Faculty of Engineering & Technology
Permanent URI for this community
Browse
Browsing Faculty of Engineering & Technology by Issue Date
Now showing 1 - 20 of 136
Results Per Page
Sort Options
Item Design and development of a high frequency Mosfet driver(2004-11) Swart, Arthur James; Pienaar, H. C. van ZA high-power Mosfet was incorporated as a switching device into the efficient Class E configuration, where the switching device switches current through itself either completely on or completely off at high frequencies. The first objective of this project was to demonstrate the effectiveness of a phase-lock loop circuit in generating stable high frequencies when connected in an indirect frequency synthesizer configuration. The indirect frequency synthesizer has established itself as a versatile frequency generator capable of generating high frequencies based on a lower stable reference frequency. The frequency generation stage incorporates a phaselock loop circuit, a frequency divider and a stable reference frequency section. The phase-lock loop section incorporates the TTL based 74HC 4046 that is based upon the common CMOS 4046 integrated circuit. The frequency divider section is built around the CMOS-based 4526 whilst the reference frequency section incorporates the CMOS-based 4060. The frequency synthesizer produced a range of frequencies from 50 kHz to 8 MHz in 50 kHz steps. The output voltage was constant at 5,5 V. The second objective was to show that the complementary emitter follower is indeed a worthy Mosfet gate drive circuit at high frequencies. The Mosfet driver stage produced a voltage signal of at least 11 V, being able to source and sink relatively high peaks of current, especially at high frequencies. Voltage amplification occurred through the use of multiple CMOS-based 40106 inverters. The complementary emitter follower, known for its low output impedance and its ability to source and sink large amounts of current, was an important component in the final Mosfet gate section.Item Design and development of a high efficiency modulated Class E amplifier(2006-01) Crafford, Crafford, Hendrik Lambert Helberg Hendrik Lambert Helberg; Pienaar, H. C. v Z.Amplitude modulation is not commonly associated with effective amplifying. This work focuses on implementing amplitude modulation into a high efficiency Class E amplifier. Different types of amplifiers are compared with each other, to show the advantages of using a Class E amplifier. The theory of the Class E amplifier is dealt with in detail. A harmonic filter is designed for the amplifier to make it radio spectrum friendly. The modulation process is implemented with the aid of a transformer into the Class E amplifier. The advantage of this is that the transformer serves both as a radio frequency choke for the Class E circuit as well as a modulator. The implementation of the amplitude modulation into the high efficient Class E circuit was successful. The final Class E circuit had superb efficiency, the harmonic filter showed good harmonic attenuation and the modulation process had low distortion. All this resulted in a fine low power AM transmitter.Item Design and development of a 100 W Proton exchange membrane fuel cell uninterruptible power supply(2006-01) Du Toit, Johannes Paulus; Pienaar, H. C. v Z.This study presents the design of a proton exchange membrane fuel cell stack that can be used to replace conventional sources of electrical energy in an uninterruptible power supply system, specifically for use in the telecommunications industry. One of the major concerns regarding the widespread commercialization of fuel cells is the high cost associated with fuel cell components and their manufacturing. A fuel cell design is presented in which existing, low-cost, technologies are used in the manufacture of cell components. For example, printed circuit boards are used in the manufacturing of bipolar flow plates to significantly reduce the cost of fuel cells. The first objective was to design, construct and test a single fuel cell and small fuel cell stack in order to evaluate the use of printed circuit boards in bipolar plate manufacturing. Since the use of copper in a fuel cell environment was found to reduce the lifetime of the cells, the bipolar plates were coated with a protective layer of nickel and chrome. These coatings proved to increase the lifetime of the cells significantly. Power outputs of more than 4 W per cell were achieved. The second objective was to analyze a small fuel cell stack in order to obtain a model for predicting the performance of larger stacks. A mathematical model was developed which was then used to design an electronic circuit equivalent of a fuel cell stack. Both models were adapted to predict the performance of a fuel cell stack containing any number of cells. The models were proven to be able to accurately predict the performance of a fuel cell stack by comparing simulated results with practical performance data. Finally, the circuit equivalent of a fuel cell stack was used to evaluate the capability of a switch mode boost converter to maintain a constant voltage when driven by a fuel cell stack, even under varying load conditions. Simulation results showed the ability of the boost converter to