Electronic Engineering
Permanent URI for this community
Browse
Browsing Electronic Engineering by Subject "621.381542"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Controlling a photovoltaic module's surface temperature to ensure high conversion efficiency(2015-06) Ozemoya, Augustine; Swart, James; Pienaar, ChristoIn order to facilitate sustainable development, it is necessary to further improve and increase the energy efficiency and use of renewable energy and its related technologies. The main limiting factors to the extensive use of photovoltaic (PV) modules include the high initial investment cost and the relatively low conversion efficiency. However, other factors, such as an increase in ambient temperature, exert a considerable negative influence on PV modules, with cell efficiencies decreasing as the cell’s operating temperature increases. Higher PV module surface temperatures mean lower output voltages and subsequent lower output power. Therefore, this dissertation focuses on optimizing the available output power from a PV module by investigating and controlling the effect that the PV module’s surface temperature exerts on the amount of electrical energy produced. A pilot study was conducted by using a PV module set to three different tilt angles with an orientation angle and temperature sensors placed at different points. This was done to determine temperature distribution on the PV module surfaces as well as identify which tilt angle produces the highest PV module surface temperature. The main study was designed to investigate the electrical performance of a PV module with different cooling systems (water and forced air) as against a referenced measurement (no cooling). The cooling systems will be switched on and off at specific time intervals with the help of an electronic timer circuit incorporating a PIC microcontroller. The pilot study was conducted for a 50 week period where the results indicated a direct correlation between temperature rise and voltage decrease. The PV module’s temperature is highest at a tilt angle of 16° during the day and lowest at night time. It further reveals that the PV module’s front and back surface temperature can be distinctly different, with the highest recorded values occurring at the back of the PV module. The main study was conducted for a period of 15 weeks with results indicating that the water cooling system resulted in an average higher output power of 49.6% when compared to the reference system (no cooling system). Recommendations are made that sufficient space should be included between the module frames and mounting structure to reduce high operating temperatures owing to poor air circulation.Item Optimising the output power available from a photovoltaic panel through empirical testing(2013-09) Osamede, Asowata; Swart, James; Pienaar, H. C. v Z.Einstein said, ‘‘the release of energy has not created a new problem, but has made more urgent the necessity of solving an existing one’’. This dissertation presents a method of optimising the available output power from a photovoltaic (PV) panel through empirical testing as this will enable a higher yield of solar energy thereby reducing dependence on traditional energy sources such as fossil fuels. The proposed study intends using existing equations of latitude, mathematical models and simulation packages in combination with the experimental data to analyse the optimum tilt and orientation angles for PV panels. This will assist in identifying ways to improve the installation of PV panels for optimum output power in the Vaal Triangle. Photovoltaic panels are semiconductor devices that convert incident direct beam radiation to electrical energy and the panel is composed of several unitary cells connected in series and/or in parallel. The optimisation process involves the empirical testing of the entire system with the use of existing equations of latitude as suggested by literature for PV installation in the southern hemisphere, power conditioning devices (such as an DC-DC converter, solar charger with MPPT) in order to validate results as well as the correlation of empirical results with a simulation package. The first objective was to have an overview of the types of PV panels that exist; this was done in order to be able to make a right choice of PV panel to be used in this research. A concise literature review was carried to enable this research to have a background of existing information in the areas of optimisation of power from PV panels. The next objective was to carry out a pilot study, this was done to form the foundation for the main study. A data-logging interface circuit (DLIC) was incorporated in the system for some reasons presented in subsequent chapters of this dissertation. At the end of this study data were taken over a two year period, the data were analysed and conclusions were drawn and some recommendation in optimising available output power from a PV panel are suggested.