Electroflocculation of river water using iron and aluminium electrodes

Show simple item record

dc.contributor.advisor Van der Merwe, H. C.
dc.contributor.author Mashamaite, Aubrey Nare
dc.date.accessioned 2015-12-04T07:13:29Z
dc.date.available 2015-12-04T07:13:29Z
dc.date.issued 2008-09
dc.identifier.uri http://hdl.handle.net/10352/269
dc.description M. Tech. (Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. en_US
dc.description.abstract A novel technology in the treatment of river water, which involves an electrochemical treatment technique to produce domestic or drinking water is being investigated using aluminium and iron electrodes in an electrochemical circuit. Coagulation and flocculation are traditional methods for the treatment of polluted water. Electrocoagulation presents a robust novel and innovative alternative in which a sacrificial metal anode treats water electrochemically. This has the major advantage of providing mainly active cations required for coagulation and flocculation, without increasing the salinity of the water. Electrocoagulation is a complex process with a multitude of mechanisms operating synergistically to remove pollutants from the water. A wide variety of opinions exist in the literature for key mechanisms. A lack of a systematic approach has resulted in a myriad of designs for electrocoagulation reactors without due consideration of the complexity of the system. A systematic, holistic approach is required to understand electrocoagulation and its controlling parameters. An electrocoagulation-flotation process has been developed for water treatment. This involved an electrolytic reactor with aluminium and/or iron electrodes. The water to be treated (river water) was subjected to coagulation, by Al(III) and Fe(II) ions dissolved from the electrodes, resulting in floes floating after being captured by hydrogen gas bubbles generated at the cathode surfaces. Apparent current efficiencies for AI and Fe dissolution as aqueous Al(III) and Fe(II) species at pH 6.5 and 7.8 were greater than unity. This was due to additional chemical reactions occurring parallel with electrochemical AI and Fe dissolution: oxygen reduction at anodes and cathodes, and hydrogen evolution at cathodes, resulting in net (i.e. oxidation plus reduction) currents at both anodes and cathodes. Investigation results illustrate the feasibility of ferrous and aluminium ion electrochemical treatment as being a successful method of water treatment. Better results were achieved under conditions of relatively high raw water alkalinity, relatively low raw water turbidity, and when high mixing energy conditions were available. en_US
dc.format.extent x, 160 leaves: diagrams en_US
dc.language.iso en en_US
dc.subject Water purification en_US
dc.subject Electrocoagulation en_US
dc.subject Vaal Dam en_US
dc.subject Flotation en_US
dc.subject Electrochemical treatment en_US
dc.subject Electroflocculation en_US
dc.subject River water treatment en_US
dc.subject.ddc 628.162 en_US
dc.subject.lcsh Drinking water -- Purification -- South Africa en_US
dc.subject.lcsh Water quality en_US
dc.title Electroflocculation of river water using iron and aluminium electrodes en_US
dc.type Thesis en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DigiResearch

Advanced Search

My Account