maintain a constant output voltage. The use of supercapacitors as a replacement for batteries as a secondary energy source was also evaluated.Item Design and development of a high performance zinc air fuel cell(2006-06) Lourens, Dewald; Pienaar, H. C. v Z.The demand for efficient and environmentally friendly power sources has become a major topic around the world. This research explores the capability of the zinc-air fuel cell to replace conventional power sources for various applications, more specifically telecommunication systems. The research consisted of a theoretical study of the zinc-air fuel cell and its components, as well as their performance characteristics. A zinc-air fuel ce.ll and test rig were built, and the system was tested under various conditions. It was found that the zinc-air fuel cell has an advantage over other fuel cells in that it does not require any expensive materials or noble metals, reducing the overall cost of such a system. The fuel cell showed the potential to power various applications, but problems persisted in the fueling process as well as constant leaking of the aqueous electrolyte.Item Design and development of a remote monitoring system for fuel cells(2006-07) Komweru, Laetitia; Pienaar, H. C. v Z.This dissertation presents the design and development of a remote monitoring system (RMS) for polymer electrolyte membrane fuel cells (PEMFC) to facilitate their efficient operation. The RMS consists of a data acquisition system built around the PIC 16F874 microcontroller that communicates with a personal computer (PC) by use of the RS232 serial communication standard, using a simple wired connection between the two. The design also consists of a human machine interface (HMI) developed in Visual Basic 6.0 to provide a platform for display of the monitored parameters in real time. The first objective was to establish performance variables and past studies on PEM fuel cells revealed that variables that affect the system's performance include: fuel and oxidant input pressure and mass flow rates as well as operation temperature and stack hydration. The next objective was to design and develop a data acquisition system (DAS) that could accurately measure the performance variables and convey the data to a PC. This consisted of sensors whose outputs were input into two microcontrollers that were programmed to process the data received and transfer it to the PC. A HMI was developed that provided graphical display of the data as well as options for storage and reviewing the data. The developed system was then tested on a 150Watt PEM fuel cell stack and the data acquisition system was found to reliably capture the fuel cell variables. The HMI provided a real-time display of the data, with alarms indicating when set minimums were exceeded and all data acquired was saved as a Microsoft Excel file. Some recommendations for improved system performance are suggested.Item Dynamic modelling of a bolted disc rotor assembly(2008) Blignaut, Gert; Roberts, JohanA project investigating the behaviour of an assembled preloaded rotor was performed for an M-Tech qualification in the Mechanical Engineering Department. Pre-Stressing of mechanical structures is widely applied to improve their performance, and in this project the behaviour of an assembled preloaded rotor was investigated. An Impact Test was done on the structure to see if induced stresses originated by a set of bolts which keep the discs system together, would influence the natural dynamic response or the rotor. Tendencies in the natural response were investigated. Analytical models like the Finite Element Beam model and the Solid Finite Element model were studied in order to find a represntative description of this particular structure's dynamic behaviour after pre-tension. From the experimental results it was apparent that the slenderness of the pre-tensioned sector influences the natural frequency. The solid finite element model appears to be the most applicable model to present the assembled rotor-disk system as a continuous shaft. Furthermore, modelling and predictions for a typical rotor and similar assembled structures can be generated from the findings.Item Plant systems integration using the SAMI model to achieve asset effectiveness in modern plants(2008-05) Joubert, André; Jordaan, A.; Case, M. J.In recent years, industrial plant maintenance has changed dramatically. These changes are due to a considerable increase in the number and variety of physical plant assets, increased design complexity, new maintenance techniques and changing perspectives regarding on how to perform maintenance effectively. Managers at modern process plants are becoming increasingly aware of the extent to which equipment failure affects safety and the environment. Process plant personnel are limited in their ability to accurately and consistently evaluate the health of plant assets. Due to poor record keeping, maintenance staff often has little defence against aging equipment and asset failures. As a result companies have undertaken to implement planned equipment maintenance schedules and install new technology to allow for efficient tracking and analysing of equipment health across the board. The introduction of an integrated asset