 0 0 6.0026 0 1.0005 0.0000 0 1 1556 5.8292 9 5.5468 79 210.7778 3 

O164 23 0.0435 1.5217 0.4167 0 0 8.2174 0 0.3833 0.0000 0 21 21 1.0000 1 21.0000 21 21.0000 2 

O165 127 0.0315 1.1654 0.1345 0 0.02362 9.1969 0.125 0.7427 0.0236 0.00787 23 97 3.6850 6 4.0968 23 21.1667 4 

O166 235 0.0085 1.2298 0.1790 0 0.11064 5.6340 0.13889 0.6676 0.0000 0 33 156 2.9955 7 3.4375 33 31.4286 1 

O167 22 0 1.0455 0.1154 0 0 2.3636 0 0.8462 0.0000 0 5 11 2.7576 5 1.9412 5 6.6000 2 

O168 140 0 0.9786 0.0000 0 0 1.0000 0 1.0219 0.0000 0 3 137 1.9786 2 35.0000 87 70.0000 2 

O169 543 0 1.0552 0.0172 0 0 15.0773 0 0.9314 0.0000 0 4 369 3.9264 9 3.2443 90 63.4444 2 

O170 32 0.0938 0.7813 0.1935 0 0 16.9375 0 1.0323 7.1250 0.8125 7 31 1.7813 2 16.0000 25 16.0000 4 

O171 822 0.7774 1.0207 0.4541 0 0.0219 14.1484 0 0.5348 1.2032 0.05839 26 665 4.1183 6 5.7797 56 170.5000 4 

O172 264 0.0682 1.3182 0.2127 0 0.15909 4.1856 0.38462 0.5973 0.0000 0 2 213 5.1593 7 5.1923 23 38.5714 1 

O173 173 0.2197 2.2659 0.2403 0 0 6.2890 0 0.3353 0.1329 0.03468 28 94 3.3822 6 3.1690 28 37.5000 4 

O174 227 0 0.9648 0.0000 0 0 1.0000 0 1.0365 0.0000 0 8 219 1.9648 2 25.2222 57 113.5000 2 

O175 123 0 1.0244 0.1871 0 0.00813 3.8293 0 0.7935 0.0000 0 3 90 3.5814 5 3.7941 13 25.8000 2 

O176 188 0 1.3191 0.0120 0 0 10.3351 0 0.7490 0.8032 0 1 155 4.1186 7 5.5429 20 27.7143 2 

O177 325 0 0.0000 0.0000 0 0 7.2954 0 0.0000 0.0000 0 325 325 1.0000 325 325.0000 325 325.0000 3 

O178 201 0 0.0000 0.0000 0 0 3.1493 0 0.0000 0.0000 0 201 201 1.0000 201 201.0000 201 201.0000 2 

O179 292 0.024 2.8630 0.0933 0 0.01712 0.0000 0.16129 0.3167 0.0000 0 0 0 1.0000 292 292.0000 292 292.0000 1 

O180 2177 0 1.2660 0.2942 0 0.51631 6.6863 0 0.5575 0.0000 0 1 1631 7.5017 10 4.5058 101 271.7000 3 

O181 418 0 0.9976 0.0000 0 0 2.9928 0 1.0024 0.0000 0 1 416 2.9928 3 139.3333 416 139.3333 2 

O182 239 0.0041 0.9672 0.0923 0 0 21.5287 0.22222 0.9385 5.4221 0.90574 4 223 2.8648 3 14.3529 48 81.3333 4 



94 | P a g e  

O183 1597 0 1.1897 0.0276 0 0.00125 5.6838 0.13462 0.8173 0.5917 0.54665 2 908 7.0942 16 2.3142 293 100.8125 4 

O184 1831 0.0016 0.0688 0.2759 0 0 11.8241 0.08889 10.5230 0.9973 0 1701 1781 1.2534 8 39.8043 1706 228.8750 1 

O185 78 0.1154 1.0000 0.3760 0 0 6.4487 0.09302 0.6240 0.0000 0 1 2 1.0256 2 39.0000 76 39.0000 1 

O186 38 0.0263 0.7632 0.2927 0 0.05263 2.6579 0.33333 0.9268 0.0000 0 22 22 1.0833 2 8.0000 22 12.0000 1 

O187 18 0.3333 0.8333 0.5161 0 0 48.3333 0 0.5806 5.8889 0.88889 3 17 1.8333 2 9.0000 15 9.0000 4 

O188 894 0.021 1.0863 0.0363 0 0.02212 8.4181 0.17647 0.8871 0.3816 0 20 768 4.6292 5 10.0349 321 172.6000 1 

O189 86 0 1.4535 0.2647 0 0.05814 14.2907 0.46429 0.5059 1.5930 0.03488 5 38 4.4444 8 2.1818 8 9.0000 4 

O190 80 0 1.5875 0.0000 0 0 9.0000 0 0.6299 0.0125 0 1 49 4.6519 7 3.6486 10 19.2857 2 

O191 2385 0 1.2734 0.0187 0 0.01468 6.2143 0.08696 0.7706 0.0055 0.0109 3 1647 7.4040 14 3.3475 79 350.6429 4 

O192 650 0 0.9954 0.0000 0 0 4.0631 0 1.0046 0.0000 0 6 521 3.1976 6 5.0000 39 108.8333 3 

O193 44 0 1.8636 0.4570 0 0.65909 9.2500 0 0.2914 0.0000 0 1 9 3.0667 5 2.1429 3 3.0000 2 

O194 46 0.0435 0.3913 0.1429 0 0.06522 19.8261 0 2.1905 5.7391 0.6087 28 45 1.3913 2 23.0000 28 23.0000 4 

O195 2961 0 3.9875 0.1306 0 0.51604 1.6315 0.20476 0.2180 0.0014 0 1 973 11.2033 17 1.9186 148 1047.2353 1 

O196 18 0.3333 0.8333 0.5161 0 0 48.3333 0 0.5806 5.8889 0.88889 3 17 1.8333 2 9.0000 15 9.0000 4 

O197 132 0.0545 1.2848 0.3003 0 0.09091 5.6424 0.13044 0.5446 0.1576 0.02424 5 64 2.8504 5 4.8846 38 25.4000 4 

O198 389 0.0154 1.6144 0.2629 0 0.10283 11.3419 0.1958 0.4566 0.1465 0.03085 10 29 2.0909 4 3.6667 21 13.7500 4 

O199 502 0 1.1793 0.1662 0 0 11.1554 1 0.7070 0.0000 0 1 362 3.2998 6 3.9673 93 101.1667 2 

O200 238 0.0042 0.7479 0.7454 0 0.30252 7.8740 0.34491 0.3405 0.0504 0.05042 68 203 2.4612 6 6.4500 68 43.0000 4 

 


