The effects of biofouling on a reverse osmosis membrane purification system at Sasol, Sasolburg

Loading...
Thumbnail Image
Date
2011-06
Authors
Takaidza, Samkeliso
Journal Title
Journal ISSN
Volume Title
Publisher
Vaal University of Technology
Abstract
Reverse osmosis (RO) membranes are widely used in water purification. The presence of biofilms in water and industrial water purification systems is prevalent. As a result, biofouling which is a biofilm problem causes adverse effects on reverse osmosis process, which include flux decline, shorter membrane lifetime and an increase in energy consumption The effect of biofouling on RO membranes was investigated at a water treatment facility at Sasol, Sasolburg by investigating the quality of water purified by the RO system and the extent of fouling that is attributed to biofouling. Chemical and microbiological data was averaged based on the results obtained from water analysis and samples from a fouled membrane. Bacteriological plate counts ranged between log 1.5 to 4 cfu/ml in water samples and log 3.9 to 4.5 cfu/cm2 on biofilm from the membrane surface. Water analysis indicated a high conductivity of 121 µS/cm in the feed and 81 ppm of the TDS, whereas in the permeate conductivity was found to be around 6 µS/cm and 3.8 ppm of the TDS. This indicated that components present in the feed were retained by the membrane. This was supported by membrane autopsy which showed that the bacteria and elements found in the feedwater were also present on the membrane surface, hence contributing to fouling. An average of 33% of cellular ATP was measured on the biofilm from membrane sample, showing that the fouling bacteria are metabolically active in situ. The results clearly indicated that an important biological activity occurred at the membrane surface.
Description
M. Tech. (Biotechnology, Department of Biosciences, Faculty of Applied and Computer Sciences), Vaal University of Technology.
Keywords
extracellular polymeric substance, Flocculent, reverse osmosis, solids, desalination, polarization, colloid, biofouling
Citation