management solution is presented in this thesis. The integrated asset management solution will assist maintenance staff to cost-effectively predict the probability of asset failure prior to the occurrence of any actual plant incidents. The integrated solution documented in this thesis will be implemented at the Sasol Solvents site to enhance plant availability, maximum up time for all plant assets and plant safety. Strategic Asset Management Inc. (SAMI) uses the Operational Reliability Maturity Continuum model to improve profitability, efficiency and equipment reliability. The SAMI empirical model employs various stages to address improved performance and asset management and was used as a guideline to develop an integrated solution to optimise plant performance and profits. The integrated asset management solution, documented in this thesis, was developed with the intended function of bringing information from diverse plant based systems and field equipment to the maintenance personnel in an understandable interface so that the information can be used to improve the reliability and availability of all plant assets.Item Electroflocculation of river water using iron and aluminium electrodes(2008-09) Mashamaite, Aubrey Nare; Van der Merwe, H. C.A novel technology in the treatment of river water, which involves an electrochemical treatment technique to produce domestic or drinking water is being investigated using aluminium and iron electrodes in an electrochemical circuit. Coagulation and flocculation are traditional methods for the treatment of polluted water. Electrocoagulation presents a robust novel and innovative alternative in which a sacrificial metal anode treats water electrochemically. This has the major advantage of providing mainly active cations required for coagulation and flocculation, without increasing the salinity of the water. Electrocoagulation is a complex process with a multitude of mechanisms operating synergistically to remove pollutants from the water. A wide variety of opinions exist in the literature for key mechanisms. A lack of a systematic approach has resulted in a myriad of designs for electrocoagulation reactors without due consideration of the complexity of the system. A systematic, holistic approach is required to understand electrocoagulation and its controlling parameters. An electrocoagulation-flotation process has been developed for water treatment. This involved an electrolytic reactor with aluminium and/or iron electrodes. The water to be treated (river water) was subjected to coagulation, by Al(III) and Fe(II) ions dissolved from the electrodes, resulting in floes floating after being captured by hydrogen gas bubbles generated at the cathode surfaces. Apparent current efficiencies for AI and Fe dissolution as aqueous Al(III) and Fe(II) species at pH 6.5 and 7.8 were greater than unity. This was due to additional chemical reactions occurring parallel with electrochemical AI and Fe dissolution: oxygen reduction at anodes and cathodes, and hydrogen evolution at cathodes, resulting in net (i.e. oxidation plus reduction) currents at both anodes and cathodes. Investigation results illustrate the feasibility of ferrous and aluminium ion electrochemical treatment as being a successful method of water treatment. Better results were achieved under conditions of relatively high raw water alkalinity, relatively low raw water turbidity, and when high mixing energy conditions were available.Item An application of reverse osmosis process on effluent treatment for the rubber industry(2009-05) Ralengole, Galebone; Van der Merwe, H.; Modise, S. J.The methods used to remove potassium sulphate (K2S04) and other impurities contained within Karbochem finishing plant effluent were investigated. Reverse osmosis was explored for this application. The study was conducted in two steps. The first step focuses mainly on the effluent treatment using BW30 flatsheet as well as BW30-2540 spiral-wound reverse osmosis membranes for the rejection of potassium and sulphate ions. The membranes were supplied by Filmtec. The second step reveals the possible use of potassium sulphate obtained from the brine stream in the fertiliser and fertigation industry by a literature search. Reverse osmosis study was conducted on a laboratory scale unit using flat sheet membranes and also on a pilot plant scale using spiral wound membrane modules. The tests were conducted at a feed pressure of 20 bar(g) with the membrane rejections being 98% and 99.1% on flat sheet membrane, and 96.9% and 99.4% on spiral wound membrane for potassium and sulphates respectively. The results show that both membranes have completely desalinated. Significant reduction in the concentrations of all problematic quality parameters, especially of potassium and the sulphate ions was noted. Granular activated carbon (GAC) bed treatment was recommended for pretreatment of the effluent prior to exposure of the membrane to avoid organic fouling of the membrane. GAC treatment was tested to illustrate its effectiveness to adsorb the COD's.Item Design and development of a methanol concentration controller for fuel cells(2010-09-09T13:41:34Z) Viljoen, MariusThe demand for higher efficiency, sustainability and cleaner power sources