Information Communication Technology
Permanent URI for this community
Browse
Browsing Information Communication Technology by Author "Agunbiade, Olusanya Yinka"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Simultaneous localization and mapping for autonomous robot navigation in a dynamic noisy environment(Vaal University of Technology, 2019-11) Agunbiade, Olusanya Yinka; Zuva, T., Prof.Simultaneous Localization and Mapping (SLAM) is a significant problem that has been extensively researched in robotics. Its contribution to autonomous robot navigation has attracted researchers towards focusing on this area. In the past, various techniques have been proposed to address SLAM problem with remarkable achievements but there are several factors having the capability to degrade the effectiveness of SLAM technique. These factors include environmental noises (light intensity and shadow), dynamic environment, kidnap robot and computational cost. These problems create inconsistency that can lead to erroneous results in implementation. In the attempt of addressing these problems, a novel SLAM technique Known as DIK-SLAM was proposed. The DIK-SLAM is a SLAM technique upgraded with filtering algorithms and several re-modifications of Monte-Carlo algorithm to increase its robustness while taking into consideration the computational complexity. The morphological technique and Normalized Differences Index (NDI) are filters introduced to the novel technique to overcome shadow. The dark channel model and specular-to-diffuse are filters introduced to overcome light intensity. These filters are operating in parallel since the computational cost is a concern. The re-modified Monte-Carlo algorithm based on initial localization and grid map technique was introduced to overcome the issue of kidnap problem and dynamic environment respectively. In this study, publicly available dataset (TUM-RGBD) and a privately generated dataset from of a university in South Africa were employed for evaluation of the filtering algorithms. Experiments were carried out using Matlab simulation and were evaluated using quantitative and qualitative methods. Experimental results obtained showed an improved performance of DIK-SLAM when compared with the original Monte Carlo algorithm and another available SLAM technique in literature. The DIK-SLAM algorithm discussed in this study has the potential of improving autonomous robot navigation, path planning, and exploration while it reduces robot accident rates and human injuries.