increases daily. A Direct Methanol Fuel Cell is a power source that can be applied for small to medium household appliances and office equipment. It can ideally be used for operating appliances like notebook computers on remote sites where no electrical power is available. One of the problems in methanol fuel cells is methanol crossover. Methanol crossover occurs when methanol is not completely used in the process of generating electrons, and a certain percentage of the methanol is wasted. Crossover may damage the proton exchange membrane of the fuel cell and reduce the efficiency of a DMFC. Literature reviews were done and suggestions from other writers are discussed on how to reduce methanol crossover. This research focuses primarily on the fact that crossover can be controlled by controlling the methanol / water concentration. A prototype methanol controller was built with an ultrasonic sensor for detecting the density of the methanol/water mixture and a sensor for the temperature of the mixture; this was done because the density of the mixture is dependant on the temperature and the concentration. The controller was calibrated to determine the amount per volume of water and methanol which enables the controller to control the percentage of methanol in the water. The prototype also had the feature built in to adjust the mixture in order to enable the study on the effects of crossover. A data logger function was added to store collected data on a personal computer for the study on methanol and water. It was observed that the sensor was sensitive enough and was able to produce 1% increments of the level of methanol concentration in the water provided the temperature was stable. A methanol controller was successfully built to ensure the correct volume of methanol.Item Plant systems integration using the SAMI model to achieve asset effectiveness in modern plants(2010-11-01T09:47:37Z) Joubert, AndrèIn recent years, industrial plant maintenance has changed dramatically. These changes are due to a considerable increase in the number and variety of physical plant assets, increased design complexity, new maintenance techniques and changing perspectives regarding on how to perform maintenance effectively. Managers at modern process plants are becoming increasingly aware of the extent to which equipment failure affects safety and the environment. Process plant personnel are limited in their ability to accurately and consistently evaluate the health of plant assets. Due to poor record keeping, maintenance staff often has little defence against aging equipment and asset failures. As a result companies have undertaken to implement planned equipment maintenance schedules and install new technology to allow for efficient tracking and analysing of equipment health across the board. The introduction of an integrated asset management solution is presented in this thesis. The integrated asset management solution will assist maintenance staff to cost-effectively predict the probability of asset failure prior to the occurrence of any actual plant incidents. The integrated solution documented in this thesis will be implemented at the Sasol Solvents site to enhance plant availability, maximum up time for all plant assets and plant safety. Strategic Asset Management Inc. (SAMI) uses the Operational Reliability Maturity Continuum model to improve profitability, efficiency and equipment reliability. The SAMI empirical model employs various stages to address improved performance and asset management and was used as a guideline to develop an integrated solution to optimise plant performance and profits. The integrated asset management solution, documented in this thesis, was developed with the intended function of bringing information from diverse plant based systems and field equipment to the maintenance personnel in an understandable interface so that the information can be used to improve the reliability and availability of all plant assets.Item Evaluating the effects of radio-frequency treatment of rocks: textural changes and implications for rock comminution(2010-12) Swart, Arthur James; Pienaar, H. C. v Z.; Mendonidis, P.Ore, from a mining operation, goes through a process that separates the valuable minerals from the gangue (waste material). This process usually involves crushing, milling, separation and extraction where the gangue is usually discarded in tailings piles. Current physical methods used for crushing of rocks in the mineral processing industry result in erratic breakages that do not efficiently liberate the economically valuable minerals. Research studies have found that the rock comminution and mineral liberation can be enhanced through various electrical treatment techniques, including pulsed power, ultrasound and microwave. These electrical treatment techniques each have their own advantages and disadvantages which are discussed in this dissertation. However, this research proposes a new technique in an attempt to improve the rock comminution process. The main purpose of this research is to evaluate the effect that RF power exerts on rock samples, with particular focus on textural changes. Four valuable scientific contributions to the fields of metallurgical and electrical engineering were made in this regard. Firstly, a new technique for the treatment of rock samples using RF heating is substantiated. The effect of RF power on textural changes of the rocks is evident in their surface temperature rise, where the RF heating of dole-rite (JSA) and marble (JSB, JS 1 and JS2) resulted in surface temperatures of approximately 100 °C within two minutes of treatment. A particle screening analysis of particles obtained form a swing-pot mill of both the untreated (not exposed to RF power) and treated (exposed to RF power) rock samples were performed to ascertain if the treated samples' size had changed. Two samples (JSA and JSD) revealed a notable change in their particle size distribution. The fact that the percentage of larger sized particles increased (from 38 J..Lm to 90 J..Lffi as seen in Chapter 6) suggests that the rock was strengthened rather than weakened. Secondly, an innovative coupling technique (using a parallel-plate capacitor with dimensions of 28 x 47 mm) to connect rock samples to high powered RF electronic equipment is described. The feasibility of this technique is confirmed by repeated correlated measurements taken on a vector voltmeter and network analyser. Low SWR readings obtained from an inline RF Wattmeter in a practical setup also proves the viability of the matching network used in the coupling technique. Thirdly, anoriginal coupling coefficient (81.58 x 10-3) for the parallel-plate capacitor is presented. This value may be used in similar sized capacitors to determine the specific heat capacity of dielectric materials. However, the value of the coupling coefficient was only verified for seven (relatively dark in surface colour) out of the ten rock samples. Therefore, this coupling coefficient may hold true for all dark coloured rock samples, as it represents the coupling of energy between the parallel-plate capacitor and the rock sample. Finally,this research defines the mathematical models for 10 rock samples for the VHF range of frequencies (30 - 300 MHz), providing unique phase angle to resonance equations for each sample. These equations can be used with each specific rock to determine the resonating frequency where the maximum current flows and the minimum resistance is present. Evaluating the effects of RF power treatment on rocks has brought to light that mineral grain boundaries within specified rock samples are not significantly weakened by RF treatment. This was firstly confirmed by the similar electrical properties of the untreated and treated samples, where consistent values for the resonating frequency were obtained from the network analyser. Secondly, the SEM analysis of the untreated and treated rock samples revealed no significant changes in the form of fractures or breakages along the mineral grain boundaries. Photomicrographs of the thin sections of all ten rock samples were used in this analysis. The particle size distribution of both samples further revealed no weakening or softening of the rock, as the percentage of smaller sized particles did not increase in the treated samples. It may therefore be stated that treating rock samples with RF power within the VHF range will not significantly improve rock comminution and mineral liberation.Item Stress modelling of welded titanium alloy (grade 5) pipes(2010-12) Inyang, Etienying Edem; Mendonidis, P.; Oba, P.; Masu, L. M.This research work focused on welded titanium alloy (grade 5) pipes, to ascertain if the weld joints can withstand the immediate and accumulated effects of fluid flow in (industrial) applications. Modeling of welded pipes was done using Pro/ENGINEER Wildfire 5.0. The cylindrical pipe models were of 206,375mm inner and 219,075mm outer diameter respectively; made of Ti6Al4V material. Three models were made: one of unwelded pipes, another with a seam weldment and the third with a circumferential weld. The welds were modeled as autogenous gas tungsten arc welding and the models included calculated heat affected zones. The pipes were modeled with a flowing fluid under pressure exerted evenly on all sides of the pipe walls (circumference). The boundary conditions were such that the pipe ends were supported as if the pipe were continuous. Stress and strain analysis on the pipe models were performed by the Finite Element Method using Pro/ENGINEER Wildfire 5.0. The results of the Finite Element Analysis (FEA) indicated that stress vary very negligibly along the pipe. A comparison of the FEA modeling results to the analytically determined value of the stress showed very low or zero percentage deviation.Item Modelling of Pressurised Water Supply Networks that May Exhibit Transient Low Pressure - Open Channel Flow Conditions(Vaal University of Technology, 2011-03) Byakika, Stephen Nyende; Ndambuki, Prof. J. M.; Ngirane-Katashaya, Prof. G.Growing demand for water due to increasing populations, industrialisation and water consuming lifestyles puts stress on existing water supply systems. To cater for the rising demand, water distribution networks are expanded beyond their design capacities and this creates transient “low-pressure-open-channel flow” (LPOCF) conditions. Current water supply models use “demand driven approach” (DDA) methodology which is not able to simulate transient LPOCF conditions, that poses an impediment to management/analysis of pressure-deficient networks. With a case study of the water supply network of Kampala City, LPOCF conditions were studied in this research. A “pressure/head driven approach” (PDA/HDA) was used in order to determine what demand is enabled by particular nodal pressures. Conversion of free surface to pressurised flow was analysed and modelled, with a view to clearly understanding occurrence of this phenomenon. The research demonstrated that if adequate pressures and flows are to be maintained, effectiveness of the water distribution network should be given as much attention as water production capacity. The research also indicated that when network pressures are low, the head-driven approach to water distribution modelling gives more accurate results than the traditional demand-driven methodology. Coexistence of free-surface and pressurised flow in networks prone to LPOCF conditions was confirmed and modelled. Results obtained highlighted the advantages of developing fully dynamic and transient models in the solution of transient LPOCF conditions in water distribution networks. Models developed allow application of PDA/HDA and DDA methodologies in systems that may exhibit LPOCF conditions thus enabling identification, understanding and analysis of the status of all sections of the network. These culminated in the development of a DSS to guide operational decisions that can be made to optimise network performance.Item Monitoring and modelling of water quality characteristics along a reticulation system: a case study of modimolle reticulation network(2012-01) Mehlo, Mahlomola; Wanjala, R. Salim, Dr.; Ndambuki, J. M., Prof.Potable water quality can deteriorate immensely from point of treatment to point of usage. This change in quality along a bulk distribution main may be attributed to numerous factors, such as the ingress of storm water. Furthermore, water utilities experience challenges in terms of the microbiological organisms that are not attributed to operational practices. For example, drinking water bulk distribution mains may be a shelter for these microorganisms that are sustained by organic and inorganic nutrients present within the pipe itself. These microorganisms may be active in the water being transported by the pipe, and can cause a significant drop in the water quality. In order to deal with the problem of deteriorating water quality, sufficient information within the bulk main is required, so that the consumer can be protected from ingesting contaminated water or water of poor quality. Hence, the overall objective of this study was to investigate and model water quality characteristics within the Modimolle reticulation network. Water samples were collected from various points throughout the entire system for quality analysis. Different sampling points were established along the main pipeline as well as within the Modimolle distribution system. Water quality software, EPANET, was then used to model the water quality deterioration for both the bulk line and the reticulation network of Modimolle extension 11. Residual chlorine was the main parameter which was monitored. This study presents results of a research on water quality variation within a long distribution mains conveying water up to 87 km. Results show that raw residual chlorine is constantly depleted along the pipeline, and is therefore unable to be maintained at the required level of 0.2 mg/l, as stipulated by the Department of Water Affairs. This means that if any harmful contaminants should enter the water, the residual chlorine in the water will not be able to protect the consumers from the contaminants.Item Effect of land-use change on traffic peak hour factor(Vaal University of Technology, 2012-01) Phahlane, Motsepe Herbert; Salim, W. R., Dr.; Ndambuki, J. M., Prof.Growth in land development in South Africa resulted in large increase in traffic volumes. A Traffic Impact Assessment (TIA), as a traffic engineering tool, is commonly used to assess the possible effects of a land development project on the transportation and traffic system. During the TIA process, capacity analysis is performed to indicate the measures of effectiveness of the intersection. Intersection capacity analysis in South Africa by engineers is done on the basis of default values of the Peak Hour Factor (PHF) provided by the Highway Capacity Manual (HCM) or limited traffic counts. However, the default value of PHF may be significantly affected by new developments in the neighbourhood of the intersection. This study aimed at investigating the impact land-use change has on the existing intersection PHF, thus predicting values per land-use type. Intersections with traffic counts conducted before and after land-use change in vicinity were selected and investigated. The results showed that change in land-use has an impact on the existing PHF. They also assist in identifying the appropriate intersections to predict the PHF per land-use type. Intersections were identified and analysed, and this led to the development of a design chart showing the predicted PHF per land-use type selected and measures to consider during traffic analysis. Intersection capacity analysis was performed to compare the results using the predicted PHF and the HCM default values. The results showed that traffic flow rate was adjusted by up to 26% when using the default values, 0.92 and 0.95. The results also showed that the default values could overestimate the volume to capacity ratio and the average delay by up to 15% and 35%, respectively. It was then concluded that the use of HCM default values of the PHF for every land-use type will have an effect of the final roadway design results. The computed PHF values for each land-use type were then recommended to be used to ensure fairness and consistency in traffic analysis.Item Application of integrated water resources management in computer simulation of River Basin's status - case study of River Rwizi(2012-03-28) Atim, Janet; Ngirana-Katashaya, G.; Ndambuki, J. M.During the last few years, concern has been growing among many stakeholders all over the world about declining levels of surface water bodies accompanied by reduced water availability predominantly due to ever increasing demand and misuse. Furthermore, overexploitation of environmental resources and haphazard dumping of waste has made the little water remaining to be so contaminated that a dedicated rehabilitation/remediation of the environment is the only proactive way forward. River Rwizi Catchment is an environment in the focus of this statement. The overall objective of this research was to plan, restore and rationally allocate the water resources in any river basin with similar attributes to the study area. In this research, Integrated Water Resources Management (IWRM) methodology was applied through Watershed/Basin Simulation Models for general river basins. The model chosen and used after subjection to several criteria was DHI Model, MIKE BASIN 2009 Version. It was then appropriately developed through calibration on data from the study catchment, input data formatting and its adaptation to the catchment characteristics. The methodology involved using spatio-temporal demographic and hydrometeorological data. It was established that the model can be used to predict the impact of projects on the already existing enviro-hydrological system while assigning priority to water users and usage as would be deemed necessary, which is a significant procedure in IWRM-based environmental rehabilitation/remediation. The setback was that the available records from the various offices visited had a lot of data gaps that would affect the degree of accuracy of the output. These gaps were appropriately infilled and gave an overall output that was adequate for inferences made therefrom. Several scenarios tested included; use and abstraction for the present river situation, the effect of wet/dry seasons on the resultant water available for use, and proposed projects being constructed on and along the river. Results indicated that the river had insufficient flow to sustain both the current and proposed water users. It was concluded that irrespective of over exploitation, lack of adequate rainfall was not a reason for the low discharge but rather the loss of rainwater as evaporation, storage in swamps/wetlands, and a considerable amount of water recharging groundwater aquifers. Thus, the proposed remedy is to increase the exploitation of the groundwater resource in the area and reduce the number of direct river water users, improve farming methods and conjunctive use of groundwater and surface water - the latter as a dam on River Rwizi. The advantage of the dam is that the water usage can be controlled as necessary in contrast to unregulated direct abstraction, thus reducing the risk of subsequent over-exploitation.Item Optimisation of water, temperature and voltage management on a regenerative fuel cell(2012-05-31) Van Tonder, Petrus Jacobus Malan; Pienaar, HCvZ“Never before in peacetime have we faced such serious and widespread shortage of energy” according to John Emerson, an economist and power expert for Chase Manhattan Bank. Many analysts believe that the problem will be temporary, but others believe the energy gap will limit economic growth for years to come. A possible solution to this problem can be fuel cell technology. Fuel cells (FCs) are energy conversion devices that generate electricity from a fuel like hydrogen. The FC however, could also be used in the reverse or regenerative mode to produce hydrogen. The reversible fuel cell (RFC) can produce hydrogen and oxygen by introducing water to the anode electrode chamber, and applying a potential across the anode and cathode. This will cause the decomposition of the water to produce oxygen at the anode side and hydrogen at the cathode side. In order to make this process as efficient as possible several aspects need to be optimised, for example, the operation temperature of the RFC, water management inside the RFC and supply voltage to the RFC. A three cell RFC and its components were constructed. The three cell RFC was chosen owing to technical reasons. The design factors that were taken into consideration were the different types of membranes, electrocatalysts, bipolar plates and flow topologies. A water trap was also designed and constructed to eliminate the water from the hydrogen water mixture due to water crossover within the MEA. In order to optimise the operation of the RFC a number of experiments were done on the RFC. These experiments included the optimal operating voltage, the effect that the temperature has on the production rate of hydrogen, and the effect that the water flow through the RFC has on the production rate of hydrogen. It was found that there is no need to control the water flow through the RFC because it had no effect on the production rate of hydrogen. The results also showed that if the operating temperature of the RFC were increased, the energy it consumes to warm the RFC significantly decreases the efficiency of the whole system. Thus the RFC need not be heated because it consumes significantly more energy to heat the RFC compared to the energy available from the hydrogen produced for later use. The optimised operating voltage for the three cell RFC was found to be 5.05 V. If the voltage were to be increased or decreased the RFC efficiency would decrease.Item Design and development of an automated temperature controller for curing ovens(2012-08-30) Schoeman, Ruaan Mornè; Janse van Rensburg, J. F.Curing of materials in order to obtain different properties has been a practice for many years. New developments in composite materials increase the need to control certain variables during the curing process. One very significant variable is temperature. Temperature control by itself is an old practice, however when the need for repeatedly controlling the process accurately over long periods of time arises, a system is required that outperforms normal manual control. One of the aspects within such a system that needs to be considered is the ability to replicate the temperatures within an oven which were originally used for a specific material’s curing profile. This means that a curing profile would need to be defined, saved for later and finally be interpreted correctly by the controlling system. Different control methods were simulated to enable the system to control the temperature which has been defined by literature. This dissertation introduces a variation on the standard control methods and shows improved results. Switching the oven on and off in order to increase or decrease internal oven temperature seems simple, but can cause switching devices to decrease their operational life span, if not designed carefully. A combination switch was introduced which harnesses the advantages of two very common switching devices to form an improved combination switch. Software for the personal computer environment, as well as software for the embedded environment were developed and formed a control system that produced acceptable results for temperature control. Accuracies of 98% and more were achieved and found to be acceptable according to standard engineering control practices. An accurate temperature profile controller was designed, simulated and built in order to control the temperature inside a specific curing oven which, in turn, determined the curing properties of specific materials. The overall results were satisfactory which lead to achieving the objectives outlined in this dissertation.Item Optimisation of the hydrogen pressure control in a regenerative proton exchange membrane fuel cell(2012-10-24) Burger, Melanie; Pienaar, H. C. v Z.Industrial countries, such as South Africa, rely heavily on energy sources to function profitably in today’s economy. Based on the 2008 fossil fuel CO2 emissions South Africa was rated the 13th largest emitting country and also the largest emitting country on the continent of Africa, and is still increasing. It was found that fuel cells can be used to generate electricity and that hydrogen is a promising fuel source. A fuel cell is an energy generation device that uses pure hydrogen (99.999%) and oxygen as a fuel to produce electric power. A regenerative fuel cell is a fuel cell that runs in reverse mode, which consumes electricity and water to produce hydrogen. This research was aimed at designing and constructing an optimised control system to control the hydrogen pressure in a proton exchange membrane regenerative fuel cell. The hydrogen generated by the fuel cell must be stored in order to be used at a later stage to produce electricity. A control system has been designed and constructed to optimise the hydrogen pressure control in a regenerative proton exchange membrane fuel cell. An experiment that was done to optimise the hydrogen system included the effects that the cathode chamber pressure has on the production of hydrogen and the most effective method of supplying hydrogen to a storage tank. The experiment also included the effects of a hydrogen buffer tank on the output hydrogen pressure and if the system can accommodate different output pressures. It was found that the cathode chamber pressure doesn’t need to be controlled because it has no effect on the rate of hydrogen produced. The results also showed that the flow of hydrogen need not to be controlled to be stored in a hydrogen storage tank, the best method is to let the produced hydrogen flow freely into the tank. The hydrogen produced was also confirmed to be 99.999% pure. The system was also tested at different output pressures; the control system successfully regulated these different output pressures.